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Hydrodynamics of a swimming batoid fish at
Reynolds numbers up to 148 000
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Flow around a tethered model of a swimming batoid fish is studied by using the
wall-modelled large-eddy simulation in conjunction with the immersed boundary method.
A Reynolds number (Re) up to 148 000 is chosen, and it is comparable to that of a
medium-sized aquatic animal in cruising swimming state. At such a high Re, we provide,
to the best of our knowledge, the first evidence of hairpin vortical (HV) structures near
the body surface using three-dimensional high-fidelity flow field data. It is observed
that such small-scale vortical structures are mainly formed through two mechanisms:
the leading-edge vortex (LEV)–secondary filament–HV and LEV–HV transformations
in different regions. The HVs create strong fluctuations in the pressure distribution and
frequency spectrum. Simulations are also conducted at Re = 1480 and 14 800 to reveal the
effect of Reynolds number. Variations of the flow separation behaviour and local pressure
with Re are presented. Our results indicate that low-Re simulations are meaningful when
the focus is on the force variation tendency, whereas high-Re simulations are needed when
concerning flow fluctuations and turbulence mechanisms.

Key words: swimming/flying, propulsion, vortex dynamics

1. Introduction

Recent interests in unmanned underwater vehicles and micro air vehicles have motivated
the desire to emulate the characteristic performance of animals’ swimming and flying. In
nature, animals vary significantly in body size and moving speed, from small creatures
(zebrafish larvae, tadpoles), to medium creatures (stingrays, reptiles and marine birds)
and large mammals (manatees, dolphins, belugas and blue whales). As a result, the
Reynolds number of natural swimming and flying spans nearly eight orders of magnitude
(Gazzola, Argentina & Mahadevan 2014). The critical Reynolds number was estimated
to be approximately 3000, which is a crossover from the laminar to turbulent regimes.
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Among the various species, larvae and a small portion of amphibians live in the laminar
regime, whereas most animals live in the turbulent regime.

Several review papers (Triantafyllou, Triantafyllou & Yue 2000; Lauder 2015; Smits
2019; Zhang, Zhang & Huang 2022b) have introduced comprehensively the recent
progresses in the hydrodynamics of aquatic locomotion and aerodynamics of airborne
flight. Although study on the flow around real living animals is the most direct approach
for understanding biological kinematics and fluid dynamics, the research object is limited
to relatively small-size species with low and intermediate Re, such as eels (Tytell 2004;
Tytell & Lauder 2004), zebrafish (Guo et al. 2022), sunfish (Drucker & Lauder 2000),
dragonflies (Thomas et al. 2004) and hummingbirds (Pournazeri et al. 2013). Moreover,
force measurement and high-quality three-dimensional (3-D) flow visualization for a living
body is a challenging task, which is important to reveal the flow physics of swimming and
flying. Experimental study using robotic or simplified model and numerical work largely
enriched the object, e.g. tuna (Zhu et al. 2002; Zhong, Dong & Quinn 2019; Zhong et al.
2021), manta, bat (Wang et al. 2015a). Besides, numerical work gave us more detailed
flow information. However, studying the swimming and flying problems at high Reynolds
numbers remains a challenge (Dong et al. 2010; Borazjani & Daghooghi 2013; Fish et al.
2016).

Zhang et al. (2022b) summarized the Reynolds numbers employed in approximately
60 studies of aquatic animals (figure 1) and showed that experiments generally were
conducted under higher-Re conditions than numerical studies. The Reynolds numbers of
most high-fidelity numerical simulations were below 104, due to the high requirement of
a fine grid for resolving the boundary layer near the body and the wake flow. Among
the numerical work shown in figure 1, the highest Re was considered by Bottom et al.
(2016), who simulated the swimming stingrays at Re = 13 500 and 23 000. They showed
the existence of a leading-edge vortex (LEV) on stingrays and the LEV was related to the
thrust and efficiency enhancement. But the authors did not discuss the effect of Reynolds
number and the LEVs remained coherent structures in this Re range. Oh et al. (2020)
conducted a numerical study on the aerodynamic performance of a hovering rhinoceros
beetle at Re = 12 000, in which a great deal of small-scale vortices were visible. However,
their work focused on developing a predictive quasisteady theory, whereas the dynamics
of vortical structures was not further investigated. Besides, Khosronejad et al. (2020)
performed large-eddy simulation (LES) of an archer fish jumping from water into air
at Re of 60 000. The findings for the stages in water agree with the traditional reverse
Kármán vortex street. Daghooghi & Borazjani (2015) conducted simulations of mackerels
swimming in a rectangular pattern at Re of 50 000. The present work improves the
Reynolds number of high-fidelity numerical simulations to O(105).

In fact, the effect of Reynolds number has been reported in previous studies. Bozkurttas
et al. (2009) examined the performances of a deformable fish pectoral fin at Re =
540, 1440, 6300. The forces reduced with decreased Re, but they had similar variation
trends. The forces were reduced to as high as 40 %. Regarding the vortical structures,
small-scale vortices were dissipated but the key features of vortices were similar. Borazjani
& Sotiropoulos (2008, 2009, 2010) conducted a series of simulations at Re = 300, 4000
(viscous flow) and ∞ (inviscid flow) to investigate the performances of carangiform and
anguilliform locomotion. The critical Strouhal number, at which the self-propelled state is
reached, is decreased with the increasing Re for both swimmers. The propulsive efficiency
of the carangiform swimmer is an increasing function of Re, while the effect of Re on
the efficiency of the anguilliform swimmer is different. Shyy & Liu (2007) presented
the effect of Reynolds number on vortex stability by comparing the vortical structures
of flying insects at Re = 10, 100, 6000. The conical LEV was observed to break down
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Figure 1. Reynolds numbers used in recent studies, where a circle represents high-fidelity numerical work
(labelled by N) and a cross represents experimental work (labelled by E). Adapted with permission from Zhang
et al. (2022b).

at Re = 6000, whereas it attached stably on the wing and connected to the tip vortex
(TV). Kim & Gharib (2010) found that the starting vortex cannot be formed in the wake
of a rotating plate at Re = 60 as distinctly as that at Re = 8800. Harbig, Sheridan &
Thompson (2013) simulated a fruit fly wing at Re = 120–1500. Increasing Re led to the
development of a dual LEV structure, and the increase of the aspect ratio had similar
effect. It was also observed that some major mechanisms employed by animals were kept
the same for different Reynolds numbers, such as those of body–fin interaction (Liu et al.
2017) and fin–fin interaction (Zhang, Sung & Huang 2020). Han, Chang & Kim (2014)
experimentally investigated the dependence of an insect flapping wing on the Reynolds
number. At Re = 7200, the lift was enhanced due to the wing–wake interaction and the
pitching-up rotational mechanism, whereas at Re = 23 000, the lift peak standing due to
the wing–wake interaction was delayed, and the lift augmentations due to pitching-up
rotation disappeared. From their digital particle image velocimetry results, the LEV in
the rotational phase cannot maintain its attachment and the trailing edge vortex (TEV) is
underdeveloped. Moreover, the flow field exhibits some turbulent characteristics.

