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High angle of attack flows over swept three-dimensional wings based on the NACA 0015
profile are studied numerically at low Reynolds numbers. Linear stability analysis is used
to compute instability and receptivity of the flow via the respective three-dimensional
(triglobal) direct and adjoint eigenmodes. The magnitude of the adjoint eigenvectors is
used to identify regions of maximum flow receptivity to momentum forcing. It is found
that such regions are located above the primary three-dimensional separation line, their
spanwise position varying with wing sweep. The wavemaker region corresponding to the
leading global eigenmode is computed and found to lie inside the laminar separation
bubble (LSB) at the spanwise location of peak recirculation. Increasing the Reynolds
number leads to the wavemaker becoming more compact in the spanwise direction, and
concentrated in the top and bottom shear layers of the LSB. As sweep is introduced,
the wavemaker moves towards the wing tip, following the spanwise displacement of
maximum recirculation. Flow modifications resulting from application of different types
of forcing are studied by direct numerical simulation initialised with insights gained from
stability analysis. Periodic forcing at the regions of maximum receptivity to momentum
forcing results in greater departure from the baseline case compared to same (low, linear)
amplitude forcing applied elsewhere, underlining the potential of linear stability analysis
to identify optimal regions for actuator positioning.
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1. Introduction

Three-dimensional separated flows are an essential feature of lifting surfaces at high angle
of attack, and have been studied extensively. There is a large amount of literature on
analysing the complex three-dimensional vortex dynamics during steady flight (Taira &
Colonius 2009; Zhang et al. 2020a,b) and unsteady manoeuvres (Jantzen et al. 2014;
Mancini et al. 2015; Jones et al. 2016; Son & Cetiner 2017; Smith & Jones 2020).
However, none of these studies has addressed the underlying global linear instability
mechanisms. Conversely, the majority of stability studies have focused on two-dimensional
(Theofilis, Barkley & Sherwin 2002) or spanwise homogeneous (Kitsios et al. 2009;
He et al. 2017a) wing configurations. The few studies of three-dimensional wings have
analysed these geometries mainly at low angles of attack (He et al. 2017b; Edstrand et al.
2018), or have focused on a specific area of the flow such as the tip vortex (Edstrand
et al. 2016). Three-dimensional global (triglobal) non-modal stability analysis of a trailing
vortex system over a finite wing (Navrose, Brion & Jacquin 2019) has demonstrated that
addressing the three-dimensionality of finite wing wake through stability analysis allows a
better understanding of the underlying physical mechanisms. However, the relatively low
angles of attack considered in Navrose et al. (2019) led to a fairly simple vortical structure
of the underlying base flows. In our recent work, several families of unstable global modes
of separated flow over finite wings were discovered using triglobal modal stability analysis,
and their evolution with wing geometry was documented (Burtsev et al. 2022).

In the context of hydrodynamic stability analysis, the adjoint Navier–Stokes equations
have been used to study the receptivity (Fedorov 1984; Hill 1995; Luchini & Bottaro
1998; Giannetti & Luchini 2006; Tumin 2011) and sensitivity (Hill 1992; Chomaz 2005;
Giannetti & Luchini 2007; Giannetti, Camarri & Luchini 2010) of nominally steady
laminar flows. Adjoint analysis has played an essential role in understanding the stability
properties of the classical two-dimensional cylinder flow. Giannetti & Luchini (2007)
introduced the concept of structural sensitivity (wavemaker region), which is proportional
to the product of the direct and adjoint eigenfunctions, to reconcile the seemingly
contradicting results of Hill (1992) and Pier (2002). It was shown that the wavemaker
is located inside the near wake, consistent with dispersive wave theory (Pier 2002), and
not at the cylinder surface as suggested by considering only the adjoint eigenfunctions
(Hill 1992), or the far wake as indicated by the location of peak linear oscillations
(Zebib 1987). The wavemaker of Giannetti & Luchini (2007) displays the sensitivity to
a structural perturbation that acts on the time-varying disturbance and leaves the base flow
unperturbed, whereas the experimental results of Strykowski & Sreenivasan (1990) show
the sensitivity under a perturbation of both the base flow and disturbance since both are
affected by the control cylinder (Luchini & Bottaro 2014).

