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Abstract
The Manin–Peyre conjecture is established for a class of smooth spherical Fano varieties of semisimple rank one.
This includes all smooth spherical Fano threefolds of type T as well as some higher-dimensional smooth spherical
Fano varieties.
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1. Introduction

1.1. Manin’s conjecture

Manin’s conjecture [32] predicts an asymptotic formula for the number of rational points of bounded
height on Fano varieties. Its most classical version is the following: Let X be a smooth Fano variety over
Q whose set of rational points is Zariski dense. Let 𝐻 : 𝑋 (Q) → R be an anticanonical height function.
For an open subset U of X, let 𝑁𝑋,𝑈,𝐻 (𝐵) denote the number of 𝑥 ∈ 𝑈 (Q) with 𝐻 (𝑥) ≤ 𝐵. Then one
expects that there is a dense open subset𝑈 ⊆ 𝑋 and a positive number c such that

𝑁𝑋,𝑈,𝐻 (𝐵) = (1 + 𝑜(1))𝑐𝐵(log 𝐵)rk Pic𝑋−1. (1.1)

Peyre [60] proposed a product formula for c, and in the sequel we refer to this predicted value of c as
Peyre’s constant. It turned out that in its original form Manin’s conjecture is not always correct (see [4]).
The more recent thin set version (see [61], [51, Conjectures 1.2, 5.2]) is in line with all known results
hitherto.

When the dimension is large compared to the degree of the variety, one may apply the circle method
to estimate 𝑁𝑋,𝑈,𝐻 (𝐵). In this way, Browning and Heath-Brown [19] confirmed Manin’s conjecture
whenever X is geometrically integral and the inequality dim 𝑋 ≥ ((deg 𝑋) − 1)2deg𝑋 − 1 holds. The
asymptotic formula (1.1) is also known for several classes of equivariant compactifications of algebraic
groups or homogeneous spaces: for certain horospherical varieties (flag varieties [32], toric varieties
[5] and toric bundles over flag varieties [66]), for wonderful compactifications of semisimple groups of
adjoint type [68, 38], for certain other wonderful varieties [39] and for biequivariant compactifications of
unipotent groups [67] (including equivariantG𝑛a -compactifications [22]). Here, the proofs use harmonic
analysis on adelic points.

In absence of additional structure, we only know four more low-dimensional cases: Manin’s conjecture
was verified for two smooth quintic del Pezzo surfaces [14, 16], for one smooth quartic del Pezzo surface
[15] and (in the thin set version [51]) for a quadric bundle in P3 × P3 [20]. Not surprisingly, there are
many more results on versions of Manin’s conjecture for singular varieties because usually analytic
techniques are easier to implement in the presence of singularities.

In this paper, we take a different methodological approach and initiate a systematic study of Manin’s
conjecture for varieties for which we have access to the Cox ring, and where a universal torsor is given
by a polynomial of the shape

𝑘∑
𝑖=1
𝑏𝑖

𝐽𝑖∏
𝑗=1
𝑥
ℎ𝑖 𝑗
𝑖 𝑗 = 0 (1.2)

with integral coefficients 𝑏𝑖 and certain exponents ℎ𝑖 𝑗 ∈ N. This includes a fairly large class of interesting
cases, in particular numerous varieties with a torus action of complexity one or higher (see [42, 31,
41] and the references therein, for example), most weak del Pezzo surfaces whose universal torsor is
given by one equation [27], (nontoric) spherical varieties of semisimple rank one, as well as several
nonspherical smooth Fano threefolds [29] and many other varieties.

Our analytic approach towards Manin’s conjecture, to be described later in more detail, is insensitive
to the dimension of the variety (in contrast to the circle method) and independent of an additional
group structure (in contrast to methods based on harmonic analysis on adelic points). A showcase
for our approach is the proof the Manin–Peyre conjecture for all smooth spherical Fano threefolds of
semisimple rank one and type T in Theorem 1.1. We will give several more examples in Theorems 1.2
and 1.3 to shed light on the scope of the underlying method.

1.2. Spherical varieties

Let G be a connected reductive group. A normal G-variety X is called spherical if a Borel subgroup of
G has a dense orbit in X. Spherical varieties have a rich theory. They include symmetric varieties, and
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the corresponding space 𝐿2 (𝑋) has been the subject of intense investigation from the point of view of
(local) harmonic analysis and the (relative) Langlands program (e. g., [63, 64]). Spherical varieties also
admit a combinatorial description. This is achieved by the recently completed Luna program [53, 13,
26, 52] and the Luna–Vust theory of spherical embeddings [54, 50]. We recall the relevant theory in
Section 10 and refer to [12, 59, 71] as general references. In this paper, we are interested in the size of
smooth spherical varieties in the context of Manin’s conjecture.

If the acting group G has semisimple rank zero, then G is a torus and Manin’s conjecture is known
([5]; see also [65]). The next interesting case is G of semisimple rank one. Here, we may assume
𝐺 = SL2×G𝑟m by passing to a finite cover (see Section 10.2 for more details). Let𝐺/𝐻 = (SL2×G𝑟m)/𝐻
be the open orbit in X. Let 𝐻 ′ × G𝑟m = 𝐻 · G𝑟m ⊆ SL2 × G𝑟m. Then the homogeneous space SL2/𝐻 ′ is
spherical, and hence either 𝐻 ′ is a maximal torus (the case T) or 𝐻 ′ is the normalizer of a maximal torus
in SL2 (the case N) or the homogeneous space SL2/𝐻 ′ is horospherical, in which case X is isomorphic
(as an abstract variety, possibly with a different group action) to a toric variety, so we may exclude this
case from our discussion.

1.3. Spherical Fano threefolds

We start our discussion with dimension 3, the smallest dimension where nonhorospherical spherical
varieties of semisimple rank one exist. A complete classification of nontoric smooth spherical Fano
threefolds over Q was established by Hofscheier [44], cf. Table 11.1. In this situation, the acting group
always has semisimple rank one, so our present setup is in fact already the general picture, and the
following discussion applies to all nontoric smooth spherical Fano threefolds.

There are precisely four nonhorospherical examples of type T that are not equivariant G3
a-

compactifications. They have natural split forms 𝑋1, . . . , 𝑋4 over Q, which we describe in Section 11
in detail; see Table 1.1 for an overview. In the classification of smooth Fano threefolds by Iskovskikh
[48, 49] and Mori–Mukai [56], they have types III.24, III.20 (of Picard number 3), IV.8, IV.7 (of Picard
number 4), respectively.

In Section 3.2, we will define natural anticanonical height functions 𝐻 𝑗 : 𝑋 𝑗 (Q) → R using the
anticanonical monomials in their Cox rings. We establish the Manin–Peyre conjecture in all these cases.
We write 𝑁 𝑗 (𝐵) for 𝑁𝑋 𝑗 ,𝑈 𝑗 ,𝐻 𝑗 (𝐵), where here and in all subsequent cases, the open subset 𝑈 𝑗 will be
the set of all points with nonvanishing Cox coordinates.

Theorem 1.1. The Manin–Peyre conjecture holds for the smooth spherical Fano threefolds 𝑋1, . . . , 𝑋4
of semisimple rank one and type T. More precisely, there exist explicit constants 𝐶1, . . . , 𝐶4 such that

𝑁 𝑗 (𝐵) = (1 + 𝑜(1))𝐶 𝑗𝐵(log 𝐵)rk Pic𝑋 𝑗−1

for 1 ≤ 𝑗 ≤ 4. The values of 𝐶 𝑗 are the ones predicted by Peyre.

Table 1.1. Our spherical varieties..

dim rk Pic torsor equation N

𝑋1 3 3 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32 13
𝑋2 3 3 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥

2
33 13

𝑋3 3 4 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32 14
𝑋4 3 4 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32 17

𝑋5 4 5 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥33 34
𝑋6 5 3 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥

2
32 24

𝑋7 6 5 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥33𝑥34𝑥
2
35 80

𝑋8 7 6 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥
2
33𝑥

2
34 156

𝑋† 3 4 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥
2
33 13
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It is a fun exercise to compute𝐶 𝑗 explicitly (cf. Appendix A), for which the interesting and apparently
previously unknown integral identities involving sin-integrals and Fresnel integrals in Lemma 1.1 play
an important role. One obtains

𝐶1 =
40 − 𝜋2

12

∏
𝑝

(1 − 𝑝−2)3, 𝐶3 =
5(258 − 4𝜋2)

1296

∏
𝑝

(
1 − 1

𝑝

)4 (
1 + 4

𝑝
+ 4
𝑝2 +

1
𝑝3

)
,

𝐶2 =
170 − 𝜋2 − 96 log 2

36

∏
𝑝

(1 − 𝑝−2)3, 𝐶4 =
94 − 2𝜋2

72

∏
𝑝

(
1 − 1

𝑝

)4 (
1 + 4

𝑝
+ 4
𝑝2 +

1
𝑝3

)
.

Theorem 1.1 is an easy consequence of Theorem 10.1 that proves the Manin–Peyre conjecture for
smooth split spherical Fano varieties of arbitrary dimension with semisimple rank one and type T,
subject to a number of technical conditions that are straightforward to check in every given instance.
Similar methods apply also to smooth spherical Fano varieties of type N, but these have some additional
features to which we return in a subsequent paper.

Theorem 1.1 contains the first examples where Manin’s conjecture is established for smooth Fano
threefolds that do not follow from general results concerning equivariant compactifications of algebraic
groups or homogeneous spaces. Theorem 1.1 in fact confirms the Manin–Peyre conjecture for all classes
of smooth spherical Fano threefolds of semisimple rank one and type T. Previously, the knowledge of the
number of rational points on these varieties has been much less precise. Manin [55] shows that smooth
Fano threefolds have at least linear growth for rational points in Zariski dense open subsets of bounded
anticanonical height over sufficiently large ground fields. A closer inspection of his arguments reveals
in fact lower bounds of the correct order of magnitude: 𝑁 𝑗 	 𝐵(log 𝐵)rk(Pic 𝑋 𝑗 )−1 in the situation of
Theorem 1.1 (cf. the proof of [55, Proposition 1.4] as the 𝑋 𝑗 in Theorem 1.1 are blow-ups of toric
varieties). Tanimoto [70, §7] proves the upper bounds 𝑁 𝑗 
 𝐵5/2+𝜀 for 𝑗 = 1, 2, 4 and 𝑁3 
 𝐵2+𝜀 .

1.4. Higher-dimensional cases

A classification of higher-dimensional spherical varieties is currently not available, but our methods
work equally well in dimension exceeding three. For a given dimension, there are still only finitely many
cases of smooth spherical Fano varieties of semisimple rank one, and we include some representative
examples with interesting torsor equations and high Picard number. Many other examples are available
by the same method. The four varieties 𝑋5, 𝑋6, 𝑋7, 𝑋8 that we investigate here are smooth spherical Fano
varieties of semisimple rank one and type T of dimension 4, 5, 6, 7, respectively, with rk Pic 𝑋5 = 5,
rk Pic 𝑋6 = 3, rk Pic 𝑋7 = 5 and rk Pic 𝑋8 = 6. We refer to Section 12 for their combinatorial description
and Table 1.1 for a quick overview and remark that for neither of these varieties, Manin’s conjecture
follows from previous results (cf. Appendix B).

Theorem 1.2. The Manin–Peyre conjecture holds for the smooth spherical Fano varieties 𝑋5, . . . , 𝑋8 of
semisimple rank one and type T. More precisely, there exist explicit constants 𝐶5, . . . , 𝐶8 > 0 such that

𝑁 𝑗 (𝐵) = (1 + 𝑜(1))𝐶 𝑗𝐵(log 𝐵)rk Pic𝑋 𝑗−1

for 𝑗 = 5, . . . , 8. The values of 𝐶 𝑗 are the ones predicted by Peyre.

We remark that Theorems 1.1 and 1.2 are compatible with the thin set version of Manin’s conjecture.
Since our spherical varieties have a connected stabilizer for the open orbit, their sets of rational points
are not thin [10, Corollary 2.5]. As in [51, Examples 5.12, 5.13], one can show that our results are
compatible with [51, Conjecture 5.2].
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1.5. The methods

The starting point of the quantitative analysis of Fano varieties in this paper is a good understanding of
their Cox ring. We use it to pass to a universal torsor and translate Manin’s conjecture into an explicit
counting problem whose structure we describe in a moment and that is amenable to analytic techniques.
The descent to a universal torsor is a common technique in analytic approaches to Manin’s conjecture,
but in many cases it proceeds by ad hoc considerations. Here, we take a more systematic approach and
derive the passage from the Cox ring to the explicit counting problem in considerable generality. This
is summarized in Proposition 3.8. Next, we take the opportunity to express Peyre’s constant in terms
of Cox coordinates in Proposition 4.11 as a product of a surface integral, the volume of a polytope
and an Euler product so that a verification of the complete Manin–Peyre conjecture is possible without
additional ad hoc computations.

This first part of the paper is presented in greater generality than necessary for the direct applications
to spherical varieties and should prove to be useful in other situations.

The second part of the paper is devoted to an explicit solution of counting problems having the
structure required in Proposition 3.8. In many important cases, a universal torsor is given by a single
equation of the shape (1.2). We may have additional variables 𝑥01, . . . , 𝑥0𝐽0 that do not appear in the
torsor equation; for those, we put formally ℎ0 𝑗 = 0. Equation (1.2) is then to be solved in nonzero
integers 𝑥𝑖 𝑗 . This seemingly simple diophantine problem has to be analyzed with certain coprimality
constraints on the variables, and the variables are restricted to a highly cuspidal region. As specified in
Proposition 3.8, the height condition translates into inequalities

𝑘∏
𝑖=0

𝐽𝑖∏
𝑗=1
|𝑥𝑖 𝑗 |𝛼

𝜈
𝑖 𝑗 ≤ 𝐵 (1 ≤ 𝜈 ≤ 𝑁) (1.3)

for certain nonnegative exponents1 𝛼𝜈𝑖 𝑗 . In order to describe the coprimality conditions on the variables
𝑥𝑖 𝑗 in (1.2), let 𝑆𝜌 ⊆ {(𝑖, 𝑗) : 𝑖 = 0, . . . , 𝑘, 𝑗 = 1, . . . , 𝐽𝑖} (1 ≤ 𝜌 ≤ 𝑟) be a collection of sets that define
r conditions

gcd{𝑥𝑖 𝑗 : (𝑖, 𝑗) ∈ 𝑆𝜌} = 1 (1 ≤ 𝜌 ≤ 𝑟). (1.4)

Now, fix a set of coefficients 𝑏𝑖 in (1.2), and let 𝑁b (𝐵) = 𝑁 (𝐵) denote the number of 𝑥𝑖 𝑗 ∈ Z \ {0}
(0 ≤ 𝑖 ≤ 𝑘 , 1 ≤ 𝑖 ≤ 𝐽𝑖) satisfying (1.2), (1.3) and (1.4). We aim to establish an asymptotic formula of
the shape

𝑁 (𝐵) = (1 + 𝑜(1))𝑐1𝐵(log 𝐵)𝑐2 (1.5)

for some constants 𝑐1 > 0, 𝑐2 ∈ N0, and our method succeeds subject to quite general conditions. Of
course, for a proper solution of the Manin–Peyre conjecture, we do not only have to establish (1.5) but
to recover the geometric and arithmetic nature of 𝑐1 and 𝑐2 in terms of the Manin–Peyre predictions.
This will require some natural consistency conditions involving the exponents ℎ𝑖 𝑗 in the torsor equation
(1.2) and 𝛼𝜈𝑖 𝑗 in the height conditions (1.3), cf. in particular (7.4), (7.6) below.

We now describe in more detail the analytic machinery that yields asymptotic formulas of type (1.5)
for the problem given by (1.2), (1.3), (1.4). Input of two types is required.

On the one hand, we need a preliminary upper bound of the expected order of magnitude for the
count in question. The precise requirements are formulated in the form of Hypothesis 7.2 below. In
many instances, the desired bounds can be verified by soft and elementary techniques. In particular, for
smooth spherical Fano varieties of semisimple rank one and type T, this can be checked by computing
dimensions and extreme points of certain polytopes; see Proposition 7.6.

1The superscript 𝜈 is not an exponent, but an index. This notation is chosen in accordance with the notation in Section 2.
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On the other hand, we require an asymptotic formula for the number of integral solutions of (1.2) in
potentially lopsided boxes, with variables restricted by 1

2𝑋𝑖 𝑗 ≤ |𝑥𝑖 𝑗 | ≤ 𝑋𝑖 𝑗 , say. As a notable feature of
the method, the asymptotic information is required only when the k products

∏
𝑗 𝑋

ℎ𝑖 𝑗
𝑖 𝑗 (1 ≤ 𝑖 ≤ 𝑘) have

roughly the same size. The circle method deals with this auxiliary counting problem in considerable
generality, culminating in Proposition 5.2 that comes with a power saving in the shortest variable
min𝑖 𝑗 𝑋𝑖 𝑗 .

The method described in Section 8 transfers the information obtained for counting in boxes to the
strangely shaped region described by the conditions (1.3). In [7], we presented a combinatorial method
to achieve this for certain regions of hyperbolic type. Here, we use complex analysis to do this work for
us in a far more general context. A prototype of this idea, developed only in a special (and nonsmooth)
case, can be found in [9]. The final result is Theorem 8.4 that we will state once the relevant notation has
been developed. Again, we are working in greater generality than needed for the immediate applications
in this paper, with future applications in mind.

In the case of smooth spherical Fano threefolds of semisimple rank one and type T (and in many
other examples that can be found in [29, 31, 42], for example), the torsor equation (1.2) is of the shape
‘2-by-2 determinant equals some monomial’, that is (up to changing signs)

𝑥11𝑥12 + 𝑥21𝑥22 +
𝐽3∏
𝑗=1
𝑥
ℎ3 𝑗
3 𝑗 = 0. (1.6)

While the general transition method is independent of the shape of the torsor equation, for the particular
case (1.6), Theorem 8.4 together with Propositions 5.2 and 7.6 offers a ‘black box’ to obtain the
Manin–Peyre conjecture in any given situation with a small amount of elementary computations. This
is formalized in Theorem 10.1, which readily yields the proofs of Theorems 1.1 and 1.2 in Sections 11.4
and 12.4.

This leaves us with the task to establish an asymptotic formula for the number of solutions of the
torsor equation (1.6), with suitable constraints on the variables. The equation (1.6) involves an isolated
product 𝑥11𝑥12, one way to proceed would be to view (1.6) as a congruence modulo 𝑥11, thus eliminating
𝑥12. This approach is very familiar to workers in the area of divisor sums; an exemplary and historic
reference is Titchmarsh’s work on the divisor problem that now bears his name. In contexts very closely
related to the questions that concern us here, it has been successfully applied, too, for example in work of
Le Boudec [11], in a collaboration of the first two authors of this paper with Salberger [9] and on many
other occasions. However, there are a number of disadvantages stemming from the asymmetric use of
the variables 𝑥11, 𝑥12, 𝑥21 and 𝑥22. In particular, our transition to counting solutions of (1.6) in spiky
regions needs to be fed with information on the distribution of the solutions of (1.6) with all variables
in dyadic ranges. We therefore eschew the elementary approach in favour of the circle method. The
restriction to dyadic ranges is easy to implement in this environment, and the resulting leading terms in
the asymptotic formulae lend themselves more easily to Peyre’s predictions, too.

The following table summarizes the analytic data discussed in this subsection for the varieties
𝑋1, . . . , 𝑋8 featured in Theorems 1.1 and 1.2. Here, N is the number of height conditions in (1.3); the
total number of variables is 𝐽 = 𝐽0 + · · · + 𝐽3 = dim 𝑋𝑖 + rk Pic 𝑋𝑖 + 1.

1.6. Another application

Theorem 10.1 offers a promising line of attack to establish Manin’s conjecture in many instances, not
only those covered by Theorems 1.1 and 1.2. As proof of concept, we include a somewhat different
application featuring a singular spherical Fano threefold. The last two authors [28] have studied some
examples and have confirmed Manin’s conjecture for two families of singular spherical Fano threefolds.
One family was given by the equation 𝑎𝑑−𝑏𝑐− 𝑧𝑛+1 = 0 in weighted projective space P(1, 𝑛, 1, 𝑛, 1), the
other was the family of hypersurfaces given by 𝑎𝑑 − 𝑏𝑐 − 𝑦𝑛𝑧𝑛+1 = 0 in a certain toric variety (𝑛 ≥ 2).
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For the counting problem on the torsor, elementary analytic techniques were enough. We believe that
this is related to the fact that all the varieties have noncanonical (log terminal) singularities, with the
exception of the first variety for 𝑛 = 2, which is a slightly harder case with canonical singularities and
a crepant resolution. However, for similar varieties, the elementary counting techniques in [28] do not
seem to be of strength sufficient for a proof of Manin’s conjecture.

In Section 13, we use the much stronger technology developed in this paper to discuss one such case.
Let 𝑋† be the anticanonical contraction of the blow-up of the hypersurfaceV(𝑧11𝑧12− 𝑧21𝑧22− 𝑧31𝑧32) in
P2
Q
× P2
Q

(with coordinates (𝑧11 : 𝑧21 : 𝑧31) and (𝑧12 : 𝑧22 : 𝑧32)) in the two curves V(𝑧31) × {(0 : 0 : 1)}
and V(𝑧31, 𝑧32). This is a singular Fano threefold admitting a crepant resolution.

Theorem 1.3. For the singular spherical Fano threefold 𝑋†, there exists a positive number 𝐶† such that

𝑁†(𝐵) = (1 + 𝑜(1))𝐶†𝐵(log 𝐵)3.

The value of 𝐶† is the one predicted by Peyre [61].

Further applications are postponed to a separate paper.
Notational remarks. This work draws on results from various areas of mathematics. Due to the large

number of topics covered it seemed impracticable to aim for an entirely consistent notation. Any attempt
to do so would be in conflict with traditions in the respective fields. We opt for a pragmatic approach and
use notation that, locally, seems natural to working mathematicians. For example, almost everywhere
in the paper, the letter B signals the threshold for the height of points in several counting problems, but
in Section 10, a Borel subgroup of the group G that occurs in the definition of a spherical variety is
denoted by B. This is just one example of double booking for symbols that are often ‘frozen’ in less
interdisciplinary writings. We therefore introduce notation at the appropriate stage of the argument.

Part I Heights and Tamagawa measures in Cox coordinates

Universal torsors were introduced and studied by Colliot-Théléne and Sansuc; see [23]. Their first major
application to Manin’s conjecture can be found in the work of Salberger [65] on toric varieties.

Cox rings were defined by Hu and Keel [45], and they provide a global description of uni-
versal torsors; the Cox ring of a normal irreducible algebraic variety X is roughly defined as
ℛ(𝑋) =

⊕
[𝐷 ] ∈Cl(𝑋 ) Γ(𝑋,O𝑋 (𝐷)), where specifying the multiplication law requires some care. More-

over, a quotient construction Specℛ(𝑋) ⊇ 𝑋 → 𝑋 is obtained. This generalizes the homogeneous co-
ordinate ring of P𝑛 with quotient construction A𝑛+1 \ {0} → P𝑛 as well as Cox’s construction for toric
varieties [24]. For details on toric varieties and Cox rings, we refer to the books [25, 2] and to [30].

Given a variety whose Cox ring with precisely one relation is known explicitly, we show (under mild
conditions) how to write down an anticanonical height function (3.7), how to make the counting problem
on a universal torsor explicit (Proposition 3.8) and how to express Peyre’s constant (Proposition 4.11).
This is achieved in terms of the Cox ring data, without constructing an anticanonical embedding in a
projective space, widely generalizing results from [60, 62, 65, 8, 9].

2. Varieties and universal torsors in Cox coordinates

In this section, we recall how a variety X with precisely one relation in its Cox ring can be described in
Cox coordinates as a hypersurface in a toric variety (with affine charts as in Section 2.1 that will be used
in in the following sections), and how this gives a description of their universal torsors as hypersurfaces
in affine space (Section 2.2). This leads to an explicit description of the parameterization of the rational
points on X by integral points on a universal torsor (Proposition 2.4).

Let X be a smooth split projective variety over Q with big and semiample anticanonical class 𝜔∨𝑋
whose Picard group is free of finite rank. (Here, split means that the natural map from the Picard group
Pic 𝑋 over the ground field to the geometric Picard group is an isomorphism.) Assume that it has a
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finitely generated Cox ring ℛ(𝑋) [45, Definition 2.6], [2, §1.4] with precisely one relation with integral
coefficients.

In other words, X has a Cox ring over Q [30] of the form

ℛ(𝑋) � Q[𝑥1, . . . , 𝑥𝐽 ]/(Φ), (2.1)

where 𝑥1, . . . , 𝑥𝐽 is a system of pairwise nonassociated Pic 𝑋-prime generators and the relation Φ ∈
Z[𝑥1, . . . , 𝑥𝐽 ] is nonzero. According to [2, Construction 3.2.5.3], (2.1) defines a canonical embedding
of X into a (not necessarily complete) ambient toric variety 𝑌◦.

Lemma 2.1. The toric variety 𝑌◦ can be completed to a projective toric variety Y such that the natural
map Cl𝑌 → Cl 𝑋 = Pic 𝑋 is an isomorphism and −𝐾𝑋 is big and semiample on Y.

Proof. By [2, Proposition 3.2.5.4(iii)], we have Cl𝑌◦ = Cl 𝑋 . We consider the Gelfand–Kapranov–
Zelevinsky (GKZ) decomposition of 𝑌◦ (see, for example, [2, §2.2.2]). According to [2, Construction
3.2.5.7], the chambers in the GKZ decomposition of 𝑌◦ which contain ample divisors on X give rise
to completions Y of 𝑌◦ with Cl𝑌◦ = Cl𝑌 . Now, choose Y corresponding to a chamber whose closure
contains −𝐾𝑋 . Since −𝐾𝑋 is semiample on X, this is possible by [2, Proposition 3.3.2.9]. Then −𝐾𝑋 is
semiample on Y according to [2, Proposition 2.4.2.6].

By [2, Propositions 3.3.2.9 and 2.4.2.6], −𝐾𝑋 is in the relative interior of the moving cone of Y,
hence −𝐾𝑋 is big on Y. �

We assume that Y is chosen as in Lemma 2.1. Its Cox ring is ℛ(𝑌 ) = Q[𝑥1, . . . , 𝑥𝐽 ] [2, Construction
3.2.5.3]. Let Σ be the fan of Y, and let Σmax be the set of maximal cones. The generators 𝑥1, . . . , 𝑥𝐽
have the same grading as in ℛ(𝑋) and are in bijection to the rays 𝜌 ∈ Σ(1); we also write 𝑥𝜌 for 𝑥𝑖
corresponding to 𝜌. We generally write

𝐽 = #Σ(1), 𝑁 = #Σmax, (2.2)

and we assume:

The projective toric variety 𝑌 can be chosen to be regular. (2.3)

2.1. Affine charts in Cox coordinates

Since ℛ(𝑋) � Q[𝑥𝜌 : 𝜌 ∈ Σ(1)]/(Φ) with Pic 𝑋-homogeneous Φ, our variety X is a hypersurface
defined by Φ (in Cox coordinates) in the toric variety Y (with Cox ring ℛ(𝑌 ) = Q[𝑥𝜌 : 𝜌 ∈ Σ(1)]). On
Y, we can regard X as a prime divisor of class degΦ ∈ Cl𝑌 .