As seen above, low to moderate Re condition was widely adopted in the previous
numerical studies, whereas high-fidelity 3-D simulations at high Re of aquatic animals
are rare. The effect of Reynolds number has not been well understood yet, especially at the
high-Re range. In the present study, the batoid fish is chosen as a typical aquatic species
because it has large propulsion area compared with the species using body/caudal fins,
around which the flow is easier to be fully developed and the effect of Reynolds number
is more notable. The simulations are performed at the Reynolds number of up to 148 000,
while those at lower Re (i.e. Re = 1480, 14 800) are also performed in order to reveal the
effect of Reynolds number varied across three orders of magnitude. The present study
aims to answer the following questions. (1) What are the main features of the flow field
of a swimming batoid fish at the real swimming Reynolds number and their effects on
the performance? (2) What is the effect of Reynolds number in a relatively wide Re range
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Figure 2. (a) The living cownose ray and (b) our constructed cownose ray model.

across the laminar and turbulent regimes? (3) Can the results under the widely adopted
low to moderate Re condition represent those at high Re?

The rest part of the work is structured as follows. The physical model and numerical
method are introduced in § 2, the results are presented in § 3, including the hydrodynamic
forces, the mean flow and fluctuating characteristics and the vortex dynamics. Then,
further discussion is given in § 4, and finally in § 5 conclusions are drawn, which (partially)
answer the above questions.

2. Physical model and numerical method

Figure 2 displays a 3-D morphological model of the batoid fish (cownose ray, Rhinoptera
javanica) which was constructed based on several section profiles (Huang, Zhang & Pan
2020). The model has a dorsoventrally flattened body with a length of BL and expanded
pectoral fins with a span of SL. The kinematics model was constructed based on the data
from high-resolution digital camera recordings of free-swimming batoid fish specimens by
tracking some characteristic points, such as the head, tail base and pectoral fin tip. Batoid
fish is a good example that actively controls its fin shape, and a prescribed kinematic
equation can be employed to describe its deformation. The main deformation can be
decomposed into the spanwise and chordwise components, which are described by using
a rotational motion around the longitudinal (x) axis of the body associated with spanwise
flexibility and a chordwise travelling wave, respectively. The wavenumber for a cownose
ray was chosen as 0.4. In our simulations, the tethered model was adopted, i.e. the batoid
fish swims against a constant inflow without moving in the x-direction. The motion of
the body is prescribed as the kinematic model, in which the deformation at the plane of
y/SL = 0 is zero. Details of the mathematical description can be found in our previous
work (Zhang et al. 2022a).

The immersed boundary (IB) method has been widely used in numerical studies
of flying and swimming at low- to moderate-Re conditions (Peskin 2002; Zhu et al.
2011; Sotiropoulos & Yang 2014). In order to simulate the flow over the batoid fish at
relatively high Reynolds numbers, the wall-modelled large-eddy simulation (WMLES) in
conjunction with the IB method is employed (Ma, Huang & Xu 2019). The governing
equations are the filtered incompressible Navier–Stokes equations,

∂ ũi

∂t
+ ∂ ũiũj

∂xj
= ∂ p̃

∂xi
− ∂τ̃ij

∂xj
+ 1

Re
∂ ũi

∂xj∂xj
+ fi,

∂ ũi

∂xi
= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)
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Figure 3. Grid-independence study at Re = 148 000 on the (a) thrust coefficient (CT ) and (b) power coefficient
(CPW) with three different grids, i.e. the coarse grid (2001 × 351 × 1001), the medium grid (2501 × 371 ×
1251) and the fine grid (3125 × 391 × 1563).

where ũi is the filtered velocity, p̃ denotes the filtered pressure, f denotes the additional
momentum force obtained by the penalty IB method (Huang, Chang & Sung 2011).
The Smagorinsky subgrid model is adopted to compute the subgrid scale stresses. The
wall model is implemented by solving the thin boundary layer equation on an embedded
mesh refined along the wall-normal direction. Then, the wall shear stress is inserted
into the LES solution through a dynamic matching procedure. The second-order central
finite difference scheme is used to discretize the equations, and time is advanced by a
fully implicit Crank–Nicholson scheme. Moreover, the velocity pressure is decoupled by
using the fractional step method. The present numerical solver has been validated through
various tests, such as turbulent flows over periodic hills (Re = 1.1 × 105), over a travelling
wavy wall (Re = 1.0 × 105), in circular pipe (Re = 1.4 × 105) and over a pitching airfoil
(Re = 4.8 × 104) in our previous studies (Ma et al. 2019, 2021). These tests were within
the Re range considered in the present work and showed that the proposed IB-WMLES
method is a reliable tool to deal with the high-Re flow problems.

In the present simulations, the Cartesian mesh was adopted. The computational domain
size was chosen as 5.4BL × 2.7BL × 2.7BL and 2501 × 371 × 1251 grid points. Near the
body, a uniform grid with the resolution of 0.002BL was adopted, corresponding to the
largest y+ of 32 with the superscript ‘+’ denoting normalization by the wall viscous
unit. In the IB method, since the Cartesian grid was used instead of body-fitted mesh,
the distance from the first grid to the body surface is varied around the body. Notably,
the distance is within one Eulerian grid size, and thus we used 0.002BL to compute
y+. Away from the body, stretched grids were employed in the normal (z) direction,
whereas uniform grids were still used in the streamwise (x) and spanwise (y) directions.
The time step was set as T/8000, where T is the stroke period, and the corresponding
Courant–Friedrichs–Lewy number is approximately 0.3. Such parameters are based on
the extensive domain- and grid-independence study. In the domain-independence study, a
larger domain (8.1BL × 2.7BL × 4.1BL) was tested and the results showed little difference
in the force coefficients. For the grid-independence study, a coarse grid case with
2001 × 351 × 1001 grid points as well as a fine grid case with 3125 × 391 × 1563 grid
points was conducted. Figure 3 shows a comparison of the thrust coefficient and power
coefficient for the three grid cases at Re = 148 000. It shows that the maximum differences
in the thrust and power coefficients are 2.6 % and 1.7 %, between the fine and medium grid
cases, respectively. The simulations were performed on a supercomputing cluster using 64
AMD 2.35 GHz processors.
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3. Results

In the present study, simulations of the swimming batoid fish at three Reynolds numbers
(Re = 1480, 14 800 and 148 000) were carried out. The Reynolds number is defined as,
Re = U∞BL/ν, where U∞ is the inflow velocity and ν is the kinematic viscosity. The
tip-to-tip amplitude (A) is 0.6BL and the frequency (f ) is 0.7 Hz, resulting in a Strouhal
number (St = fA/U∞) of 0.39. In each case, seven stroke cycles were simulated. In § 3.1,
the instantaneous forces were obtained from the seventh stroke cycle. After approximately
one stroke cycle, the flow reaches the periodic state. Thus, in § 3.2, the mean flow field
was calculated using the data of the latest six stroke cycles.

