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Abstract
In this work, we study the Humbert-Edge curves of type 5, defined as a complete intersection of four diagonal
quadrics inP5. We characterize them using Kummer surfaces, and using the geometry of these surfaces, we construct
some vanishing thetanulls on such curves. In addition, we describe an argument to give an isomorphism between
the moduli space of Humbert-Edge curves of type 5 and the moduli space of hyperelliptic curves of genus 2, and
we show how this argument can be generalized to state an isomorphism between the moduli space of hyperelliptic
curves of genus g = n−1

2
and the moduli space of Humbert-Edge curves of type n ≥ 5 where n is an odd number.

1. Introduction

W.L. Edge began the study of Humbert’s curves in [5]; such curves are defined as canonical curves in
P4 that are the complete intersection of three diagonal quadrics. A natural generalization of Humbert’s
curve was later introduced by Edge in [7]: irreducible, non-degenerated, and non-singular curves on Pn

that are the complete intersection of n − 1 diagonal quadrics. One important feature of Humbert-Edge
curves of type n noted by Edge in [7] is that each one admits a normal form. Indeed, we can assume that
the n − 1 quadrics in Pn are given by

Qi =
n∑

j=0

ai
jx

2
j , i = 0, . . . , n − 1

where aj ∈C for all j ∈ {0, . . . , n} and aj �= ak if j �= k, and here, ai
j denotes the ith power of the aj. We

say that a curve satisfying this conditions is a Humbert-Edge curve of type n. Note that in the case of a
Humbert’s curve X, i.e. when n = 4, this form of the equations implies directly that X is contained in a
degree four Del Pezzo surface.

The Humbert-Edge curves of type n for n > 4 has been studied in just a few works. Carocca, González-
Aguilera, Hidalgo, and Rodríguez studied in [3] the Humbert-Edge curves from the point of view of
uniformization and Klenian groups. Using a suitable form of the quadrics, Hidalgo presented in [11] and
[12] a family of Humbert-Edge curves of type 5 whose fields of moduli are contained in R but none of
their fields of definition are contained inR. Frías-Medina and Zamora presented in [9] a characterization
of Humbert-Edge curves using certain abelian groups of order 2n and presented specializations admitting
larger automorphism subgroups. Carvacho, Hidalgo, and Quispe determined in [4] the decomposition
of the Jacobian of generalized Fermat curves and as a consequence for Humbert-Edge curves. Auffarth,
Lucchini Arteche, and Rojas described in [1] the decomposition of the Jacobian of a Humbert-Edge
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curve more precisely given the exact number of factors in the decomposition and their corresponding
dimensions.

In the case n = 5, the normal form for these curves implies that they are contained in a special K3
surface, a Kummer surface. In this work, we study the Humbert-Edge curves of type 5 and determine
some properties using the geometry of Kummer surfaces.

Recall that an algebraic (complex) K3 surface is a complete non-singular projective (compact con-
nected complex) surface S such that ωS

∼=OS and H1(S, OS) = 0. Classically, a (singular) Kummer
surface is a surface in P3 of degree 4 with 16 nodes and no other singularities. An important fact about
Kummer surfaces is that are determined by the set of their nodes. One can take the resolution of singu-
larities of a Kummer surface, and the obtained non-singular surface is a K3 surface. For our purposes,
these non-singular models will be called Kummer surfaces.

The Kummer surfaces that we will take for our study are those coming from a hyperelliptic curve
of genus 2. In such case, an important feature shared by Humbert-Edge curves of type 5 and Kummer
surfaces is that they admit the automorphism subgroup generated by the natural involutions of P5 that
change the ith coordinate by its negative:

σi : P5 → P5

(x0 : · · · : xi · · · : x5) �→ (x0 : · · · : − xi : · · · : x5)

These automorphisms along with Knutsen’s result [14] on the existence of a K3 surface of degree 2n in
Pn+1 containing a smooth curve of genus g and degree d will enable us to characterize the Humbert-Edge
curves of type 5 using the geometry of a Kummer surface.

This work is organized as follows. In Section 2, we review the construction of a Kummer surface from
a two-dimensional torus and the conditions that ensure when a Kummer surface is projective. Later, we
focus on the case of Kummer surfaces obtained from hyperelliptic curves of genus 2. Section 3 is split
into three parts. First, in Section 3.1, we review the basic properties of Humbert-Edge curves of type 5
and characterize them using the geometry of the Kummer surface. Later, in Section 3.2, we present the
construction of some odd theta characteristic on a Humbert-Edge curve of type 5 using the automor-
phisms σi’s and some vanishing thetanulls using the Rosenhain tetrahedra associated with the Kummer
surface. Finally, in Section 3.3 we use the embedding given in [3] to construct an isomorphism between
the moduli space HE5 of Humbert-Edge curves of type 5 and the moduli space H2 of hyperelliptic
curves of genus 2, and as a consequence, we obtain that H2 is a three-dimensional closed subvariety of
M17. Moreover, we generalized this argument to show that there is an isomorphism between the moduli
space HEn of Humbert-Edge curves of type n, where n ≥ 5 is an odd number, and the moduli space Hg

of hyperelliptic curves of genus g = n−1
2

.