We introduce further notation for the toric variety Y. In Part I, let U be the open torus in Y. For each
𝜌 ∈ Σ(1), we have a U-invariant Weil divisor 𝐷𝜌 defined by 𝑥𝜌 of class [𝐷𝜌] = deg(𝑥𝜌) ∈ Cl𝑌 [25,
§4.1]. Let

𝐷0 �
∑

𝜌∈Σ (1)
𝐷𝜌, (2.4)

which is an effective divisor of class [𝐷0] = −𝐾𝑌 . For a U-invariant divisor 𝐷 =
∑
𝜌∈Σ (1) 𝜆𝜌𝐷𝜌, let

𝑥𝐷 �
∏

𝜌∈Σ (1)
𝑥
𝜆𝜌
𝜌 (2.5)

denote the corresponding monomial of degree [𝐷]. For example,

𝑥𝐷0 =
∏

𝜌∈Σ (1)
𝑥𝜌 . (2.6)
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Lemma 2.2. Let M and N be the character and cocharacter lattices of the toric variety Y, respectively.
Let 𝜌1, . . . , 𝜌𝑘 ∈ Σ(1) be rays such that their primitive generators 𝑢𝜌1 , . . . , 𝑢𝜌𝑘 ∈ 𝑁 form a basis of N.
Then the set {[𝐷𝜌] : 𝜌 ≠ 𝜌1, . . . , 𝜌𝑘 } is a basis of Cl𝑌 .

Proof. According to [2, Before Proposition 2.1.2.7], there are two exact sequences

0 → 𝐿 → ZΣ (1) → 𝑁 → 0,

0 ← Cl(𝑌 ) ← ZΣ (1) ← 𝑀 ← 0,

which are dual to each other. Here, ZΣ (1) denotes the lattice with basis {𝑒𝜌 : 𝜌 ∈ Σ(1)}, which is
assumed to be dual to itself. The top right map sends 𝑒𝜌 to 𝑢𝜌 while the lower left map sends 𝑒𝜌 to [𝐷𝜌].
Since the top right map sends 𝑒𝜌1 , . . . 𝑒𝜌𝑘 to a basis of N, the lower left map sends their complement to
a basis of Cl(𝑌 ). �

It follows from Lemma 2.2 that, for each 𝜎 ∈ Σmax, the set {[𝐷𝜌] : 𝜌 ∉ 𝜎(1)} is a basis of Cl𝑌 ; in
other words,

{deg(𝑥𝜌) : 𝜌 ∉ 𝜎(1)} (2.7)

is a basis of Pic 𝑋 .

Lemma 2.3. For each 𝜎 ∈ Σmax, there is a unique effective Weil divisor 𝐷 (𝜎) =
∑
𝜌∉𝜎 (1) 𝛼

𝜎
𝜌 𝐷𝜌 of

class −𝐾𝑋 whose support is contained in
⋃
𝜌∉𝜎 (1) 𝐷𝜌.

Proof. For the existence, choose an effective U-invariant Q-Weil divisor D on Y with [𝐷] = −𝐾𝑋 . Let
M be the character lattice of the torus U. We write 𝑈𝜎 ⊆ 𝑌 for the open subset corresponding to the
cone 𝜎.

Choose 𝜒𝜎 ∈ 𝑀Q such that (div 𝜒𝜎)|𝑈𝜎 = 𝐷 |𝑈𝜎 . Define 𝐷 (𝜎) � 𝐷 − div 𝜒𝜎 . Then 𝐷 (𝜎) is of
class −𝐾𝑋 and its support is contained in

⋃
𝜌∉𝜎 (1) 𝐷𝜌. Moreover, a multiple of −𝐾𝑋 being globally

generated means that we have 𝜒𝜎 ≤ 𝜒𝜎′ on 𝜎′ for every 𝜎′ ∈ Σmax [25, Theorem 6.1.7]. Hence, 𝐷 (𝜎)
is an effective Q-divisor.

Because of (2.7), there is a unique Z-linear combination of the 𝐷𝜌 with 𝜌 ∉ 𝜎(1) of class −𝐾𝑋 ,
which must be equal to 𝐷 (𝜎). �

For 𝜎 ∈ Σmax, notation (2.5) gives

𝑥𝐷 (𝜎) =
∏

𝜌∉𝜎 (1)
𝑥
𝛼𝜎𝜌
𝜌 , (2.8)

where 𝛼𝜎𝜌 are the unique nonnegative integers satisfying −𝐾𝑋 =
∑
𝜌∉𝜎 (1) 𝛼

𝜎
𝜌 deg(𝑥𝜌) in Pic 𝑋 (as in

Lemma 2.3).
Every 𝜎 ∈ Σmax defines an affine chart on Y as follows. For each 𝜌′ ∈ Σ(1), we can write

deg(𝑥𝜌′ ) =
∑

𝜌∉𝜎 (1)
𝛼𝜎𝜌′,𝜌 deg(𝑥𝜌) (2.9)

with certain 𝛼𝜎𝜌′,𝜌 ∈ Z by (2.7). Then

𝑧𝜎𝜌′ � 𝑥𝜌′/
∏

𝜌∉𝜎 (1)
𝑥
𝛼𝜎
𝜌′,𝜌

𝜌
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is a rational section of degree 0 ∈ Cl𝑌 , with 𝑧𝜎𝜌′ = 1 for 𝜌′ ∉ 𝜎(1). By [25, Theorem 1.2.18], the
sections 𝑧𝜎𝜌′ for 𝜌′ ∈ 𝜎(1) define an isomorphism

𝑈𝜎 → A𝜎 (1)
Q

, (2.10)

where𝑈𝜎 is the open subset of Y, where 𝑥𝜌 ≠ 0 for all 𝜌 ∉ 𝜎(1) (i. e., the complement of
⋃
𝜌∉𝜎 (1) 𝐷𝜌

in Y).
We also obtain affine charts on the open subset

𝑋𝜎 � 𝑋 ∩𝑈𝜎 (2.11)

of X. The image of 𝑋𝜎 in A𝜎 (1)
Q

is defined by

Φ𝜎 � Φ(𝑧𝜎𝜌 ) = Φ(𝑥𝜌)/
∏

𝜌∉𝜎 (1)
𝑥
𝛽𝜎𝜌
𝜌 , (2.12)

where 𝛽𝜎𝜌 ∈ Z satisfy

degΦ =
∑

𝜌∉𝜎 (1)
𝛽𝜎𝜌 deg(𝑥𝜌) (2.13)

since 𝑥𝜌 ≠ 0 on 𝑈𝜎 for 𝜌 ∉ 𝜎(1). By the implicit function theorem, for every 𝑃 ∈ 𝑋𝜎 (Q𝑣 ) with
𝜕Φ𝜎/𝜕𝑧𝜎𝜌0 (𝑃) ≠ 0 for some 𝜌0 ∈ 𝜎(1), there is an open v-adic neighborhood 𝑈0 ⊆ 𝑋𝜎 (Q𝑣 ) such that
the composition of 𝑋𝜎 → A𝜎 (1)

Q
with the natural projection 𝜋𝜎𝜌0 : A𝜎 (1)

Q
→ A𝜎 (1)\{𝜌0 }

Q
that drops the

𝜌0-coordinate induces a chart

𝑈0 → Q𝜎 (1)\{𝜌0 }
𝑣 . (2.14)

Its inverse is obtained by computing the 𝜌0-coordinate 𝑧𝜎𝜌0 = 𝜙((𝑧𝜎𝜌 )𝜌∈𝜎 (1)\{𝜌0 }) using the implicit
function 𝜙 obtained by solving Φ𝜎 for 𝑧𝜎𝜌0 .

2.2. Universal torsors and models

Let 𝑇 � Grk Pic𝑋
m,Q be the Néron–Severi torus of X (i. e., the torus whose characters are Pic 𝑋 = Cl𝑌 ).

Cox’s construction and the theory of Cox rings [65, §8] and [25, §5.1] give universal torsors 𝑋0 ⊂ 𝑌0
(with inclusion morphism 𝜄0 : 𝑋0 → 𝑌0) over 𝑋 ⊂ 𝑌 (with inclusion 𝜄 : 𝑋 → 𝑌 ). Here,𝑌0 is the principal
universal torsor over Y under T. Both projections 𝑋0 → 𝑋 and 𝑌0 → 𝑌 are called 𝜋.

We have fans Σ1 ⊃ Σ0 → Σ (with the sets of rays Σ1(1) = Σ0(1) in natural bijection to Σ(1))
corresponding to the toric varieties A𝐽

Q
= AΣ (1)

Q
= 𝑌1 ⊃ 𝑌0 → 𝑌 . We have 𝑌0 = 𝑌1 \ 𝑍𝑌 , where 𝑍𝑌 is

defined by the irrelevant ideal [25, §5.2] generated by the monomials

𝑥𝜎 �
∏

𝜌∉𝜎 (1)
𝑥𝜌 (2.15)

for all maximal cones 𝜎 ∈ Σmax. By [25, Proposition 5.1.6], there are primitive collections

𝑆1, . . . , 𝑆𝑟 ⊆ Σ(1) (2.16)

(i. e., 𝑆 𝑗 � 𝜎(1) for all 𝜎 ∈ Σ, but for every proper subset 𝑆′𝑗 of 𝑆 𝑗 , there is a 𝜎 ∈ Σ with 𝑆′𝑗 ⊆ 𝜎(1))
such that the r irreducible components of 𝑍𝑌 are defined by the vanishing of 𝑥𝜌 for all 𝜌 ∈ 𝑆 𝑗 .

The fans and their maps allow us to construct Z-models 𝜋̃ : 𝑌1 \ 𝑍𝑌 = 𝑌0 → 𝑌 with an action of
𝑇 � Grk Cl𝑌

m,Z on 𝑌0 and 𝑌1 (see [65, Remark 8.6b and later]).
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The characteristic space 𝑋0 is defined in 𝑌0 by Φ (interpreted as an affine equation; see [2, §1.6.3]).
Then 𝑋0 = 𝑋1 \ 𝑍𝑋 , where 𝑋1 = Specℛ(𝑋) is defined by Φ in 𝑌1, and 𝑍𝑋 = 𝑍𝑌 ∩ 𝑋1.

We have 𝜋̃ : 𝑋1 \𝑍𝑋 = 𝑋0 → 𝑋 for Z-models of 𝑋, 𝑋0, 𝑋1, 𝑍𝑋 defined in𝑌,𝑌0, 𝑌1, 𝑍𝑌 by Φ (regarded
as an affine equation for 𝑋0, 𝑋1, 𝑍𝑋 and as Cl𝑌 -homogeneous for 𝑋).

Proposition 2.4. We have

𝑋0(Z) = {x = (𝑥𝜌)𝜌∈Σ (1) ∈ ZΣ (1) : Φ(x) = 0, gcd{𝑥𝜌 : 𝜌 ∈ 𝑆 𝑗 } = 1forall 𝑗 = 1, . . . , 𝑟},

𝑋0 (Z𝑝) = {x = (𝑥𝜌)𝜌∈Σ (1) ∈ ZΣ (1)𝑝 : Φ(x) = 0, 𝑝 � gcd{𝑥𝜌 : 𝜌 ∈ 𝑆 𝑗 }forall 𝑗 = 1, . . . , 𝑟}.

The map 𝜋̃ induces a 2rk Pic𝑋 : 1-map 𝑋0 (Z) → 𝑋 (Z) = 𝑋 (Q).

Proof. Arguing as in [65, (11.5)], but using the description of 𝑍𝑌 by the primitive collections shows

𝑌0 (Z) = {y ∈ ZΣ (1) : gcd{𝑦𝜌 : 𝜌 ∈ 𝑆 𝑗 } = 1 for all 𝑗 = 1, . . . , 𝑟}.

Since 𝑋 is defined by Φ in 𝑌 , the first result follows. The description of 𝑋 (Z𝑝) is obtained similarly.
By [65, Lemma 11.4], 𝜋̃ induces a 2rk Cl𝑌 : 1-map 𝑌0 (Z) → 𝑌 (Z) = 𝑌 (Q). Restricting to the points

where Φ vanishes gives the result. �

3. Heights in Cox coordinates

In this section, we construct an explicit adelic metrization of the anticanonical bundle of our variety X
with one relationΦ in its Cox ring (Section 3.1), using the charts from Section 2.1 and Poincaré residues.
This metrization is the basis for the construction of an anticanonical height function (Section 3.2) that
we use to count points, and of the Tamagawa measure for Peyre’s expected leading constant (Section 4).
On the universal torsor, only the Archimedean factor of the height function remains (Section 3.6).
This leads to the main result of this section: a completely explicit description of the counting problem
(Proposition 3.8) in terms of the Cox ring of X. Section 3.5 contains some related linear algebra results
that will be used later.

We keep the assumptions and notation from Section 2.

3.1. Adelic metrization of 𝜔−1
𝑋 via Poincaré residues

Here, we use the notation and results from Section 2.1. A special case of the following can be found
in [8, §5]. There is a global nowhere vanishing section 𝑠𝑌 of 𝜔𝑌 (𝐷0) (2.4) whose restriction to every
open subset 𝑈𝜎 ⊂ 𝑌 as in (2.10) for 𝜎 ∈ Σmax is ±

∧
𝜌∈𝜎 (1)

d𝑧𝜎𝜌
𝑧𝜎𝜌

(see [25, Proposition 8.2.3]). Recall
the definition of Φ𝜎 (2.12).

Lemma 3.1. For each 𝜎 ∈ Σmax, we define

𝜛𝜎 �
𝑥𝐷0

𝑥𝐷 (𝜎)Φ
𝑠𝑌 ∈ Γ(𝑌, 𝜔𝑌 (𝐷 (𝜎) + 𝑋)); (3.1)

this is a nowhere vanishing global section of 𝜔𝑌 (𝐷 (𝜎) + 𝑋). On𝑈𝜎 , we have

𝜛𝜎 =
±1
Φ𝜎

∧
𝜌∈𝜎 (1)

d𝑧𝜎𝜌 ∈ Γ(𝑈𝜎 , 𝜔𝑌 (𝑋)).

Proof. For the first statement, note that 𝑥𝐷0 (𝑥𝐷 (𝜎)Φ)−1 corresponds to the divisor 𝐷0 − 𝐷 (𝜎) − 𝑋 .
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On𝑈𝜎 , we have

𝜛𝜎 =
±𝑥𝐷0

𝑥𝐷 (𝜎)Φ

∧
𝜌∈𝜎 (1)

d𝑧𝜎𝜌
𝑧𝜎𝜌

∈ Γ(𝑈𝜎 , 𝜔𝑌 (𝑋)) (3.2)

where Γ(𝑈𝜎 , 𝜔𝑌 (𝑋)) = Γ(𝑈𝜎 , 𝜔𝑌 (𝐷 (𝜎) + 𝑋)) since 𝐷 (𝜎)|𝑈𝜎 = 0 by Lemma 2.3. With 𝛽𝜎𝜌 as in
(2.13), let

𝜆 =
𝑥𝐷0

𝑥𝐷 (𝜎)
∏

𝜌∉𝜎 (1) 𝑥
𝛽𝜎𝜌
𝜌

.

In view of (2.12), we obtain

𝜛𝜎 =
±𝜆
Φ𝜎

∧
𝜌∈𝜎 (1)

d𝑧𝜎𝜌
𝑧𝜎𝜌

∈ Γ(𝑈𝜎 , 𝜔𝑌 (𝑋)).

On𝑈𝜎 , we have

div𝜆 = (div 𝑥𝐷0 )|𝑈𝜎 − (div 𝑥𝐷 (𝜎) )|𝑈𝜎 −
∑

𝜌∉𝜎 (1)
𝛽𝜎𝜌 𝐷𝜌 = (div 𝑥𝐷0 )|𝑈𝜎 − 0 − 0 = (div 𝑥𝐷0 )|𝑈𝜎 .

We also have div
∏

𝜌∈𝜎 (1) 𝑧
𝜎
𝜌 = (div 𝑥𝐷0 )|𝑈𝜎 . Therefore, 𝜆 =

∏
𝜌∈𝜎 (1) 𝑧

𝜎
𝜌 on 𝑈𝜎 , and we obtain the

second statement. �

The Poincaré residue map

Res : 𝜔𝑌 (𝑋) → 𝜄∗𝜔𝑋 (3.3)

is a homomorphism of𝒪𝑌 -modules. On the smooth open subset𝑈𝜎 of Y, it sends𝜛𝜎 ∈ Γ(𝑈𝜎 , 𝜔𝑌 (𝑋))
to Res𝜛𝜎 ∈ Γ(𝑈𝜎 , 𝜄∗𝜔𝑋 ) = Γ(𝑋𝜎 , 𝜔𝑋 ), which is given by

Res𝜛𝜎 =
±1

𝜕Φ𝜎/𝜕𝑧𝜎𝜌0

∧
𝜌∈𝜎 (1)\{𝜌0 }

d𝑧𝜎𝜌 (3.4)

on the open subset of 𝑋𝜎 (see (2.11)) where 𝜕Φ𝜎/𝜕𝑧𝜎𝜌0 ≠ 0, for any 𝜌0 ∈ 𝜎(1).

Lemma 3.2. The section Res𝜛𝜎 extends uniquely to a nowhere vanishing global section of𝜔𝑋 (𝐷 (𝜎)∩
𝑋).

Proof. This is similar to [8, Lemma 13]. Since 𝑠𝑌 generates the 𝒪𝑌 -module 𝜔𝑌 (𝐷0), each

𝜛𝜎 =
𝑥𝐷0

𝑥𝐷 (𝜎)Φ
𝑠𝑌

generates the 𝒪𝑌 -module 𝜔𝑌 (𝑋 + 𝐷 (𝜎)). Since 𝜄∗𝒪𝑌 (𝐷 (𝜎)) = 𝒪𝑋 (𝐷 (𝜎) ∩ 𝑋) (using that 𝑋 �
supp𝐷 (𝜎)), the isomorphism 𝜄∗𝜔𝑌 (𝑋) → 𝜔𝑋 adjoint to Res : 𝜔𝑌 (𝑋) → 𝜄∗𝜔𝑋 induces an isomorphism
𝜄∗𝜔𝑌 (𝑋 +𝐷 (𝜎)) → 𝜔𝑋 (𝐷 (𝜎) ∩𝑋) that maps 𝜄∗𝜛𝜎 to Res𝜛𝜎 . Hence, Res𝜛𝜎 generates𝜔𝑋 (𝐷 (𝜎) ∩
𝑋), that is, it is a nowhere vanishing global section. �

Therefore,

𝜏𝜎 � (Res𝜛𝜎)−1 (3.5)

is a nowhere vanishing global sections of 𝜔−1
𝑋 (−𝐷 (𝜎) ∩ 𝑋), which we can also view as a global section

of 𝜔−1
𝑋 .
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Lemma 3.3. The section 𝜏𝜎 ∈ Γ(𝑋, 𝜔−1
𝑋 ) does not vanish anywhere on 𝑋𝜎 .

Proof. The previous lemma shows that 𝜏𝜎 , as a global section of 𝜔−1
𝑋 , has corresponding divisor

𝐷 (𝜎) ∩ 𝑋 , whose support is contained in 𝑋 ∩
⋃
𝜌∉𝜎 𝐷𝜌, which is the complement of 𝑋𝜎 (2.11). �

For any place v of Q, we define a v-adic norm (or metric) on 𝜔−1
𝑋 by

‖𝜏(𝑃)‖𝑣 � min
𝜎∈Σmax:𝑃∉𝐷 (𝜎)




 𝜏
𝜏𝜎
(𝑃)





𝑣

(3.6)

for any local section 𝜏 of 𝜔−1
𝑋 not vanishing in 𝑃 ∈ 𝑋 (Q𝑣 ). The next result shows that our family of

local norms ‖ · ‖𝑣 for all places v is an adelic anticanonical norm as in [61, Définition 2.3]; see also [9,
Lemma 8.5].

Lemma 3.4. Let p be a prime such that 𝑋 is smooth over Z𝑝 . On 𝜔−1
𝑋 , the p-adic norm ‖ · ‖𝑝 defined

by (3.6) coincides with the model norm ‖ · ‖∗𝑝 determined by 𝑋 over Z𝑝 as in [65, Definition 2.9].

Proof. Let 𝑃 ∈ 𝑋 (Q𝑝), and let 𝜏 be a local section of 𝜔−1
𝑋 not vanishing in P. Choose 𝜉 ∈ Σmax such

that | (𝜏 𝜉 /𝜏) (𝑃) |𝑝 = max𝜎∈Σmax | (𝜏𝜎/𝜏) (𝑃) |𝑝 , which is positive by Lemma 3.3 and the fact that the
sets 𝑋𝜎 cover X (2.11); in particular, 𝜏 𝜉 does not vanish in P. Hence, we can compute

‖𝜏 𝜉 (𝑃)‖−1
𝑝 = max

𝜎∈Σmax





𝜏𝜎𝜏 𝜉 (𝑃)



𝑝 = max
𝜎∈Σmax

| (𝜏𝜎/𝜏) (𝑃) |𝑝
| (𝜏 𝜉 /𝜏) (𝑃) |𝑝

= 1.

On the other hand, for each 𝜎 ∈ Σmax, the section 𝜏𝜎 extends to a global section 𝜏̃𝜎 of 𝜔−1
𝑋/Z𝑝

, and

𝜔−1
𝑋/Z𝑝

is generated by the set of all these 𝜏̃𝜎 as an 𝒪𝑋 -module. The computation above shows for every

𝜎 ∈ Σmax that


 𝜏𝜎
𝜏 𝜉
(𝑃)




𝑝
≤ 1, hence 𝜏𝜎 (𝑃) = 𝑎𝜎𝜏 𝜉 (𝑃) for some 𝑎𝜎 ∈ Z𝑝 in the Q𝑝-module 𝜔−1

𝑋 (𝑃),
and hence also 𝜏̃𝜎 (𝑃) = 𝑎𝜎 𝜏̃ 𝜉 (𝑃) in the Z𝑝-module 𝑃∗(𝜔−1

𝑋/Z𝑝
). Therefore, 𝑃∗(𝜔−1

𝑋/Z𝑝
) is generated

by 𝜏 𝜉 (𝑃) and consequently ‖𝜏 𝜉 (𝑃)‖∗𝑝 = 1 by definition of the model norm. Finally, we have

‖𝜏(𝑃)‖𝑝 = | (𝜏/𝜏 𝜉 ) (𝑃) |𝑝 · ‖𝜏 𝜉 (𝑃)‖𝑝 = | (𝜏/𝜏 𝜉 ) (𝑃) |𝑝 · ‖𝜏 𝜉 (𝑃)‖∗𝑝 = ‖𝜏(𝑃)‖∗𝑝 .ℎ𝑒𝑟𝑒

�

3.2. Height function

As in [61, Définition 2.3], our adelic anticanonical norm (‖·‖𝑣 )𝑣 (3.6) allows us to define an anticanonical
height 𝐻 : 𝑋 (Q) → R>0, namely

𝐻 (𝑃) �
∏
𝑣

‖𝜏(𝑃)‖−1
𝑣 (3.7)

for any local section 𝜏 of 𝜔−1
𝑋 not vanishing in 𝑃 ∈ 𝑋 (Q); here and elsewhere, the product is taken over

all places v of Q. This anticanonical height on 𝑋 (Q) depends only on the choice of Cox coordinates on
X (2.1).

In the following lemma, 𝑥𝐷 (𝜎) and 𝐹0 are homogeneous elements of Q[𝑥𝜌 : 𝜌 ∈ Σ(1)] of the same
degree in Pic 𝑋 . Therefore, 𝑥𝐷 (𝜎) /𝐹0 can be regarded as a rational function on X that can be evaluated
in 𝑃 ∈ 𝑋 (Q) if 𝐹0 does not vanish in P.

Lemma 3.5. For any polynomial 𝐹0 of degree −𝐾𝑋 not vanishing in 𝑃 ∈ 𝑋 (Q), one has

𝐻 (𝑃) =
∏
𝑣

max
𝜎∈Σmax





𝑥𝐷 (𝜎)𝐹0
(𝑃)






𝑣

.
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Proof. Since the sets 𝑋𝜎 as in (2.11) for 𝜎 ∈ Σmax cover X, our point P is contained in 𝑋 𝜉 (Q)
for some 𝜉 ∈ Σmax. By Lemma 3.3, we can compute 𝐻 (𝑃) with 𝜏 � 𝜏 𝜉 as in (3.5). We have
𝜛𝜎 = 𝑥−𝐷 (𝜎)𝑥𝐷 ( 𝜉 )𝜛 𝜉 by definition (3.1). Since Res is an 𝒪𝑌 -module homomorphism (3.3), this
implies 𝜏𝜎 = 𝑥𝐷 (𝜎)𝑥−𝐷 ( 𝜉 )𝜏 𝜉 . Therefore,

‖𝜏 𝜉 (𝑃)‖−1
𝑣 = max

𝜎∈Σmax





𝜏𝜎𝜏 𝜉 (𝑃)



𝑣 = max
𝜎∈Σmax





𝑥𝐷 (𝜎)𝑥𝐷 ( 𝜉 )
(𝑃)






𝑣

, (3.8)

hence our claim holds for 𝐹0 � 𝑥𝐷 ( 𝜉 ) . By the product formula, it follows for arbitrary 𝐹0 not vanishing
in P. �

3.3. Heights on torsors

We lift the height function H to the universal torsor 𝑋0 as in Section 2.2 as follows. Let

𝐻0 : 𝑋0 (Q) → R>0

be the composition of 𝜋 : 𝑋0 (Q) → 𝑋 (Q) and the height function H defined in (3.7). The following is
analogous to [65, Proposition 10.14].

Lemma 3.6. For 𝑃0 ∈ 𝑋0(Q), we have

𝐻0(𝑃0) =
∏
𝑣

max
𝜎∈Σmax

|𝑥𝐷 (𝜎) (𝑃0) |𝑣 .

Proof. Let 𝑃 = 𝜋(𝑃0) ∈ 𝑋 (Q). For 𝐹0 of degree −𝐾𝑋 not vanishing in P and𝜎 ∈ Σmax, we can compute
(𝑥𝐷 (𝜎) /𝐹0) (𝑃) as in Lemma 3.5, but we can also regard 𝑥𝐷 (𝜎) and 𝐹0 as regular functions on 𝑋0 that can
be evaluated in 𝑃0. Here, we have 𝑥𝐷 (𝜎) (𝑃0)/𝐹0 (𝑃0) = (𝑥𝐷 (𝜎) /𝐹0) (𝑃). Using Lemma 3.5, we obtain

𝐻0(𝑃0) = 𝐻 (𝑃) =
∏
𝑣

max
𝜎∈Σmax





𝑥𝐷 (𝜎)𝐹0
(𝑃)






𝑣

=
∏
𝑣

max
𝜎∈Σmax





𝑥𝐷 (𝜎) (𝑃0)
𝐹0 (𝑃0)





,
and

∏
𝑣 |𝐹0 (𝑃0) |𝑣 = 1 by the product formula. �

The next result is analogous to [65, Proposition 11.3].

Corollary 3.7. For any prime p and 𝑃0 ∈ 𝑋0 (Z𝑝), we have

max
𝜎∈Σmax

|𝑥𝐷 (𝜎) (𝑃0) |𝑝 = 1.

For 𝑃0 ∈ 𝑋0 (Z), we have

𝐻0(𝑃0) = max
𝜎∈Σmax

|𝑥𝐷 (𝜎) (𝑃0) |∞.