3.1. Hydrodynamic performance
Table 1 shows the cycle-averaged forces at the three Reynolds numbers and figure 4
shows the variation of the forces on the model. In order to examine how the increase
in the Reynolds number affects the net thrust (T), we further focus here on the pressure
(FP) and viscous (Ff ) components of the thrust. All forces are non-dimensionaliszed by
0.5ρU2∞BL2, where ρ is the density of the fluid. In addition, the power consumed to propel
the batoid fish is also computed by integrating each boundary element’s power due to the
deformation velocity Ubody, i.e.

PW =
∫

Ω

FL · Ubody ds, (3.1)

where FL is the Lagrangian force at each boundary element ds. Here PW is normalized by
0.5ρU2∞BL3, Ubody is computed using the equation of body motion (Zhang et al. 2022a) at
two instants Ubody = (x(t2) − x(t1))/(t2 − t1). Here the quasipropulsive efficiency ηQP
(Maertens, Triantafyllou & Yue 2015) is adopted to measure the swimming efficiency,
which is defined as

ηQP = (T̄ + R̄)U∞
PW

, (3.2)

where T̄ is the averaged thrust obtained by integration of −FL over body surface and time,
and R̄ is the towed resistance with a steady stroking position over a cycle (t/T = 0.17)
with zero velocity on the surface at a speed U∞ and an overbar is used to indicate a
time-averaged value. Here we choose the midstroke t/T = 0.17 because the motion at
upstroke is asymmetrical to that at downstroke. As shown in table 1, the thrust increases as
the Re increases. It is only at Re = 148 000 that the model generates a positive thrust. Since
the tethered model is used in our simulations, a negative thrust means that with the present
inflow condition and kinematics, the fish cannot keep equilibrium in a free-swimming state
and has to work harder to achieve the given velocity in the still water. Such a result can
be understood from the pressure and friction forces, i.e. the positive thrust comes from the
increase of the pressure force and decrease of the friction drag. As Re increases by two
orders of magnitude, C̄Ff decreases by an order of magnitude. Difference in C̄FP is due to
the vortex dynamics, which causes the pressure distribution to vary and will be presented
in the following sections. The swimmers consume more energy as Re increases, while the
efficiency is also improved. Here, the traditional net efficiency T̄U/PW was not employed
because the net thrust at Re = 1480 and 14 800 is negative. Note that the efficiency is not
strictly less than one because the drag at the towed state is larger than that at the swimming
state. Similar phenomena can also be seen in the previous studies (Maertens et al. 2015;
Zhang et al. 2022b). The instantaneous forces are shown in figure 4. It is found that there is
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Re 1480 14 800 148 000

C̄T −0.072 −0.015 0.00015
C̄FP −0.023 −0.0049 0.0045
C̄Ff −0.049 −0.011 −0.0043
C̄PW 0.037 0.044 0.048
ηQP 1.09 1.38 1.49

Table 1. Cycle-averaged force coefficients at different Re.
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Figure 4. Comparisons of instantaneous (a) thrust (CT ), (b) pressure force (CFP), (c) friction force (CFf ) and

(d) power (CPW) coefficients for a batoid fish swimming at Re = 1480, 14 800 and 148 000.

relatively little change in the tendency of temporal variation of the forces. The forces peak
at the midstroke and reach the valley at the start/end of the stroke. Notably, the second peak
of the force coefficients at the midupstroke is not equal to the first one. At Re = 148 000,
such a difference is more significant. The reason is that the flow is downstroke–upstroke
asymmetrical due to the asymmetrical shape of batoid fish. A higher Reynolds number
leads to a more distinct asymmetrical flow, causing a more obvious difference in the force
peaks.

3.2. Mean flow topology
Figure 5 displays the contours of time-averaged streamwise velocity at the plane of z/BL =
0 at Re = 1480, 14 800 and 148 000, where the velocity is normalized by the inlet velocity
U∞. To demonstrate the effects of Reynolds number on the mean flow topology, we focus
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Figure 5. Contours of time-averaged streamwise velocity at (a) Re = 1480, (b) Re = 14 800 and
(c) Re = 148 000 at the plane of z/BL = 0, where U∞ is the inlet velocity.
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Figure 6. Time- and streamwise-averaged velocity profile between different Reynolds numbers. Here, the data
is averaged by six stroke periods and positions taken at slice cuts from (a) A to B (x/BL = 0.97 − 1.24),
(b) B to C (x/BL = 1.24 − 1.51) and (c) C to D (x/BL = 1.51 − 1.78), which are labelled in figure 5.

on two regions, i.e. the recirculation zone and the tip region. At Re = 1480, there is a long
recirculation zone behind the batoid fish. As shown in figure 5(a), the isocontour of 0.05
is extended to position x/BL = 1.35; whereas in figures 5(b) and 5(c), the recirculation
zone is significantly shortened. The pressure drag is closely related to the flow separation
at the recirculation zone. Such a difference implies a smaller body drag at higher Reynolds
number. At the tip region, a jet flow is visible in figures 5(b) and 5(c). The jet flow with
an increased streamwise velocity compared with the inflow coincides with the result of a
manta ray (Fish et al. 2016), which accounts for the thrust force generated at the tip region.
As the Reynolds number increases, it generates a longer jet flow, indicating a lager thrust.
At Re = 1480, no obvious jet flow is detected, resulting in a drag-like wake.

To demonstrate the mean wake flow more clearly, the mean velocity profiles at different
streamwise positions are shown in figure 6, where the positions are labelled in figure 5(c).
Due to the high cost of long-time simulation, only six stroke periods were employed for
averaging. In order to obtain a smooth profile, the velocities are further averaged along
the streamwise direction, from plane A to B (x/BL = 0.97 − 1.24), B to C (x/BL =
1.24 − 1.51) and C to D (x/BL = 1.51 − 1.78). Actually, from figure 6(a), the lowest
Reynolds number generates a slight jet flow, which does not exceed 1.05U∞. However,
the jet flow region is very limited, at |y/SL| > 0.66. In contrast, the magnitude of the
jet flow at the other two Reynolds numbers can be as high as 1.1U∞ with an extended
region reaching |y/SL| = 0.50. The difference of jet flow length between Re = 14 800 and
148 000 (figures 5b and 5c) can be also found in the velocity profiles. In the C–D region
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z

Figure 7. Time-averaged streamwise velocity at (a) Re = 1480, (b) Re = 14 800 and (c) Re = 148 000 at the
plane of y/SL = 0. The grey region represents the boundary of reverse flow (negative u).