2. Kummer surfaces
2.1. Construction from a two-dimensional torus

In this paper, the ground field is the complex numbers. In this section, we recall the construction of the
Kummer surface associated with a two-dimensional torus.

Let T be a two-dimensional torus. Consider the involution ι : T → T which sends a �→ −a and takes
the quotient surface T/〈ι〉. The surface T/〈ι〉 is known as the singular Kummer surface of T . It is well-
known that this surface has 16 ordinary singularities, and by resolving them, we obtain a K3 surface
called the Kummer surface of T and denoted by Km(T) (see e.g., [10, Theorem 3.4]). This proce-
dure is called the Kummer process. Note that by construction, Km(T) has 16 disjoint smooth rational
curves; indeed, they correspond to the singular points of the quotient surface. Nikulin proved in [15] the
converse:

Theorem 2.1. If a K3 surface S contains 16 disjoint smooth rational curves, then there exists a unique
complex torus, up to isomorphism, such that S and the rational curves are obtained by the Kummer
process. In particular, S is a Kummer surface.
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Note that the above construction holds true for any two-dimensional torus, not necessarily a projec-
tive one. In particular, with this process it is possible to construct K3 surfaces that are not projective.
However, there is an equivalence between the projectivity of the torus and the associated K3 surface
(see [2, Theorem 4.5.4]):

Theorem 2.2. Let T be a two-dimensional torus. T is an abelian surface if and only if Km(T) is
projective.

Now, if A is a principally polarized abelian surface, then A is one of the following (see [2, Corollary
11.8.2]):

(a) The Jacobian of a smooth hyperelliptic curve of genus 2 or
(b) The canonical polarized product of two elliptic curves.

As we will see next, Case (a) is the one of our interest.

2.2. Hyperelliptic curves of genus 2 and Kummer surfaces

We are interested in K3 surfaces that are a smooth complete intersection of type (2, 2, 2) in P5, i.e. that
are a complete intersection of three quadrics. Moreover, we restrict to the case in which the quadrics
are diagonal. The interest of having diagonal quadrics defining the K3 surface is that they enable us to
work with hyperelliptic curves of genus 2.

Indeed, let C be the hyperelliptic curve of genus 2 given by the affine equation

y2 = f (x) = (x − a0)(x − a1) · · · (x − a5), (1)

where a0, . . . , a5 ∈C and ai �= aj if i �= j. We can consider the jacobian surface J(C) associated with C,
and applying the Kummer process, we obtain that the K3 surface Km(J(C)) is isomorphic to the surface
in P5 defined by the complete intersection of the 3 diagonal quadrics by [16, Theorem 2.5]:

Qi =
5∑

j=0

ai
jx

2
j , i = 0, 1, 2. (2)

In order to obtain a hyperelliptic curve of genus 2 beginning with a smooth K3 surface S in P5 given
by the complete intersection of three diagonal quadrics, we may assume an additional hypothesis. Edge
studied in [6] the Kummer surfaces defined by (2). One of his results establishes that whenever a surface
X given by the intersection of three linearly independent quadrics has a common self-polar simplex �

in P5 and contains a line in general position, then the equations defining X can be written with the form
(2). Observe that this fact is equivalent to requiring that X contains 16 disjoint lines; indeed, using the
natural involutions of P5 one can obtain the other lines.

Then, let S be a smooth K3 surface in P5 given by the complete intersection of the quadrics

Qi =
5∑

j=0

aijx
2
j , i = 0, 1, 2,

where aij ∈C for i = 0, 1, 2 and j = 0, . . . , 5 and assume that S contains 16 disjoint lines. As a conse-
quence, we may assume that S is given by the quadrics in (2) for some ai ∈Cwhere ai �= aj if i �= j. By [15,
Theorem 1] there exists a unique (up to isomorphism) two-dimensional torus that gives rise to the sur-
face S. Taking the hyperelliptic curve C given by the equation y2 = f (x) = (x − a0)(x − a1) · · · (x − a5),
we obtain that S is isomorphic to Km(J(C)).

From now on, we say that a Kummer surface is a smooth surface in P5 given by the complete
intersection of three diagonal quadrics as in (2).