Proof. Let p be a prime and 𝑃0 ∈ 𝑋0 (Z𝑝). Then 𝑃0 mod 𝑝 is in 𝑋0(F𝑝). Since 𝑋0 is defined by the
irrelevant ideal in 𝑋1 as in (2.15), there is a 𝜉 ∈ Σmax such that 𝑥 𝜉 (𝑃0 mod 𝑝) ≠ 0 ∈ F𝑝 . Since the
support of 𝐷 (𝜉) is as in Lemma 2.3, we have 𝑥𝐷 ( 𝜉 ) (𝑃0 mod 𝑝) ≠ 0 ∈ F𝑝 , and hence |𝑥𝐷 ( 𝜉 ) (𝑃0) |𝑝 = 1.
Using 𝑥𝐷 (𝜎) (𝑃0) ∈ Z𝑝 for all 𝜎 ∈ Σmax, we conclude max𝜎∈Σmax |𝑥𝐷 (𝜎) (𝑃0) |𝑝 = 1.

Therefore, for 𝑃0 ∈ 𝑋0 (Z), only the Archimedean factor in Lemma 3.6 remains. �
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3.4. Parameterization in Cox coordinates

The following proposition translates the analysis of 𝑁𝑋,𝑈,𝐻 (𝐵) into a counting problem as described
in the introduction that is amenable to methods of analytic number theory. It parameterizes the rational
points on X by integral points on the universal torsor 𝑋0 in terms of the torsor equation from the Cox
ring (2.1), the height conditions from the anticanonical monomials (2.8) and the coprimality conditions
from the primitive collections (2.16).

Proposition 3.8. Let X be a variety as in the first paragraph of Section 2 that satisfies the assumption
(2.3). Let 𝑈 = 𝑋 \

⋃
𝜌∈Σ (1) 𝐷𝜌 be the open subset of X where all Cox coordinates 𝑥𝜌 are nonzero. Let

H be the anticanonical height function on 𝑋 (Q) defined in (3.7). Then

𝑁𝑋,𝑈,𝐻 (𝐵) =
1

2rk Pic𝑋 #
⎧⎪⎪⎨⎪⎪⎩x ∈ ZΣ (1)≠0 :

Φ(x) = 0, max
𝜎∈Σmax

|x𝐷 (𝜎) |∞ ≤ 𝐵,

gcd{𝑥𝜌 : 𝜌 ∈ 𝑆 𝑗 } = 1 for every 𝑗 = 1, . . . , 𝑟

⎫⎪⎪⎬⎪⎪⎭,

using the notation (2.1), (2.8), (2.16).

Proof. We combine the 2rk Pic𝑋 : 1-map and the description of 𝑋0(Z) from Proposition 2.4 with the
lifted height function in Corollary 3.7. The preimage of 𝑈 (Q) in 𝑋0 (Z) is the set where 𝑥𝜌 ≠ 0 for all
𝜌 ∈ Σ(1). �

3.5. Some linear algebra

The monomials x𝐷 (𝜎) and the polynomial Φ that appear in Proposition 3.8 are not independent. In this
subsection, we analyze this dependence and describe it in the form of a rank condition on a certain
matrix. This will be useful later when we apply methods from complex analysis to obtain an asymptotic
formula for 𝑁𝑋,𝑈,𝐻 (𝐵).

We consider Q𝐽 = QΣ (1) (2.2) with standard basis (𝑒𝜌)𝜌∈Σ (1) indexed by the rays of Σ. Let

𝑝 : QΣ (1) → (Pic 𝑋)Q

be the surjective linear map that sends 𝑒𝜌 to [𝐷𝜌] = deg(𝑥𝜌) as in (2.7). For x = (𝑥𝜌)𝜌∈Σ (1) ∈ QΣ (1)
𝑣 for

some place v of Q and v = (𝑣𝜌)𝜌∈Σ (1) ∈ ZΣ (1)≥0 , let xv �
∏

𝜌∈Σ (1) 𝑥
𝑣𝜌
𝜌 .

Lemma 3.9. The set 𝑄 � 𝑝−1 (−𝐾𝑋 ) ∩ QΣ (1)
≥0 is a bounded polytope of dimension 𝐽 − rk Pic 𝑋 . Its set

𝒱 of vertices of Q lies in ZΣ (1)≥0 . Let v be a place of Q. For all nonzero x ∈ QΣ (1)
𝑣 , we have

max
𝜎∈Σmax

|x𝐷 (𝜎) |𝑣 = max
v∈𝒱

|xv |𝑣 .

Proof. In the notation of the proof of Lemma 2.3, write 𝐷 =
∑
𝜌 𝑎𝜌𝐷𝜌. Then the −𝜒𝜎 are the vertices,

and possibly (if −𝐾𝑋 is not ample) some other points, of the rk𝑀-dimensional polytope

𝑃𝐷 = {𝜒 ∈ 𝑀Q : 〈𝑛𝜌, 𝜒〉 ≥ −𝑎𝜌 for all 𝜌};

see [25, §4.3 and after Lemma 9.3.9].
Now, consider the injective affine map 𝜙 : 𝑀Q → QΣ (1) , 𝜒 ↦→

∑
𝜌 (𝑎𝜌 + 〈𝑛𝜌, 𝜒〉)𝑒𝜌 as well as the

linear surjective map 𝑝 : QΣ (1) → (Cl𝑌 )Q. We have rk𝑀 = 𝐽 − rk Pic 𝑋 and im(𝑝 ◦ 𝜙) = {−𝐾𝑋 }.
Moreover, the condition 𝜙(𝜒) ∈ QΣ (1)

≥0 is equivalent to 〈𝑛𝜌, 𝜒〉 ≥ −𝑎𝜌 for all 𝜌. It follows that 𝜙 restricts
to a bijection 𝑃𝐷 → 𝑄 = 𝑝−1 (−𝐾𝑋 ) ∩ QΣ (1)

≥0 . Hence, Q is bounded and of dimension 𝐽 − rk Pic 𝑋 .
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As we have 𝑝(−𝜒𝜎) = 𝐷 (𝜎), where 𝐷 (𝜎) is interpreted as an element of ZΣ (1) in the obvious way,
we obtain 𝒱 ⊆ 𝜙({𝐷 (𝜎) : 𝜎 ∈ Σmax}) ⊆ 𝑄. Hence, the equality

max
𝜎∈Σmax

|x𝐷 (𝜎) |𝑣 = max
v∈𝒱

|xv |𝑣

holds, and, since 𝜙(𝑀) ⊆ ZΣ (1) , we also obtain 𝒱 ⊂ ZΣ (1)≥0 . �

We recall (2.2) and the notation (2.8) for the exponents 𝛼𝜎𝜌 occurring in x𝐷 (𝜎) . We write the defining
equation Φ from (2.1) in the form

Φ =
𝑘∑
𝑖=1
𝑏𝑖

∏
𝜌∈Σ (1)

𝑥
ℎ𝑖𝜌
𝜌 (3.9)

(i. e., k is the number of monomials, and h𝑖 = (ℎ𝑖𝜌)𝜌∈Σ (1) ∈ ZΣ (1)≥0 is the exponent vector of the i-th term
of Φ). We now consider the block matrix

𝒜 =

(
𝒜1 𝒜2
𝒜3 𝒜4

)
∈ R(𝐽+1)×(𝑁+𝑘) . (3.10)

Here, 𝒜1 = (𝛼𝜎𝜌 )(𝜌,𝜎) ∈Σ (1)×Σmax ∈ R𝐽×𝑁 is the height matrix for the height function from Proposition
3.8. We let 𝒜2 ∈ R𝐽×𝑘 be the matrix whose i-th column is h𝑖 − h𝑘 for 𝑖 = 1, . . . , 𝑘 − 1 and whose k-th
column is h𝑘 − (1, . . . , 1)�. Furthermore, let 𝒜3 = (1, . . . , 1) ∈ R1×𝑁 and 𝒜4 = (0, . . . , 0,−1) ∈ R1×𝑘 .

The definition of 𝒜2 may appear to be somewhat artificial. Its purpose will become clear in (8.21) in
Section 8.4.

Lemma 3.10. We have rk𝒜 = rk𝒜1 = 𝐽 − rk Pic 𝑋 + 1.

Proof. According to Lemma 3.9, the polytope Q spans an affine subspace of dimension 𝐽 − rk Pic 𝑋
in R𝐽 , which does not contain 0 since −𝐾𝑋 ≠ 0. It follows that Q spans a vector space of dimension
𝐽 − rk Pic 𝑋 + 1 in R𝐽 . This shows rk𝒜1 = 𝐽 − rk Pic 𝑋 + 1.

Since the columns of 𝒜1 lie in an affine subspace of R𝐽 that does not contain 0, a linear combination
of these columns can be 0 only if the sum of the coefficients is 0. It follows that we have rk

(
𝒜1
𝒜3

)
= rk𝒜1.

Since Φ is Pic 𝑋-homogeneous, the first 𝑘 − 1 columns of 𝒜2 lie in 𝑝−1 (0). Moreover, note that the
last column of 𝒜2 lies in 𝑝−1 (𝐾𝑋 ) since degΦ −

∑
𝜌∈Σ (1) deg(𝑥𝜌) = 𝐾𝑋 by [2, Proposition 3.3.3.2].

Together with the fact that the columns of 𝒜1 lie in 𝑝−1 (−𝐾𝑋 ), we obtain rk𝒜 = rk
(
𝒜1
𝒜3

)
. �

Let 𝜁 = (𝜁1, . . . , 𝜁𝑘 ) ∈ R𝑘 be a vector satisfying

𝜁𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑘,
𝑘∑
𝑖=1
ℎ𝑖𝜌𝜁𝑖 < 1 for all 𝜌 ∈ Σ(1),

𝑘∑
𝑖=1
𝜁𝑖 = 1. (3.11)

This condition will reappear in Part II as (5.10).

Lemma 3.11. Let 𝜁 be as in (3.11), 𝜏1 = (1 −
∑𝑘
𝑖=1 ℎ𝑖𝜌𝜁𝑖)𝜌∈Σ (1) = (1, . . . , 1) −

∑𝑘
𝑖=1 𝜁𝑖h𝑖 , and let

𝜏 = (𝜏1, 1)�. The system of 𝐽 + 1 linear equations(
𝒜1
𝒜3

)
𝜎 = 𝜏

has a solution 𝜎 ∈ R𝑁>0.
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Proof. According to [2, Proposition 3.3.3.2], we have 𝜏1 ∈ 𝑝−1 (−𝐾𝑋 ). It follows from𝑄 = 𝑝−1(−𝐾𝑋 )∩
Q
Σ (1)
≥0 that the relative interior of Q satisfies 𝑄◦ ⊇ 𝑝−1 (−𝐾𝑋 ) ∩ QΣ (1)

>0 . Since all coordinates of 𝜏1 are
positive, we obtain 𝜏1 ∈ 𝑄◦. Since the columns of 𝒜1 are the vertices of Q, the column 𝜏�1 can be
written as a linear combination of the columns of 𝒜1 with strictly positive coefficients whose sum is 1.
The existence of 𝜎 ∈ R𝑁>0 as required follows. �

4. Tamagawa numbers in Cox coordinates

In this section, we use the adelic metrization (see Section 3.1) of the anticanonical bundle on our variety
X to make the local measures (Section 4.1) explicit that are used in the Tamagawa number (Section 4.2)
in Peyre’s constant. We lift the p-adic measures to the universal torsor (Section 4.3), which allows as to
express the p-adic densities in the Tamagawa number in terms of the number of points on the universal
torsor modulo 𝑝ℓ , which is the number of solutions modulo 𝑝ℓ of the relation Φ in the Cox ring
(Section 4.4). Furthermore, we rewrite the real density and Peyre’s constant 𝛼 (Section 4.5) in a way
that will appear in our analytic method in Part II. In total, we obtain a description of Peyre’s constant
for X in terms of the Cox ring of X (Proposition 4.11).

We continue to work in the setting of Sections 2 and 3. Additionally, we assume that X is an almost
Fano variety (e. g., a smooth Fano variety) as in [61, Définition 3.1] (i. e., X is smooth, projective and
geometrically integral with 𝐻1(𝑋,𝒪𝑋 ) = 𝐻2 (𝑋,𝒪𝑋 ) = 0, free geometric Picard group of finite rank,
and big 𝜔∨𝑋 ).

4.1. Local measures

By [60, (2.2.1)], [61, Notations 4.3] and [65, Theorem 1.10], the v-adic norm ‖ · ‖𝑣 on 𝜔−1
𝑋 defined in

(3.6) induces a measure 𝜇𝑣 on 𝑋 (Q𝑣 ). We express it using the Poincaré residues from Section 3.1 and
the affine charts from Section 2.1; in particular, recall (2.8), (2.11), (3.1), (3.5). See [8, (5.8), (5.9)] for
an example of the next result.

Proposition 4.1. Let 𝜉 ∈ Σmax. For a Borel subset 𝑁𝑣 of 𝑋 𝜉 (Q𝑣 ), we have

𝜇𝑣 (𝑁𝑣 ) =
∫
𝑁𝑣

| Res𝜛 𝜉 |𝑣
max𝜎∈Σmax |𝜏𝜎 Res𝜛 𝜉 |𝑣

=
∫
𝑁𝑣

| Res𝜛 𝜉 |𝑣
max𝜎∈Σmax |𝑥𝐷 (𝜎) /𝑥𝐷 ( 𝜉 ) |𝑣

, (4.1)

where | Res𝜛 𝜉 |𝑣 is the v-adic density on 𝑋 𝜉 (Q𝑣 ) of the volume form Res𝜛 𝜉 on 𝑋 𝜉 .
Let 𝜌0 ∈ 𝜉 (1). If 𝑁𝑣 is contained in a sufficiently small open v-adic neighborhood of a point P in

𝑋 𝜉 (Q𝑣 ) with 𝜕Φ𝜉 /𝜕𝑧 𝜉𝜌0 (𝑃) ≠ 0, then

𝜇𝑣 (𝑁𝑣 ) =
∫
𝜋
𝜉
𝜌0 (𝑁𝑣 )

∧
𝜌∈𝜉 (1)\{𝜌0 } d𝑧 𝜉𝜌

|𝜕Φ𝜉 /𝜕𝑧 𝜉𝜌0 (z𝜉 ) |𝑣 max𝜎∈Σmax |𝑥𝐷 (𝜎) (z𝜉 ) |𝑣
(4.2)

in the affine coordinates z𝜉 = (𝑧 𝜉𝜌 )𝜌∈𝜉 (1) , where 𝜋 𝜉𝜌0 : 𝑈 𝜉 (Q𝑣 ) = Q𝜉 (1)
𝑣 → Q𝜉 (1)\{𝜌0 }

𝑣 is the natural
projection and 𝑧𝜉𝜌0 is expressed in terms of the other coordinates using the implicit function for Φ𝜉 .

Proof. As in (2.14), the implicit function theorem gives a v-adic neighborhood 𝑈0 ⊆ 𝑋 𝜉 (Q𝑣 ) of P
and an implicit function 𝜙 : 𝑉 → Q𝑣 for 𝑉 = 𝜋

𝜉
𝜌0 (𝑈0) ⊆ Q𝜉 (1)\{𝜌0 }

𝑣 such that Φ𝜉 (z𝜉 ) = 0 for all
z𝜉 ∈ 𝑋 𝜉 (Q𝑣 ) with 𝑧 𝜉𝜌0 the image of (𝑧 𝜉𝜌 )𝜌∈𝜉 (1)\{𝜌0 } ∈ 𝑉 under 𝜙. We work with ‖𝜏 𝜉 (𝑃)‖𝑣 as in (3.5)
and use 𝑥𝐷 ( 𝜉 ) (z𝜉 ) = 1 (see (2.8)) in our affine coordinates on 𝑋 𝜉 (Q𝑣 ). Then the formulas in [60,
(2.2.1)] and [65, Theorem 1.10] give (4.2) for 𝑁𝑣 ⊆ 𝑈0. Indeed, our chart is

𝜋 � 𝜋
𝜉
𝜌0 : 𝑈0 → 𝑉 ⊆ Q𝜉 (1)\{𝜌0 }

𝑣 .
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In this chart, by (3.4), the image of the local canonical section
∧
𝜌∈𝜉 (1)\{𝜌0 } d𝑧 𝜉𝜌 under

𝜔(𝜋) : 𝜋∗𝜔
A
𝜉 (1)\{𝜌0}
Q

→ 𝜔𝑋

is 𝜕Φ𝜉 /𝜕𝑧 𝜉𝜌0 · Res𝜛 𝜉 . This implies that the image of the local anticanonical section
∧
𝜌∈𝜉 (1)\{𝜌0 }

𝜕

𝜕𝑧
𝜉
𝜌

under

𝑡𝜔(𝜋)−1 : 𝜋∗𝜔−1
A
𝜉 (1)\{𝜌0}
Q

→ 𝜔−1
𝑋

is (𝜕Φ𝜉 /𝜕𝑧 𝜉𝜌0)−1 · 𝜏 𝜉 . Therefore, 𝜇𝑣 (𝑁𝑣 ) for 𝑁𝑣 ⊆ 𝑈0 as defined in [Peyre95, (2.2.1)] is the integral
over 𝜋(𝑁𝑣 ) of

𝜔𝑣 = ‖((𝜕Φ𝜉 /𝜕𝑧 𝜉𝜌0)
−1 · 𝜏 𝜉 ) (𝜋−1((𝑧 𝜉𝜌 )𝜌∈𝜉 (1)\{𝜌0 }))‖𝑣

∧
𝜌∈𝜉 (1)\{𝜌0 }

d𝑧 𝜉𝜌

= |𝜕Φ𝜉 /𝜕𝑧 𝜉𝜌0 (z
𝜉 ) |−1

𝑣 · ‖𝜏 𝜉 (z𝜉 )‖𝑣
∧

𝜌∈𝜉 (1)\{𝜌0 }
d𝑧 𝜉𝜌 .

Using (3.8) together with 𝑥𝐷 ( 𝜉 ) (z𝜉 ) = 1, we obtain (4.2).
By (3.4), we see that the right-hand side of (4.1) coincides with (4.2) for 𝑁𝑣 ⊆ 𝑈0. Since X is smooth,

𝑋 𝜉 (Q𝑣 ) can be covered with such𝑈0, hence 𝜇𝑣 (𝑁𝑣 ) is equal to the right-hand side for all 𝑁𝑣 ⊆ 𝑋 𝜉 (Q𝑣 ).
Since 𝜛𝜎/𝜛 𝜉 = 𝑥𝐷 ( 𝜉 ) /𝑥𝐷 (𝜎) by definition (3.1), we have 𝜏𝜎 Res𝜛 𝜉 = 𝜏𝜎/𝜏 𝜉 = 𝑥𝐷 (𝜎) /𝑥𝐷 ( 𝜉 ) by
(3.5), and hence the integrals in (4.1) are equal. �

4.2. Tamagawa number

Here, we use some standard notation as in [60, §2], [61, §4]. Let S be a sufficiently large finite set of
finite places of Q as in [61, Notations 4.5]. For any prime 𝑝 ∈ 𝑆, let

𝐿𝑝 (𝑠, Pic 𝑋) � det(1 − 𝑝−𝑠 Fr𝑝 | Pic(𝑋
F𝑝
) ⊗ Q)−1.

Since X is split, 𝐿𝑝 (𝑠, Pic 𝑋) = (1 − 𝑝−𝑠)− rk Pic𝑋 , hence

𝐿𝑆 (𝑠, Pic 𝑋) �
∏
𝑝∉𝑆

𝐿𝑝 (𝑠, Pic 𝑋) = 𝜁 (𝑠)rk Pic𝑋
∏
𝑝∈𝑆

(1 − 𝑝−𝑠)rk Pic𝑋 .

Therefore, lim𝑠→1 (𝑠 − 1)rk Pic𝑋 𝐿𝑆 (𝑠, Pic 𝑋) =
∏

𝑝∈𝑆 (1 − 𝑝−1)rk Pic𝑋 , and the convergence factors are

𝜆−1
𝑝 � 𝐿𝑝 (1, Pic 𝑋)−1 =

(
1 − 𝑝−1

) rk Pic𝑋

for 𝑝 ∉ 𝑆 and 𝜆−1
𝑝 � 1 for 𝑝 ∈ 𝑆. Hence, Peyre’s Tamagawa number [61, Définition 4.5] is

𝜏𝐻 (𝑋) = 𝜇∞(𝑋 (R))
∏
𝑝

(1 − 𝑝−1)rk Pic𝑋 𝜇𝑝 (𝑋 (Q𝑝)). (4.3)

The Euler product converges by [61, Remarque 4.6].
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4.3. Measures on the torsor

By [25, Proposition 8.2.3], we have a rational #Σ(1)-form

𝑠𝑌0 =
∧

𝜌∈Σ0 (1)

d𝑦𝜌
𝑦𝜌

on the toric principal universal torsor 𝑌0 ⊂ 𝑌1 = AΣ0 (1)
Q

as in Section 2.2, with coordinates 𝑦𝜌 for
𝜌 ∈ Σ0(1), using our bijection Σ0(1) → Σ(1). Now, we regard Φ and 𝑦𝐷 (defined as in (2.5) for U-
invariant divisors D on Y) as polynomials in 𝑦𝜌 and as functions on 𝑌0. As in [8, (5.12)] and using the
notation (2.6), (2.8), we define

𝜛𝜎
𝑌0

=
𝑦𝐷0

𝑦𝐷 (𝜎)Φ
𝑠𝑌0

for each 𝜎 ∈ Σmax, and

𝜛𝑌0 =
1
Φ

∧
𝜌∈Σ0 (1)

d𝑦𝜌 .

We have

𝜛𝜎
𝑌0

= 𝜛𝑌0/𝑦𝐷 (𝜎) (4.4)

on the open subset 𝑌 𝜎
0 � 𝜋−1(𝑈𝜎) of 𝑌0; see (2.10).

We have

𝜛𝜎
𝑌0
∈ Γ(𝑌 𝜎

0 , 𝜔𝑌0 (𝑋0))

with Poincaré residue Res𝜛𝜎
𝑌0
∈ Γ(𝑋𝜎

0 , 𝜔𝑋0) on 𝑋𝜎
0 = 𝜋−1 (𝑋𝜎) = 𝑋0 ∩ 𝑌 𝜎

0 . As in Section 4.1, we
obtain a v-adic measure 𝑚𝑣 on 𝑋0 (Q𝑣 ) defined by

𝑚𝑣 (𝑀𝑣 ) =
∫
𝑀𝑣

| Res𝜛 𝜉
𝑌0
|𝑣

max𝜎∈Σmax |𝑦𝐷 (𝜎) /𝑦𝐷 ( 𝜉 ) |𝑣

for a Borel subset 𝑀𝑣 of 𝑋 𝜉
0 (Q𝑣 ). Alternatively, we can write

𝑚𝑣 (𝑀𝑣 ) =
∫
𝑀𝑣

| Res𝜛𝑌0 |𝑣
max𝜎∈Σmax |𝑦𝐷 (𝜎) |𝑣

because 𝜛𝑌0 ∈ Γ(𝑌0, 𝜔𝑌0 (𝑋0)) has a residue form Res𝜛𝑌0 ∈ Γ(𝑋0, 𝜔𝑋0) that restricts to 𝑦𝐷 ( 𝜉 ) Res𝜛 𝜉
𝑌0

on 𝑋 𝜉
0 by (4.4). If 𝑀𝑣 is sufficiently small, this is explicitly

𝑚𝑣 (𝑀𝑣 ) =
∫
𝜋𝜌0 (𝑀𝑣 )

∧
𝜌∈Σ0 (1)\{𝜌0 } d𝑦𝜌

|𝜕Φ/𝜕𝑥𝜌0 (y) |𝑣 max𝜎∈Σmax |y𝐷 (𝜎) |𝑣
(4.5)

in the coordinates y = (𝑦𝜌)𝜌∈Σ0 (1) , where 𝜋𝜌0 is the projection to all coordinates 𝑦𝜌 with 𝜌 ≠ 𝜌0 and
where 𝑦𝜌0 is expressed in terms of these coordinates using the implicit function theorem.

Lemma 4.2. Let 𝐷𝑌0
0 = 𝜋∗𝐷0 be the sum of the prime divisors defined by 𝑦𝜌 = 0 for 𝜌 ∈ Σ0(1). Then

there is a unique nowhere vanishing global section 𝑠𝑌0/𝑌 ∈ Γ(𝑌0, 𝜔𝑌0/𝑌 ) such that 𝑠𝑌0 = 𝑠𝑌0/𝑌 ⊗ 𝜋∗𝑠𝑌
via the natural isomorphism 𝜔𝑌0 (𝐷

𝑌0
0 ) = 𝜔𝑌0/𝑌 ⊗ 𝜋∗𝜔𝑌 (𝐷0).
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Let 𝑠𝑋0/𝑋 be the image of 𝜄∗0𝑠𝑌0/𝑌 under the isomorphism Γ(𝑋0, 𝜄
∗
0𝜔𝑌0/𝑌 ) → Γ(𝑋0, 𝜔𝑋0/𝑋 ), and 𝑠𝜎

𝑋0/𝑋
be the restriction of 𝑠𝑋0/𝑋 to 𝑋𝜎

0 . Then Res𝜛𝜎
𝑌0

= 𝑠𝜎
𝑋0/𝑋 ⊗ 𝜋

∗ Res𝜛𝜎 under the canonical isomorphism
𝜔𝑋0 = 𝜔𝑋0/𝑋 ⊗ 𝜋∗𝜔𝑋 .

Proof. See [8, Lemma 16]. �

Lemma 4.3. For any prime p, we have 𝑚𝑝 (𝑋0 (Z𝑝)) = (1 − 𝑝−1)rk Pic𝑋 𝜇𝑝 (𝑋 (Q𝑝)).

Proof. Our proof follows [8, Lemma 18]. By [65, pp. 126–127], the map 𝜋 : 𝑋0 → 𝑋 induces an v-adic
analytic torsor 𝜋𝑣 : 𝑋0 (Q𝑣 ) → 𝑋 (Q𝑣 ) under 𝑇 (Q𝑣 ). By [65, Theorem 1.22] and the previous lemma,
the relative volume form 𝑠𝑋0/𝑋 defines v-adic measures on the fibers of 𝜋𝑣 over 𝑋 (Q𝑣 ). Integrating
along these fibers gives a linear functional Λ𝑣 : 𝐶𝑐 (𝑋0(Q𝑣 )) → 𝐶𝑐 (𝑋 (Q𝑣 )).

Let 𝜒𝑝 : 𝑋0 (Q𝑝) → {0, 1} be the characteristic function of 𝑋0 (Z𝑝) ⊂ 𝑋0(Q𝑝) = 𝑋0 (Q𝑝). Since
𝜒𝑝 ∈ 𝐶𝑐 (𝑋0 (Q𝑝)), we have 𝑚𝑝 (𝑋0 (Z𝑝)) =

∫
𝑋 (Q𝑝)

Λ𝑝 (𝜒𝑝)𝜇𝑝 .
We claim that (Λ𝑝 (𝜒𝑝)) (𝑃) = (1 − 𝑝−1)rk Pic𝑋 for every 𝑃 ∈ 𝑋 (Q𝑝) = 𝑋 (Z𝑝). Indeed, we have

𝑠𝑌0
= 𝑠𝑌0/𝑌 ⊗ 𝜋

∗𝑠𝑌 , where 𝑠𝑌0/𝑌 is the extension of 𝑠𝑌0/𝑌 to a 𝑇-equivariant generator of 𝜔𝑌0/𝑌 .
Furthermore, 𝑠𝑋0/𝑋 extends to a 𝑇-equivariant generator 𝑠𝑋0/𝑋 of 𝜔𝑋0/𝑋 . For a point 𝑃 ∈ 𝑋 (Z𝑝), the
torsor 𝑋0 → 𝑋 can be pulled back to (𝑋0)𝑃 → 𝑃, and hence 𝑠𝑋0/𝑋 pulls back to a𝑇Z𝑝 -equivariant global
section 𝑠 (𝑋0)𝑃 on 𝜔 (𝑋0)𝑃/Z𝑝 . But the torsor over P is trivial, and 𝑇 � G𝑟m with 𝑟 = rk Pic 𝑋 , hence there
are affine coordinates (𝑡1, . . . , 𝑡𝑟 ) for the affine Z𝑝-scheme (𝑋0)𝑃 with 𝑠 (𝑋0)𝑃 = d𝑡1/𝑡1 ∧ · · · ∧ d𝑡𝑟/𝑡𝑟 .
Therefore,

(Λ𝑝 (𝜒𝑝)) (𝑃) =
∫
(𝑋0)𝑃 (Z𝑝)

|𝑠 (𝑋0)𝑃 |𝑝 =
( ∫
Z×𝑝

d𝑡
𝑡

)𝑟
= (1 − 𝑝−1)𝑟 . �

4.4. Comparison to the number of points modulo 𝑝ℓ

In this section, we describe 𝜇𝑝 (𝑋 (Q𝑝)) in terms of congruences. In the special case 𝑌 = P𝑛
Q

, this was
worked out in [62, Lemma 3.2].