(figure 6c), which is far away from the model, the maximum jet velocity is 1.05U∞ at
Re = 14 800; whereas it exceeds 1.07U∞ at Re = 148 000, reflecting a stronger jet flow.
For the recirculation zone, it takes longer for the flow at lower Reynolds numbers to recover
to the inflow velocity. For example, as shown in figure 6(b), the velocity at y/SL = 0
is nearly zero at Re = 1480, whereas an increased velocity can be observed at higher
Reynolds numbers. At the region farther away from the body, the flows at Re = 14 800
and 148 000 have almost the same profile.

Figure 7 presents the time-averaged streamwise velocity at the y/SL = 0 plane. As
expected, higher-Re flow has a thinner boundary, suggesting a fuller velocity profile.
From the surface friction distribution as shown in figure 8, a high-friction region is
observed, which is reduced significantly as the Reynolds number increases. At the highest
Reynolds number (figure 8c), the high-friction region is concentrated only near the leading
edge, whereas at Re = 1480, the high-friction region occupies almost the whole surface
(figure 8a). Moreover, in figure 7, a negative velocity displayed by grey colour is added to
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Figure 8. Time-averaged (a–c) frictional coefficient (Cf ) and (d–f ) pressure coefficient (Cp) distribution
on the model surface at (a,d) Re = 1480, (b,e) Re = 14 800 and (c, f ) Re = 148 000. Here Cp = ( p −
p∞)/(0.5ρU2∞).

demarcate the reversed flow region. The reversed flow in the wake is consistent with the
recirculation zone as seen in figures 5 and 6.

The reversed flow region at the suction surface of the model in the time-average sense
is commonly referred to as a laminar separation bubble (LSB) (Tani 1964). A typical
structure of a two-dimensional (2-D) mean LSB occurs between the separation and
reattachment locations (Horton 1968). The separation originates from a laminar boundary
layer subjected to an adverse pressure gradient, whereas the reattachment is usually due to
the laminar shear layer transition to turbulence. At the y/SL = 0 plane, LSB occurs only
at the posterior, connecting the wake recirculation zone at Re = 1480. Long LSB occurs
at Re = 14 800. Notably, behind the reattachment point, another separation point was also
observed, which is different from the typical LSB structure. This is analysed using the
instantaneous flow in the following section. At the highest Reynolds number, there is no
obvious reversed flow region, indicating a smaller drag force. From the time-averaged
pressure distribution (figure 8d–f ), at the leading edge of the body, a low-pressure region
is formed, which is created due to the LEV. As Re increases, the magnitude of the
low-pressure region increases. It can be seen that the pressure at the posterior region is
higher than that at the front, thus creating a pressure difference, i.e. the thrust force. The
lower pressure at the leading edge accounts for the larger thrust force at higher Re as seen
in table 1.

3.3. Vortical structures

3.3.1. Overview of the vortical structures
Vortex evolution is known to play a key role in the hydro/aerodynamics of swimming and
flying (Liu, Du & Sun 2020; Zhang et al. 2022a). Figure 9 presents the time sequence
of 3-D structures at the three Reynolds numbers during the downstroke, visualized by the
isosurface of the Q-criterion. The insets display the phase of the stroke motion and also
the contours of the surface pressure coefficient. The flow can be divided into three
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Figure 9. Comparisons of the 3-D wake structures of a batoid fish, between the models of (a–c) Re = 1480,
(d–f ) Re = 14 800 and (g–i) Re = 148 000, visualized by the isosurface of Q = 80, 300, 500, respectively,
and coloured by streamwise velocity, at (a,d,g) the early downstroke (t/T = 0.17), (b,e,h) the mid-downstroke
(t/T = 0.33) and (c, f,i) the late downstroke (t/T = 0.50).

regions: dorsal region, span region and tip region. At Re = 1480, the LEV at the span
region is stable, attaching to the surface due to strong viscous dissipation. A slender TV
is formed and sheds off slightly at the tip region, whereas no structures are observed at
the dorsal region. The attached LEV creates a low-pressure region. At mid-downstroke
(figure 9b), the low-pressure reaches its peak and as the fins further stroke down (figure 9c),
the low-pressure is reduced, indicating a weakened LEV. These results show good
agreements with the previous numerical and experimental observations that the LEV does
not shed off at low Re (Lentink & Dickinson 2009; Chen et al. 2017).

At Re = 14 800, the unsteadiness in the span and tip regions become noticeable, where
the LEV breaks into several corotating vortical structures and a stronger spiral TV is shed
into the wake (see figure 9d–f ). A similar dual LEV system was observed over rotating
insect wings for a range of wing shapes (Srygley & Thomas 2002; Lu, Shen & Lai 2006;
Harbig et al. 2013; Chen et al. 2017). However, the LEV of the batoid fish splits into
more structures and forms a multi-LEVs system. As the stroke goes on, the LEV convects
downstream until the fins reverse their direction; then it is shed into the wake as a part of
TEV during the upstroke. The multi-LEVs create long narrow low-pressure bands. Also
visible is the moving of such low-pressure bands with the convection of LEV. Another
distinctive feature is that the vortical structures are developed from the dorsal part of the
batoid fish (dorsal vortex (DV)), and are shed into the wake at the end of downstroke
(figure 9f ). Actually, the formation of DV begins at the start of previous upstroke, when

963 A16-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.325


D. Zhang and W.-X. Huang

Re = 1480 Re = 14 800 Re = 148 000

(a) (b) (c)

x

y

Figure 10. Isosurface of zero streamwise velocity at t/T = 0.33.

the LEV formed at previous downstroke just convects to the trailing edge (not show here).
It is a result of the interaction between the dorsal shear layer and the convecting LEV
formed during the previous stroke.

At Re = 148 000, distinct differences can be observed in all the three regions. In
the dorsal region, a large number of small-scale vortical structures are formed without
coherent DV structures. The LEV splits into more LEVs in the span region (figure 9g),
indicating it has a stronger instability. As the LEVs convect downstream, the vortex cores
are more diffused (figure 9h). At the end of downstroke (figure 9i), small-scale vortical
structures are likely to be dominant at the posterior of the batoid fish. In the tip region,
the topology of TV is visible, however, with a diffused vortex core and a great deal
of small-scale vortical structures. From the surface pressure contours, strong pressure
fluctuation is found, which gives evidence of the existence of turbulent flow. The way these
turbulent structures are formed and their effect on the pressure distribution are examined
in detail in § 3.3.3.

3.3.2. Flow separation region
Pressure and skin friction distributions are commonly used to demonstrate the
characteristics of LSB. There always exists a plateau downstream of the suction peak
and then a rapid pressure recovery, representing the characteristics of flow separation and
reattachment (Toppings & Yarusevych 2021). Meanwhile, the skin friction vanishes at
these locations. However, these may be more suitable to describe the separation location of
2-D flows (Délery 2001). For 3-D flows, the skin friction lines, also known as the limiting
streamlines, are a good way to describe the separation and reattachment (Délery 2001).
Another approach is the isosurface of zero streamwise velocity. Toppings & Yarusevych
(2021) showed that the two approaches agree well in identifying the streamwise separation
and reattachment bounds. The isosurface of zero streamwise velocity was used to show the
streamwise and spanwise bounds of the flow separation region as shown in figure 10. It is
observed that the separation location varies greatly with Reynolds number. At Re = 1480,
separation takes place only near the trailing edge. This indicates there is a good flow
attachment for most parts of the body. At Re = 14 800, the separation line moves upstream,
starting at almost half of the body. Separated flow can be also seen near the centre line and
the tip region. Substantial difference is found at Re = 148 000 with no obvious separation
line. Moreover, the separation zone is discontinuous and scattered.