For a Kummer surface S given by (2), it is possible to give the parametric form of the 32 lines
contained in S. Indeed, in [6] Edge noted that the equation of a line � contained in S is given in the
following parametric form:
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(
t + a0√

f ′(a0)
,

t + a1√
f ′(a1)

,
t + a2√

f ′(a2)
,

t + a3√
f ′(a3)

,
t + a4√

f ′(a4)
,

t + a5√
f ′(a5)

)
. (3)

Recall that the natural automorphisms σi : xi �→ −xi of P5 act on S. Denote by E the group 〈σ0, . . . , σ5〉.
Applying each element of E to the line �, we obtain the other 32 lines on S. The identity gives the line
� and the remaining elements give the other 31 lines:

• �i := σi(�) for all i ∈ {0, . . . , 5},
• �ij := σiσj(�) for different i, j ∈ {0, . . . , 5}
• �ijk := σiσjσk(�) for different i, j, k ∈ {0, . . . , 5}.

It is well-known that a singular Kummer surface K is birational to a Weddle surface W (see e.g., [17,
Proposition 1]). A Weddle surface is a quartic surface in P3 with six nodes. The 32 lines on S have a
geometric interpretation in both K and W as Edge pointed in [6]. Indeed, the projection π of S from �

is a Weddle surface W and it occurs:

• π (�i) = ki is a node on W, for all i = 0, . . . , 5,
• π (�ij) is the line through ki and kj, for different indices i, j ∈ {0, . . . , 5},
• π (�ijh) is the line in the intersection of the plane generated by ki, kj, kh with the complementary

plane, for different indices i, j, h ∈ {0, . . . , 5}, and
• π (�) is the cubic on W through the six nodes ki’s.

On the other hand, since S is the resolution of singularities of K it occurs:

• The 16 nodes of K correspond to the 16 lines �i and �ijk, and
• The conics of contact of K with its 16 tropes correspond to the 16 lines � and �ij.

A trope is a plane which intersects the quartic along a conic. The nodes and the tropes of a singular
Kummer surface provide an interesting configuration on it.

Definition 2.3. Let � be a set of 16 planes and 16 points in P3.

• � is a (16, 6)-configuration if every plane contains exactly 6 of the 16 points and every point
lies in exactly 6 of the 16 planes. The 16 planes are called special planes.

• A (16, 6)-configuration is non-degenerate if every two special planes share exactly two points
of the configuration and every pair of points is contained in exactly two special planes.

• An abstract (16, 6)-configuration is a 16 × 16 matrix (aij) whose entries are ones or zeros, with
exactly 6 ones in each row and in each column. The rows of the matrix are called points of the
configuration, and the columns are called planes of the configuration. The ith point belongs to
the jth plane if and only if aij = 1.

Gonzalez-Dorrego classified in [10] the non-degenerate (16, 6)-configurations and used them to
classify the singular Kummer surfaces. Given a singular Kummer surface, the nodes and the tropes
establish a non-degenerate (16, 6)-configuration (see [10, Corollary 2.18]), and conversely, given a
(16, 6)-configuration, there exists a singular Kummer surface whose associated (16, 6)-configuration
is the given one (see [10, Theorem 2.20]).

Definition 2.4. A Rosenhain tetrahedron in an abstract (16, 6)-configuration is a set of 4 points and
4 planes such that each plane contains exactly 3 points and each point belongs to exactly 3 planes. The
4 points are the vertices of the tetrahedron. An edge is a pair of vertices, and a face is a triple of vertices.

Rosenhain tetrahedra always exist in a singular Kummer surface; in fact, there exist 80 of them
([10, Corollary 3.21]). Moreover, these tetrahedra are relevant because using them we can construct
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divisors that are linearly equivalent and whose class induces the closed embedding to P5 (see [10,
Proposition 3.22 and Remark 3.24]):

Proposition 2.5. Given a Rosenhain tetrahedron on a singular Kummer surface K, let D be the divisor
on the associated Kummer surface S given by the sum of proper transforms of the 4 conics in which
the planes meet on K and the 4 exceptional divisors corresponding to the 4 nodes. Then, the linear
equivalence class of D is independent of the choice of the Rosenhain tetrahedron. In addition, D2 = 8,
dim|D| = 5, and the linear system |D| induces a closed embedding of S in P5 as the complete intersection
of three quadrics.

These divisors will be used in the next section to construct vanishing thetanulls on Humbert-Edge
curves of type 5.

3. Humbert-Edge curves of type 5
3.1. Properties and characterization

Here, we review the main properties of the Humbert-Edge curves of type 5 and present a characterization
using the lines lying on a Kummer surface.

Definition 3.1. An irreducible, non-degenerate, and non-singular curve X5 ⊆ P5 is a Humbert-Edge
curve of type 5 if it is the complete intersection of 4 diagonal quadrics Q0, . . . , Q3:

Qi =
5∑

j=0

aijx
2
j , i = 0, . . . , 3.

The basic properties of a Humbert-Edge curve of type 5 are stated below.

Lemma 3.2. Let X5 ⊂ P5 be a Humbert-Edge curve of type 5. The following hold:

1. X5 is a curve of degree 16.
2. The genus of X5 is equal to g(X5) = 17.
3. Every 4-minor of the matrix (aij) is non-degenerate.
4. X5 is non-trigonal.