Let p be a prime. For ℓ ∈ Z>0, using notation (2.16), we have

𝑋0 (Z/𝑝ℓZ) = {x ∈ (Z/𝑝ℓZ)Σ (1) : Φ(x) = 0 ∈ Z/𝑝ℓZ, 𝑝 � gcd{𝑥𝜌 : 𝜌 ∈ 𝑆 𝑗 } for all 𝑗 = 1, . . . , 𝑟}

as in Proposition 2.4 and define

𝑐𝑝 � lim
ℓ→∞

#𝑋0 (Z/𝑝ℓZ)
(𝑝ℓ )#Σ (1)−1 and 𝑐fin �

∏
𝑝

𝑐𝑝 . (4.6)

We will see in Proposition 4.5 that the sequence defining 𝑐𝑝 becomes stationary; in particular, the limit
ℓ → 4∞ exists. The convergence of 𝑐fin will follow from Proposition 4.6; see (4.3). For x ∈ 𝑋0 (Z/𝑝ℓZ),
let

𝑋0 (Z𝑝)x � {y ∈ 𝑋0(Z𝑝) | y ≡ x mod 𝑝ℓ }.

Lemma 4.4. There is an ℓ1 ∈ Z>0 such that the following holds for all ℓ ≥ ℓ1: for any x ∈ 𝑋0 (Z/𝑝ℓZ),
there is a nonnegative integer 𝑐x < ℓ1 and an 𝜌x ∈ Σ(1) such that for all y ∈ 𝑋0(Z𝑝)x one has

inf
𝜌∈Σ (1)

{𝑣𝑝 (𝜕Φ/𝜕𝑥𝜌 (y))} = 𝑣𝑝 (𝜕Φ/𝜕𝑥𝜌x (y)) = 𝑐x.
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Proof. Since X is smooth, 𝑋0 is also smooth. Hence, for any y ∈ 𝑋0 (Q𝑝), we have 𝜕Φ/𝜕𝑥𝜌 (y) ≠ 0 for
some 𝜌 ∈ Σ(1). In particular, for any y ∈ 𝑋0 (Z𝑝), the valuation 𝑣𝑝 (𝜕Φ/𝜕𝑥𝜌 (y)) is finite for some 𝜌.
Hence, 𝐼𝑝 (y) � inf𝜌∈Σ (1) {𝑣𝑝 (𝜕Φ/𝜕𝑥𝜌 (y))} is finite.

There is an ℓ1 such that 𝐼𝑝 (y) < ℓ1 for all y ∈ 𝑋0 (Z𝑝). To see this, assume the contrary. Then there
is a sequence y1, y2, . . . ∈ 𝑋0 (Z𝑝) with 𝐼𝑝 (y 𝑗 ) ≥ 𝑗 for all j. The description of 𝑋0 (Z𝑝) in Proposition
2.4 shows that this sequence has an accumulation point y0 ∈ 𝑋0 (Z𝑝): Infinitely many y𝑖 have the same
first p-adic digits, infinitely many of these have the same second p-adic digits and so on; we obtain y0 by
using these p-adic digits; Φ(y0) = 0 since Φ is continuous, and y0 satisfies the coprimality conditions
since these depend only on the first p-adic digits. Passing to a subsequence, we may assume that y0 is
the limit of the sequence (y 𝑗 ) 𝑗 . Then 𝜕Φ/𝜕𝑥𝜌 (y0) = lim 𝑗→∞ 𝜕Φ/𝜕𝑥𝜌 (y 𝑗 ) = 0 for all 𝜌 ∈ Σ(1). This
contradicts the smoothness of X over Q𝑝 .

Let ℓ ≥ ℓ1 and x ∈ 𝑋0 (Z/𝑝ℓZ). For any y ∈ 𝑋0 (Z𝑝)x, the first ℓ digits of 𝜕Φ/𝜕𝑥𝜌 (y) depend only
on x, and since 𝐼𝑝 (y) < ℓ1 ≤ ℓ, at least one of these digits is nonzero for some 𝜌 ∈ Σ(1). We choose 𝑐x
and 𝜌x such that digit number 𝑐x (i. e., the coefficient of 𝑝𝑐x in the p-adic expansion) of 𝜕Φ/𝜕𝑥𝜌x (y) is
nonzero, while all lower digits of 𝜕Φ/𝜕𝑥𝜌 (y) for all 𝜌 ∈ Σ(1) are zero. �

Proposition 4.5. For every prime p, there is an ℓ0 ∈ Z>0 such that for all ℓ ≥ ℓ0 we have

𝑚𝑝 (𝑋0 (Z𝑝)) =
#𝑋0 (Z/𝑝ℓZ)
(𝑝ℓ )dim𝑋0

.

Proof. Let ℓ1 be as in Lemma 4.4. For x ∈ 𝑋0(Z/𝑝ℓ1Z) and ℓ ≥ ℓ1, let

𝑋0 (Z/𝑝ℓZ)x � {y ∈ (Z/𝑝ℓZ)Σ (1) | Φ(y) = 0 ∈ Z/𝑝ℓZ, y ≡ x mod 𝑝ℓ1 }.

We will see that

𝑚𝑝 (𝑋0(Z𝑝)x) =
#𝑋0 (Z/𝑝ℓZ)x
(𝑝ℓ)#Σ (1)−1 (4.7)

for all ℓ ≥ ℓ1 + 𝑐x with 𝑐x < ℓ1 as in Lemma 4.4. Since 𝑋0 (Z𝑝) is the disjoint union of the sets 𝑋0 (Z𝑝)x
and 𝑋0(Z/𝑝ℓZ) is the disjoint union of the sets 𝑋0 (Z/𝑝ℓZ)x for x ∈ 𝑋0 (Z/𝑝ℓ1Z), our result follows for
all ℓ ≥ ℓ0 � 2ℓ1 − 1.

For the proof of (4.7), we fix x ∈ 𝑋0(Z/𝑝ℓ1Z) and let 𝑐x, 𝜌x be as in Lemma 4.4. We claim that
Φ(y) mod 𝑝ℓ1+𝑐x is the same for all y ∈ ZΣ (1)𝑝 with y ≡ x mod 𝑝ℓ1 ; we write Φ∗(x) for this value in
Z/𝑝ℓ1+𝑐xZ. Indeed, for y, y′ ∈ ZΣ (1)𝑝 , we have

Φ(y′) = Φ(y) +
∑

𝜌∈Σ (1)
(𝑦′𝜌 − 𝑦𝜌) · 𝜕Φ/𝜕𝑥𝜌 (y) +

∑
𝜌′,𝜌′′ ∈Σ (1)

Ψ𝜌′,𝜌′′ (y, y′) (𝑦′𝜌′ − 𝑦𝜌′ ) (𝑦′𝜌′′ − 𝑦𝜌′′ )

for certain polynomials Ψ𝜌′,𝜌′′ ∈ Z𝑝 [𝑋𝜌, 𝑋 ′𝜌 : 𝜌 ∈ Σ(1)] by Taylor expansion. If y′ ≡ y mod 𝑝ℓ1 , we
conclude Φ(y′) ≡ Φ(y) mod 𝑝ℓ1+𝑐x .

If Φ∗(x) ≠ 0 ∈ Z/𝑝ℓ1+𝑐xZ, then there is no y ∈ ZΣ (1)𝑝 with y ≡ x mod 𝑝ℓ1 and Φ(y) = 0, hence the
set 𝑋0 (Z𝑝)x is empty, and the same holds for 𝑋0 (Z/𝑝ℓZ)x for all ℓ ≥ ℓ1 + 𝑐x for similar reasons.

Now, assume Φ∗(x) = 0 ∈ Z/𝑝ℓ1+𝑐xZ. By Hensel’s lemma, the map 𝜋𝜌x that drops the 𝜌x-coordinate
defines an isomorphism from the integration domain 𝑋0 (Z𝑝)x to the set

{(𝑦𝜌)𝜌∈Σ (1)\{𝜌x } ∈ Z
Σ (1)\{𝜌x }
𝑝 | 𝑦𝜌 ≡ 𝑥𝜌 mod 𝑝ℓ1 for all 𝜌 ∈ Σ(1) \ {𝜌x}}

= {(𝑥𝜌 + 𝑧𝜌)𝜌∈Σ (1)\{𝜌x } | 𝑧𝜌 ∈ 𝑝ℓ1Z𝑝} � (𝑝ℓ1Z𝑝)Σ (1)\{𝜌x }.
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Therefore, by (4.5) and the first statement in Corollary 3.7,

𝑚𝑝 (𝑋0 (Z𝑝)x) =
∫
𝜋𝜌x (𝑋0 (Z𝑝)x)

∧
𝜌∈Σ (1)\{𝜌x } d𝑦𝜌
|𝜕Φ/𝜕𝑥𝜌x (y) |𝑝

,

where 𝑦𝜌x is expressed in terms of the other coordinates using 𝜋−1
𝜌x . We have |𝜕Φ/𝜕𝑥𝜌x (y) |𝑝 = 𝑝−𝑐x on

the integration domain (Lemma 4.4). Thus,

𝑚𝑝 (𝑋0 (Z𝑝)x) =
∫
(𝑝ℓ1Z𝑝)Σ (1)\{𝜌x}

∧
𝜌∈Σ (1)\{𝜌x } d𝑧𝜌

𝑝−𝑐x
= 𝑝𝑐x−ℓ1 (#Σ (1)−1) .

On the other hand, by the discussion above, Φ∗(x) = 0 ∈ Z/𝑝ℓ1+𝑐xZ means Φ(y) = 0 ∈ Z/𝑝ℓ1+𝑐xZ for
all y ≡ x mod 𝑝ℓ1 . Therefore,

#𝑋0 (Z/𝑝ℓ1+𝑐xZ)x
(𝑝ℓ1+𝑐x)#Σ (1)−1 =

𝑝𝑐x#Σ (1)

(𝑝ℓ1+𝑐x)#Σ (1)−1 = 𝑝𝑐x−ℓ1 (#Σ (1)−1) .

Using Hensel’s lemma as before, we see that #𝑋0 (Z/𝑝ℓZ)x/(𝑝ℓ)#Σ (1)−1 has the same value for all
ℓ ≥ ℓ1 + 𝑐x. This completes the proof of (4.7). �

Proposition 4.6. We have

(1 − 𝑝−1)rk Pic𝑋 𝜇𝑝 (𝑋 (Q𝑝)) = 𝑐𝑝 .

Proof. We combine Lemma 4.3 and Proposition 4.5 with (4.6). �

4.5. The real density

In this section, we compute the real density and Peyre’s 𝛼-constant in terms of quantities that come up
naturally in the analytic method in Sections 8 and 9. For the case 𝑌 = P𝑛

Q
, see [60, §5.4].

For any 𝜎 ∈ Σmax, we can write

−𝐾𝑋 =
∑

𝜌∉𝜎 (1)
𝛼𝜎𝜌 deg(𝑥𝜌)

with 𝛼𝜎𝜌 ∈ Z by Lemma 2.3. In this section, we assume for convenience:

Every variable 𝑥𝜌 appears in at most one monomial of Φ.
There are 𝜎 ∈ Σmax, 𝜌0 ∈ 𝜎(1) and 𝜌1 ∈ Σ(1) \ 𝜎(1) such that 𝛼𝜎𝜌1 ≠ 0,
the variable 𝑥𝜌0 appears with exponent 1 in Φ and
no 𝑥𝜌 with 𝜌 ∈ 𝜎(1) ∪ {𝜌1} \ {𝜌0} appears in the same monomial of Φ as 𝑥𝜌0 .

(4.8)

This assumption will be satisfied and easy to check in all our applications. It implies assumption (9.2)
below and hence will allow us to compare Peyre’s real density with 𝑐∞ as in Section 9.

We fix 𝜎, 𝜌0, 𝜌1 as in (4.8). Let 𝜎(1)′ � 𝜎(1) ∪ {𝜌1}. When we write 𝜌 ∉ 𝜎(1)′, we mean
𝜌 ∈ Σ(1) \ 𝜎(1)′. Because of 𝛼𝜎𝜌1 ≠ 0 and (2.7), {deg(𝑥𝜌) : 𝜌 ∉ 𝜎(1)′} ∪ {𝐾𝑋 } is an R-basis of
(Pic 𝑋)R. Hence, we can define the real numbers 𝑏𝜌,𝜌′ and 𝑏𝜌′ to satisfy

deg(𝑥𝜌′ ) = −𝑏𝜌′𝐾𝑋 −
∑

𝜌∉𝜎 (1)′
𝑏𝜌,𝜌′ deg(𝑥𝜌)

for 𝜌′ ∈ 𝜎(1)′.
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We consider the height matrix 𝒜1 = (𝛼𝜎𝜌 )(𝜌,𝜎) ∈Σ (1)×Σmax ∈ RΣ (1)×Σmax = R𝐽×𝑁 as in (3.10). Let 𝑍𝜌
for 𝜌 ∈ Σ(1) be the rows of this matrix. The following shows that our definition of 𝑏𝜌,𝜌′ and 𝑏𝜌′ is
consistent with definitions (8.23) and (8.24) that will be needed in Section 8.

Lemma 4.7. We have

𝑍𝜌 =
∑

𝜌′ ∈𝜎 (1)′
𝑏𝜌,𝜌′𝑍𝜌′ and (1, . . . , 1) =

∑
𝜌′ ∈𝜎 (1)′

𝑏𝜌′𝑍𝜌′

for all 𝜌 ∉ 𝜎(1)′. In particular, with

𝑅 = 2 + dim 𝑋 = 𝐽 − rk Pic 𝑋 + 1, (4.9)

the R rows {𝑍𝜌′ : 𝜌′ ∈ 𝜎(1)′} form a maximal linearly independent subset.

Proof. As in (3.10), let 𝒜3 = (1, . . . , 1) ∈ R1×Σmax = R1×𝑁 . Let {𝑒𝜌 : 𝜌 ∈ Σ(1)} ∪ {𝑒0} be the standard
basis ofRΣ (1) ×R. We define deg(𝑒𝜌) = deg(𝑥𝜌) for 𝜌 ∈ Σ(1) and deg(𝑒0) = 𝐾𝑋 . Consider the sequence
of linear maps

RΣmax

(
𝒜1
𝒜3

)
−−−−−→ RΣ (1) × R

deg
−−→ (Pic 𝑋)R −−→ 0.

The second map is surjective, and the image of the first is contained in the kernel of the second. Since
we have rk𝒜1 = #Σ(1) + 1 − rk Pic 𝑋 by Lemma 3.10, this sequence is exact. It follows that the dual
sequence

RΣmax

(
𝒜�

1 𝒜�
3
)

←−−−−−−−−−− RΣ (1) × R
deg∨
←−−− (Pic 𝑋)∨R ←−− 0

is exact as well. Let {𝑑∨𝜌 : 𝜌 ∉ 𝜎(1)′} ∪ {𝐾∨𝑋 } be the R-basis of (Pic 𝑋)∨
R

dual to the R-basis of (Pic 𝑋)R
given above. We have

deg∨(𝑑∨𝜌 ) = 𝑒𝜌 −
∑

𝜌′ ∈𝜎 (1)′
𝑏𝜌,𝜌′𝑒𝜌′ and deg∨(𝐾∨𝑋 ) = 𝑒0 −

∑
𝜌′ ∈𝜎 (1)′

𝑏𝜌′𝑒𝜌′

for all 𝜌 ∉ 𝜎(1)′. Since these elements lie in the kernel of the leftmost map in the dual exact sequence,
this gives the required relations between the rows of the matrix 𝒜1 and the row 𝒜3. �

We compare the factor 𝛼(𝑋) of Peyre’s constant as in [60, Définition 2.4] to

𝑐∗ � vol
{
r ∈ [0,∞]Σ (1)\𝜎 (1)′ : 𝑏𝜌′ −

∑
𝜌∉𝜎 (1)′

𝑟𝜌𝑏𝜌,𝜌′ ≥ 0 for all 𝜌′ ∈ 𝜎(1)′
}
, (4.10)

which will appear in (8.34).

Lemma 4.8. We have

𝛼(𝑋) = 1
|𝛼𝜎𝜌1 |

𝑐∗.

Proof. Let volZ be the volume on (Pic 𝑋)R defined by the lattice Pic 𝑋 , and let volR be the volume on
(Pic 𝑋)R defined by the basis {𝐾𝑋 }∪{deg(𝑥𝜌) : 𝜌 ∉ 𝜎(1)′}. Since the determinant of the transformation
matrix is −𝛼𝜎𝜌1 , we have volZ = |𝛼𝜎𝜌1 | volR. For the corresponding dual volumes on (Pic 𝑋)∨

R
, we have

vol∨Z = |𝛼𝜎𝜌1 |
−1 vol∨R.
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Peyre considers the unique (rk Pic 𝑋 − 1)-form volP on (Pic 𝑋)∨
R

such that volP ∧𝐾𝑋 = vol∨Z . We also
consider the form vol𝑉 =

∧
𝜌∉𝜎 (1)′ deg(𝑥𝜌). Note that we have vol𝑉 ∧𝐾𝑋 = vol∨R. It follows that we

have volP = |𝛼𝜎𝜌1 |
−1 vol𝑉 . These forms can be restricted to volumes on any affine subspace parallel to

the subspace 𝑉 = {𝜙 ∈ (Pic 𝑋)∨
R

: 〈𝜙, 𝐾𝑋 〉 = 0}. Hence,

𝛼(𝑋) = vol𝑃 {𝑟 ∈ (Eff 𝑋)∨ : 〈𝑟, 𝐾𝑋 〉 = −1}
= |𝛼𝜎𝜌1 |

−1 vol𝑉 {𝑟 ∈ (Pic 𝑋)∨R : 〈𝑟, 𝐾𝑋 〉 = −1, 〈𝑟, deg 𝑥𝜌〉 ≥ 0 for all 𝜌 ∈ Σ(1)}

= |𝛼𝜎𝜌1 |
−1 vol𝑉

⎧⎪⎪⎨⎪⎪⎩𝑟0𝐾
∨
𝑋 +

∑
𝜌∉𝜎 (1)′

𝑟𝜌𝑑
∨
𝜌 :
𝑟0 = −1, 𝑟𝜌 ≥ 0 for all 𝜌 ∉ 𝜎(1)′,
𝑏𝜌′ −

∑
𝜌∉𝜎 (1)′ 𝑟𝜌𝑏𝜌,𝜌′ ≥ 0 for all 𝜌′ ∈ 𝜎(1)′

⎫⎪⎪⎬⎪⎪⎭,
and the claim follows. �

Next, we analyze Peyre’s real density 𝜇∞(𝑋 (R)) as given in Proposition 4.1. By our assumption
(4.8), the equation Φ = 0 can be solved for 𝑥𝜌0 when all 𝑥𝜌 with 𝜌 ∉ 𝜎(1)′ are nonzero; here, the
implicit function 𝜙 is a rational function in {𝑥𝜌 : 𝜌 ∈ Σ(1) \ {𝜌0}} whose total Pic 𝑋-degree is deg(𝑥𝜌0).
Whenever 𝑆 ⊆ 𝜎(1)′ \ {𝜌0} and u = (𝑢𝜌) ∈ R𝑆 , we write 𝜙(u, 1) for 𝜙((𝑥𝜌)𝜌∈Σ (1)\{𝜌0 }) with 𝑥𝜌 = 𝑢𝜌
for 𝜌 ∈ 𝑆 and 𝑥𝜌 = 1 otherwise; this is a polynomial expression in u. Using notation (2.8), we write

𝐻∞(x) � max
𝜎′ ∈Σmax

|x𝐷 (𝜎′) |

for any x ∈ RΣ (1) .
For the computation of 𝜇∞(𝑋 (R)), we work with (4.2) and the chart (2.14) from the subset of 𝑋𝜎 (R)

to R𝜎 (1)\{𝜌0 } that drops the 𝜌0-coordinate. Its inverse is induced by the map

𝑓 : R𝜎 (1)\{𝜌0 } → RΣ (1) , z = (𝑧𝜌) ↦→ (𝑥𝜌) with 𝑥𝜌 �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜙(z, 1), 𝜌 = 𝜌0,

𝑧𝜌, 𝜌 ∈ 𝜎(1) \ {𝜌0},
1, 𝜌 ∉ 𝜎(1)

if we interpret the right-hand side in Cox coordinates. Since 𝑓 (R𝜎 (1)\{𝜌0 }) and 𝑋 (R) differ by a set of
measure zero, Peyre’s real density can be expressed as

𝜔∞ � 𝜇∞(𝑋 (R)) =
∫

z∈R𝜎 (1)\{𝜌0}

dz
|𝜕Φ/𝜕𝑥𝜌0 ( 𝑓 (z)) | · 𝐻∞( 𝑓 (z))

. (4.11)

Using the map

𝑔 : R𝜎 (1)
′\{𝜌0 } → RΣ (1) , t = (𝑡𝜌) ↦→ (𝑥𝜌) with 𝑥𝜌 �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜙(t, 1), 𝜌 = 𝜌0,

𝑡𝜌, 𝜌 ∈ 𝜎(1)′ \ {𝜌0},
1, 𝜌 ∉ 𝜎(1)′,

we define

𝑐∞ � 2#Σ (1)−#𝜎 (1)−1
∫

t∈R𝜎 (1)′\{𝜌0} , 𝐻∞ (𝑔 (t)) ≤1

dt
|𝜕Φ/𝜕𝑥𝜌0 (𝑔(t)) |

, (4.12)

which will reappear in (9.3) and (9.7).
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To compare 𝜔∞ and 𝑐∞, we use the following substitution.

Lemma 4.9. Let Ψ be a Pic 𝑋-homogeneous rational function in {𝑥𝜌 : 𝜌 ∈ Σ(1)} of degree∑
𝜌∉𝜎 (1)

𝛼𝜎Ψ,𝜌 deg(𝑥𝜌).

Let 𝛼𝜎𝜌′,𝜌 ∈ Z for 𝜌′ ∈ Σ(1) and 𝜌 ∉ 𝜎(1) be as in (2.9). Then the substitution 𝑧𝜌′ = 𝑡
−𝛼𝜎
𝜌′,𝜌1

𝜌1 𝑡𝜌′ for

𝜌′ ∈ 𝜎(1) \ {𝜌0} gives Ψ( 𝑓 (z)) = 𝑡
−𝛼𝜎Ψ,𝜌1
𝜌1 Ψ(𝑔(t)). In particular, 𝜙(z, 1) = 𝑡

−𝛼𝜎𝜌0 ,𝜌1
𝜌1 𝜙(t, 1).

If 𝑡𝜌1 appears in 𝜙(t, 1) with odd exponent, then there is another 𝑡𝜌 with odd exponent in the same
monomial or there is a 𝑡𝜌 with odd exponent in each of the other monomials of 𝜙(t, 1).

Proof. Consider the case Ψ = 𝑥𝜌 first. For 𝜌 ∈ 𝜎(1) \ {𝜌0}, the claim holds by definition of the

substitution. For 𝜌 = 𝜌1, we have Ψ( 𝑓 (z)) = 1 = 𝑡−1
𝜌1 · 𝑡𝜌1 = 𝑡

−𝛼𝜎Ψ,𝜌1
𝜌1 Ψ(𝑔(t)). For 𝜌 ∉ 𝜎(1)′, we have

Ψ( 𝑓 (z)) = 1 · 1 = 𝑡
−𝛼𝜎Ψ,𝜌1
𝜌1 Ψ(𝑔(t)). Therefore, the claim holds for all monomials and hence also for

all homogeneous polynomials and all homogeneous rational functions in {𝑥𝜌 : 𝜌 ∈ Σ(1) \ {𝜌0}}. In
particular, in the case Ψ = 𝑥𝜌0 , since 𝜙 is such a rational function of degree deg(𝑥𝜌0), the substitution

gives Ψ( 𝑓 (z)) = 𝜙(z, 1) = 𝑡
−𝛼𝜎𝜌0 ,𝜌1
𝜌1 𝜙(t, 1) = 𝑡

−𝛼𝜎Ψ,𝜌1
𝜌1 Ψ(𝑔(t)). Now, the claim follows for all monomials,

homogeneous polynomials and finally all homogeneous rational functions in {𝑥𝜌 : 𝜌 ∈ Σ(1)}.
Let 𝜓 be the numerator of 𝜙. Because of (4.8), 𝑡𝜌1 appears in at most one monomial of 𝜓(t, 1); we

assume that it appears in the first monomial with odd exponent. Therefore, either the exponent of 𝑡𝜌1

in the first monomial of 𝑡
−𝛼𝜎𝜓,𝜌1
𝜌1 𝜓(t, 1) is odd, or the exponents of 𝑡𝜌1 in all other monomials of this

expression are odd. But since our substitution gives 𝜓(z, 1) = 𝑡
−𝛼𝜎𝜓,𝜌1
𝜌1 𝜓(t, 1), the exponent of 𝑡𝜌1 in a

certain monomial of 𝑡
−𝛼𝜎𝜓,𝜌1
𝜌1 𝜓(t, 1) can only be odd if there is a 𝑧𝜌 with odd exponent in the corresponding

monomial of 𝜓(z, 1), and then the exponent of 𝑡𝜌 in this monomial of 𝜓(t, 1) is also odd. �

Proposition 4.10. We have

𝜇∞(𝑋 (R)) =
|𝛼𝜎𝜌1 |

2rk Pic𝑋 𝑐∞.

Proof. Our starting point is (4.11). We use the identity (for positive real s)

1
𝑠
=
∫
𝑧𝜌1>0, 𝑠𝑧𝜌1 ≤1

d𝑧𝜌1

to deduce

𝜔∞ =
∫
(z,𝑧𝜌1 ) ∈R

𝜎 (1)\{𝜌0}×R>0 , 𝐻∞ ( 𝑓 (z)) ·𝑧𝜌1 ≤1

dz d𝑧𝜌1

|𝜕Φ/𝜕𝑥𝜌0 ( 𝑓 (z)) |
.

We use the transformation 𝑧𝜌1 = 𝑡
𝛼𝜎𝜌1
𝜌1 (with positive 𝑡𝜌1 ) and the transformations from Lemma 4.9.