To describe the separation shape more clearly, the reversed flow region, visualized by
u ≤ 0, was also displayed at the x–y plane y/SL = 0.62 in figure 11. Actually, at the
start of the downstroke (t/T = 0.17) shown in figure 11(a), the flow does not separate
near the surface at Re = 1480. The result at Re = 14 800 shows the presence of a typical
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Figure 11. Streamwise velocity vectors and contours of flow separated region at slice-cut of y/SL = 0.62,
(a) t/T = 0.17, (b) t/T = 0.33, (c) t/T = 0.5.

LSB without reattachment. As the viscous effect weakens at Re = 148 000, a similar LSB
also occurs with the separation point moving upstream slightly. At the mid-downstroke
(t/T = 0.33), our previous study has already revealed that the effective angle of attack of
the swimmer reaches its maximum at this moment (Zhang et al. 2022a). High effective
angle of attack makes the flow easier to separate. Thus, at Re = 1480, the reversed flow
occurs at the trailing edge of the model, and at Re = 14 800, the reversed flow region
extends farther upstream. Substantial difference is observed at Re = 148 000, where a
long LSB transforms into many scattered reversed flow regions, indicating the occurrence
of turbulent flow. The results are similar to the side view of the instantaneous flow
downstream of the mean reattachment in the transition of flow over a flat plate (Alam &
Sandham 2000). However, a distinction needs to be drawn that in the present simulation,
no coherent LSB is observed upstream the turbulence region (Alam & Sandham 2000).
This implies that the formation of the turbulent flow is different from the traditional one,
which is described in § 3.3.3. At t/T = 0.5, the reversed flow region continues to decrease
with the turbulent structures convecting downstream. The separation positions are further
quantitatively displayed in figure 12(a). Moreover, the length in one chord occupied by
the reversed flow is also presented in figure 12(b). Results at Re = 1480, 14 800, 148 000
are displayed by black, red and blue colours, respectively. Although a higher Reynolds
number leads to the acceleration of the start of flow separation, the separate region is
reduced apparently due to the transition to turbulence.

3.3.3. Formation of hairpin vortical structures
In § 3.3.1, a large number of small-scale vortical structures are formed at Re = 148 000,
among which the hairpin-like structures are visible by enlarging the figures (e.g. figure 13).
The hairpin vortical (HV) structure is a basic flow structure of turbulent boundary layers
(Adrian 2007). Some distinct types of hairpin vortex formation mechanism were observed
in the present work. As discussed in § 3.3.1, three characteristic regions can be identified
based on the vortical structures. In this section, the vortex formation processes in the three
regions are described in detail.

Figure 13 describes the local vortical structures at Re = 148 000 in an enlarged view. At
the dorsal region, two hairpin vortices packets can be clearly observed. These structures
are developed from the upstream shear layer. The packet around the y/SL = 0 position
(labelled as A–A) contains three rows of hairpins. The younger hairpin (HV3) has a
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Figure 12. (a) The separate position and (b) the length of the separate region at the slice-cuts of y/SL = 0.62
at Re = 1480 (black), 14 800 (red), 148 000 (blue).
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Figure 13. Enlarged views at t/T = 0.17 to show the local vortical structures and spanwise vorticity contours
at the selected planes A–A, B–B and C–C.
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Figure 14. The instantaneous local vortical structures at Re = 148 000. The velocity legend is same as that in
figure 13.

typical shape, i.e. one head aligned in the spanwise direction and two legs aligned in
the streamwise direction, whereas the quasistreamwise legs of the older ones (HV1 and
HV2) are more diffused. Notably, the hierarchy of multiscale vortices is observed, i.e.
smaller-scale hairpin vortices (SVs) on the legs of the larger hairpin (HV3). These are
qualitatively similar to those observed in a turbulent boundary layer at high Reynolds
numbers (Motoori & Goto 2019), where the small-scale vortices are mainly stretched by
the strain-rate field induced by large-scale ones. Interestingly, as convected downstream,
the small-scale vortices can be further developed into new hairpins as their heads.
Moreover, as the disturbance spreads laterally, HV3 produces similar configurations
referred to as subsidiary vortices by Smith et al. (1991), allowing the hairpin structures
to spread in the spanwise direction. Another hairpin vortex packet around the plane B-B
contains two individuals in line, where the legs of HV4 are developed beneath the head of
HV5. Such a typical hairpin packet has been explored widely (Adrian 2007).

In the span region, it takes a longer period to form the hairpin-like structures, contrary
to those in the dorsal region. The generation of hairpins in this region is related to the
LEVs. From figure 13, it is shown that some corrugations identified as valleys and bulges
are observed on the LEVs (e.g. LEV2). Such an observation is similar to that in the 3-D
TEVs of an oscillating foil caused by elliptic instability in the wake (Verma & Hemmati
2021). Meanwhile, the LEV2 begins to lift up away from the wall, coinciding with the
flow separation described in § 3.3.2. In figure 14, we continue to depict the LEV to HV
transformation from t/T = 0.33 to 0.67. As the pectoral fins stroke, the instability grows
radially along the LEV. At t/T = 0.33 (figure 14a), it leads to the exchange of flow between
the LEVs and shear layer. Around the boundaries of the corrugations the flow curls into
vortex filaments, referred to as the secondary filament (SF), perpendicular to the LEV
tube. Once formed, the SFs convect downstream with the LEVs and they interact with
each other. As the structures convect downstream, the SFs are continuously stretched by
the vortex cores and the LEVs further split into smaller vortices, as shown in figure 14(b).
Thus, the quasistreamwise SFs and spanwise broken LEVs form the so-called one-legged
hairpin-like structures (Smith et al. 1991), as the legs and heads, respectively. Meanwhile,
the SFs begin to form on the younger LEVs (LEV3, LEV4). When the fins reverse their
directions (figure 14c), the structures finish their LEV to HV transformation.

In the tip region, the pectoral fin has a higher flapping amplitude, resulting in a
stronger instability. As observed in figure 14(a), the spanwise LEV7 soon loses its
two-dimensionality with convection, generating a wavy shape. This shows that the
disturbance starts to spread in the spanwise direction. The wavy LEVs then break
into small-scale vortices, wherein the spanwise structures form the heads of hairpins
(figure 14b). Simultaneously, the curved part of the structures is stretched progressively
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downward, forming the legs of hairpins. This process is similar to that on the surface of
an airfoil (Sato et al. 2017).