The applications of adjoint stability analysis to lifting body flows have been more
scarce. Fosas de Pando, Schmid & Sipp (2014) used adjoint sensitivity analysis to study
tonal noise generated by a NACA 0012 wing section at Re = 2 × 105. In the context
of compressible flows, adjoint methods have been used to analyse the transonic buffet
phenomenon (Iorio, González & Ferrer 2014; Paladini et al. 2019). Very recently, Nastro
et al. (2023) conducted global stability and sensitivity analysis of spanwise-homogeneous
laminar separated flows around NACA 4412 swept wings at 100 ≤ Re ≤ 400. It was shown
that a streamwise-oriented force has a net stabilising effect in a region on the suction side of
the wing. Predictions of sensitivity analysis were verified using flow control, which showed
that a spanwise-homogeneous force suppresses the Hopf bifurcation and stabilises the
entire branch of von Kármán modes. It was also demonstrated that for small amplitudes,
passive control via spanwise wavy forcing produced a similar stabilising effect.
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Sensitivity of 3-D swept wing flows at low Reynolds number

So far, adjoint global modes have not been computed for finite wings at high angles of
attack, nor has the structural sensitivity of such flow been considered. This work aims to
bridge this knowledge gap by documenting the adjoint modes and structural sensitivity
for a range of finite wings for the purposes of informing future flow control applications.
The rest of this paper is organised as follows. The theory behind direct and adjoint linear
stability analysis is discussed briefly in § 2, with an explanation of numerical methods in
§ 2.4. The discussion of results (§ 3) focuses on the effects of Reynolds number and sweep
angle. Finally, the flow is modified by forcing at the locations suggested by the stability
analysis.

2. Methodology

2.1. Linear stability theory
The evolution of velocity u = (u, v, w)T and pressure p is governed by non-dimensional,
incompressible Navier–Stokes and continuity equations. The flow q(x, t) = (u, p)T can be
decomposed into a steady base flow component q̄ and a small perturbation q̃:

q = q̄ + εq̃, ε � 1. (2.1)

The linearised Navier–Stokes equations (LNSE) are obtained by substitution of (2.1) into
the governing equations and neglecting O(ε2) terms:

∂tũ + ū · ∇ũ + ũ · ∇ū = −∇p̃ + Re−1 ∇2ũ, ∇ · ũ = 0, (2.2)

with the Reynolds number defined as Re ≡ U∞c/ν, where U∞ is the free-stream velocity,
c is the wing chord (in the flight direction), and ν is the kinematic viscosity. The time
and space coordinates in (2.2) can be separated by introducing a Fourier decomposition
in time. For the three-dimensional flow, triglobal (Theofilis 2011) linear stability theory is
used, leading to the ansatz

q̃(x, t) = q̂(x) e−iωt + c.c., (2.3)

where q̂ is the amplitude function, and c.c. is a complex conjugate. The triglobal eigenvalue
problem is formed by substituting (2.3) into (2.2):

Aq̂ = −iωq̂, (2.4)

with the matrix A representing the spatial discretisation of the operator L, which
contains the LNSE, consisting of the base flow q̄(x) and its spatial derivatives. The
eigenvalue problem (2.4) is solved numerically to obtain the complex eigenvalues ω and
the corresponding eigenvectors q̂, which are referred to as the global modes. The real
and imaginary components of the complex eigenvalue ω = ωr + iωi correspond to the
frequency and the growth/decay rate of the global mode, respectively.