The latter give 𝐻∞( 𝑓 (z)) = 𝑡
−𝛼𝜎𝜌1
𝜌1 𝐻∞(𝑔(t)) since all monomials appearing in the definition of the

anticanonical height function𝐻∞ have degree−𝐾𝑋 ; therefore,𝐻∞( 𝑓 (z)) ·𝑧𝜌1 = 𝐻∞(𝑔(t)). Furthermore,

|𝜕Φ/𝜕𝑥𝜌0 ( 𝑓 (z)) | = |𝑡
−𝛼𝜎
𝜕Φ/𝜕𝑥𝜌0 ,𝜌1

𝜌1 𝜕Φ/𝜕𝑥𝜌0 (𝑔(t)) | (even without using the observation that these are the
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same constants by (4.8)). We obtain d𝑧𝜌1 = |𝛼𝜎𝜌1 𝑡
𝛼𝜎𝜌1−1
𝜌1 | d𝑡𝜌1 and

dz = |𝑡
−
∑
𝜌′∈𝜎 (1)\{𝜌0} 𝛼

𝜎
𝜌′,𝜌1

𝜌1 |
∧

𝜌′ ∈𝜎 (1)\{𝜌0 }
d𝑡𝜌′ .

The integration domain is unchanged.
We have −𝐾𝑋 =

∑
𝜌′ ∈Σ (1) deg(𝑥𝜌′ ) − deg(Φ) by [2, Proposition 3.3.3.2], and deg(𝜕Φ/𝜕𝑥𝜌0) =

deg(Φ) − deg(𝑥𝜌0). Therefore, 𝛼𝜎𝜌1 =
∑
𝜌′ ∈Σ (1) 𝛼

𝜎
𝜌′,𝜌1

− 𝛼𝜎Φ,𝜌1
and 𝛼𝜎

𝜕Φ/𝜕𝑥𝜌0 ,𝜌1
= 𝛼𝜎Φ,𝜌1

− 𝛼𝜎𝜌0 ,𝜌1 . Since
𝛼𝜎𝜌′,𝜌 = 𝛿𝜌′=𝜌 for all 𝜌′, 𝜌 ∉ 𝜎(1), we conclude that

𝛼𝜎𝜌1 =
∑

𝜌′ ∈𝜎 (1)\{𝜌0 }
𝛼𝜎𝜌′,𝜌1

+ 1 − 𝛼𝜎𝜕Φ/𝜕𝑥𝜌0 ,𝜌1
.

This shows that the powers of 𝑡𝜌1 cancel out so that dz d𝑧𝜌1/|𝜕Φ/𝜕𝑥𝜌0 ( 𝑓 (z)) | = dt/|𝜕Φ/𝜕𝑥𝜌0 (𝑔(t)) |.
Therefore,

𝜔∞ = |𝛼𝜎𝜌1 |
∫

t∈R𝜎 (1)\{𝜌0}×R>0 , 𝐻∞ (𝑔 (t)) ≤1

dt
|𝜕Φ/𝜕𝑥𝜌0 (𝑔(t)) |

.

We claim that

𝜔−∞ � |𝛼𝜎𝜌1 |
∫

t∈R𝜎 (1)\{𝜌0}×R<0 , 𝐻∞ (𝑔 (t)) ≤1

dt
|𝜕Φ/𝜕𝑥𝜌0 (𝑔(t)) |

has the same value as 𝜔∞. Indeed, 𝜙(t, 1) (the 𝜌0-component of 𝑔(t)) is the only place where the sign of
𝑡𝜌1 might matter. Our claim is clearly true if 𝑡𝜌1 does not appear in 𝜙(t, 1) or if 𝑡𝜌1 has an even exponent in
𝜙(t, 1). If 𝑡𝜌1 appears in 𝜙(t, 1) with odd exponent, then the change of variables 𝑡 ′𝜌1 � −𝑡𝜌1 and 𝑡 ′𝜌 � −𝑡𝜌
for all 𝑡𝜌 appearing in the final statement of Lemma 4.9 in 𝜔−∞ shows that 𝜔−∞ = 𝜔∞. Therefore,

𝜇∞(𝑋 (R)) = 𝜔∞ =
1
2
(𝜔∞ + 𝜔−∞) =

|𝛼𝜎𝜌1 |
2

∫
t∈R𝜎 (1)\{𝜌0}×R≠0 , 𝐻∞ (𝑔 (t)) ≤1

dt
|𝜕Φ/𝜕𝑥𝜌0 (𝑔(t)) |

.

Since rk Pic 𝑋 = #Σ(1) − #𝜎(1) and replacing R𝜎 (1)\{𝜌0 } × R≠0 by R𝜎 (1)′\{𝜌0 } does not change the
integral, this completes the proof. �

4.6. Peyre’s constant in Cox coordinates

Proposition 4.11. Let X be a split almost Fano variety over Q with semiample 𝜔∨𝑋 that has a finitely
generated Cox ring ℛ(𝑋) with precisely one relation Φ with integral coefficients and satisfies the
assumptions (2.3) and (4.8). Then Peyre’s constant for X with respect to the anticanonical height H as
in (3.7) is

𝑐 =
1

2rk Pic𝑋 𝑐
∗𝑐∞𝑐fin,

using the notation (4.6), (4.10), (4.12).
Proof. According to [61, 5.1], Peyre’s constant for X is 𝑐 = 𝛼(𝑋)𝛽(𝑋)𝜏𝐻 (𝑋). Here, the cohomological
constant is

𝛽(𝑋) = #𝐻1 (Gal(Q/Q), Pic(𝑋 ⊗Q Q)) = 1

since X is split. Recall (4.3) for 𝜏𝐻 (𝑋). By Lemma 4.8 and Proposition 4.10, 𝛼(𝑋)𝜇∞(𝑋 (R)) = 𝑐∗𝑐∞.
Furthermore, we use Proposition 4.6 for the p-adic densities. �
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Part II The asymptotic formula

This part, culminating in Theorem 8.4, is devoted to a proof of the asymptotic formula (1.5) for the
counting problem described by (1.2), (1.3) and (1.4), subject to certain conditions to be specified in
due course. The nature of our results will be similar to Proposition 3.8, except that we specialize the
general polynomial Φ to a polynomial of the shape (1.2). In other words, every variable appears in at
most one monomial, and for better readability in comparison with (3.9), we relabel the variables and
their exponents as in (1.2). In the notation of (1.2), we have

𝐽 = 𝐽0 + 𝐽1 + · · · + 𝐽𝑘

variables, where 𝐽0 is the number of variables that do not occur in any of the monomials. As mentioned
in the introduction, the particular shape (1.2) is not an atypical situation; it appears sufficiently often in
practice that it deserves special attention. In Section 9, we will also show that if the conditions (1.2)–
(1.4) come from an algebraic variety satisfying the hypotheses of Proposition 4.11, then the leading
constant in (1.5) agrees with Peyre’s prediction, as computed in Proposition 4.11.

Before we begin, we fix some notation for use in the remainder of the paper. Vector operations
are to be understood componentwise. In particular, just like the common addition of vectors, for
x = (𝑥1, . . . , 𝑥𝑛) ∈ C𝑛, y = (𝑦1, . . . , 𝑦𝑛) ∈ C𝑛, we write x · y = (𝑥1𝑦1, . . . , 𝑥𝑛𝑦𝑛) ∈ C𝑛. If x ∈ R𝑛>0,
y ∈ C𝑛, we write xy = 𝑥

𝑦1
1 · · · 𝑥𝑦𝑛𝑛 . We also use this notation when x ∈ R𝑛 and y ∈ N𝑛. We put

〈x〉 = 𝑥1𝑥2 · · · 𝑥𝑛. We write | · |1 for the usual 1-norm, and | · | denotes the maximum norm. For 𝑞 ∈ N,
we write 𝜇(𝑞) for the Möbius function of q, the Euler totient is denoted 𝜙(𝑞) and we write

∑ ∗

𝑎 mod 𝑞
for

a sum over reduced residue classes modulo q. The greatest common divisor of nonzero integers a, b
is denoted by (𝑎, 𝑏); confusion with elements of Z2 should not arise. The lowest common multiple is
[𝑎, 𝑏]. As usual, 𝑒(𝑥) = 𝑒2𝜋𝑖𝑥 for 𝑥 ∈ R. Finally, we apply the following convention concerning the
letter 𝜀: Whenever 𝜀 occurs in a statement, it is asserted that the statement is true for any positive real
number 𝜀. Note that this allows implicit constants in Landau or Vinogradov symbols to depend on 𝜀,
and that one may conclude from 𝐴1 
 𝐵𝜀 and 𝐴2 
 𝐵𝜀 that one has 𝐴1𝐴2 
 𝐵𝜀 , for example.

5. Diophantine analysis of the torsor

In this section and the next, we study the torsor equation (1.2) with its variables restricted to boxes. For the
number of its integral solutions, we seek an asymptotic expansion whose leading term features a product
of local densities. All estimates are required uniformly relative to the coefficients 𝑏1, . . . , 𝑏𝑘 ∈ Z \ {0}
that occur in (1.2). We assume 𝑘 ≥ 3 throughout.

The building blocks of the local densities are Gauß sums and their continuous analogues, and we
begin by defining the former. Let h = (ℎ1, . . . , ℎ𝑛) ∈ N𝑛 be a ‘chain of exponents’. In the following, all
implied constants may depend on h. Then, for 𝑎 ∈ Z, 𝑞 ∈ N let

𝐸 (𝑞, 𝑎; h) = 𝑞−𝑛
∑

1≤𝑥 𝑗 ≤𝑞
1≤ 𝑗≤𝑛

𝑒
( 𝑎𝑥ℎ1

1 𝑥
ℎ2
2 · · · 𝑥ℎ𝑛𝑛
𝑞

)
= 𝑞−𝑛

∑
1≤𝑥 𝑗 ≤𝑞
1≤ 𝑗≤𝑛

𝑒
( 𝑎xh

𝑞

)
. (5.1)

For a continuous counterpart, let Y ∈ [ 1
2 ,∞)

𝑛, put 𝒴 = {y ∈ R𝑛 : 1
2𝑌 𝑗 < |𝑦 𝑗 | ≤ 𝑌 𝑗 (1 ≤ 𝑗 ≤ 𝑛)} and

define

𝐼 (𝛽,Y; h) =
∫
𝒴

𝑒(𝛽𝑦ℎ1
1 𝑦

ℎ2
2 · · · 𝑦ℎ𝑛𝑛 ) dy. (5.2)

This exponential integral satisfies the simple bound

𝐼 (𝛽,Y; h) 
 〈Y〉(1 + Yh |𝛽 |)−1. (5.3)
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Indeed, if 𝑛 = 1, then integration by parts yields the bound𝑂 (𝑌1−ℎ |𝛽 |−1), which together with the trivial
bound 𝑂 (𝑌 ) confirms (5.3). If 𝑛 > 1, then one uses the obvious relation

𝐼 (𝛽,Y; h) =
∫

1
2𝑌1≤ |𝑦 | ≤𝑌1

𝐼 (𝛽𝑦ℎ1 , (𝑌2, . . . , 𝑌𝑛); (ℎ2, . . . , ℎ𝑛)) d𝑦

together with induction. With (5.3) in hand for 𝑛 − 1 in place of n, one infers (5.3) for n from

𝐼 (𝛽,Y; h) 
 𝑌2𝑌3 · · ·𝑌𝑛
∫

1
2𝑌1≤ |𝑦 | ≤𝑌1

(1 + 𝑌 ℎ2
2 · · ·𝑌 ℎ𝑛𝑛 |𝑦ℎ1 𝛽 |)−1 d𝑦.

We now describe the counting problem at the core of this section. For b ∈ (Z\{0})𝑘 and X = (𝑋𝑖 𝑗 ) ∈
[1,∞)𝐽 , let 𝒩b(X) denote the number of solutions x ∈ Z𝐽 to (1.2) satisfying 1

2𝑋𝑖 𝑗 ≤ |𝑥𝑖 𝑗 | ≤ 𝑋𝑖 𝑗 .
Associated with each summand in (1.2) are a chain of exponents h𝑖 = (ℎ𝑖1, . . . , ℎ𝑖𝐽𝑖 ) and boxing vectors
X𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝐽𝑖 ). In the interest of brevity, we now put

𝐸𝑖 (𝑞, 𝑎) = 𝐸 (𝑞, 𝑎; h𝑖), 𝐼𝑖 (𝛽,X) = 𝐼 (𝛽,X𝑖; h𝑖) (1 ≤ 𝑖 ≤ 𝑘). (5.4)

The singular integral for this counting problem is then defined by

ℐb(X) = 〈X0〉
∫ ∞

−∞
𝐼1(𝑏1𝛽,X)𝐼2(𝑏2𝛽,X) · · · 𝐼𝑘 (𝑏𝑘 𝛽,X) d𝛽, (5.5)

and the singular series is

ℰb =
∞∑
𝑞=1

∑ ∗

𝑎 mod 𝑞
𝐸1 (𝑞, 𝑎𝑏1)𝐸2(𝑞, 𝑎𝑏2) · · · 𝐸𝑘 (𝑞, 𝑎𝑏𝑘 ). (5.6)

By (5.3), the singular integral converges absolutely provided only that 𝑘 ≥ 2. Unfortunately, it is not
as easy to determine whether the singular series converges; this depends on the chains of exponents in
a subtle manner. However, we note that an argument paralleling that in the proof of [72, Lemma 2.11]
shows that the sum ∑ ∗

𝑎 mod 𝑞
𝐸1 (𝑞, 𝑎𝑏1)𝐸2(𝑞, 𝑎𝑏2) · · · 𝐸𝑘 (𝑞, 𝑎𝑏𝑘 ) (5.7)

is a multiplicative function of q. Hence, based on the hypothesis that the singular series is absolutely
convergent, one has the alternative representation

ℰb =
∏
𝑝

∞∑
𝑙=0

∑
𝑎 mod 𝑝𝑙

∗𝐸1 (𝑝𝑙 , 𝑎𝑏1)𝐸2(𝑝𝑙 , 𝑎𝑏2) · · · 𝐸𝑘 (𝑝𝑙 , 𝑎𝑏𝑘 ).

By orthogonality of additive characters, the partial sums 0 ≤ 𝑙 ≤ 𝐿 count congruences modulo 𝑝𝐿 , and
(still under the assumption of absolute convergence) we can therefore express the singular series as a
product of ‘local densities’:

ℰb =
∏
𝑝

lim
𝐿→∞

1
𝑝𝐿 (𝐽1+···+𝐽𝑘−1) #

{
(x1, . . . , x𝑘 ) mod 𝑝𝐿 : 𝑏1xh1

1 + · · · + 𝑏𝑘xh𝑘
𝑘 ≡ 0 mod 𝑝𝐿

}
. (5.8)

The transition method to be detailed in Section 8 works with the proviso that the product ℰbℐb(X)
is a good approximation to 𝒩b(X). We detail these requirements as follows; note that (5.10) is (3.11)
specialized to the equation (1.2).
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Hypothesis 5.1. The singular series ℰb converges absolutely. There are real numbers 𝛽1, . . . , 𝛽𝑘 ≤ 1
with

ℰb 
 |𝑏1 |𝛽1 |𝑏2 |𝛽2 · · · |𝑏𝑘 |𝛽𝑘 . (5.9)

Further, there exists 𝜁 ∈ R𝑘 with

𝜁𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑘, ℎ𝑖 𝑗 𝜁𝑖 < 1 for all 𝑖, 𝑗 ,
𝑘∑
𝑖=1
𝜁𝑖 = 1, (5.10)

and there exist real numbers 0 < 𝜆 ≤ 1, 𝛿1 > 0 and 𝐶 ≥ 0 with the property that whenever X ∈ [1,∞)𝐽
obeys the condition that

min
1≤𝑖≤𝑘

Xh𝑖
𝑖 ≥

(
max

1≤𝑖≤𝑘
Xh𝑖
𝑖

)1−𝜆
, (5.11)

then uniformly in b ∈ (Z \ {0})𝑘 , one has

𝒩b(X) −ℰbℐb(X) 
 |𝑏1 · · · 𝑏𝑘 |𝐶 (min
𝑖 𝑗
𝑋𝑖 𝑗 )−𝛿1

𝑘∏
𝑖=0

𝐽𝑖∏
𝑗=1
𝑋

1−ℎ𝑖 𝑗 𝜁𝑖+𝜀
𝑖 𝑗 , (5.12)

wherein we wrote 𝜁0 = ℎ0 𝑗 = 0 (1 ≤ 𝑗 ≤ 𝐽0).

In the situation of (1.6), Hypothesis 5.1 is in fact a theorem.

Proposition 5.2. Suppose that 𝑘 = 3, 𝐽1 ≥ 𝐽2 ≥ 2 and ℎ𝑖 𝑗 = 1 for 𝑖 = 1, 2, 1 ≤ 𝑗 ≤ 𝐽𝑖 . Then Hypothesis
5.1 is true.

We prove this in the next section. As the proof will show, much more is true. We are free to choose
𝜁 according to (5.10), and one can specify the parameters 𝛽, 𝜆 and C. In terms of the number 𝜔 defined
in (6.5) below, one may take

𝜆 = 2−4−|h3 |1𝜔, 𝐶 = 300/𝜔

and

𝛽 =
(1
2
(1 − 𝜇) + 𝜀, 1

2
(1 − 𝜇) + 𝜀, 𝜇

)
, (5.13)

for any 𝜀 > 0, and any 𝜇 with 𝜀 < 𝜇 < |h3 |−1.
In the rest of this section, we prepare the proof of Proposition 5.2 with some bounds for the local

factors, and we begin with an upper bound for the singular integral. At the same time, we compare
the singular integral with a truncated version of it. To define the latter, let 𝑍0 be the maximum of the
numbers Xh𝑖

𝑖 (1 ≤ 𝑖 ≤ 𝑘), and let 𝑄 ≥ 1. Then put

ℐb(X, 𝑄) = 〈X0〉
∫ 𝑄𝑍−1

0

−𝑄𝑍−1
0

𝐼1(𝑏1𝛽,X)𝐼2(𝑏2𝛽,X) · · · 𝐼𝑘 (𝑏𝑘 𝛽,X) d𝛽.

Lemma 5.3. Let 𝑘 ≥ 3, let 𝜁0 = 0, and let 𝜁𝑖 (1 ≤ 𝑖 ≤ 𝑘) be positive real numbers with 𝜁1 + 𝜁2 + · · · +
𝜁𝑘 = 1. Then

ℐb (X) 
 |𝑏1 |−𝜁1 · · · |𝑏𝑘 |−𝜁𝑘
𝑘∏
𝑖=0

𝐽𝑖∏
𝑗=1
𝑋

1−ℎ𝑖 𝑗 𝜁𝑖
𝑖 𝑗 .
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Further, there is a number 𝛿 > 0 such that whenever 𝑄 ≥ 1 one has

ℐb(X) −ℐb(X, 𝑄) 
 𝑄−𝛿
𝑘∏
𝑖=0

𝐽𝑖∏
𝑗=1
𝑋

1−ℎ𝑖 𝑗 𝜁𝑖
𝑖 𝑗 .

Proof. By Hölder’s inequality,∫ ∞

−∞

𝑘∏
𝑖=1
(1 + Xh𝑖

𝑖 |𝑏𝑖𝛽 |)
−1 d𝛽 ≤

𝑘∏
𝑖=1

( ∫ ∞

−∞
(1 + Xh𝑖

𝑖 |𝑏𝑖𝛽 |)
−1/𝜁𝑖 d𝛽

) 𝜁𝑖
,

and by (5.5) and (5.3) the first statement in the lemma is immediate. For the second, one picks 𝜄 with
𝑍0 = Xh𝜄

𝜄 and observes that∫ ∞

𝑄𝑍−1
0

(1 + Xh𝜄
𝜄 |𝑏 𝜄𝛽 |)−1/𝜁𝜄 d𝛽 
 𝑄1−(1/𝜁𝜄)X−h𝜄

𝜄 .

If this bound is used within the preceding application of Hölder’s inequality, one arrives at the second
statement in the lemma. �

We continue with some general remarks on Gauß sums.

Lemma 5.4. Let h ∈ N𝑛. Let 𝑏 ∈ Z, 𝑞 ∈ N and 𝑞′ = 𝑞/(𝑞, 𝑏), 𝑏′ = 𝑏/(𝑞, 𝑏). Then 𝐸 (𝑞, 𝑏; h) =
𝐸 (𝑞′, 𝑏′; h). If 𝑛 ≥ 2, ℎ1 = 1 and (𝑏, 𝑞) = 1, then

𝐸 (𝑞, 𝑏, h) = 𝑞1−𝑛#{𝑥2, . . . , 𝑥𝑛 : 1 ≤ 𝑥 𝑗 ≤ 𝑞, 𝑥ℎ2
2 𝑥

ℎ3
3 · · · 𝑥ℎ𝑛𝑛 ≡ 0 mod 𝑞}.

Further,

𝐸 (𝑞, 𝑏, (1, . . . , 1)) = 𝑞1−𝑛
∑
𝑑 𝑗 |𝑞

𝑞 |𝑑2𝑑3 · · ·𝑑𝑛

𝜑
( 𝑞
𝑑2

)
· · · 𝜑

( 𝑞
𝑑𝑛

)
.

In particular, 𝐸 (𝑞, 𝑏, (1, . . . , 1)) 
 𝑞𝜀−1 and 𝐸 (𝑞, 𝑏, (1, 1)) = 𝑞−1.

Proof. We have 𝑏/𝑞 = 𝑏′/𝑞′ whence 𝑒(𝑏𝑥ℎ1
1 · · · 𝑥ℎ𝑛𝑛 /𝑞) has period 𝑞′ in all 𝑥 𝑗 . Summing over all 𝑥 𝑗

modulo q gives the first statement at once. The second statement follows from (5.1) and orthogonality,
after carrying out the sum over 𝑥1. If we specialize the second statement to ℎ 𝑗 = 1 for all j and sort the
𝑥 𝑗 according to the values of 𝑑 𝑗 = (𝑥 𝑗 , 𝑞), then we arrive at the formula for 𝐸 (𝑞, 𝑏, (1, . . . , 1)), from
which the remaining claims are immediate. �

Lemma 5.5. Let h ∈ N𝑛 with ℎ1 ≤ ℎ2 ≤ · · · ≤ ℎ𝑛. Then, for each 𝑏 ∈ Z, the sum

𝐷 (𝑞, 𝑏, h) =
∑ ∗

𝑎 mod 𝑞
𝐸 (𝑞, 𝑎𝑏, h)

is multiplicative as a function of q, and one has 𝐷 (𝑞, 𝑏, h) 
 (𝑞, 𝑏)1/ℎ𝑛𝑞1+𝜀−1/ℎ𝑛 .

Proof. Within this proof the numbers ℎ 𝑗 are fixed. Therefore, we remove h from the notation temporarily.
Thus, 𝐷 (𝑞, 𝑏) abbreviates 𝐷 (𝑞, 𝑏, h), for example.

By (5.7), the function 𝐷 (𝑞, 𝑏) is multiplicative in q, and we proceed to evaluate it for 𝑞 = 𝑝𝑙 with
p prime and 𝑙 ∈ N. Let 𝑀𝑏 (𝑞) denote the number of x ∈ (Z/𝑞Z)𝑛 with 𝑏𝑥ℎ1

1 · · · 𝑥ℎ𝑛𝑛 ≡ 0 mod 𝑞. Now,
first applying Lemma 5.4, and then (5.1) and orthogonality, one confirms the identities

𝐷 (𝑝𝑙 , 𝑏) =
∑

𝑎 mod 𝑝𝑙

𝐸 (𝑝𝑙 , 𝑎𝑏, h) −
∑

𝑎 mod 𝑝𝑙−1

𝐸 (𝑝𝑙−1, 𝑎𝑏, h) = 𝑝𝑙 (1−𝑛)𝑀𝑏 (𝑝𝑙) − 𝑝 (𝑙−1) (1−𝑛)𝑀𝑏 (𝑝𝑙−1).
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Let 𝛽 be the number with 𝑝𝛽 | 𝑏 and 𝑝𝛽+1 � 𝑏. Obviously, if 𝑙 ≤ 𝛽, then 𝑀𝑏 (𝑝𝑙) = 𝑝𝑙𝑛, and the
preceding formula gives 𝐷 (𝑝𝑙 , 𝑏) = 𝜙(𝑝𝑙). If 𝑙 > 𝛽, then 𝑀𝑏 (𝑝𝑙) is the number of solutions of
𝑥ℎ1

1 · · · 𝑥ℎ𝑛𝑛 ≡ 0 mod 𝑝𝑙−𝛽 with 1 ≤ 𝑥 𝑗 ≤ 𝑝𝑙 (1 ≤ 𝑗 ≤ 𝑛). Thus, 𝑀𝑏 (𝑝𝑙) = 𝑝𝛽𝑛𝑀1 (𝑝𝑙−𝛽). We now
estimate 𝑀1 (𝑝𝜎). Consider 𝑥1, . . . , 𝑥𝑛 with 𝑝𝜈 𝑗 | 𝑥 𝑗 . The congruence 𝑥ℎ1

1 · · · 𝑥ℎ𝑛𝑛 mod 𝑝𝜎 is equivalent
with

ℎ1𝜈1 + · · · + ℎ𝑛𝜈𝑛 ≥ 𝜎. (5.14)

Thus, for a fixed tuple 𝜈1, . . . 𝜈𝑛, there are at most 𝑝𝑛𝜎−𝜈1−···−𝜈𝑛 solutions counted by 𝑀1 (𝑝𝜎). Further,
if (5.14) holds, then

𝜈1 + · · · + 𝜈𝑛 ≥
1
ℎ𝑛
(ℎ1𝜈1 + · · · + ℎ𝑛𝜈𝑛) ≥

𝜎

ℎ𝑛
.

Since the number of tuples 𝜈1, . . . , 𝜈𝑛 that arise here certainly does not exceed 𝜎𝑛, we deduce that
𝑀1 (𝑝𝜎) ≤ 𝜎𝑛𝑝𝑛𝜎−�𝜎/ℎ𝑛 � . This implies 𝑀𝑏 (𝑝𝑙) ≤ 𝑙𝑛𝑝𝑙𝑛−�(𝑙−𝛽)/ℎ𝑛 � . On inserting this bound in the
identity for 𝐷 (𝑝𝑙 , 𝑏), one first confirms the desired estimate for 𝐷 (𝑞, 𝑏) for prime powers q and then
for general q by multiplicativity. �

We now use these results to discuss the singular series that arises in Proposition 5.2. Then we have
𝑘 = 3, 𝐽1 ≥ 𝐽2 ≥ 2, and we may use the last clause of Lemma 5.4 with h1 and h2. Further, we put
ℎ = max ℎ3 𝑗 and use Lemma 5.5 to confirm that∑ ∗

𝑎 mod 𝑞
𝐸1 (𝑞, 𝑎𝑏1)𝐸2(𝑞, 𝑎𝑏2)𝐸3(𝑞, 𝑎𝑏3) 
 𝑞𝜀−1−1/ℎ (𝑞, 𝑏1) (𝑞, 𝑏2) (𝑞, 𝑏3)1/ℎ . (5.15)

It is now immediate that the singular series converges absolutely. Further, on using crude bounds of the
type (𝑥, 𝑦) ≤ 𝑥𝜎𝑦1−𝜎 with 0 ≤ 𝜎 ≤ 1, it follows from (5.15) that whenever 0 < 𝜀 < 𝜇 < 1/ℎ one has
from (5.15) that

∞∑
𝑞=1




 ∑ ∗

𝑎 mod 𝑞
𝐸1(𝑞, 𝑎𝑏1)𝐸2(𝑞, 𝑎𝑏2)𝐸3(𝑞, 𝑎𝑏3)




 
 ∞∑
𝑞=1

𝑞𝜀−1−𝜇 (𝑞, 𝑏1) (𝑞, 𝑏2)𝑏𝜇3


 𝑏
𝜇
3

∑
𝑐1 |𝑏1

∑
𝑐2 |𝑏2

(𝑐1𝑐2) 𝜀−𝜇 (𝑐1, 𝑐2)1+𝜇−𝜀 ≤ 𝑏𝜇3
∑
𝑐1 |𝑏1

∑
𝑐2 |𝑏2

(𝑐1𝑐2)
1
2 (1−𝜇+𝜀) 
 𝑏

𝜇
3 (𝑏1𝑏2)

1
2 (1−𝜇)+𝜀 . (5.16)

This establishes all the statements in Proposition 5.2 that concern the singular series, and it also confirms
the comment following Proposition 5.2 about an admissible choice of 𝛽.