3.3.4. Effect of Reynolds number on vortex and pressure distribution
Figure 13 also compares the local structures through the Q-isosurfaces and the spanwise
vorticity contours at three selected planes at Re = 14 800 and 148 000. Vortices at Re =
1480 are not displayed here because their simple topology has been clearly shown in
figure 9. The spanwise vorticity has been known to have a thick boundary and is hard
to separate at low Reynolds number simulations (Zhang et al. 2018; Menzer et al. 2022).
At Re = 14 800, the primary structures are large-scale structures, e.g. LEVs and DVs,
without any hairpin structure (figure 13). From the vorticity contours, the vortex cores can
be clearly seen, indicating the vorticity of the shear layer is strengthened by the coherent
structures. At the posteriors of the sections, the shear layer detaches from the surface,
which agrees well with the flow separation region in § 3.3.2. We noticed that at the plane
A–A, the formation of DV leads to the attachment of vortical structures here, which makes
the separated flow reattach at the local region. Thus, the two separation regions divided
by a local reattachment point observed in figure 7(b) can be explained by such vortical
structures.

At Re = 148 000, more LEV cores are observed, especially near the C–C plane.
Moreover, the LEVs are stronger than that at Re = 14 800; e.g. the LEV2 forms a larger
vortex core. The characteristics of the hairpins can be further highlighted by the spanwise
vorticity at the planes A–A and B–B, where the inclined legs are visible with the head
lifting away from the surface. Meanwhile, there are a great number of broken vortices
attached at the body surface. The hairpins and such small-scale vortices correspond well
to the scattered separation regions mentioned in § 3.3.2.

The distinctions in vortical structures at different Reynolds numbers result in a
significant difference in the surface pressure. Figure 15 describes the surface pressure
distributions at the three planes. The local structures are also indicated corresponding to
those shown in figure 13 and marked by black and red colours to depict their roles. Black
shows that the structure is beneficial to the decrease of pressure, whereas red indicates
the opposite effect. It is well known that the LEV mechanism plays a key role in lift
enhancement by generating a low-pressure region (Eldredge & Jones 2019; Zhang et al.
2022a). It is seen that the LEV generates a valley in the pressure distribution curves, i.e.
the low-pressure region. The valleys due to LEVs grow significantly in magnitude as the
Reynolds number increases. For example, at the plane C–C and x/c = 0.8, the pressure
coefficients are −0.39 (figure 15g), −0.47 (figure 15h), −0.67 (figure 15i), where the
formation of LEV causes relative differences of 20.5 % and 71.8 %. So does the LEV2
in figure 15( f ) as compared with the LEV1 in figure 15(e).

On the contrary, the hairpin vortex generates a crest in the pressure curve, indicating that
such a structure reduces the low-pressure region. For instance, at the plane A–A and x/c =
0.65, the HV2 (figure 15c) causes a pressure increase of 52.2 % as compared with that in
figure 15(a). In fact, the tip of a hairpin leg attached to the body surface may also generate
a low-pressure region. When the hairpin structure, especially the head part, is lifted up
away from the surface, the pressure is weakened in magnitude. The position of the hairpin
head can be as high as 100 viscous wall units at Reθ = 930 (based on the momentum
thickness), and reaches 1000 viscous wall units as Reθ increases to 6845 (Adrian, Meinhart
& Tomkins 2000). For the hairpin packet as shown in the vorticity contours at the A–A
plane (figure 13), the older individual is lifted farther and is more broken than the younger
one. This results in the formation of two stepping-up plateaus near the trailing edge, as
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Figure 15. The instantaneous pressure distributions along the chord (x-axis) at three selected planes at t/T =
0.17. Here c is the chord length. The positions of the planes are shown in figure 13. The name of the local vortex
structures at the corresponding position is also illustrated and marked by black (decrease the local pressure)
and red colour (increase the local pressure) to depict its role in the pressure.

seen in figure 15(c). Simultaneously, the SF generates a similar effect with the hairpins
as shown in figure 15(i), because the presence of SF weakens the strength of LEV. The
appearance of DV can also generate a slight low-pressure region, as shown in figure 15(b).

In summary, the presence of local vortical structures brings strong pressure fluctuation,
especially at the posterior where the hairpin structures appear. Compared with the
smooth curves at Re = 1480 (figure 15a,d, f ), higher Reynolds numbers lead to stronger
fluctuations. We also noticed that a swimmer has a deeper pressure valley in the front at
higher Re. Therefore, these local distinctions at different Reynolds numbers lead to the
variation in force production. Associated with the weakening effect of hairpins on the
low-pressure region, the pressure difference is enlarged between the front and rear of the
swimmer; likewise that between the upper and lower surfaces. This shows larger thrust and
lift force are generated on the swimmer.

3.4. Velocity fluctuation
From the vortex evolution and pressure distribution, more small-scale vortices and stronger
fluctuations are observed in the high-Re swimming. In order to quantitatively measure the
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contribution of various vortices to the flow fluctuation energy, we focus, in this section, on
the spectra of velocity fluctuations in the wake.

Figure 16 shows the time histories and power spectral density (PSD) of the streamwise
velocity fluctuation at three selected sampling points, i.e. points P1 (x/BL = 1.51, y/SL =
0, z/BL = 0), P2 (x/BL = 0.97, y/SL = 0.55, z/BL = 0) and P3 (x/BL = 0.97, y/SL =
0.83, z/BL = 0). For clarity, the time histories of streamwise velocity fluctuation are
shifted upward by 1.5 and 3 for Re = 14 800 and 148 000, respectively, along the vertical
coordinate in figures 16(a), 16(c) and 16(e). The positions of the three sampling points
are marked in figure 13, where they are located in the dorsal, span and tip regions,
respectively. Velocity signals were collected every time step, giving a sampling series of
six stroke periods including 48 000 sampling values. The Hanning window was employed
to preprocess the time series. Welch’s method (Welch 1967) with an overlapping of 50 %
was used to calculate the PSD. The final spectra were obtained by averaging 125 segments,
each of which was obtained at locations within the distance of five grids from the selected
points P1, P2 and P3, to increase the statistical samples. Notably, the wake of a swimming
batoid fish is periodic due to the up–down symmetrical stroke motion. Therefore, the
PSD is dominated by the stroke frequency, which results in several prominent peaks in
the spectra (not shown here), similar to that in Laporte & Corjon (2000). Such peaks
correspond to the fundamental frequency 2fref , and its harmonics 4fref , 6fref , 8fref , etc.
In the present study, we focused more on the fluctuation generated by turbulence and
subtracted the phase-averaged velocity ūp from the instantaneous velocity signal, i.e.
u′ = u − ūp, where the phase averaging is performed using 6 × 125 sampling values for
each selected grid point.