2.2. Adjoint equations
The structural sensitivity of the global modes to modifications of the base flow can be
calculated by constructing the adjoint operator L+ (Giannetti & Luchini 2007; Luchini &
Bottaro 2014). The adjoint operator L+ is defined through the Lagrange identity

〈L+q̃+, q̃〉 = 〈q̃+,Lq̃〉, (2.5)

where q̃+ is the vector of adjoint flow variables, q̃+ = (ũ+, p̃+)T, whose meaning will be
explained later, and 〈 , 〉 denotes an inner product. Applying differentiation by parts and
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examining the terms of the identity, the adjoint counterpart of the LNSE can be defined as

∂tũ+ + ū · ∇ũ+ − ũ+ · ∇ū = −∇p̃+ − Re−1 ∇2ũ+, ∇ · ũ+ = 0. (2.6)

The same steps described above for the LNSE can be used to obtain the adjoint eigenvalue
problem. The resulting adjoint global modes are the non-trivial solutions of the adjoint
LNSE of the form

q̃+(x, t) = q̂+(x) eiω+t + c.c., (2.7)

where ω+ is the complex conjugate of ω, and q̂+ = (û+, p̂+)T. At a given point in the
flow, the values of adjoint velocity ũ+ and pressure p̃+ perturbations indicate the response
to an unsteady momentum and mass source at that point, respectively.

2.3. Sensitivity
To investigate how the instability changes as a function of the physical parameters,
a structural perturbation can be introduced to the eigenvalue problem in (2.4). This
means considering the changes of the structure, i.e. the matrix A under an infinitesimal
operator perturbation dA. Taking the differential of both sides of (2.4) and eliminating
the eigenvector perturbation with the adjoint eigenvector q̂+ gives an expression for the
eigenvalue perturbation:

dω = q̂+ dA q̂
q̂+q̂

. (2.8)

As demonstrated by Giannetti & Luchini (2007), the spatial sensitivity map is proportional
to the product of the direct and adjoint perturbation velocities:

S(x) = ‖û+(x)‖ · ‖û(x)‖
‖〈û+, û〉‖ . (2.9)

Equation (2.9) defines the spatial region where a modification in the structure of the
problem leads to the greatest drift of the eigenvalue. The location corresponding to the
maximum values of this spatial receptivity field can be thought of as the wavemaker
region, i.e. the origin of the self-excited oscillations of the unstable global mode. The
adjoint field ‖û+‖ represents the receptivity of the global mode to momentum forcing and
the initial conditions of the temporal stability problem. The spatial distribution of ‖û+‖,
which will be referred to as the receptivity field, indicates the regions of the flow that are
most responsive to momentum forcing.

2.4. Numerical methods
The untapered, untwisted wing is constructed using a NACA 0015 aerofoil. A symmetric
wing half model, with semi-aspect ratio sAR = b/2c = 4, angle of attack α = 22◦, and a
range of angles of sweep (Λ) and Re, is considered as shown in figure 1(a). For the swept
cases, the free-stream velocity is kept constant. A structured C-type mesh was constructed
using Gmsh (Geuzaine & Remacle 2009). The equations of motion are solved using
an open-source spectral element code Nek5000 (Fischer, Lottes & Kerkemeier 2008).
Within each mesh element, the spectral code resolves flow quantities using high-order
Lagrange polynomials. The macroscopic elements and one cell with the mesh resulting
from a high-order polynomial fitting are shown in figure 1(b). The mesh extends 25c
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Figure 1. Wing geometry and mesh resolution showing (a) a top for a swept wing, (b) the structure of the
mesh near the wing, and (c) the forcing region location.

in from the wing in the x and y directions, and 16c from the wing tip in z. Uniform
free-stream conditions (u = U∞, v = 0, w = 0) are assigned to the domain boundaries
ahead, as well as above and below the wing. Symmetry boundary conditions (w = 0,
∂zv = 0, ∂zw = 0) are assigned at the root of the wing and outflow behind wing. To achieve
steady base flows for stability analysis at conditions when no natural steady state exists,
selective frequency damping is used (Åkervik et al. 2006). Stability analysis in Nek5000
utilises matrix-free time-stepping methods. The matrix-free approach avoids storing the
large matrices resulting from the spatial discretisation of the LNSE operator, and instead
determines the eigenvalues by relying only on matrix–vector operations (Knoll & Keyes
2004). This is done by solving for the Fréchet differential to obtain approximations of
the Jacobian matrix (Eriksson & Rizzi 1985). The global eigenvalue problem can then be
solved by using the Arnoldi algorithm (Arnoldi 1951), which relies on generating a Krylov
subspace by repeated application of the discretised Jacobian matrix to an arbitrary initial
vector. In the iterative time stepping, the subspace is formed by repeated evaluation using
the simulation code of the time-dependent operator at successive equidistant instances in
time (Barkley, Blackburn & Sherwin 2008; Bagheri et al. 2009).