The diagonal form of the equations defining a Humbert-Edge curve X5 of type 5 implies that it admits
the action of the group E generated by the six involutions σi : xi �→ −xi acting with fixed points and
whose product is the identity. Moreover, these involutions establish a relation between the Humbert-
Edge curves of type 5 and the Humbert’s curves in P4. For every i = 0, . . . , 5, we can consider the
covering πi : X5 → X5/〈σi〉 induced by the involution σi. This is a two-to-one covering ramified at 16
points obtained as the intersection points of X5 with the hyperplane V(xi). In addition, the quotient
of X5/〈σi〉 is a Humbert’s curve in P4. This double covering can be interpreted geometrically as the
projection of X5 with center ei onto the hyperplane V(xi).

Next result shows that a Humbert-Edge curve of type 5 is always contained in a Kummer surface. It
is a consequence of the fact noted by Edge in [7] that a Humbert-Edge curve of type n can be written in
a normal form.

Proposition 3.3. Let X5 ⊂ P5 be a Humbert-Edge curve of type 5. There exists a Kummer surface in P5

which contains X5.
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Proof. Assume that X5 is given by the equations

Qi =
5∑

j=0

aijx
2
j , i = 0, . . . , 3

where aij ∈C. For each j = 0, . . . , 5, consider the coefficients aij as the entries of the point pj =(
a0j : a1j : a2j : a3j

)
in the projective space P3. We have six points p0, . . . , p5 in P3 that are in general

position, so there exists a unique rational normal curve C ⊂ P3 through these points. Finally, take a
change of coordinates of P3 such that C is in the standard parametric form, then we may assume that
pj =

(
1 : aj : a2

j : a3
j

)
for all j = 0, . . . , 5. Therefore, we obtain that X5 is given by the equations

Qi =
5∑

j=0

ai
jx

2
j , i = 0, . . . , 3 (4)

with aj ∈C, j = 0, . . . , 5 and aj �= ak if j �= k. The quadrics Q0, Q1, Q2 define the Kummer surface
associated with the hyperelliptic curve y2 =∏5

j=0 (x − aj). Therefore, X5 is contained in a Kummer
surface.

Remark 3.4. Note that given a Humbert-Edge curve X5 of type 5 in normal form (4), by the above
proposition it is always possible to find a hyperelliptic curve C such that the Kummer surface Km(J(C))
contains X5. Reciprocally, given a hyperelliptic curve C of genus 2, by the discussion in Section 2.2, in a
natural way the associated Kummer surface Km(J(C)) contains a Humbert-Edge curve of type 5 whose
equations are in the normal form (4). Denote by Mg the moduli space of smooth and irreducible curves
of genus g. Note that Proposition 3.3 lets us see that Humbert-Edge curves of type 5 depend on three
parameters in M17; in fact in Section 3.3, we prove that the moduli space of Humbert-Edge curves of
type 5 is isomorphic to the moduli space of hyperelliptic curves of genus 2.

Next we present a characterization for Humbert-Edge curves of type 5 using the lines on Kummer
surfaces.

Theorem 3.5. Let X ⊂ P5 be an irreducible, non-degenerate, and non-singular curve of degree 16 and
genus 17. The following statements are equivalent:

(i) X is a Humbert-Edge curve of type 5.
(ii) X admits six involutions σ0, . . . , σ5 such that 〈σ0, . . . , σ5〉 ∼= (Z/2Z)5, σ0 · · · σ5 = 1 and the

quotient X/〈σi〉 is a Humbert’s curve for every i = 0, . . . , 5.
(iii) There exists a Kummer surface S which contains X and such that the intersection of X with the

16 lines � and �ij is at most one point.
(iv) There exists a Kummer surface S which contains X and such that the intersection of X with the

16 lines �i and �ijk is at most one point.

Proof. (i)⇔(ii) We have this equivalence by [9, Theorem 3.4].
(i)⇒(iii) Assume that X is Humbert-Edge curve of type 5. Proposition 3.3 implies that X is contained

in a Kummer surface S. So, we may assume the existence of different scalars a0, . . . , a5 ∈C such that X
is given by the equations

Qi =
5∑

j=0

ai
jx

2
j , i = 0, . . . , 3

and S is given by the equations Q0, Q1, Q2. Consider the line � in parametric form as in (3). A direct
computation shows that for every t ∈C,

Q3

(
t + a0√

f ′(a0)
,

t + a1√
f ′(a1)

,
t + a2√

f ′(a2)
,

t + a3√
f ′(a3)

,
t + a4√

f ′(a4)
,

t + a5√
f ′(a5)

)
= 1.
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Therefore, X does not intersect the line � and the diagonal form of the third equation implies that X also
does not intersect the lines �ij for every i, j ∈ {0, . . . , 5} with i �= j.