6. The circle method

6.1. Weyl sums

In this section, we apply the circle method to establish Proposition 5.2. We prepare the ground with a
discussion of the generalized Weyl sums

𝑊 (𝛼,Y; h) =
∑

y∈Z𝑛∩𝒴
𝑒(𝛼yh).

Here and in the sequel, we continue to use the notation from the previous section, and in particular, h,
Y and 𝒴 are as in (5.2). The upper bound for the mean square∫ 1

0
|𝑊 (𝛼,Y; h) |2 d𝛼 
 〈Y〉1+𝜀 (6.1)
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is pivotal and is readily checked: By orthogonality, the integral in question equals the number of solutions
of the diophantine equation xh = yh with x, y ∈ Z𝑛 ∩𝒴. There are 〈Y〉 choices for x, and 𝑦1 · · · 𝑦𝑛 is a
divisor of xh, leaving 〈Y〉𝜀 choices for y, once x is chosen.

The next result is a version of Weyl’s inequality.

Lemma 6.1. Let 𝛼 ∈ R, 𝑎 ∈ Z, 𝑞 ∈ N and |𝑞𝛼 − 𝑎 | ≤ 𝑞−1. Suppose that 𝑌1 ≥ 𝑌2 ≥ · · · ≥ 𝑌𝑛. Then

|𝑊 (𝛼,Y; h) |2|h|1−𝑛 
 〈Y〉2|h|1−𝑛+𝜀
( 1
𝑞
+ 1
𝑌𝑛
+ 𝑞

Yh

)
.

Proof. If 𝑛 = 1 this is the familiar form of Weyl’s inequality. If 𝑛 ≥ 2, then we apply repeated Weyl
differencing. Let ℎ ∈ N. On combining [72, Lemma 2.4] with [72, Exercise 2.8.1], one has


 ∑

𝑋<𝑥≤2𝑋
𝑒(𝛽𝑥ℎ)




2ℎ−1

≤ (2𝑋)2ℎ−1−ℎ
∑
|𝑢 𝑗 | ≤𝑋
1≤ 𝑗<ℎ

∑
𝑥∈𝐼 (u)

𝑒
(
ℎ!𝛽𝑢1𝑢2 . . . 𝑢ℎ−1 (𝑥 + 1

2 |u|1)
)
,

where the 𝐼 (u) are certain subintervals of [𝑋, 2𝑋]. Note here that the sum on the right is real and
nonnegative. One trivially has 


 ∑

−2𝑋 ≤𝑥<−𝑋
𝑒(𝛽𝑥ℎ)




 = 


 ∑
𝑋<𝑥≤2𝑋

𝑒(𝛽𝑥ℎ)



,

and hence it follows that


 ∑
𝑋< |𝑥 | ≤2𝑋

𝑒(𝛽𝑥ℎ)



2ℎ−1


 𝑋2ℎ−1−ℎ
∑
|𝑢 𝑗 | ≤𝑋
1≤ 𝑗<ℎ

∑
𝑥∈𝐼 (u)

𝑒
(
ℎ!𝛽𝑢1𝑢2 . . . 𝑢ℎ−1 (𝑥 + 1

2 |u|1)
)
. (6.2)

By Hölder’s inequality,

|𝑊 (𝛼,Y; h) |2ℎ1−1 ≤ (𝑌2 · · ·𝑌𝑛)2
ℎ1−1−1

∑
1
2𝑌𝜈< |𝑦𝜈 | ≤𝑌𝜈

2≤𝜈≤𝑛




 ∑
1
2𝑌1< |𝑦1 | ≤𝑌1

𝑒(𝛼𝑦ℎ1
1 𝑦

ℎ2
2 · · · 𝑦ℎ𝑛𝑛 )




2ℎ1−1

.

We apply (6.2) with 𝛽 = 𝛼𝑦ℎ2
2 · · · 𝑦ℎ𝑛𝑛 to the sum over 𝑦1. We write h′ = (ℎ2, ℎ3, . . . , ℎ𝑛), Y′ =

(𝑌2, 𝑌3, . . . , 𝑌𝑛) and then find that

|𝑊 (𝛼,Y; h) |2ℎ1−1 
 𝑌2ℎ1−1−ℎ1
1 〈Y′〉2ℎ1−1−1

∑
|𝑢 𝑗 | ≤𝑌1
1≤ 𝑗<ℎ1

∑
𝑦∈𝐼1 (u)

𝑊 (ℎ1!𝛼𝑢1𝑢2 · · · 𝑢ℎ1−1(𝑦 + 1
2 |u|1),Y

′; h′),

where 𝐼1(u) are certain subintervals of [ 1
2𝑌1, 𝑌1]. Now, we apply Hölder’s inequality again to bring

in |𝑊 (𝛽,Y′; h′) |2ℎ2−1 . We may then estimate the sum over 𝑦2 by (6.2). Repeated use of this process
produces the inequality

|𝑊 (𝛼,Y; h) |2ℎ1−1 · · ·2ℎ𝑛−1 
 〈Y〉2ℎ1+···+ℎ𝑛−𝑛Y−h
∑

u1 ,...,u𝑛

∑
𝑦𝜈 ∈𝐼𝜈 (u𝜈 )

1≤𝜈<𝑛




 ∑
𝑦𝑛∈𝐼𝑛 (u𝑛)

𝑒(𝛼𝑣𝑦𝑛)



 (6.3)

in which u𝜈 ∈ Zℎ𝜈−1 runs over integer vectors with |u𝜈 | ≤ 𝑌𝜈 for 1 ≤ 𝜈 ≤ 𝑛, the 𝐼𝜈 (u𝜈) are certain
subintervals of [ 1

2𝑌𝜈 , 𝑌𝜈] and

𝑣 = ℎ1!ℎ2! · · · ℎ𝑛!〈u1〉 · · · 〈u𝑛〉𝑦1𝑦2 · · · 𝑦𝑛−1.
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Note that 𝑣 = 0 will occur in (6.3) only when one of the u𝜈 has a zero entry so that the total contribution
to (6.3) from summands with 𝑣 = 0 does not exceed 〈Y〉2ℎ1+···+ℎ𝑛−𝑛𝑌−1

𝑛 , which is acceptable. For nonzero
v, the innermost sum in (6.3) does not exceed min(𝑌𝑛, ‖𝛼𝑣‖−1). Further, we have 𝑣 
 Yh𝑌−1

𝑛 , and a
divisor function estimate shows that there are no more than 𝑂 (|𝑣 |𝜀) choices for u𝜈 , 𝑦𝜈 that correspond
to the same v. This shows that

|𝑊 (𝛼,Y; h) |2ℎ1−1 · · ·2ℎ𝑛−1 
 〈Y〉2|h|1−𝑛𝑌−1
𝑛 + 〈Y〉2|h|1−𝑛+𝜀Y−h

∑
1≤𝑣
Yh𝑌 −1

𝑛

min(𝑌𝑛, ‖𝛼𝑣‖−1).

Reference to [72, Lemma 2.1] completes the proof. �

We complement this result with an approximate evaluation of W.

Lemma 6.2. Let 𝛼 ∈ R, 𝑎 ∈ Z, 𝑞 ∈ N and 𝛼 = (𝑎/𝑞) + 𝛽. Suppose that 𝑌1 ≥ 𝑌2 ≥ · · · ≥ 𝑌𝑛. Then

𝑊 (𝛼,Y; h) = 𝐸 (𝑞, 𝑎; h)𝐼 (𝛽,Y; h) +𝑂
(
𝑌1𝑌2 · · ·𝑌𝑛−1𝑞(1 + Yh |𝛽 |)

)
.

Proof. The case 𝑛 = 1 is a rough and elementary version of [72, Theorem 4.1]. We now induct on
n and suppose that the lemma is already available with 𝑛 − 1 in place of n. As before, we write
Y′ = (𝑌2, 𝑌3, . . . , 𝑌𝑛) and so on, isolate the sum over 𝑦1 and invoke the induction hypothesis with 𝛼𝑦ℎ1

1
for 𝛼. This yields

𝑊 (𝛼,Y; h) =
∑

1
2𝑌1< |𝑦1 | ≤𝑌1

(
𝐸 (𝑞, 𝑎𝑦ℎ1

1 ; h′)𝐼 (𝛽𝑦ℎ1
1 ,Y

′; h′) +𝑂
(
𝑌2 · · ·𝑌𝑛−1𝑞(1 + Y′h′ |𝑦1 |ℎ1 |𝛽 |)

) )
=

∑
1
2𝑌1< |𝑦1 | ≤𝑌1

𝐸 (𝑞, 𝑎𝑦ℎ1
1 ; h′)𝐼 (𝛽𝑦ℎ1

1 ,Y
′; h′) +𝑂

(
𝑌1𝑌2 · · ·𝑌𝑛−1𝑞(1 + Yh |𝛽 |)

)
.

In view of (5.1) and (5.2), we may rewrite the sum over 𝑦1 on the right-hand side as

𝑞1−𝑛
∑

1≤𝑥𝜈≤𝑞
2≤𝜈≤𝑛

∫
𝒴′

∑
1
2𝑌1< |𝑦1 | ≤𝑌1

𝑒
(
𝑦ℎ1

1

(
𝛽y′h′ + 𝑎x′h′

𝑞

))
dy′,

where 𝒴′ is the analogue of 𝒴 in the coordinates y′. We may now apply the case 𝑛 = 1 with 𝛽y′h′ for
𝛽 and 𝑎x′h′ for a to conclude that∑

1
2𝑌1< |𝑦1 | ≤𝑌1

𝑒
(
𝑦ℎ1

1

(
𝛽y′h′ + 𝑎x′h′

𝑞

))
= 𝑞−1

𝑞∑
𝑥1=1

𝑒
( 𝑎𝑥ℎ1

1 𝑥
′h′

𝑞

) ∫
1
2𝑌1< |𝑦1 | ≤𝑌1

𝑒(𝛽𝑦ℎ1
1 y′h′ ) d𝑦1 +𝑂

(
𝑞 + 𝑞𝑌 ℎ1

1 |𝑦′h′𝛽 |
)
.

The induction is now completed by inserting this last formula into the two preceding displays. �

6.2. Towards the circle method

We are ready to embark on the proof of Proposition 5.2. We work in the broader framework of Hypothesis
5.1 in large parts of the argument but will restrict to the situation described in Proposition 5.2 whenever
the bounds for Gauss sums are entering the argument. We hope that the wider scope of our presentation
will be helpful in related investigations.

We begin with a general remark concerning the ‘dummy variables’ 𝑥0 𝑗 that do not occur explicitly
in the torsor equation. Suppose that Hypothesis 5.1 has been established for a given torsor equation,
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without any dummy variables, that is, with 𝐽0 = 0. Now, consider the same torsor equation with 𝐽0 ≥ 1
dummy variables. For this new problem, the count 𝒩b(X) factorizes as 𝒩b(X) = 𝑊0 (X0)𝒩∗, say, where
𝒩∗ is the number of solutions counted by 𝒩b(X) but with the variables x0 ignored, and𝑊0 (X0) is the
number of x0 ∈ Z𝐽0 with 1

2𝑋0 𝑗 < |𝑥0 𝑗 | ≤ 𝑋0 𝑗 for 1 ≤ 𝑗 ≤ 𝐽0. A trivial lattice point count yields

𝑊0 (X0) = 〈X0〉 +𝑂 (〈X0〉(min 𝑋0 𝑗 )−1),

and if one multiplies this with the asymptotic formula for 𝒩∗ that we have assumed to be available to
us, then one derives the claims in Hypothesis 5.1 with dummy variables. This shows that it suffices to
address the problem of verifying Hypothesis 5.1 only in the case where 𝐽0 = 0, and we will assume this
for the rest of this section.

To launch the circle method argument, recall the definition of 𝒩b(X) in the paragraph encapsulating
displays (5.4)–(5.6). In the notation of that section, we define

𝑊𝑖 (𝛼,X) = 𝑊 (𝛼,X𝑖; h𝑖) (1 ≤ 𝑖 ≤ 𝑘).

By orthogonality,

𝒩b(X) =
∫ 1

0
𝑊1 (𝑏1𝛼,X) · · ·𝑊𝑘 (𝑏𝑘𝛼,X) d𝛼.

Our main parameters are

𝑍 = min
1≤𝑖≤𝑘

Xh𝑖
𝑖 , 𝑍0 = max

1≤𝑖≤𝑘
Xh𝑖
𝑖 , 𝑀 = min

𝑖 𝑗
𝑋𝑖 𝑗 ,

and we find it convenient to renumber variables to ensure that

𝑋𝑖1 ≤ 𝑋𝑖2 ≤ · · · ≤ 𝑋𝑖𝐽𝑖 (1 ≤ 𝑖 ≤ 𝑘). (6.4)

Once and for all, fix positive numbers 𝜁𝑖 as in (5.10), and the number 𝜔 defined by

𝜔−1 = 40𝑘 max
1≤𝑖≤𝑘

𝐽𝑖 |h𝑖 |. (6.5)

In particular, we have 0 < 𝜔 ≤ 1/120. Hence, the intervals 𝔐(𝑞, 𝑎), defined as the set of 𝛼 ∈ R with
|𝛼 − (𝑎/𝑞) | ≤ 𝑍𝜔−1, are disjoint as 𝑎, 𝑞 range over 1 ≤ 𝑎 ≤ 𝑞 ≤ 𝑍𝜔 , (𝑎, 𝑞) = 1. The union of these
intervals we denote by 𝔐. Let 𝔪 = [𝑍𝜔−1, 1 + 𝑍𝜔−1] \𝔐. On writing

𝒩𝔄 =
∫
𝔄
𝑊1 (𝑏1𝛼,X) · · ·𝑊𝑘 (𝑏𝑘𝛼,X) d𝛼

one has

𝒩b(X) = 𝒩𝔐 +𝒩𝔪 . (6.6)

The circle method treatment depends on the relative size of M and Z. We first give a proof of
Proposition 5.2 in the case where 𝑀 ≥ 𝑍10𝑘𝜔 (the tame case).

6.3. The tame case: major arcs

For 𝛼 ∈ 𝔐, there is a unique pair 𝑎, 𝑞 with 1 ≤ 𝑎 ≤ 𝑞 ≤ 𝑍𝜔 , (𝑎, 𝑞) = 1 and a number 𝛽 ∈ R with
|𝛽 | ≤ 𝑍𝜔−1 and 𝛼 = (𝑎/𝑞) + 𝛽. By Lemma 6.2,

𝑊𝑖 (𝑏𝑖𝛼,X) = 𝐸𝑖 (𝑞, 𝑎𝑏𝑖)𝐼𝑖 (𝛽𝑏𝑖 ,X𝑖) +𝑂 (〈X†
𝑖 〉𝑞(1 + Xh𝑖

𝑖 |𝑏𝑖𝛽 |)), (6.7)
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where, temporarily, X†
𝑖 = (𝑋𝑖2, . . . , 𝑋𝑖𝐽𝑖 ) is the vector that is X𝑖 with its smallest entry deleted. Since

we are in the tame case, this implies that 〈X†
𝑖 〉 ≤ 〈X𝑖〉𝑍−10𝑘𝜔 . Further, by hypothesis and (5.11), we

have Xh𝑖
𝑖 ≤ 𝑍0 ≤ 𝑍1/(1−𝜆) . Now, since 𝜆 ≤ 𝜔/2, it follows that (1 − 𝜆)−1 ≤ 1 + 𝜔, and therefore

Xh𝑖
𝑖 ≤ 𝑍0 ≤ 𝑍1+𝜔 (1 ≤ 𝑖 ≤ 𝑘). (6.8)

We shall use these bounds frequently. Here, we apply (6.8) to obtain the estimate

𝑊𝑖 (𝑏𝑖𝛼,X) = 𝐸𝑖 (𝑞, 𝑎𝑏𝑖)𝐼𝑖 (𝛽𝑏𝑖 ,X𝑖) +𝑂 (〈X𝑖〉𝑍−9𝑘𝜔 |𝑏𝑖 |).

Noting the trivial bounds

𝑊𝑖 (𝑏𝑖𝛼,X) 
 〈X𝑖〉, 𝐸𝑖 (𝑞, 𝑎𝑏𝑖)𝐼𝑖 (𝛽𝑏𝑖 ,X𝑖) 
 〈X𝑖〉

and the identity

𝑊1𝑊2 · · ·𝑊𝑘 − 𝑇1𝑇2 · · ·𝑇𝑘 =
𝑘∑
𝑖=1
(𝑊𝑖 − 𝑇𝑖)𝑊1 · · ·𝑊𝑖−1𝑇𝑖+1 · · ·𝑇𝑘 ,

we conclude that

𝑘∏
𝑖=1
𝑊𝑖 (𝑏𝑖𝛼,X) =

𝑘∏
𝑖=1
𝐸𝑖 (𝑞, 𝑎𝑏𝑖)𝐼𝑖 (𝛽𝑏𝑖 ,X𝑖) +𝑂 (〈X1〉 · · · 〈X𝑘〉|b|1𝑍−9𝑘𝜔).

We integrate this over 𝔐. Since the measure of 𝔐 is𝑂 (𝑍3𝜔−1), the error will contribute an amount not
exceeding

〈X1〉 · · · 〈X𝑘〉|b|1𝑍−8𝑘𝜔−1 ≤ 〈X1〉 · · · 〈X𝑘〉|b|1𝑀−1/5𝑍−6𝑘𝜔−1 ≤ 〈X1〉 · · · 〈X𝑘〉|b|1𝑀−1/5𝑍−1
0 .

It follows that

𝒩𝔐 =ℰb (𝑍𝜔)ℐb(X, 𝑍𝜔) +𝑂 (〈X1〉 · · · 〈X𝑘〉|b|1𝑀−1/5𝑍−1
0 ), (6.9)

where

ℰb (𝑄) =
∑
𝑞≤𝑄

∑ ∗

𝑎 mod 𝑞
𝐸1 (𝑞, 𝑎𝑏1)𝐸2(𝑞, 𝑎𝑏2) · · · 𝐸𝑘 (𝑞, 𝑎𝑏𝑘 ).

Note here that the error estimate in (6.9) is good enough to be absorbed in the error term in (5.12).
We are now required to complete the singular series. At this stage, we have to be content with the

setup in Proposition 5.2, but then have recourse to (5.15), which provides us with the bound

ℰb (𝑍𝜔) =ℰb +𝑂 (𝑍−𝜔/(2ℎ) |𝑏1𝑏2𝑏3 |).

In combination with Lemma 5.3, we then infer that there is a number 𝛿 > 0 with

ℰb(𝑍𝜔)ℐb(X, 𝑍𝜔) =ℰbℐb (X) +𝑂 (|𝑏1𝑏2𝑏3 |𝑍−𝜔𝛿 〈X1〉〈X2〉〈X3〉X−𝜁1h1
1 X−𝜁2h2

2 X−𝜁3h3
3 ).

It follows that in the tame case, there is indeed a number 𝛿1 > 0 such that

𝒩𝔐 =ℰbℐb(X) +𝑂 (|𝑏1𝑏2𝑏3 |𝑀−𝛿1 〈X1〉〈X2〉〈X3〉X−𝜁1h1
1 X−𝜁2h2

2 X−𝜁3h3
3 ). (6.10)
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6.4. The tame case: minor arcs

In our treatment of the minor arcs, we again work subject to the conditions in Proposition 5.2. There are
two cases.

First, suppose that |𝑏3 | ≤ 𝑍𝜔/2. We apply Weyl’s inequality to𝑊3(𝑏3𝛼,X). Let

𝐻 = 2ℎ31+···+ℎ3𝐽3−𝐽3 .

We claim that uniformly for 𝛼 ∈ 𝔪, one has

𝑊3(𝑏3𝛼,X) 
 〈X3〉𝑍−𝜔/(3𝐻 ) . (6.11)

Indeed, if Z is large and 𝛼 ∈ R is such that |𝑊3 (𝑏3𝛼,X) | ≥ 〈X3〉𝑍−𝜔/(3𝐻 ) , then a familiar coupling
of Lemma 6.1 with Dirichlet’s theorem on diophantine approximation shows that there are coprime
numbers a, q with |𝑞𝑏3𝛼 − 𝑎 | ≤ 𝑍𝜔/2X−h3

3 ≤ 𝑍 (𝜔/2)−1 and 1 ≤ 𝑞 ≤ 𝑍𝜔/2. But then 1 ≤ |𝑏3 |𝑞 ≤ 𝑍𝜔 ,
and hence 𝛼 cannot be in 𝔪.

By (6.1) and an obvious substitution,∫ 1

0
|𝑊𝑖 (𝑏𝑖𝛼,X) |2 d𝛼 
 〈X𝑖〉1+𝜀 .

Hence, by Schwarz’s inequality and (6.11),

𝒩𝔪 

(
〈X1〉〈X2〉

)1/2+𝜀 sup
𝛼∈𝔪

|𝑊3 (𝑏3𝛼,X) | 
 〈X1〉〈X2〉〈X3〉𝑍 𝜀−1−𝜔/(3𝐻 ) .

We have 𝜆 ≤ 𝜔/(12𝐻), and so

(1 − 𝜆) (1 + 𝜔/(3𝐻)) ≥ 1 + 𝜔/(6𝐻). (6.12)

Hence, 𝑍−1−(𝜔/3𝐻 ) 
 𝑍−1−𝜔/(6𝐻 )
0 , which shows that 𝒩𝔪 is an acceptable error in Proposition 5.2. This

combines with (6.6) to complete the proof of Proposition 5.2 in the case under consideration.
Next, consider the case where |𝑏3 | > 𝑍𝜔/2. Here the claim in Proposition 5.2 reduces to a trivial

upper bound, as we now explain. The triangle inequality give |𝑊𝑖 (𝛼) | ≤ 〈X𝑖〉, and therefore, the integral
representation of 𝒩b(X) gives 𝒩b(X) ≤ 〈X1〉〈X2〉〈X3〉. Similarly, on combing (5.16) with Lemma 5.3,
we have the crude bound

ℰbℐb(X) 
 |𝑏1𝑏2𝑏3 |1/2〈X1〉〈X2〉〈X3〉.

We take 𝐶 = 300/𝜔 in (5.12). Then |𝑏3 |𝐶 ≥ 𝑍150, and so

|𝑏1𝑏2𝑏3 |1/2〈X1〉〈X2〉〈X3〉 ≤ |𝑏1𝑏2𝑏3 |𝐶𝑍−2
0

which is more than is required to confirm (5.12) in this final case. It should be noted that the discussion
of the case |𝑏3 | > 𝑍𝜔/2 did not use that we are in the tame case, but applies in general. Also, we have
now completed the proof of Proposition 5.2 in the tame case.

6.5. Major arcs again

It remains to deal with the case where 𝑀 < 𝑍10𝑘𝜔 . We assume this inequality from now on. Again, we
work in the broader framework of Sections 6.2 and 6.3 and refine the circle method approach to cover
the current situation as well. We say that a variable 𝑥𝑖 𝑗 is small if 𝑋𝑖 𝑗 < 𝑍10𝑘𝜔 . By hypothesis, there is
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at least one small variable. Also, by (6.4), there is a number 𝐽 ′𝑖 such that the 𝑥𝑖 𝑗 with 𝑗 ≤ 𝐽 ′𝑖 are small,
and those with 𝑗 > 𝐽 ′𝑖 are not. We proceed to show that∏

𝑗≤𝐽 ′𝑖

𝑋𝑖 𝑗 ≤ 〈X𝑖〉1/4. (6.13)

To see this, note that the definition of 𝐽 ′𝑖 gives∏
𝑗≤𝐽 ′𝑖

𝑋𝑖 𝑗 ≤ 𝑍10𝑘𝜔𝐽 ′𝑖 ≤ 𝑍10𝑘𝜔𝐽𝑖 . (6.14)

But 𝑍 ≤ Xh𝑖
𝑖 ≤ 〈X𝑖〉 |h𝑖 | . We insert this in the previous display and apply the inequality

10𝑘𝜔𝐽𝑖 |h𝑖 | ≤
1
4

(which is immediate from (6.5)) to derive (6.13).
The significance of (6.13) is that it implies that for each i, there are variables 𝑥𝑖 𝑗 that are not small.

This is important throughout this section. We put

X′
𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝐽 ′𝑖 ), X′′

𝑖 = (𝑋𝑖,𝐽 ′𝑖+1, . . . , 𝑋𝑖𝐽𝑖 ), X𝑖 = (X′
𝑖 ,X′′

𝑖 ),

where X′
𝑖 is void if 𝑥𝑖1 is not small. In the same way, we dissect the variable x𝑖 = (x′𝑖 , x′′𝑖 ) and the chain

of exponents h𝑖 = (h′𝑖 , h′′𝑖 ). By orthogonality, we then have

𝒩b(X) =
∑

(x′1 ,...,x
′
𝑘
) ∈𝒴′∩Z𝐽′

∫ 1

0
𝑊 (𝑏1𝛼x′1

h′1 ,X′′
1 ; h′′1 ) . . .𝑊 (𝑏𝑘𝛼x′𝑘

h′𝑘 ,X′′
𝑘 ; h′′𝑘 ) d𝛼, (6.15)

where 𝐽 ′ = 𝐽 ′1 + · · · + 𝐽
′
𝑘 and

𝒴′ � {x′ ∈ R𝐽 ′ : 1
2𝑋𝑖 𝑗 < |𝑥𝑖 𝑗 | ≤ 𝑋𝑖 𝑗 for 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝐽 ′𝑖 }. (6.16)

We apply the circle method to the integral in (6.15). By Lemma 6.2, when 𝛼 = (𝑎/𝑞) + 𝛽, one finds
that subject to (6.16), one has

𝑊
(
𝑏𝑖𝛼x′𝑖

h′𝑖 ,X′′
𝑖 ; h′′𝑖

)
= 𝐸

(
𝑞, 𝑎𝑏𝑖x′𝑖

h′𝑖 ; h′′𝑖
)
𝐼
(
𝛽𝑏𝑖x′𝑖

h′𝑖 ,X′′
𝑖 ; h′′𝑖

)
+𝑂

(
〈X′′

𝑖 〉𝑍−10𝑘𝜔𝑞(1 + |𝑏𝑖𝛽 |Xh𝑖
𝑖 )
)
.

Here, it is worth recalling that X′′
𝑖 is not void and has all its components at least as large as 𝑍10𝑘𝜔 . We

now apply (6.8) to confirm that for 𝛼 ∈ 𝔐, the error in the preceding display does not exceed

〈X′′
𝑖 〉𝑍𝜔−10𝑘𝜔 + 〈X′′

𝑖 〉𝑍−10𝑘𝜔 |𝑏𝑖 |𝑍2𝜔−1Xh𝑖
𝑖 ≤ 〈X′′

𝑖 〉|𝑏𝑖 |𝑍3𝜔−10𝑘𝜔 ≤ 〈X′′
𝑖 〉|𝑏𝑖 |𝑍−9𝑘𝜔 .