3. Results

The direct and adjoint eigenspectra are shown in figures 2(a,d) for swept and unswept
wings at Re = 400. Figures 2(b,c) and 2(e, f ) show the corresponding structures of
the direct and adjoint modes A and C plotted with the vertical perturbation velocity
component. The grey contours indicate the reversed flow region of the laminar separation
bubble (LSB). Following the classification introduced by Burtsev et al. (2022), the
unstable modes are labelled A, B and C. Mode A is the most unstable mode that peaks
at the spanwise location of the peak extent of the LSB, where the recirculation flow is
maximised. Mode B has almost the same frequency (expressed as the non-dimensional
Strouhal number St ≡ ωc sin(α)/(2πU∞)) and spatial structures as mode A but different
phase, with structures shifted further downstream of the wing. Finally, mode C has a higher
frequency and distinctly different structures, which occupy a larger spanwise portion of
the wing. As the sweep angle is increased, the maximum recirculation region of the
LSB moves towards the tip. The separation point near the leading edge at the symmetry
plane gradually moves downstream, while the reattachment point near the trailing edge
moves upstream. This is caused by the strengthening of the respective leading and trailing
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Figure 2. Effect of sweep on global modes for (sAR, α, Re) = (4, 22◦, 400). The spectrum for (a) Λ = 0◦ and
(d) Λ = 15◦, and (b,c,e, f ) eigenvectors of the adjoint (left-hand images) and direct modes (right-hand images).
Mode A in (b,e) and mode C in (c, f ) are plotted with contours of v̂ = ±0.1 and ±0.05 (transparent).

edge spanwise vortical structures. The leading direct global mode A closely follows the
spanwise location of the peak recirculating region, while mode C has wider structures
slanted against the downstream edge of the LSB. The adjoint modes have periodic
structures similar to their direct counterparts but slanted in the opposite direction. The
eigenfunctions of adjoint modes are strongest over the wing and inside the LSB. For the
swept case, the periodic structures of the adjoint modes over the wing are primarily parallel
to the edge of the reversed flow region shown by transparent grey contour of ū = 0 in
figures 2(e, f ).

3.1. Effect of the Reynolds number
Figure 3 shows the variation of the wavemaker of the leading mode (see (2.9)) with
Reynolds number in the range 200 ≤ Re ≤ 500. The region of maximum sensitivity is
located within the LSB. As Re increases, the spanwise extent of the wavemaker reduces.
Looking at the side view and slice at the symmetry plane in figures 3(b,c), two lobes
associated with the suction and pressure side shear layers and some structure inside the
LSB can be seen. At Re = 200 and 300, the side view of the wavemaker is reminiscent
of the classical two-dimensional cylinder (Giannetti & Luchini 2007) and spanwise
homogeneous wing flows (Nastro et al. 2023). At Re ≥ 400, the maximum sensitivity
appears to be more dependent on the shear layers with low values inside the bubble. At the
maximum Re of 500, the wavemaker has two distinct shear layer branches located further
downstream of the wing.