(iii)⇒(i) Assume that X is contained in a Kummer surface S defined by the equations

Qi =
5∑

j=0

ai
jx

2
j , i = 0, 1, 2,

where aj �= ak if j �= k, and such that X does not intersect the lines �, �jk in two different points for all
j, k ∈ {0, . . . , 5} with j �= k. We denote f (x) =∏5

j=0 (x − aj). Since S is a K3 surface of type (2, 2, 2) in
P5 containing X, our situation should be one of the cases determined by Knutsen in [14, Theorem 6.1
(3)]. In fact, we are in Case a) of the latter, in Knutsen’s notation we have n = 4, d = 16, g = 17, and
g = d2/16 + 1. Moreover, such a result implies that X is the complete intersection of S and a hypersurface
of degree d/8, i.e. X is the complete intersection of four quadrics. Denote the fourth quadric by

Q =
5∑

j=0

djx
2
j +

∑
0≤k<j≤5

djkxjxk.

Now, when we evaluate the quadric Q in the parametric form of � we obtain a quadratic equation with
parameter t with leading coefficient

1∏5
j=0 f ′(aj)

(
5∑

j=0

f ′(a0) · · · f̂ ′(aj) · · · f ′(a5)dj +
∑

0≤k<j≤5

f ′(a0) · · ·√f ′(ak)
√

f ′(aj) · · · f ′(a5)djk

)
.

The hypothesis that Q does not intersect the line � in two different points implies that such coefficient
vanishes (the coefficient of t could vanish but in such case the constant term must be different from
zero). This also occurs for all of the 15 lines �jk by hypothesis, and then, we have 16 imposed conditions.
The leading coefficient for the line �jk can be deduced from the above one, in fact, since the line �jk is
obtained from � by the application of σjσk, it is enough to add a negative sign to the coefficient of the
terms drs whenever r or s are equal to j or k. Solving the linear system in the variables dj’s and djk’s, we
obtain that all the djk’s are equal to zero, that d0, d1, d2, d3, and d4 are free parameters and

d5 = −f ′(a5)

(
d0

f ′(0)
+ d1

f ′(a1)
+ d2

f ′(a2)
+ d3

f ′(a3)
+ d4

f ′(a4)

)
. (5)

Therefore, X is the complete intersection of four diagonal quadrics in P5 and we conclude that it is a
Humbert-Edge curve of type 5.

(iii)⇔(iv) As above, assuming that X is contained in a Kummer surface S defined by the equations

Qi =
5∑

j=0

ai
jx

2
j , i = 0, 1, 2,

where aj �= ak if j �= k, by [14, Theorem 6.1 (3)] we ensure that X is the complete intersection of S and a
hypersurface of degree 2. Under the hypothesis of (iii) or (iv), when we solve the system of equations in
the parameter t as we previously did, we obtain that the coefficient of every mixed term vanishes and d5

has the form of (5). The remaining conditions, (iv) or (iii), respectively, do not impose new conditions
on the coefficients.
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3.2. Theta characteristics

In this section, we use the coverings given by the subgroups generated by involutions σi’s and the
Rosenhain tetrahedra of singular Kummer surfaces to construct theta characteristics on a Humbert-Edge
curve of type 5. We recall the definition of a theta characteristic and a vanishing thetanull.

Definition 3.6. Let X be an algebraic curve. A line bundle L on X is a theta characteristic if L2 ∼ KX . A
theta characteristic L is even (respectively, odd) if h0(L) is even (respectively, odd). A vanishing thetanull
is an even theta characteristic L such that h0(L) > 0.

Recall that given a Humbert-Edge curve X5 of type 5, for every i = 0, . . . , 5 the double covering
πi : X5 → X5/〈σi〉 is ramified at 16 points obtained as the intersection points of X5 with the hyperplane
V(xi). Denote by Ri = pi1 + · · · + pi16 the ramification divisor for every i = 0, . . . , 5.

Proposition 3.7. Let X5 ⊂ P5 be a Humbert-Edge curve of type 5. X5 admits 26 odd theta characteristics
with 3 sections, 6 of them correspond to the line bundle associated with the ramification divisors, and the
remaining 20 are induced by the coverings associated with the subgroups generated by three different
involutions σi, σj and σk for i, j, k ∈ {0, . . . , 5}.

Proof. For distinct i, j ∈ {0, . . . , 5}, consider the subgroup generated by the involutions σi and σj and
take the induced covering of degree four πij : X5 → X5/〈σi, σj〉. This is a simply ramified covering with
the 32 ramified points pi1, . . . , pi16, pj1, . . . , pj16. Since X5/〈σi, σj〉 = Eij is an elliptic curve, it follows
that

KX5 ∼ π ∗
ij (KEij ) + Ri + Rj = Ri + Rj.