Let S denote the integrand in (6.15), and let M denote the product of the expressions

𝐸 (𝑞, 𝑎𝑏𝑖x′𝑖
h′𝑖 , h′′𝑖 )𝐼 (𝛽𝑏𝑖x′𝑖

h′𝑖 ,X′′
𝑖 ; h′′𝑖 ),

with 1 ≤ 𝑖 ≤ 𝑘 . Then, following the discussion in the initial part of Section 6.3, we obtain

S −M 
 〈X′′
1 〉 · · · 〈X

′′
𝑘 〉|b|1𝑍

−9𝑘𝜔 . (6.17)
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We integrate over 𝔐 and sum over the integral points in 𝒴′. Then, again as in Section 6.3, this gives

𝒩b(X) =
∑

(x′1 ,...,x
′
𝑘
) ∈𝒴′∩Z𝐽′

ℰ′ℐ′ +𝒩† +𝑂 (〈X1〉 · · · 〈X𝑘〉|b|1𝑍−8𝑘𝜔−1), (6.18)

where

ℰ′ =
∑
𝑞≤𝑍𝜔

∑ ∗

𝑎 mod 𝑞
𝐸 (𝑞, 𝑎𝑏1x′1

h′1 , h′′1 ) · · · 𝐸 (𝑞, 𝑎𝑏𝑘x′𝑘
h′𝑘 , h′′𝑘 ), (6.19)

ℐ′ =
∫ 𝑍𝜔−1

−𝑍𝜔−1
𝐼 (𝛽𝑏1x′1

h′1 ,X′′
1 ; h′′1 ) · · · 𝐼 (𝛽𝑏𝑘x′𝑘

h′𝑘 ,X′′
𝑘 ; h′′𝑘 ) d𝛽,

and where𝒩† is the same expression as in (6.15) but with integration over the minor arcs𝔪. Exchanging
the sum with the integral in (6.15), we see that 𝒩† = 𝒩𝔪. Note that the error in (6.18) also occurred in
Section 6.3 and, in the display preceding (6.9), was shown to be of acceptable size.

The difficulty now is that the moduli q in (6.19) are too large for the small variables to be arranged
in residue classes modulo q. We therefore prune the sum over q. In preparation for this manoeuvre, we
bound ℐ′ uniformly in x′𝑖 . Whenever x′𝑖 ∈𝒴′, one finds from (5.3) that

𝐼 (𝛽𝑏𝑖x′𝑖
h′𝑖 ,X′′

𝑖 ; h′′𝑖 ) 
 〈X′′
𝑖 〉(1 + X′′

𝑖
h′′𝑖 |x′𝑖

h′𝑖𝑏𝑖𝛽 |)−1 
 〈X′′
𝑖 〉(1 + Xh𝑖

𝑖 |𝑏𝑖𝛽 |)
−1.

Hence, by Hölder’s inequality,

ℐ′ 

𝑘∏
𝑖=1
〈X′′

𝑖 〉
( ∫ ∞

−∞
(1 + Xh𝑖

𝑖 |𝑏𝑖𝛽 |)
−1/𝜁𝑖 d𝛽

) 𝜁𝑖



𝑘∏
𝑖=1
〈X′′

𝑖 〉X
−𝜁𝑖h𝑖
𝑖 . (6.20)

Now, let ℰ† be the portion of the sum defining ℰ where 𝑞 ≤ 𝑀1/8, and let ℰ‡ be the portion with
𝑀1/8 < 𝑞 ≤ 𝑍𝜔 . Then ℰ′ =ℰ† +ℰ‡, and (6.19) and (6.20) yield

∑
(x′1 ,...,x

′
𝑘
) ∈𝒴′

ℰ‡ℐ′ 

( 𝑘∏
𝑖=1
〈X′′

𝑖 〉X
−𝜁𝑖h𝑖
𝑖

) ∑
𝑀 1/8<𝑞<𝑍𝜔

∑
(x′1 ,...,x

′
𝑘
) ∈𝒴′




 ∑ ∗

𝑎 mod 𝑞

𝑘∏
𝑖=1
𝐸 (𝑞, 𝑎𝑏𝑖x′𝑖

h′𝑖 ; h′′𝑖 )



. (6.21)

At this point, we require a workable upper bound for the innermost sum. In the situation of Proposition
5.2, we have 𝑘 = 3, and such a bound is provided by (5.15). With ℎ = max ℎ3 𝑗 , this yields

∑ ∗

𝑎 mod 𝑞

3∏
𝑖=1
𝐸 (𝑞, 𝑎𝑏𝑖x′𝑖

h′𝑖 ; h′′𝑖 ) 

(𝑞, 𝑏1〈x′1〉)(𝑞, 𝑏2〈x′2〉)(𝑞, 𝑏3x′3

h′3 )1/ℎ

𝑞1+1/ℎ . (6.22)

Now, (𝑞, 𝑏1〈x′1〉) ≤ |𝑏1 | (𝑞, 𝑥11) · · · (𝑞, 𝑥1𝐽 ′1 ) and likewise for (𝑞, 𝑏2〈x′2〉). Similarly,

(𝑞, 𝑏3x′1
h′3 )1/ℎ ≤ |𝑏3 | (𝑞, 𝑥ℎ31

31 )
1/ℎ · · · (𝑞, 𝑥

ℎ3𝐽′3
3𝐽 ′3

)1/ℎ ≤ |𝑏3 | (𝑞, 𝑥31) · · · (𝑞, 𝑥3𝐽 ′3 ).

We may sum (6.22) over x′𝑖 ∈𝒴′, using the simple bound∑
𝑥≤𝑋

(𝑞, 𝑥) 
 𝑞𝜀𝑋.
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It then follows that the right-hand side of (6.21) does not exceed



( 3∏
𝑖=1

|𝑏𝑖 |〈X′
𝑖〉〈X′′

𝑖 〉X
−𝜁𝑖h𝑖
𝑖

) ∑
𝑀 1/8<𝑞<𝑍𝜔

𝑞𝜀−1−1/ℎ 
 𝑀−1/(9ℎ) |𝑏1𝑏2𝑏3 |
3∏
𝑖=1
〈X𝑖〉X−𝜁𝑖h𝑖

𝑖 . (6.23)

In the specific situation of Proposition 5.2, this is an acceptable error term.
We now turn to the product ℰ†ℐ′. Here, we prune the range of integration. Let

ℐ† =
∫ 𝑀 1/8𝑍−1

0

−𝑀 1/8𝑍−1
0

𝐼 (𝛽𝑏1x′h
′
1

1 ,X
′′
1 ; h′′1 ) · · · 𝐼 (𝛽𝑏𝑘x′h

′
𝑘

𝑘 ,X
′′
𝑘 ; h′′𝑘 ) d𝛽,

and let ℐ‡ be the complementary integral over 𝑀1/8𝑍−1
0 < |𝛽 | ≤ 𝑍𝜔−1 so that ℐ′ = ℐ† +ℐ‡. To

obtain an upper bound for ℐ‡, choose an index 𝜄 with 𝑍0 = Xh𝜄
𝜄 . Then∫ ∞

𝑀 1/8𝑍−1
0

(1 + Xh𝜄
𝜄 |𝑏 𝜄𝛽 |)−1/𝜁𝜄 d𝛽 
 X−h𝜄

𝜄 𝑀 (𝜁𝜄−1)/8,

and since 𝜁 𝜄 < 1, we observe that the exponent of M is negative. With this adjustment, the argument in
(6.20) shows that uniformly for x′𝑖 ∈𝒴′ one has

ℐ‡ 
 𝑀 (𝜁𝜄−1)𝜁𝜄/8
𝑘∏
𝑖=1
〈X′′

𝑖 〉X
−𝜁𝑖h𝑖
𝑖 . (6.24)

We can now imitate the argument from (6.21)–(6.23), this time applying (6.24) and summing over
𝑞 ≤ 𝑀1/8. In the cases covered by Proposition 5.2, this yields

∑
(x′1 ,...,x

′
3) ∈𝒴′

ℰ†ℐ‡ 
 𝑀 (𝜁𝜄−1)𝜁𝜄/9 |𝑏1𝑏2𝑏3 |
3∏
𝑖=1
〈X𝑖〉X−𝜁𝑖h𝑖

𝑖 ,

which can be absorbed in the error term when 𝛿1 <
1
9 min(1 − 𝜁𝑖)𝜁𝑖 . On collecting together, we deduce

from (6.18) and the discussion above that

𝒩b(X) =
∑

(x′1 ,...,x
′
𝑘
) ∈𝒴′

ℰ†ℐ† +𝒩𝔪 +𝑂 (𝐹), (6.25)

where F is an acceptable error provided that 𝐶 > 1 and 𝛿1 is small enough.
It would now be possible to exchange the sums over x′𝑖 with the summations present in the definition

of ℰ† and to evaluate these sums by arranging the 𝑥𝑖 𝑗 in arithmetic progressions, as suggested earlier.
However, we prefer an indirect argument that is technically simpler. Let 𝔑 denote the union of the
pairwise disjoint intervals |𝛼− (𝑎/𝑞) | ≤ 𝑀1/8𝑍−1

0 with 1 ≤ 𝑎 ≤ 𝑞 ≤ 𝑀1/8 and (𝑎, 𝑞) = 1. Observe that
𝔑 ⊂ 𝔐. Hence, integrating (6.17) over 𝔑 we find that∑

(x′1 ,...,x
′
𝑘
) ∈𝒴′

∫
𝔑
𝑊 (𝑏1𝛼x′1

h′1 ,X′′
1 ; h′′1 ) · · ·𝑊 (𝑏𝑘𝛼x′𝑘

h′𝑘 ,X′′
𝑘 ; h′′𝑘 ) d𝛼 =

∑
(x′1 ,...,x

′
𝑘
) ∈𝒴′

ℰ†ℐ† +𝑂 (𝐹 ′),

(6.26)

where 𝐹 ′ is an error that certainly does not exceed the error present in (6.18) because the measure of 𝔑
is smaller than that of 𝔐. Exchanging sum and integral, it transpires that the left-hand side of (6.26) is
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simply the major arc contribution 𝒩𝔑. To evaluate the latter, we can run an argument from Section 6.3
with 𝔑 in place of 𝔐. The bound (6.7) becomes

𝑊𝑖 (𝑏𝑖𝛼,X) = 𝐸𝑖 (𝑞, 𝑎𝑏𝑖)𝐼𝑖 (𝛽𝑏𝑖 ,X𝑖) +𝑂 (〈X𝑖〉𝑀−3/4 |𝑏𝑖𝛽 |),

and then the result in (6.9) changes to

𝒩𝔑 =ℰb(𝑀1/8)ℐb(X, 𝑀1/8) +𝑂 (〈X1〉 · · · 〈X𝑘〉|b|1𝑀−3/8𝑍−1
0 ).

We can now complete the singular series and the singular integral as in Section 6.3. The argument that
produced (6.10) now delivers exactly the same asymptotics for 𝒩𝔑. Via (6.25) and (6.26), it follows that
𝒩b(X) = ℰbℐb (X) +𝒩𝔪 + 𝑂 (𝐹 ′′), where 𝐹 ′′ is an error acceptable to Hypothesis 5.1. Consequently,
it remains to estimate the contribution from the minor arcs.

6.6. Minor arcs again

The argument of Section 6.4 yields an acceptable bound for𝒩𝔪 provided that the estimate (6.11) remains
valid in cases that are not tame. Hence, we now complete the proof of Proposition 5.2 by showing that
indeed (6.11) holds in the wider context, uniformly for 𝛼 ∈ 𝔪 and 1 ≤ |𝑏3 | ≤ 𝑍𝜔/2. In doing so, we may
suppose that 𝑥31 is small, for otherwise our previous argument leading to (6.11) still applies. We write

𝑇 (𝛼, x′3) = 𝑊 (𝑏3𝛼x′3
h′3 ,X′′

3 ; h′′3 ).

Then

𝑊3 (𝑏3𝛼,X) =
∑
x′3

𝑇 (𝛼, x′3),

with the sum extending over 1
2𝑋3 𝑗 ≤ |𝑥3 𝑗 | ≤ 𝑋3 𝑗 (1 ≤ 𝑗 ≤ 𝐽 ′3).

We apply Weyl’s inequality to 𝑇 (𝛼, x′3). Let 𝐾 = 2 |h′′3 |1−𝐽3+𝐽 ′3 , and note that all entries in X′′
3 are at

least as large as 𝑍𝜔 . Hence, whenever the real number 𝛾 and 𝑐 ∈ Z and 𝑡 ∈ N are such that |𝑡𝛾−𝑐 | ≤ 𝑡−1,
then by Lemma 6.1, one has

|𝑊 (𝛾,X′′
3 ; h′′3 ) |

𝐾 
 〈X′′
3 〉

𝐾+𝜀
(1
𝑡
+ 1
𝑍𝜔

+ 𝑡

X′′
3

h′′3

)
. (6.27)

By Dirichlet’s theorem on diophantine approximation, there are c and t with 𝑡 ≤ 𝑍−𝜔X′′
3

h′′3 and
|𝑡𝛾 − 𝑐 | ≤ 𝑍𝜔X′′

3
−h′′3 . Then, on applying a familiar transference principle (see [72, Exercise 2.8.2]) to

(6.27), we find that

|𝑊 (𝛾,X′′
3 ; h′′3 ) |

𝐾 
 〈X′′
3 〉

𝐾+𝜀
( 1
𝑍𝜔

+ 1
𝑡 + X′′

3
h′′3 |𝑡𝛾 − 𝑐 |

)
.

Since there is a variable that is not small, we have 𝐾 < 𝐻, and hence that 𝐾 ≤ 𝐻/2. Consequently, for a
given x′3, we either have 𝑇 (𝛼, x′3) 
 〈X′′

3 〉𝑍
−𝜔/(3𝐻 ) or there are 𝑡 = 𝑡 (x′3) and 𝑐 = 𝑐(x′3) with 𝑡 ≤ 𝑍𝜔/3

and 


𝑏3𝛼x′3
h′3 − 𝑐

𝑡




 ≤ 𝑍𝜔/3

𝑡X′′
3

h′′3
. (6.28)
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Let 𝒳 be the set of all x′3 where the latter case occurs. Then

𝑊3 (𝑏3𝛼,X) 
 〈X3〉𝑍−𝜔/(3𝐻 ) + 〈X′′
3 〉

∑
x′3∈𝒳

(
𝑡 + X′′

3
h′′3 |𝑡𝑏3𝛼x′3

h′3 − 𝑐 |
)−1/𝐻

. (6.29)

We write 𝑄 = X′
3

h′3𝑍𝜔 and apply Dirichlet’s theorem again to find coprime numbers a, q with
1 ≤ 𝑞 ≤ 𝑄 and |𝑞𝑏3𝛼 − 𝑎 | ≤ 𝑄−1. On comparing this approximation to 𝑏3𝛼 with that given by (6.28),
we find that whenever x′3 ∈ 𝒳, then

|𝑎𝑡x′3
h′3 − 𝑐𝑞 | ≤ 𝑄𝑍𝜔/3X′′

3
−h′′3 +𝑄−1𝑡X′

3
h′3 . (6.30)

But 𝑡 ≤ 𝑍𝜔/3, and therefore, the second summand on the right does not exceed 𝑍−𝜔/2. For the first
summand, we note that

𝑄𝑍𝜔/3X′′
3
−h′′3 = 𝑍4𝜔/3X′

3
2h′3 X3

−h3 ≤ 𝑍4𝜔/3−1X′
3

2h′3 . (6.31)

Further, by (6.14), we have 〈X′
3〉 ≤ 𝑍

10𝑘𝜔𝐽3 , and hence that X′
3

2h′3 ≤ 〈X′
3〉

2 |h | ≤ 𝑍20𝑘𝜔𝐽3 |h3 | . However,
it is immediate from (6.5) that

4
3
𝜔 + 20𝑘𝜔𝐽3 |h3 | < 1,

so that the expression in (6.31) tends to zero as 𝑍 →∞. By (6.30), we see that for large Z we must have
𝑎𝑡x′3

h′3 = 𝑐𝑞. Hence, 𝑡 = 𝑞/(𝑞, x′3
h′3 ), and (6.29) simplifies to

𝑊3(𝑏3𝛼,X) 
 〈X3〉𝑍−𝜔/(3𝐻 ) + 〈X′′
3 〉

∑
x′3∈𝒳

(𝑞, x′3
h′3 )1/𝐻

(
𝑞 + X−h3

3 |𝑏3 | |𝑞𝑏3𝛼 − 𝑎 |
)−1/𝐻

.

Here, we can sum over all x′3 and apply an argument paralleling that leading from (6.22) to (6.23). This
produces

𝑊3 (𝑏3𝛼,X) 
 〈X3〉𝑍−𝜔/(3𝐻 ) + 〈X3〉𝑞𝜀
(
𝑞 + X−h3

3 |𝑞𝑏3𝛼 − 𝑎 |
)−1/𝐻

.

The bound (6.11) is now evident, and the proof of Proposition 5.2 is complete.

7. Upper bound estimates

7.1. The upper bound hypothesis

As we mentioned in the introduction, not only asymptotic information of the type encoded in Hypothesis
5.1 is required as an input for the transition method in Section 8, but also certain upper bound estimates
that are needed, for example, to handle the contribution to the count that comes from solutions of (1.2)
where the summands are very unbalanced. Again, we formulate the requirements as a hypothesis that
can then be checked in the particular cases at hand. We recall the definition of the block matrix

𝒜 =

(
𝒜1 𝒜2
𝒜3 𝒜4

)
∈ R(𝐽+1)×(𝑁+𝑘) (7.1)

in (3.10). In the slightly simpler setup of the torsor equation (1.2) and the height conditions (1.3) we have

𝒜1 = (𝛼𝜈𝑖 𝑗 ) ∈ R𝐽×𝑁≥0 (7.2)
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with 0 ≤ 𝑖 ≤ 𝑘 , 1 ≤ 𝑗 ≤ 𝐽𝑖 , 1 ≤ 𝜈 ≤ 𝑁 and

𝒜2 = (𝑒𝜇𝑖 𝑗 ) ∈ R
𝐽×𝑘 with𝑒𝜇𝑖 𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿𝜇=𝑖ℎ𝑖 𝑗 𝑖 < 𝑘, 𝜇 < 𝑘,

−ℎ𝑘 𝑗 𝑖 = 𝑘, 𝜇 < 𝑘,

−1 𝑖 < 𝑘, 𝜇 = 𝑘,

ℎ𝑘 𝑗 − 1 𝑖 = 𝑘, 𝜇 = 𝑘.

(7.3)

This notation is more convenient for the analytic manipulations in the following sections.
Throughout, we assume that

rk(𝒜1) = rk(𝒜) = 𝑅 (say). (7.4)

In our applications, this will be satisfied by Lemma 3.10, and R plays by Lemma 4.7 the same role as in
(4.9). We define

𝑐2 = 𝐽 − 𝑅 (7.5)

so that by (4.9) this choice of 𝑐2 is the expected exponent in (1.5). For any vector 𝜁 satisfying the
properties specified in (5.10), where we allow more generally also 𝜁𝑖 ≥ 0, and for arbitrary 𝜁0 > 0, we
also assume that the system of 𝐽 + 1 linear equations(

𝒜1
𝒜3

)
𝜎 =

(
1 − ℎ01𝜁0, . . . , 1 − ℎ𝑘𝐽𝑘 𝜁𝑘 , 1

)�
(7.6)

in N variables has a solution 𝜎 ∈ R𝑁>0. In our applications, this is ensured by Lemma 3.11 (whose proof
also works for 𝜁𝑖 ≥ 0).

Remark 7.1. The condition rk𝒜 = rk𝒜1 puts some restrictions on the height matrix 𝒜1. For instance,
no row of 𝒜1 can vanish completely (since every column of 𝒜2 is linearly dependent on the columns of
𝒜1). For future reference, we remark that this implies that the set of conditions (1.3) for 𝑥𝑖 𝑗 ∈ Z \ {0}
implies |𝑥𝑖 𝑗 | ≤ 𝐵 for all (𝑖, 𝑗).

Now, let𝐻 ≥ 1, 0 < 𝜆 ≤ 1 and b, y ∈ N𝐽 . Let 𝑁b,y (𝐵, 𝐻, 𝜆) be the number of solutions x ∈ (Z\{0})𝐽
satisfying the conditions

𝑘∑
𝑖=1

𝐽𝑖∏
𝑗=1
(𝑏𝑖 𝑗𝑥𝑖 𝑗 )ℎ𝑖 𝑗 = 0,

𝑘∏
𝑖=0

𝐽𝑖∏
𝑗=1
|𝑦𝑖 𝑗𝑥𝑖 𝑗 |𝛼

𝜈
𝑖 𝑗 ≤ 𝐵 (1 ≤ 𝜈 ≤ 𝑁), (7.7)

and at least one of the inequalities

min
𝑖 𝑗
|𝑥𝑖 𝑗 | ≤ 𝐻, min

1≤𝑖≤𝑘

𝐽𝑖∏
𝑗=1
|𝑥𝑖 𝑗 |ℎ𝑖 𝑗 <

(
max

1≤𝑖≤𝑘

𝐽𝑖∏
𝑗=1
|2𝑥𝑖 𝑗 |ℎ𝑖 𝑗

)1−𝜆
. (7.8)

Note that for x ∈ (Z \ {0})𝐽 satisfying (7.7), the first condition in (7.8) is always satisfied for 𝐻 = 𝐵
and the second condition in (7.8) is never satisfied for 𝜆 = 1. Let 𝒮y (𝐵, 𝐻, 𝜆) denote the set of all
x ∈ [1,∞)𝐽 that satisfy (7.8) and the N inequalities in the second part of (7.7). As in (1.4), we denote
by 𝑆𝜌, 1 ≤ 𝜌 ≤ 𝑟 , subsets of the set of pairs (𝑖, 𝑗) with 0 ≤ 𝑖 ≤ 𝑘 , 1 ≤ 𝑗 ≤ 𝐽𝑖 corresponding to the
coprimality conditions.
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Hypothesis 7.2. Let 𝑐2 be the number introduced in (7.5), and let 𝜆 be as in Hypothesis 5.1. Suppose
that there exist 𝜂 = (𝜂𝑖 𝑗 ) ∈ R𝐽>0 and 𝛿2, 𝛿

∗
2 > 0 with the following properties:

𝐶1 (𝜂) :
∑

(𝑖, 𝑗) ∈𝑆𝜌

𝜂𝑖 𝑗 ≥ 1 + 𝛿2 for all 1 ≤ 𝜌 ≤ 𝑟, (7.9)

𝑁b,b·y (𝐵, 𝐻, 𝜆) 
 𝐵(log 𝐵)𝑐2−1+𝜀 (1 + log𝐻)b−𝜂 〈y〉−𝛿∗2 (7.10)

and ∫
𝒮y (𝐵,𝐻 ,𝜆)

∏
𝑖 𝑗

𝑥
−ℎ𝑖 𝑗 𝜁𝑖
𝑖 𝑗 dx 
 𝐵(log 𝐵)𝑐2−1+𝜀 (1 + log𝐻)〈y〉−𝛿∗2 (7.11)

for any 𝜀 > 0 and some 𝜁 satisfying (5.10).

The bound (7.10) is the desired upper bound 𝐵(log 𝐵)𝑐2+𝜀 with some saving in the coefficients b, y
and with some extra logarithmic saving in the situation of condition (7.8), that is, if one variable is short
(that is, log𝐻 = 𝑜((log 𝐵)1+𝜀)) or the blocks

∏
𝑗 |𝑥𝑖 𝑗 |ℎ𝑖 𝑗 for 1 ≤ 𝑖 ≤ 𝑘 are unbalanced in size (so that

the second assumption in (7.8) holds and we may choose H very small even if all 𝑥𝑖 𝑗 are large).

7.2. Reduction to linear algebra

Our main applications involve the torsor equation (1.6). In this case, the verification of Hypothesis 7.2
can be checked simply by a linear program. This will be established in Proposition 7.6 below. We start
with two elementary lemmas. Here, (., ., .) denotes the greatest common divisor, [., ., .] denotes the
least common multiple and 𝜏 is the divisor function.

Lemma 7.3. Let v ∈ Z3 be primitive, and let 𝐻1, 𝐻2, 𝐻3 > 0. Then the number of primitive u ∈ Z3 that
satisfy 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3 = 0 and that lie in the box |𝑢𝑖 | ≤ 𝐻𝑖 (1 ≤ 𝑖 ≤ 3) is 𝑂 (1 + 𝐻1𝐻2 |𝑣3 |−1).

This is [43, Lemma 3].

Lemma 7.4. Let 𝛼, 𝛽, 𝛾 ∈ N, 𝐴, 𝐵, 𝑋1, . . . , 𝑋𝑟 ≥ 1, ℎ1, . . . , ℎ𝑟 ∈ N with ℎ1 ≤ · · · ≤ ℎ𝑟 . Then∑
𝑎≤𝐴

∑
𝑏≤𝐵

∑
𝑥 𝑗 ≤𝑋 𝑗
1≤ 𝑗≤𝑟

(𝛼𝑎, 𝛽𝑏, 𝛾xh) 
 (𝛼, 𝛽, 𝛾)1/ℎ𝑟 (𝛼, 𝛽)1−1/ℎ𝑟 𝜏(𝛼)𝜏(𝛽)𝜏(𝛾)𝜏𝑟 (𝛼𝛽𝛾)𝐴𝐵〈X〉.

Proof. The left-hand side of the formula is at most∑
𝑓

𝑓
∑
𝑎≤𝐴
𝑓 |𝛼𝑎

∑
𝑏≤𝐵
𝑓 |𝛽𝑏

∑
𝑥 𝑗 ≤𝑋 𝑗 (1≤ 𝑗≤𝑟 )

𝑓 |𝛾xh

1 ≤ 𝐴𝐵
∑
𝑓

( 𝑓 , 𝛼) ( 𝑓 , 𝛽)
𝑓

∑
𝑓1 · · · 𝑓𝑟= 𝑓 /( 𝑓 ,𝛾)

∑
𝑥 𝑗 ≤𝑋 𝑗 (1≤ 𝑗≤𝑟 )

𝑓𝑗 |𝑥
ℎ 𝑗
𝑗

1

≤ 𝐴𝐵〈X〉
∑
𝑓

( 𝑓 , 𝛼) ( 𝑓 , 𝛽) ( 𝑓 , 𝛾)1/ℎ𝑟 𝜏𝑟 ( 𝑓 )
𝑓 1+1/ℎ𝑟

≤ 𝜁 (1 + 1/ℎ𝑟 )𝑟 𝐴𝐵〈X〉
∑
𝑎 |𝛼

∑
𝑏 |𝛽

∑
𝑐 |𝛾

𝑎𝑏𝑐1/ℎ𝑟 𝜏𝑟 ([𝑎, 𝑏, 𝑐])
[𝑎, 𝑏, 𝑐]1+1/ℎ𝑟

.