The blue contours in figure 3 show the magnitude of the adjoint perturbation velocities
‖u+‖, which represent the receptivity to momentum forcing. The regions of maximum
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Figure 3. The effect of Re on sensitivity and receptivity of mode A. (a) Top and (b) side views with ū = 0
contour in grey, and (c) a slice at z = 0 with ū = 0 contour in black.
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Figure 4. Projections of contours of ‖û+‖ (blue) of mode A onto the plane of the wing with surface
streamlines of the base flow and the contour of ū = 0 (black).

receptivity are located near the leading edge above the suction side, and near the trailing
edge of the wing. These three-dimensional contours are projected onto the plane of the
wing and plotted in figure 4. It should be noted that the value of the receptivity field at the
wing surface is zero, and the projection is made to show where the receptivity regions are
located relative to the separation and reattachment lines of the LSB. The contour levels
0.2 ≤ ‖û+‖ ≤ 0.9 are plotted with the wing surface streamlines of the selective frequency
damping (SFD) base flow. It can be seen clearly that the maximum of the receptivity field
is located above the separation line. The spanwise location of this maximum coincides
with that of a reattachment node (labelled N) in the steady base flow. This node N marks
the spanwise position of the maximum reversed flow region of the LSB. The reduction
of the spanwise extent of the receptivity region can be seen clearly up to Re = 400. At
Re ≥ 400, the region remains essentially the same size.

3.2. Effect of sweep angle
The variation of the wavemaker and receptivity to momentum forcing regions of modes
A and C with Λ is plotted in figure 5. The spatial peak of both the adjoint mode A and
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Figure 5. The effect of Λ on S(x) (orange) and ‖û+‖ (blue) of modes A and C.

the wavemaker region is concentrated at the spanwise location of maximum reversed flow
(peak recirculation) in the bubble, where a peak in the streamwise extent of the reversed
flow region is observed. This also corresponds to the spanwise position of the reattachment
node seen on the wing surface in figure 4. These regions follow the spanwise displacement
of the maximum reversed flow location, moving towards the tip as Λ is increased. At Λ =
15◦, these structures are located near the wing tip. The structure of the wavemaker region
remains largely the same, with two separate lobes associated with the top and bottom shear
layers of the LSB, with the latter region considerably smaller at Λ = 15◦.

The regions of receptivity and the wavemaker for mode C are wider in the spanwise
direction and do not show a clear displacement towards the tip. Similar to mode A, the
wavemaker of mode C has two lobes associated with the shear layers. However, unlike
mode A, these regions are connected with higher values of the wavemaker inside the LSB,
as seen in the side views of figure 5. In the chordwise direction, the peak receptivity
location for modes A and C is associated with the leading edge separation line. As for
the unswept wing, the adjoint mode A remains very compact in the spanwise direction,
whereas mode C occupies a larger portion of the wing’s span. At Λ = 15◦, the receptivity
field of mode A overlaps with that of mode C. This is because the adjoint mode A has
more structure along the wing’s span, as shown in the left-hand image of figure 2(e).

3.3. Flow actuation
Flow actuation is carried out on an unswept wing at Re = 200, and both a swept wing
and an unswept wing at Re = 400. The forcing is applied as a boundary condition
for wall-normal velocity in a region along the separation line (see figure 1c) at the
spanwise location where stability analysis indicated significant receptivity to momentum
forcing. The streamwise width (w) of the forcing region is 2 % chord, and the spanwise
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Figure 6. Effects of forcing on the lift-to-drag ratio over the (sAR, Λ, α, Re) = (4, 0◦, 22◦, 200) wing: (a)
blowing and suction at 0 ≤ z ≤ 1, (b) blowing at 0 ≤ z ≤ 1, (c) suction at 0 ≤ z ≤ 1, and (d) suction at three
different spanwise regions.

length (l) and position are adjusted. Actuation is applied to the base flow used in the
stability analysis in order to observe the effects on the growth of the leading mode and the
onset of shedding. The Re = 200 case is chosen due to the low amplification levels of the
leading mode, which results in a slower onset of wake shedding. The results for different
types of actuation are shown in figure 6. The ratio of the total wing lift coefficient (CL) to
the total drag coefficient (CD) is plotted, with the lines denoting the time-averaged values,
whereas the shaded regions indicate the envelope of the oscillations.