So, KX5 ∼ Ri + Rj for all i, j ∈ {0, . . . , 5}. Fix and index i ∈ {0, . . . , 5} and take j, k ∈ {0, . . . , 5}\{i} with
j �= k. Using the fact that

Ri + Rk ∼ KX5 ∼ Rk + Rj,

we have that Ri ∼ Rj. Thus, KX5 ∼ Ri + Rj ∼ 2Ri and Ri is a theta characteristic.
Now, let i, j, k ∈ {0, . . . , 5} be different indices. The covering of degree eight πijk : X5 → X5/〈σi, σj, σk〉

is a simply ramified covering in the 48 points pi1, . . . , pi16, pj1, . . . , pj16, pk1, . . . , pk16. Note that
X5/〈σi, σj, σk〉 ∼= P1. Then,

KX5 ∼ π ∗
ijk(KP1 ) + Ri + Rj + Rk ∼ π ∗

ijk(KP1 ) + Ri + KX5 .

Therefore, we have that π ∗
ijk( − KP1 ) ∼ Ri and we conclude that π ∗

ijk(OP1 (2)) is a theta characteristic of X5.
Next step is to compute h0(π ∗

ijk(OP1 (2)). To do so, we will use the fact that h0(π ∗
ijk(OP1 (2))) =

h0(πijk∗π
∗
ijk(OP1 (2))). The covering πijk is determined by a line bundle L on P1 such that L8 =

OP1 (πijk∗(Ri + Rj + Rk)), and in addition, we have that πijk∗OX5 =OP1 ⊕L−1 ⊕ · · · ⊕L−7. By the pro-
jection formula:

πijk∗π
∗
ijk(OP1 (2)) =OP1 (2) ⊗ πijk∗OX5

=OP1 (2) ⊗ (OP1 ⊕L−1 ⊕ · · · ⊕L−7)

= (OP1 (2) ⊗OP1 ) ⊕ (OP1 (2) ⊗L−1) ⊕ · · · ⊕ (OP1 (2) ⊗L−7).

From the equality L8 =OP1 (πijk∗(Ri + Rj + Rk)), we get that the degree of L is equal to 6, and
this implies that OP1 (2) ⊗L−n has no sections for every n = 1, . . . , 7. Therefore, πijk∗π

∗
ijk(OP1 (2)) =

OP1 (2), and it follows that h0(π ∗
ijk(OP1 (2))) = 3. Finally, the line bundle OX5 (Ri) has 3 sections since

Ri ∼ π ∗
ijk( − KP1 ).
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Using the geometry of the Kummer surface, we can determine some vanishing thetanulls on a
Humbert-Edge curve of type 5.

Proposition 3.8. Let X5 ⊂ P5 be a Humbert-Edge curve of type 5. X5 admits 80 vanishing thetanulls
with 6 sections corresponding to Rosenhain tetrahedra of the associated singular Kummer surface K.

Proof. By Proposition 3.3, X5 is contained in a Kummer surface S. Denote by K the singular Kummer
surface associated with S. For a Rosenhain tetrahedron on K, let D be the associated divisor in S (see
Proposition 2.5). By [14, Proposition 3.1], we have that X5 and D are dependent in Pic(S); in fact, X5

appears as an element in the linear system |2D|. Using the fact that the canonical bundle of S is trivial
and that X5 ∈ |2D|, the adjunction formula implies that

KX5 = (KS + X5)|X5 = (2D)|X5 = 2D|X5 .

Thus, the divisor D|X5 is a theta characteristic. Only the calculation of h0(D|X5 ) remains. Twisting the
exact sequence of sheaves

0 →OS( − X5) →OS →OX5 → 0

by OS(D), we obtain the exact sequence

0 →OS( − D) →OS(D) →OX5 (D) → 0,

and therefore, we obtain the exact sequence in cohomology

0 → H0(S, −D) → H0(S, D) → H0(X5, D|X5 ) → H1(S, −D).

We have H0(S, −D) = 0 and since D is very ample, by Mumford vanishing theorem we obtain that
H1(S, −D) = 0. Then, H0(S, D) = H0(X5, D|X5 ) and from dim|D| = 5 it follows that h0(X5, D|X5 ) = 6. We
conclude the proof recalling that there are 80 Rosenhain tetrahedra associated with a singular Kummer
surface (see Proposition 2.5).

We conclude this subsection with the following remarks:

• The way to construct the vanishing thetanulls for a Humbert-Edge curve of type 5 using the
geometry of a Kummer surface differs completely from the classical case: a Humbert’s curve
X admits exactly 10 vanishing thetanulls and can be constructed by taking the quotients of X by
the subgroup generated by two involutions (see the proof of [9, Theorem 2.2]), the geometry
of the Del Pezzo surface containing X is not involved in such process.

• The procedure used in Proposition 3.8 to construct the vanishing thetanulls holds true for every
smooth curve on degree 16 and genus 17 on a Kummer surface S. Indeed, if Y is any smooth
curve of degree 16 and genus 17 contained in S, then using again [14, Proposition 3.1] we have
that Y and D are dependent on Pic(S) and the previous argument holds.