It is observed from the time histories of u′ that as the Reynolds number increases,
high-frequency fluctuations become more prominent. Even though the influence of active
stroke is removed from the fluctuation, the signals still present slight periodicity, especially
in the wake of the span and tip regions (figure 16c,e). From the spectra, at the tip region, the
peaks at Re = 148 000 (figure 16f ) corresponding to the fundamental frequency 2fref and
its harmonics are indication that the disturbance is easier to be modulated and amplified
at higher Reynolds numbers. On the contrary, these peaks are much weaker for the low-Re
flow.

In the span region, due to the lower amplitude of the periodic stroke, these harmonics
disappear in the spectra (figure 16d). At Re = 14 800, the prominent peak occurs at another
frequency f = 3fref . This value is different from the fundamental frequency of stroke
motion, and therefore a distinct mechanism may be employed here. This phenomenon
can be explained by the multi-LEVs observed in figure 13, in which the LEV breaks into
approximately three LEVs. Similarly, it generates approximately six LEVs in each stroke
cycle at Re = 148 000, corresponding to the PSD peak at f = 6fref .

In the wake of the dorsal region, the influence of periodic stroke disappears. The
time histories of u′ show that the velocity fluctuation at Re = 1480 is weak, and the
corresponding PSD exhibits a low value within most of the frequency range (figure 16b).
A significant distinction with the other two regions is that in the low-frequency range,
the velocity fluctuation has higher energy at Re = 14 800 than that at Re = 148 000
(figure 16b), which is due to the large-scale DV observed in figure 13.

In all the three regions, the frequency spectra at Re = 148 000 rapidly converge towards
the well-known −5/3 power law, i.e. a developed turbulence state, whereas the flow at
lower Reynolds numbers has lower energy. It is observed that the PSD value is small at
Re = 1480 in the high-frequency range. Sayadi, Hamman & Moin (2013) suggested that
the collapse of the frequency spectrum for a flat-plate boundary layer onto the −5/3 law
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Figure 16. (a,c,e) The time histories and (b,d, f ) power spectral density of the streamwise velocity fluctuation
at the sampling points (a,b) P1, (c,d) P2 and (e, f ) P3, as indicated in figure 13.

coincides with the formation of hairpin packets. This is consistent with the current PSD at
Re = 148 000 in the high-frequency range.

4. Discussion

In the present study, we conducted simulations of a swimming batoid fish at Reynolds
numbers up to 148 000. The tethered model (Zhang et al. 2022b) was employed and
the net thrust force is nearly zero, indicating that the present setting is close to the free
swimming state. As a result, there is almost no jet in the wake, except at the tip region,
which is consistent with that of manta rays (Fish et al. 2016). The living Rhinoptera
bonasus differs significantly in the flapping frequency for different swimming velocities
and has a mean amplitude of 0.676 ± 0.201BL and a mean wavenumber of 0.4 ± 0.04
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(Rosenberger 2001; Zhang et al. 2022a). The present frequency (0.7 Hz), amplitude
(0.6BL) and wavenumber (0.4) are within the ranges of the free-swimming living animals,
which validates the present results from another perspective. It should also be mentioned
that the natural animals have various swimming/flying strategies under different inflow
conditions (Enders, Boisclair & Roy 2003; Combes & Dudley 2009), or even with
the same condition but at different velocities, i.e. Re (Combes & Dudley 2009). Our
previous observation (Zhang et al. 2022a) revealed that the frequency of the batoid fish
increases linearly with the swimming velocity. Moreover, the amplitude and the ratio of
the half-amplitude above the longitudinal axis to that below also vary with the swimming
velocity. The present work employs an idealized hypothesis that the kinematic parameters
keep constant at different Re. By adjusting the swimming strategy, living animals may
achieve higher performance.

For the batoid fish, the thrust force, power consumption and efficiency are found to
be enhanced as Re increases. Actually, the variations with Re depend on the type of
swimming. Similar tendencies can be found in those of Crevalle Jacks (Liu et al. 2017),
pitching airfoils (Senturk & Smits 2019) and tunas (Zhang et al. 2020). However, Borazjani
& Sotiropoulos (2010) observed that anguilliform swimmers, i.e. a lamprey, swim more
efficiently at lower Re (∼103). As discussed in our previous work (Zhang et al. 2022b),
a batoid fish is regarded as a body + propeller system, different with a flapping foil. On
the other hand, the definition of efficiency for animals is controversial and there is no
universal measure (Maertens et al. 2015; Zhang et al. 2022b). For a tethered model, the net
efficiency is always employed in the measurement of flapping foils, which is distinct from
the present quasipropulsive efficiency. Meanwhile, the force enhancement may converge
as Re increases. Senturk & Smits (2019) indicated that as Re > 104, the thrust and power
are relatively insensitive to Re for a 2-D pitching airfoil. Although the batoid fish has more
complex morphology and kinematics, it was observed that its dependence on Re from
14 800 to 148 000 is lower than that from 1480 to 14 800 (figure 4). Nevertheless, for the
3-D batoid fish, the convergence is expected to be reached at Re larger than 105 from the
force variation trends in the present work. Moreover, the force temporal tendency varies
slightly with Re. This is in line with Bozkurttas et al. (2009) who studied a swimming
bluegill sunfish by varying the Reynolds number from 540 to 6300. However, the authors
also pointed out that the fin performance at Re much higher than 6300 is unknown.
Similar results can be also found in the studies of tuna (Zhang et al. 2020) and mosquito
(Zhang & Huang 2019) in a small range of Re ≤ 104. In the above studies, investigations
were conducted in the laminar regime. Our results extend the critical Reynolds number
persisting the force enhancement and tendency to O(105).

The effect of Reynolds number on the optimal Strouhal number should also be
discussed. It is well known that most natural swimmers and fliers are observed to cruise
in a narrow range of Strouhal number (St = 0.2 − 0.4), because animals have an optimal
efficiency in this St range (Triantafyllou, Triantafyllou & Gopalkrishnan 1991; Taylor,
Nudds & Thomas 2003). In fact, such a conclusion only applies in the turbulence regime
(Gazzola et al. 2014; Senturk & Smits 2019). Bottom et al. (2016) indicated that the
swimmer at high Re requires a lower St and the swimming is more efficient at high Re. As
stated in the introduction, the critical St at which animals achieve the self-propelled state
decreases with increasing Re (Borazjani & Sotiropoulos 2008). Animals operate efficiently
at higher St when they are located in a low-Re environment (Saadat et al. 2017), which
implies that in our simulations, only at Re = 148 000, the optimal St falls into this narrow
range.
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Figure 17. The LEV–SF–HV transformation at the span region.

Gazzola et al. (2014) gave a scaling law of Re = 0.4Sw1.02 from more than 1000
measurements on various species in the turbulence regime. Our model achieves
a swimming input Sw = ωAL/ν = 283 158 by using the spanwise length as the
characteristic length. The resulting Re is 145 589, indicating that the present results agree
well with the scaling law of living animals. The realistic flow around living batoid fish
has been seldom described so far. Particle image velocimetry of living skate (Leucoraja
erinacea) reveals strong fluctuation in vorticity around the body (Park et al. 2016). Our
high-Re results are qualitatively similar with the particle image velocimetry results of the
living skate but display higher-fidelity vortical structures, especially the broken LEVs,
the small-scale hairpins and the fluctuations induced by these structures. It is a good
complement to and verification of the biology experiment at such high Reynolds numbers.