Effects of periodic excitation (Greenblatt & Wygnanski 2000) are shown in figure 6(a).
The wall-normal velocity (un) of a sin(ωt) was assigned. Here, ω is the frequency of the
leading global mode, and a is the amplitude (fraction of the free-stream velocity). For this
case, ω = 1.952, corresponding to St = 0.311 and reduced forcing frequency (Greenblatt
& Wygnanski 2000) F+ ≡ ωxTE/(2πU∞) = 0.249. The location where the time-periodic
boundary condition is applied was selected to be 0 ≤ z ≤ 1, which lies within the contour
line ‖û+‖ = 0.7 in figure 4. It can be seen that periodic forcing at this location accelerates
the onset of wake shedding. For lower-amplitude forcing at a = 1 % U∞, the response is
largely linear, and both the final average CL/CD value and the fluctuation amplitude are
virtually identical to the baseline. For the higher-amplitude forcing at a = 10 % U∞, the
shedding occurs even faster, and there are significant low-frequency fluctuations of the
mean value.

Next, the effect of steady blowing applied at the same location (0 ≤ z ≤ 1, blue region
in figure 7) is shown in figure 6(b). Again, two levels corresponding to 1 % and 10 % of U∞
are used. For a = 1 % U∞, there is virtually no difference compared to the baseline case,
although the onset of shedding is very slightly delayed. For blowing at a = 10 % U∞, the
CL/CD value is immediately reduced, the onset of unsteady shedding is accelerated, and
the amplitude of CL/CD fluctuations is increased. Steady suction at the same location is
then considered in figure 6(c). The time-averaged value of CL/CD is increased for both
forcing strengths. For 10 % suction, the amplitude of oscillations is reduced by 62 %,
whereas for 1 % suction, the amplitude remains nearly the same. However, the mean value
of CL/CD remains nearly identical to the baseline in the long term for both cases.
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Figure 7. Locations of the forcing regions: blue for 0 ≤ z ≤ 1, red for 0 ≤ z ≤ 3, and green for 2 ≤ z ≤ 3.
The widths of the regions are not to scale.

The suction case is considered in more detail in figure 6(d). The strength of suction is
fixed at 10 % U∞, and the region where it is applied is varied. Three regions are selected,
with 0 ≤ z ≤ 1, 0 ≤ z ≤ 3 and 2 ≤ z ≤ 3, marked by blue, red and green, respectively, in
figure 7. The value of the wall-normal velocity is reduced by a third for the red region to
maintain the same mass flow rate. Forcing in the red and green regions results in higher
average values of the lift-to-drag ratio but also increases the amplitude of the oscillations
by 4 % and 40 %, respectively. Interestingly, only when suction is applied in the blue
region, corresponding to maximum receptivity to momentum forcing, is the amplitude
reduced, while the mean value remains the same. In addition, the difference in average
CL/CD at early times compared to long term is also substantially reduced in this case.

The effects of actuation on the growth of the global modes identified by linear instability
analysis on the swept wing are studied by monitoring the evolution of the flow field when
low-amplitude forcing is applied at distinct locations on the suction side of the wing. For
consistency with linear theory, one order of magnitude lower forcing amplitude, 0.01U∞,
and the highest presently attainable Reynolds number, Re = 400, have been chosen.

In figure 8 a comparison is presented between results obtained by applying forcing on
an unswept and a 10◦ swept wing, both at an angle of attack α = 22◦, at the colour-coded
regions defined in relation to the projection of the receptivity contours onto the wing and
in figures 8(a,b). The colours of the lines in figures 8(c–f ) match those defined along
the specific spanwise regions in figures 8(a,b). Periodic forcing at amplitude a = 0.01
and the corresponding frequency of the leading global mode of each case are imposed,
and a distinction is made between in-phase and anti-phase forcing with respect to the
corresponding baseline, respectively indicated by P+ and P− on the plots. By contrast
to figure 6, only the running time average of the CL/CD fluctuations is plotted in
figures 8(c,d), where the envelope of the signal and its instantaneous values have been
omitted for clarity.