3.3. Moduli space of Humbert-Edge curves of type 5

As we mention in Remark 3.4, given a Humbert-Edge curve of type 5 it is always possible to associate
a hyperelliptic curve of genus 2 and vice versa. Here, we discuss about this fact, and using the results of
Carocca, Gónzalez-Aguilera, Hidalgo, and Rodríguez [3], we prove that the moduli space of Humbert-
Edge curves of type 5 is isomorphic to the moduli space of hyperelliptic curves of genus 2.

Given a Humbert-Edge curve X5 of type 5, using Edge’s idea of considering the coefficients as points
in P3 and the unique rational normal curve in P3 through them, one is able to write down the equations
of X5 in normal form (see the proof of Proposition 4):

Qi =
5∑

j=0

ai
jx

2
j , i = 0, . . . , 3, (6)
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where aj ∈C for j = 0, . . . , 5 and aj �= ak if j �= k. Note that since the rational normal curve that we
are considering is constructed via the Veronese map ν : P1 → P3, one can fix three points in P1, and
therefore, X5 depends only on three different complex numbers. Thus, we can assume that we are fixing
the points 0, 1, and ∞, and then, we have three free different parameters λ1, λ2, and λ3 defining the curve
X5. Since this idea can be carried out in the general case of Humbert-Edge curves of type n, with this
fact in mind in [3, Section 4.1] the authors found an embedding for Humbert-Edge curves of type n in
Pn in such way that the equations depend on n − 2 different parameters. In the particular case of the
Humbert-Edge curve X5 of type 5, the equations take the form

x2
0 + x2

1 + x2
2 = 0

λ1x
2
0 + x2

1 + x2
3 = 0

λ2x
2
0 + x2

1 + x2
4 = 0

λ3x
2
0 + x1

1 + x2
5 = 0,

where λ1, λ2, λ3 ∈C\{0, 1} are different complex numbers. To emphasize the dependence on the param-
eters λ1, λ2, λ3 and considering that we are fixing 0, 1, ∞, we denote this curve as X5(λ1, λ2, λ3). Also,
note that if we consider the degree 32 map given by

π(λ1,λ2,λ3) : X5(λ1, λ2, λ3) → P1

(x0 : . . . : x5) �→ −
(

x1

x0

)2

,

then

{0, 1, ∞, λ1, λ2, λ3} (7)

is the branch locus of π(λ1,λ2,λ3).
On the other hand, if C is a hyperelliptic curve of genus 2, then we can write the equation which

defines C as

y2 = (x − a0)(x − a1) · · · (x − a5), (8)

where aj ∈C for j = 0, . . . , 5 and aj �= ak if j �= k. Since there always exists an automorphism of P1 which
carries a tuple of different complex numbers (a0, a1, a2) to (0, 1, ∞), we may assume that C is given by
the equation

y2 = x(x − 1)(x − λ1)(x − λ2)(x − λ3), (9)

where λ1, λ2, λ3 ∈C\{0, 1} are different. Similarly as before, we denote by C(λ1, λ2, λ3) the hyperelliptic
curve of genus 2 with parameters 0, 1, ∞, λ1, λ2 and λ3. In addition, since C(λ1, λ2, λ3) is a hyperellip-
tic curve of genus 2, there exists a degree 2 map ρ(λ1,λ2,λ3) : C(λ1, λ2, λ3) → P1 whose branch locus is
precisely given by (7).

In both cases of Humbert-Edge curves of type 5 and hyperelliptic curves of genus 2, given such a curve
we have a map to P1 with a specific branch locus. In fact, the branch locus determines the curve modulo
isomorphism. Indeed, Hidalgo, Reyes-Carocca, and Valdés determined in [13, Section 2.3] when two
generalized Fermat curves are isomorphic, in particular, the following result can be deduced:

Proposition 3.9. Let X5(λ1, λ2, λ3) and X5(μ1, μ2, μ3) be Humbert-Edge curves of type 5. The following
statements are equivalent:

1. X5(λ1, λ2, λ3) is isomorphic to X5(μ1, μ2, μ3).
2. There exists a Möbius transformation M such that

{M(0), M(1), M(∞), M(λ1), M(λ2), M(λ3)} = {0, 1, ∞, μ1, μ2, μ3}.
In the case of hyperelliptic curves of genus 2, we have an analogous result (see [8, Section III.7.3]):
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Proposition 3.10. Let C(λ1, λ2, λ3) and C(μ1, μ2, μ3) be hyperelliptic curves of genus 2. The following
statements are equivalent:

1. C(λ1, λ2, λ3) is isomorphic to C(μ1, μ2, μ3).
2. There exists a Möbius transformation M such that

{M(0), M(1), M(∞), M(λ1), M(λ2), M(λ3)} = {0, 1, ∞, μ1, μ2, μ3}.
The above results can be summarized in the following commuting diagram:

Now, we briefly discuss the construction of the moduli space of Humbert-Edge curves of type 5.
To construct such moduli space, we follow Section 4.2 of [3]. Let HE5 be the set of all Humbert-Edge
curves of type 5. Since any Humbert-Edge curve of type 5 has genus 17, we have a map r5 : HE5 →M17

defined by r5(X5(λ1, λ2, λ3)) = [X5(λ1, λ2, λ3)], where M17 is the moduli space of curves of genus 17.
By Proposition 3.9, we can consider the isomorphism class of a Humbert-Edge curve of type 5, and
this gives an equivalence relation on HE5. Let HE 5 be the set obtained from this equivalence relation.
We have a projection map p5 : HE5 →HE 5, and we have a well-defined map q5 : HE5 →M17 so that
r5 = q5 ◦ p5. We have that HE5 is a moduli space, and we call it the moduli space of Humbert-Edge
curves of type 5, that is the set of Humbert-Edge curves of type 5 modulo isomorphism.

We denote by H2 the moduli space of hyperelliptic curves of genus 2. By Propositions 3.10 and 3.9,
we have a well-defined map

f5 : H2 →HE 5

[C(λ1, λ2, λ3)] �→ [X5(λ1, λ2, λ3)]

By construction, it is immediate that f5 is a surjective map. The following proposition deals with the
injectivity.

Proposition 3.11. The above map f5 : H2 →HE5 is injective. Therefore, f5 is an isomorphism of moduli
spaces.

Proof. Let C(λ1, λ2, λ3) and C(μ1, μ2, μ3) be hyperelliptic curves of genus 2. Assume that
f5([C(λ1, λ2, λ3)]) = f5([C(μ1, μ2, μ3)]); that is [X5(λ1, λ2, λ3)] = [X5(μ1, μ2, μ3)]. Then, there exists an
isomorphism between X5(λ1, λ2, λ3) and X5(μ1, μ2, μ3). By Proposition 3.9, there exists a Möbius
transformation M such that

{M(0), M(1), M(∞), M(λ1), M(λ2), M(λ3)} = {0, 1, ∞, μ1, μ2, μ3}.

Thus, by Proposition 3.10 we conclude that the hyperelliptic curves C(λ1, λ2, λ3) and C(μ1, μ2, μ3) are
isomorphic.
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On the other hand, in [3, Proposition 4.3] the authors proved that the map q5 : HE5 →M17 is injective.
Thus, using the isomorphism f5 we obtain the following:

Corollary 3.12. The moduli space H2 of hyperelliptic curves of genus 2 is a three-dimensional closed
algebraic variety in M17 via the composition q5 ◦ f5 : H2 ↪→M17.

We conclude this paper noting that in the general case, the moduli space of Humbert-Edge curves
of type n, where n ≥ 5 is an odd number, is isomorphic to the moduli space of hyperelliptic curves of
genus n−1

2
. In general, a Humbert-Edge curve Xn(λ1, . . . , λn−2) of type n in Pn can be written as

x2
0 + x2

1 + x2
2 = 0

λ1x
2
0 + x2

1 + x2
3 = 0

λ2x
2
0 + x2

1 + x2
4 = 0

...

λn−2x
2
0 + x1

1 + x2
n = 0,

where λ1, . . . , λn−2 ∈C\{0, 1} are different (see [3, Section 4.1]).
Since we have an analogous of Proposition 3.9 for the general case (see [13, Section 2.3]), then the

argument to construct the moduli space of Humbert-Edge curves of type 5 in fact holds true for the
general case of Humbert-Edge curves of type n (see Section 4.2 of [3]). Therefore, we can consider the
moduli space HEn of Humbert-Edge curves of type n, and we have a well-defined map qn : HEn →Mgn

where Mgn is the moduli space of curves of genus gn = 2n−2(n − 3) + 1.
On the other hand, a hyperelliptic curve C(λ1, . . . , λ2g−1) of genus g is given by the equation

y2 = x(x − 1)(x − λ1) · · · (x − λ2g−1),

where λ1, . . . , λ2g−1 ∈C\{0, 1} are different. Since also Proposition 3.10 can be generalized in this gen-
eral context (see [8, Section III.7.3]), under the assumptions that n ≥ 5 is odd and n − 2 = 2g − 1 = d,
we can define a surjective map

fd : Hg →HEn

[C(λ1, . . . , λd)] �→ [Xn(λ1, . . . , λd)],

where Hg denotes the moduli space of hyperelliptic curves of genus g = n−1
2

. Finally, applying the argu-
ment of Proposition 3.11 and using the fact that the natural map qn : HEn →Mgn is injective (see [3,
Proposition 4.3]) we conclude the following:

Proposition 3.13. If n ≥ 5 is an odd number and n − 2 = 2g − 1 = d, then the map fd : Hg →HE n is an
isomorphism of moduli spaces. In particular, we have that Hg is an (n − 2)-dimensional closed variety
in Mgn via the composition qn ◦ fd : Hg ↪→Mgn , where gn = 2n−2(n − 3) + 1.
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