To the best of our knowledge, the present results show the existence of hairpin structures
on the fin of aquatic animals, at least on batoid fish, for the first time. Hairpins are the
typical structures in fully turbulent and transitional wall-bounded flows, and the formation
mechanism has been widely investigated in flat-plate flow or channel flow (Adrian 2007;
Wang, Huang & Xu 2015b). In the region of 40 < y+ < 100, the hairpin is formed
due to the lift-up of quasistreamwise vortices (Marusic & Adrian 2012). Schlatter et al.
(2008) demonstrated that the hairpin formation is related to the secondary instability of
steady streaks in bypass transition. Acarlar & Smith (1987) described the hairpin vortices
generated by the flow separation of the laminar boundary layer over a hemisphere. Our
results showed the LEV-hairpin transformation in the span region. The schematic of
such process is drawn in figure 17. The process starts with the formation of multi-LEVs.
With the convection of vortical structures, corrugations form at the structure surface, and
then develop into SFs perpendicular to LEVs. The quasisteamwise SFs form the legs of
hairpins, while the spanwise LEVs break further, lift up, forming the heads of hairpins.
From figure 14, it is observed in the C–C plane that the LEV2 lifts up away from the
body surface connecting a quasistreamwise SFs upstream. The appearance of corrugations
and SFs is probably caused by the elliptical instability, which is a mechanism that leads
to 3-D instability in counter-rotating or corotating vortex pairs (Leweke, Le Dizes &
Williamson 2016). In contrast to another 3-D instability, i.e. Crow instability, the elliptical
instability leads to short-wavelength perturbation on the core radius. From figure 18(a),
the wavelength λ ≈ 1.5d, where d is the diameter of the LEV. One distinction is that
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Figure 18. Isosurface of Q and streamwise vorticity contours at t/T = 0.17 to show corrugations and SFs.

the adjacent SFs counter-rotate in two approaching counter-rotating vortices under the
elliptical instability (McKeown et al. 2020), whereas all the SFs in our results corotate
as seen in figure 18(b). In contrast to the channel flow or flat-wall flow, it is easier for the
batoid fish to generate the HV structures because the chordwise and spanwise deformations
result in a much stronger pressure gradient, especially in the tip region. We can also
observe that the LEVs transform into hairpins more rapidly in such regions.

Due to the stronger instabilities and generation of the HV structures at high Re, it
is observed that the separation region is reduced significantly (corresponding to drag
decrease) and the pressure difference is enhanced (corresponding to thrust increase). These
results indicate that such structures are beneficial to the hydrodynamic performance. At
the same time, the stronger pressure fluctuation generates more noise, which generates
the adverse effect on its acoustic performance. Thus, the balance between hydrodynamic
and acoustic performances should also be taken into account. It should be mentioned that
for a self-propelled model, the enhancement of hydrodynamic performance at high Re is
due to the required lower St, which corresponds to a lower lateral velocity relative to the
streamwise velocity and decreases the lateral energy loss, as pointed out by Borazjani
& Sotiropoulos (2008, 2009) and Bottom et al. (2016). In addition, the LEV remains
attached to the beneficial side at lower St as shown in Bottom et al. (2016) and Borazjani
& Daghooghi (2013). In the present simulations, St was fixed for the tethered model, and
thus the effect of Re can be investigated separately. It was observed that suppression of
flow separation at high Re is caused by the transition to turbulence or correspondingly the
transformation of LEVs into HVs along the body surface with chordwise and spanwise
deformations.

5. Conclusions

In the present study, simulations of the flow over a swimming batoid fish were conducted
at realistic Reynolds number by using WMLES in conjunction with the IB method. The
effect of Reynolds number in the range from O(103) to O(105) was investigated, across the
laminar and turbulent regimes. According to the numerical results, we try to answer the
three questions raised in § 1.

The flow around a batoid fish at its realistic Reynolds number presents a great deal of
turbulent vortical structures and strong flow fluctuations, which seldom appear in low-Re
swimming. At the early stroke, the LEVs remain coherent but break into multi-LEVs.
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As convected downstream, the LEVs transform into hairpin-like structures. In the
span region, we disclosed the LEV–SF–HV mechanism, where the quasistreamwise SF
comprises the leg of HV and the broken spanwise LEV comprises the head. In the tip
region, the LEVs are curved directly into the HVs. The HV packets at the dorsal region
demonstrate similar characteristics with the turbulent boundary layer. Due to the formation
of vortical structures, the surface pressure distribution displays strong fluctuations and the
boundary layer is only slightly separated on the surface.

As expected, the Reynolds number changes the hydrodynamics. In the present Re range,
the thrust force was found to be enhanced as Re increased. The thrust enhancement comes
from both the increase of pressure component and the reduction of viscous frictional drag
component. From the mean flow field, at higher Re, the jet flow is stronger, indicating a
larger thrust, while the recirculation zone is shorter, leading to a smaller pressure drag.
Moreover, the high-shear region is also significantly reduced. The effect of Reynolds
number within the turbulence regime shows some distinctions with that within the
laminar regime. In the low-Re range (1480–14 800), the vortical structures are coherent
and the boundary layer separation becomes more severe as Re increases. However, at
Re = 148 000, the coherent LEVs transform into small-scale HVs and the separation
region is significantly reduced. The vortex dynamics displays qualitative similarities; e.g.
attached vortex creates a low-pressure region, and vortex at the tip region is more unstable,
except that local fluctuation takes place at higher Re.

As shown in figure 1, most previous studies employed low-Re simulations to investigate
the performance of aquatic animals. The present simulations with the high-Re condition
employ approximately 109 grids and need a huge computational cost. Selection of Re
depends on the objective of research. If the work is focused on the force variation tendency
rather than its magnitude, low-Re simulations are enough to reveal the hydrodynamic
performance. However, when attention is paid to the performance related to flow
fluctuations, such as acoustics and turbulence mechanism, high-Re simulations are needed
because distinctive mechanism was disclosed at high-Re condition. For the flow field
at high Re (>105), we still know very little, and such situations at high Re are worth
exploring. In the present study, the mechanism of hairpin vortex formation in animals’
swimming needs deeper quantitative analysis, which will be done in the future. Another
limitation is that a tethered model rather than a self-propelled one was adopted here.
Notably, even for small-size bionic vehicles, some of them operate in the turbulence regime
(Salazar, Fuentes & Abdelkefi 2018). Thus, the present work not only offers new insights
into the vortex dynamics of aquatic animals at their realistic Reynolds numbers, but also
provides guidance for the design of bionic vehicles.
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