Compared to the Re = 200 results shown in figure 6, the transition to unsteadiness
at Re = 400 takes place faster, and the forcing at the same amplitude has a smaller
effect, which is unsurprising given the higher amplification rate of the leading unstable
global mode at these conditions. However, the overall effect at the two Reynolds numbers
is analogous, with periodic forcing in phase with the baseline clearly accelerating
the transition to unsteadiness at both sweep angles. In addition, it can be seen that
same-frequency forcing, imposed approximately out of phase with the baseline, results in
a small delay of amplification. Most significantly, at both sweep angles, forcing imposed in
the region of maximum overlap with the peak receptivity to momentum forcing produces
the greatest departure from the baseline, with same-amplitude forcing at the two inboard
regions at Λ = 10◦ resulting in negligible effects compared to the baseline.

Figures 8(e, f ) show the power spectral density of the CL/CD fluctuations, obtained
by Fourier transform of the signals corresponding to the running averages shown in
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Figure 8. Effects of wing sweep on actuation at Re = 400, α = 22◦. (a,b) Locations of the forcing regions
with respect to the contours of the receptivity to momentum forcing (blue), (c,d) time average of the CL/CD
fluctuations, and (e,f ) the frequency of the CL/CD fluctuations at 0 ≤ t ≤ 10 compared to the global mode
frequency (vertical line).

figures 8(c,d), but restricting the respective function supports at early (0 ≤ t ≤ 10) times,
where the growth of the instabilities is still linear. The curves have been normalised by
their respective maxima for clarity. The vertical dashed lines denote the frequency of the
leading global mode at each sweep angle. It can be seen that the frequency matches that
of the mode and forcing. For both cases, the anti-phase case consistently exhibits slightly
lower frequency, which is associated with the anti-phase forcing modifying the flow. In
summary, forcing at the regions of maximum receptivity to momentum forcing results
in greater departure from the baseline case, compared to forcing at the same amplitude
elsewhere on the wing. As has long been established in canonical two-dimensional base
flows (e.g. Giannetti & Luchini (2007) on the cylinder and Citro et al. (2015) on the
cavity), linear global stability analysis can also help to identify optimal regions for actuator
positioning in the present fully three-dimensional flow, and also serve as a basis for
theoretically founded control of the ensuing nonlinear flow (Sipp 2012); the latter will
be pursued in future efforts.

4. Conclusion

Adjoint triglobal eigenmodes on a finite aspect ratio wing at high angle of attack have
been computed for the first time. The regions of maximum sensitivity and receptivity
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were calculated, and their variation with Reynolds number and wing sweep angle
was documented in the low-Re range examined. The wavemaker of the leading global
eigenmode was shown to lie inside the laminar separation bubble (LSB) at the spanwise
location of peak recirculation. Increasing Re leads to the structures of both the global mode
and the wavemaker becoming more compact in the spanwise direction. At the highest
Re presently considered, Re = 500, the wavemaker is concentrated in the top and bottom
shear layers of the LSB. As sweep is introduced to the wing, the wavemaker moves towards
the wing tip following the spanwise displacement of maximum recirculation. The region
of maximum receptivity of the leading eigenmode is located near the separation line and
is compact in the spanwise direction. Its spanwise position is linked to the reattachment
node present on the suction side of the wing in the steady base flow. The compact nature
of both the wavemaker and the regions of maximum receptivity to momentum forcing and
the variation of their locations with increased sweep angle is of practical significance for
flow control. This implies that if actuators were positioned evenly along the span of the
wing, then only a few that coincide with the location of the receptivity region would be
most effective.

Modification of the flow by periodic and steady forcing was applied at locations of
maximum receptivity to momentum forcing identified using the stability analysis. At both
Reynolds numbers considered herein, low-amplitude periodic forcing at the frequency of
the leading global mode identified in earlier work was shown to accelerate the onset of
wake shedding on both swept and unswept wings. These results are intended to act as a
stepping stone in understanding the instability mechanisms at higher Reynolds numbers.
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