Since 𝑎𝑏𝑐𝛿 [𝑎, 𝑏, 𝑐]−1−𝛿 ≤ (𝑎, 𝑏)1−𝛿 (𝑎, 𝑏, 𝑐) 𝛿 for 0 ≤ 𝛿 ≤ 1, the lemma follows. �

We apply the previous two lemmas to analyze the number of solutions x ∈ (Z \ {0})𝐽 to the first
equation in (7.7) in the special case where 𝑘 = 3, 𝐽1 = 𝐽2 = 2 and ℎ11 = ℎ12 = ℎ21 = ℎ22 = 1, cf. (1.6).
In this case, the equation reads

𝑏11𝑏12𝑥11𝑥12 + 𝑏21𝑏22𝑥21𝑥22 +
𝐽3∏
𝑗=1
(𝑏3 𝑗𝑥3 𝑗 )ℎ3 𝑗 = 0. (7.12)

https://doi.org/10.1017/fms.2023.123 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.123


Forum of Mathematics, Sigma 45

Without loss of generality, assume

ℎ31 ≤ · · · ≤ ℎ3𝐽3 , and let 𝜈be the largest index with ℎ3𝜈 = 1. (7.13)

If no such index exists, we put 𝜈 = 0. For notational simplicity, we write

𝜇 = 1 − ℎ−1
3𝐽3

∈ [0, 1). (7.14)

Suppose first that 𝜈 ≥ 1. Let us temporarily restrict to x satisfying

(𝑥11𝑥12, 𝑥21𝑥22, 𝑥31 · · · 𝑥3𝜈) = 1. (7.15)

For 𝑋𝑖 𝑗 ≤ |𝑥𝑖 𝑗 | ≤ 2𝑋𝑖 𝑗 in dyadic boxes, by Lemma 7.3 with 𝑥12, 𝑥22, 𝑥31 in the roles of 𝑢1, 𝑢2, 𝑢3 and

𝑣3 =
𝑥−1

31
∏

𝑗 (𝑏3 𝑗𝑥3 𝑗 )ℎ3 𝑗(
𝑏11𝑏12𝑥11, 𝑏21𝑏22𝑥21, 𝑥

−1
31
∏

𝑗 (𝑏3 𝑗𝑥3 𝑗 )ℎ3 𝑗
)

(since v must be primitive) and Lemma 7.4, the number of such solutions to (7.12) is


 〈X0〉
∑∑

𝑋11≤𝑥11≤2𝑋11
𝑋21≤𝑥21≤2𝑋21

∑
𝑋3 𝑗 ≤𝑥3 𝑗 ≤2𝑋3 𝑗

2≤ 𝑗≤𝐽3

(
1 + 𝑋12𝑋22

𝑥−1
31
∏

𝑗 (𝑏3 𝑗𝑥3 𝑗 )ℎ3 𝑗

(
𝑏11𝑏12𝑥11, 𝑏21𝑏22𝑥21, 𝑥

−1
31

∏
𝑗

(𝑏3 𝑗𝑥3 𝑗 )ℎ3 𝑗
))


 〈X0〉
(
𝑋11𝑋21

〈X3〉
𝑋31

+ |b|𝜀
( (𝑏11𝑏12, 𝑏21𝑏22)

bh3
3

)𝜇
𝑋11𝑋12𝑋21𝑋22

∏
𝑗

𝑋
1−ℎ3 𝑗
3 𝑗

)
for every 𝜀 > 0 and 𝜇 as in (7.14). By symmetry, this improves itself to

〈X0〉
(min(𝑋11, 𝑋12)min(𝑋21, 𝑋22)〈X3〉

max(𝑋31, . . . , 𝑋3𝜈)
+ |b|𝜀

( (𝑏11𝑏12, 𝑏21𝑏22)
bh3

3

)𝜇
𝑋11𝑋12𝑋21𝑋22

∏
𝑗

𝑋
1−ℎ3 𝑗
3 𝑗

)
.

(7.16)

Permuting the roles of 𝑢1, 𝑢2, 𝑢3 in Lemma 7.3, we obtain similarly the bound


 〈X0〉
∑∑

𝑋11≤𝑥11≤2𝑋11
𝑋21≤𝑥21≤2𝑋21

∑
𝑋3 𝑗 ≤𝑥3 𝑗 ≤2𝑋3 𝑗

2≤ 𝑗≤𝐽3

(
1 + 𝑋12𝑋31

𝑏21𝑏22𝑥21

(
𝑏11𝑏12𝑥11, 𝑏21𝑏22𝑥21,

∏
𝑗

(𝑏3 𝑗𝑥3 𝑗 )ℎ3 𝑗
))


 〈X0〉
(
𝑋11𝑋21𝑋32 · · · 𝑋3𝐽3 + |b|𝜀𝑋11𝑋12〈X3〉

)
.

Again by symmetry, this improves itself to

〈X0〉
(min(𝑋11, 𝑋12)min(𝑋21, 𝑋22)〈X3〉

max(𝑋31, . . . , 𝑋3𝜈)
+ |b|𝜀 min(𝑋11𝑋12, 𝑋21𝑋22)〈X3〉

)
.
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Together with (7.16), we now see that the number of x ∈ (Z \ {0})𝐽 satisfying (7.12), (7.15) and
𝑋𝑖 𝑗 ≤ |𝑥𝑖 𝑗 | ≤ 2𝑋𝑖 𝑗 does not exceed

|b|𝜀 〈X0〉
(min(𝑋11, 𝑋12)min(𝑋21, 𝑋22)〈X3〉

max(𝑋31, . . . , 𝑋3𝜈)

+ 𝑋11𝑋12𝑋21𝑋22〈X3〉
max(𝑋11𝑋12, 𝑋21𝑋22, (bh3

3 (𝑏11𝑏12, 𝑏21𝑏22)−1)𝜇Xh3
3 )

)
. (7.17)

We now replace the minima and maxima in (7.17) by suitable geometric means. With future applications
in mind, we keep the result as general as is possible.

For ℓ = 1, 2 and 𝜏 (ℓ) = (𝜏 (ℓ)𝑖 𝑗 ) ∈ R
𝐽
>0 with

𝜏 (ℓ)0 𝑗 = 1, 𝜏 (ℓ)11 + 𝜏 (ℓ)12 ≥ 1, 𝜏 (ℓ)21 + 𝜏 (ℓ)22 ≥ 1,
𝜈∑
𝑗=1
𝜏 (ℓ)3 𝑗 ≥ 𝜈 − 1, 𝜏 (ℓ)3 𝑗 = 1 ( 𝑗 > 𝜈),

min(𝜏 (ℓ)11 , 𝜏
(ℓ)
12 ) +min(𝜏 (ℓ)21 , 𝜏

(ℓ)
22 ) +min(𝜏 (ℓ)31 , . . . , 𝜏

(ℓ)
3𝜈 ) > 1 (7.18)

(where 𝜈 is as in (7.13)), we have

〈X0〉min(𝑋11, 𝑋12)min(𝑋21, 𝑋22)〈X3〉
max(𝑋31, . . . , 𝑋3𝜈)

≤ X𝜏 (ℓ) .

(The second line in (7.18) is not needed here but will be required later when we remove condition
(7.15).) Let 𝜁, 𝜁 ′ satisfy (5.10), and let 𝜁0, 𝜁

′
0 ∈ R be arbitrary. Then

〈X0〉𝑋11𝑋12𝑋21𝑋22〈X3〉
max(𝑋11𝑋12, 𝑋21𝑋22, (bh3

3 (𝑏11𝑏12, 𝑏21𝑏22)−1)𝜇Xh3
3 )

≤
( (𝑏11𝑏12𝑏21𝑏22)1/2

bh3
3

)𝜇𝜁 ′3 ∏
𝑖 𝑗

𝑋
1−ℎ𝑖 𝑗 𝜁 ′𝑖
𝑖 𝑗 .

Thus, we can bound (7.17) by

|b|𝜀
(
X𝜏 (1) +

( (𝑏11𝑏12𝑏21𝑏22)1/2

bh3
3

)𝜇𝜁 ′3 ∏
𝑖 𝑗

𝑋
1−ℎ𝑖 𝑗 𝜁 ′𝑖
𝑖 𝑗

)
and also by

|b|𝜀+1
(
X𝜏 (2) +

∏
𝑖 𝑗

𝑋
1−ℎ𝑖 𝑗 𝜁𝑖
𝑖 𝑗

)
and so, for any 0 < 𝛼 ≤ 1, by

|b|𝜀+𝛼
(
X𝜏 (1) +

( (𝑏11𝑏12𝑏21𝑏22)1/2

bh3
3

)𝜇𝜁 ′3 ∏
𝑖 𝑗

𝑋
1−ℎ𝑖 𝑗 𝜁 ′𝑖
𝑖 𝑗

)1−𝛼 (
X𝜏 (2) +

∏
𝑖 𝑗

𝑋
1−ℎ𝑖 𝑗 𝜁𝑖
𝑖 𝑗

)𝛼
. (7.19)

We will apply this with 𝛼 very small (but fixed). The idea of this maneuver is to separate the b- and
y-decay in (7.10) from the bound in B and H. Before we proceed with the estimation, we remove the
condition (7.15). Let us therefore assume that (𝑥11𝑥12, 𝑥21𝑥22, 𝑥31 · · · 𝑥3𝜈) = 𝑑. Then we can apply the
previous analysis with 𝑋𝑖 𝑗/𝑑𝑖 𝑗 in place of 𝑋𝑖 𝑗 for numbers 𝑑𝑖 𝑗 satisfying 𝑑11𝑑12 = 𝑑21𝑑22 = 𝑑31 · · · 𝑑3𝜈 =
𝑑 for 𝑖 = 1, 2, 3. The second line in (7.18) and (5.10) (recall that ℎ11 = ℎ12 = ℎ21 = ℎ22 = ℎ31 = · · · =
ℎ3𝜈 = 1) ensure that summing (7.19) over all d (and all such combinations of 𝑑𝑖 𝑗 ) yields a convergent
sum. Thus the bound (7.19) remains true for the number of all x ∈ (Z \ {0})𝐽 satisfying (7.12) and
𝑋𝑖 𝑗 ≤ |𝑥𝑖 𝑗 | ≤ 2𝑋𝑖 𝑗 .
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We are currently working under the assumption 𝜈 ≥ 1, but this is only for notational convenience.
Indeed, if 𝜈 = 0, we apply Lemma 7.3 with one of 𝑢1, 𝑢2, 𝑢3 equal to 1, and in (7.17) we agree on the
convention that the maximum of the empty set is 1. Condition (7.15) is automatically satisfied in this
case (the empty product being defined as 1), and hence the second line in (7.18) is not needed so that we
may define as usual the minimum of the empty set as ∞. With these conventions, (7.19) remains true
also if 𝜈 = 0.

We now invoke the N inequalities in (7.7). We choose

𝜁 ′ = (𝜁 ′1, 𝜁
′
2, 𝜁

′
3) =

(1
2
− 1

5ℎ3𝐽3

,
1
2
− 1

5ℎ3𝐽3

,
2

5ℎ3𝐽3

)
and

𝜏 (1) =
(
1 − ℎ01𝜁

′′
0 , . . . , 1 − ℎ𝑘𝐽𝑘 𝜁

′′
𝑘

)
(7.20)

where 𝜁 ′′ = (𝜁 ′′1 , 𝜁
′′
2 , 𝜁

′′
3 ) satisfies

𝜁 ′′ = (𝜁 ′′1 , 𝜁
′′
2 , 𝜁

′′
3 ) =

{
(1/3, 1/3, 1/3), ℎ3𝐽3 = 1,
(1/2, 1/2, 0), ℎ3𝐽3 > 1.

Then 𝜏 (1) satisfies (7.18). By (7.6), there exists 𝜎 (1) ∈ R𝑁>0 with

|𝜎 (1) |1 ≤ 1, 𝒜1𝜎
(1) = 𝜏 (1) . (7.21)

Such a vector also exists if 𝜏 (1) is replaced by 𝜏 = (1 − ℎ00𝜁
′
0, . . . , 1 − ℎ3𝐽3 𝜁

′
3).

Now, taking suitable combinations of the N inequalities of the second condition in (7.7), we see that
every x satisfying these also satisfies∏

𝑖 𝑗

|𝑥𝑖 𝑗 |𝜏
(1)
𝑖 𝑗 ≤ 𝐵y−𝜏 (1) ,

∏
𝑖 𝑗

|𝑥𝑖 𝑗 |1−ℎ𝑖 𝑗 𝜁
′
𝑖 ≤ 𝐵

∏
𝑖 𝑗

𝑦
ℎ𝑖 𝑗 𝜁

′
𝑖 −1

𝑖 𝑗 .

Define

𝜁∗ =
(
𝜁 ′1 −

1
2
𝜇𝜁 ′3, 𝜁

′
2 −

1
2
𝜇𝜁 ′3, 𝜁

′
3 (1 + 𝜇)

)
=
(1
2
− 1

5(1 + 𝜇)ℎ3𝐽3

,
1
2
− 1

5(1 + 𝜇)ℎ3𝐽3

,
2

5(1 + 𝜇)ℎ3𝐽3

)
with 𝜇 as in (7.14) and 𝜏 = (1 − ℎ𝑖 𝑗 𝜁∗𝑖 )𝑖 𝑗 . We summarize our findings in the following lemma.

Lemma 7.5. In the situation of equation (7.12), suppose that b, y ∈ N𝐽 , 1 ≤ 𝐻 ≤ 𝐵, 0 < 𝛼, 𝜆 ≤ 1,
𝜏∗ � min𝑖 𝑗 (𝜏 (1)𝑖 𝑗 , 1 − ℎ𝑖 𝑗 𝜁

′
𝑖 ) > 0. Let 𝜁 satisfy (5.10) and 𝜏 (2) ∈ R𝐽>0 as in (7.18). Then

𝑁b,b·y(𝐵, 𝐻, 𝜆) 
 |b|𝜀+𝛼
(
〈y〉−𝜏∗

(
b−𝜏 (1) + b−𝜏̃

)
𝐵
)1−𝛼∑

X

∗ (
X𝜏 (2) 𝛼 +

∏
𝑖 𝑗

𝑋
(1−ℎ𝑖 𝑗 𝜁𝑖 )𝛼
𝑖 𝑗

)
, (7.22)

where X = (𝑋𝑖 𝑗 ) and the asterisk indicates that each 𝑋𝑖 𝑗 = 2𝜉𝑖 𝑗 runs over powers of 2 and is subject to∏
𝑖 𝑗 𝑋

𝛼𝜈𝑖 𝑗
𝑖 𝑗 ≤ 𝐵 for 1 ≤ 𝜈 ≤ 𝑁 and at least one of the inequalities

min
𝑖 𝑗
𝑋𝑖 𝑗 ≤ 𝐻, min

1≤𝑖≤𝑘

𝐽𝑖∏
𝑗=1
𝑋
ℎ𝑖 𝑗
𝑖 𝑗 <

(
max

1≤𝑖≤𝑘

𝐽𝑖∏
𝑗=1
(2𝑋𝑖 𝑗 )ℎ𝑖 𝑗

)1−𝜆
.
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Similarly, but in a much simpler way, we derive the continuous analogue∫
𝒮y (𝐵,𝐻 ,𝜆)

∏
𝑖 𝑗

𝑥
−ℎ𝑖 𝑗 𝜁𝑖
𝑖 𝑗 dx 


(
〈y〉−𝜏†𝐵

)1−𝛼∑
X

∗∏
𝑖 𝑗

𝑋
(1−ℎ𝑖 𝑗 𝜁𝑖 )𝛼
𝑖 𝑗 (7.23)

with 𝜏† = min𝑖 𝑗 (1 − ℎ𝑖 𝑗 𝜁𝑖) > 0 and the sum is subject to the same conditions.
As mentioned above, we will choose 𝛼 in (7.22) very small. The key property of 𝜏 (1) and 𝜏 is that all

their entries are ≥ 1/2 where equality is only possible for 𝜏 (1) at indices (𝑖 𝑗) with 𝑖 ∈ {1, 2} if ℎ3𝐽3 ≥ 2.
Since |𝑆𝜌 | ≥ 2 for all 1 ≤ 𝜌 ≤ 𝑟 , we conclude that the conditions

𝐶1
(
(1 − 𝛼)𝜏 (1)

)
, 𝐶1

(
(1 − 𝛼)𝜏̃

)
in (7.9) hold for sufficiently small 𝛼 > 0 provided that

max
𝑖 𝑗
ℎ𝑖 𝑗 = 1 or there exists no 𝜌 with 𝑆𝜌 = {(𝑖1, 𝑗1), (𝑖2, 𝑗2)}, 𝑖1, 𝑖2 ∈ {1, 2}. (7.24)

We now transform the X-sums in (7.22) and (7.23). For an arbitrary vector 𝜏 ∈ R𝐽≥0, we rewrite a
sum

∑∗
X X𝜏𝛼 of the type appearing in (7.22) and (7.23) as∑ ∗

𝜉 ∈N𝐽0

𝐵𝛼 𝜉�𝜏 , 𝜉 =
log 2
log 𝐵

𝜉, (7.25)

and now
∑∗ indicates that the sum is subject to

𝒜�
1 𝜉 ≤ (1, . . . , 1)

� ∈ R𝑁 (7.26)

(the inequality being understood componentwise) and at least one of the inequalities

𝜉𝑖 𝑗 ≤
log𝐻
log 𝐵

for some 𝑖, 𝑗 , (7.27)

min
1≤𝑖≤𝑘

𝐽𝑖∑
𝑗=1
𝜉𝑖 𝑗ℎ𝑖 𝑗 < max

1≤𝑖≤𝑘

𝐽𝑖∑
𝑗=1

(
𝜉𝑖 𝑗 +

log 2
log 𝐵

)
ℎ𝑖 𝑗 (1 − 𝜆). (7.28)

For future reference, we note that

max
1≤𝑖≤𝑘

𝐽𝑖∑
𝑗=1

(
𝜉𝑖 𝑗 +

log 2
log 𝐵

)
ℎ𝑖 𝑗 (1 − 𝜆) = max

1≤𝑖≤𝑘

𝐽𝑖∑
𝑗=1
𝜉𝑖 𝑗ℎ𝑖 𝑗 (1 − 𝜆) +𝑂

( 1
log 𝐵

)
. (7.29)

For 0 ≤ 𝑖 ≤ 𝑘 , 1 ≤ 𝑗 ≤ 𝐽𝑖 , 0 < 𝜆 ≤ 1 and a permutation 𝜋 ∈ 𝑆𝑘 , we consider the closed, convex
polytopes

𝒫 = {𝜓 ∈ R𝐽 : 𝜓 ≥ 0, 𝒜�
1 𝜓 ≤ (1, . . . , 1)

�},
𝒫𝑖 𝑗 = {𝜓 ∈ 𝒫 : 𝜓𝑖 𝑗 = 0},

𝒫(𝜆, 𝜋) =
{
𝜓 ∈ 𝒫 :

𝐽𝜋 (1)∑
𝑗=1

𝜓𝜋 (1) , 𝑗ℎ𝜋 (1) , 𝑗 ≤ · · · ≤
𝐽𝜋 (𝑘)∑
𝑗=1

𝜓𝜋 (𝑘) , 𝑗ℎ𝜋 (𝑘) , 𝑗 , (7.30)

𝐽𝜋 (1)∑
𝑗=1

𝜓𝜋 (1) , 𝑗ℎ𝜋 (1) , 𝑗 ≤ (1 − 𝜆)
𝐽𝜋 (𝑘)∑
𝑗=1

𝜓𝜋 (𝑘) , 𝑗ℎ𝜋 (𝑘) , 𝑗

}
.
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We assume that

𝐶2 (𝜏) : max{𝜓�𝜏 : 𝜓 ∈ 𝒫} = 1. (7.31)

The intersection of the hyperplaneℋ : 𝜓�𝜏 = 1 with any of the above polytopes is again a closed convex
polytope, and we assume that the dimensions satisfy

𝐶3 (𝜏) :
dim(ℋ ∩𝒫) ≤ 𝑐2,
dim(ℋ ∩𝒫𝑖 𝑗 ) ≤ 𝑐2 − 1, 0 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝐽𝑖 ,
dim(ℋ ∩𝒫(𝜆, 𝜋)) ≤ 𝑐2 − 1, 𝜋 ∈ 𝑆𝑘 .

(7.32)

With this notation and the assumptions (7.31) and (7.32), we return to (7.25). Clearly, the sum has
𝑂 ((log 𝐵)𝐽 ) terms, so the contribution of 𝜉 with

𝜉�𝜏 ≤ 1 − 𝐽 log log 𝐵
𝛼 log 𝐵

to (7.25) is 𝑂 (𝐵𝛼). By (7.31), we may now restrict to

1 − 𝐽 log log 𝐵
𝛼 log 𝐵

≤ 𝜉�𝜏 ≤ 1 (7.33)

in the sense that ∑ ∗

𝜉 ∈N𝐽0

𝐵𝛼 𝜉�𝜏 
 𝐵𝛼
(
1 + #𝒳1 + #𝒳2

)
, (7.34)

where

𝒳1 = {𝜉 ∈ N𝐽0 : (7.26), (7.27), (7.33)}, 𝒳2 = {𝜉 ∈ N𝐽0 : (7.26), (7.28), (7.33)}.

We define

𝒴1 = {𝜉 ∈ R𝐽≥0 : (7.26), (7.27), (7.33)}, 𝒴2 = {𝜉 ∈ R𝐽≥0 : (7.26), (7.28), (7.33)}

and bound #𝒳1 resp. #𝒳2 by the Lipschitz principle, that is, by the volume and the volume of the
boundary of 𝒴1 resp. 𝒴2 (or a superset thereof). By the third condition in (7.32) as well as (7.29)
and (7.33) we see that 𝒴2 is contained in an 𝑂𝛼 (log log 𝐵) neighborhood of a union of polytopes of
dimension at most 𝑐2 − 1 and side lengths 𝑂 (log 𝐵) so that

#𝒳2 
𝛼,𝜆 (log 𝐵)𝑐2−1(log log 𝐵)𝐽−(𝑐2−1) 
 (log 𝐵)𝑐2−1+𝜀 .

Similarly, by the first two conditions in (7.32) and (7.33) we see that𝒴2 is contained in an𝑂𝛼 (log log 𝐵)
neighborhood of a union of parallelepipeds of dimension at most 𝑐2, where at most 𝑐2 − 1 of the side
lengths of each parallelepiped are of size𝑂 (log 𝐵) and the remaining ones (if any) are of size𝑂 (log𝐻).
We conclude

#𝒳1 
𝛼 (log 𝐵)𝑐2−1(log𝐻 + log log 𝐵) (log log 𝐵)𝐽−𝑐2 
 (log 𝐵)𝑐2−1+𝜀 (1 + log𝐻).

We substitute the bounds for #𝒳1, #𝒳2 into (7.34) and use this in (7.22) and (7.23). From Lemma 7.5,
we conclude the following result.

Proposition 7.6. In the situation of equation (7.12), let𝜆 be as in Hypothesis 5.1 and 𝜁 as in (5.10). Define
the matrix 𝒜1 as in (7.2) and the polytopes 𝒫,𝒫𝑖 𝑗 ,𝒫(𝜆, 𝜋) as in (7.30). Choose 𝜏 (2) satisfying (7.18).
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Suppose that (7.24) holds as well as the conditions

𝐶2 (𝜏 (2) ), 𝐶3 (𝜏 (2) ), 𝐶2 ((1 − ℎ𝑖 𝑗 𝜁𝑖)𝑖 𝑗 ), 𝐶3 ((1 − ℎ𝑖 𝑗 𝜁𝑖)𝑖 𝑗 ) (7.35)

hold as in (7.31) and (7.32). Then Hypothesis 7.2 is true.

Condition (7.35) requires a linear program. In principle, this can be done by hand (we show this in a
special case in Appendix A), but a straightforward computer-assisted verification is more time efficient.
We can replace (7.24) by the following condition: There exist vectors 𝜏 (1) ∈ R𝐽 , 𝜎 ∈ R𝑁 satisfying
(7.20) and (7.21) such that 𝐶1 (𝜏 (1) ) holds.

8. The transition method

In this section, we describe a method that derives an asymptotic formula for 𝑁 (𝐵) as in (1.5) from
the input provided by Hypotheses 5.1 and 7.2. In fact, we will only need these hypotheses for certain
choices of parameters to be discussed in a moment. Our main result will be formulated at the end of the
section. In the interest of brevity, we now choose 𝑏1 = · · · = 𝑏𝑘 = 1 in (1.2). No extra difficulties arise
should one wish to handle the more general case, but a more elaborate notation would be needed. All
equations that occur in the examples treated in this paper may be interpreted to have coefficients 1 only.

We begin with some more notation. We continue to use the vector operations introduced in Section 5.
In addition, if ℛ ⊆ R𝑛 and x ∈ R𝑛, then x ·ℛ = {x · y : y ∈ ℛ} ⊆ R𝑛. For v = (𝑣1, . . . , 𝑣𝑛) ∈ R𝑛, we
write

ṽ = (2𝑣1 , . . . , 2𝑣𝑛 ) ∈ R𝑛. (8.1)

For g ∈ N𝑟 , we write 𝜇(g) =
∏𝑟

𝜌=1 𝜇(𝑔𝜌) where 𝜇 denotes the Möbius function. We write 1 = (1, . . . , 1),
the dimension of the vector being understood from the context.

For 0 < Δ < 1, let 𝑓Δ : [0,∞) → [0, 1] be a smooth function with

supp( 𝑓Δ ) ⊆ [0, 1 + Δ), 𝑓Δ = 1 on [0, 1], 𝑑 𝑗

𝑑𝑥 𝑗
𝑓Δ (𝑥) 
 𝑗 Δ

− 𝑗 (8.2)

whose Mellin transform 𝑓̂Δ obeys, once 𝛿3 > 0 and 𝐴 ≥ 0 are fixed, the inequality

d 𝑗

d𝑠 𝑗
𝑓̂Δ (𝑠) 
 𝑗 ,𝐴, 𝛿3

(1 + Δ |𝑠 |)−𝐴
|𝑠 | (8.3)

for all 𝑗 ∈ N0, uniformly in 𝛿3 ≤ �𝑠 < 2. A construction of 𝑓Δ is given in [8, (2.3)]. From (8.3), we
infer the useful estimate

𝒟
(
sa

𝑁∏
𝜈=1

𝑓̂Δ (𝑠𝜈)
)

 Δ−‖a‖1−𝑐 |s|−𝑐 〈s〉−1 (8.4)

for s = (𝑠1, . . . , 𝑠𝑁 ) ∈ C𝑁 with 2 > �𝑠𝜈 ≥ 𝛿3 > 0, a ∈ N𝑁0 , 𝑐 ≥ 1 and any linear differential operator
𝒟 with constant coefficients in 𝑠1, . . . , 𝑠𝑁 , the implied constant being dependent on a, 𝑁, 𝑐,𝒟.

We write
∫ (𝑛) for an iterated n-fold Mellin–Barnes integral. The lines of integration will be clear

from the context or otherwise specified in the text. If all n integrations are over the same line (𝑐), then
we write this as

∫ (𝑛)
(𝑐) .
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We continue to work subject to the conditions (7.4), (7.6). Also, we suppose that Hypotheses 5.1 and
7.2 are available to us. With 𝛽𝑖 as in Hypothesis 5.1 and 𝑆𝜌 as in (1.4), we suppose that there is some
𝛿4 > 0 with∑

(𝑖, 𝑗) ∈𝑆𝜌

(1 − 𝛽𝑖ℎ𝑖 𝑗 ) ≥ 1 + 𝛿4 (1 ≤ 𝜌 ≤ 𝑟) and 𝛽𝑖ℎ𝑖 𝑗 ≤ 1 (1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝐽𝑖). (8.5)

In order to efficiently work with the asymptotic formula in Hypothesis 5.1, it is necessary to rewrite
the singular integral as a Mellin transform. With 𝜁 as in Hypothesis 5.1 (in particular satisfying (5.10)),
we assume that

𝐽𝑖 ≥ 2 whenever 𝜁𝑖 ≥ 1/2. (8.6)

We also define

𝐽∗ = 𝐽1 + · · · + 𝐽𝑘

for the number of variables appearing in the torsor equation.

Lemma 8.1. Let b ∈ (Z \ {0})𝑘 and X ∈ [1/2,∞)𝐽 . For 1 ≤ 𝑖 ≤ 𝑘 , put

𝒦𝑖 (𝑧) =
{
Γ(𝑧) cos(𝜋𝑧/2), ℎ𝑖 𝑗 odd for some 1 ≤ 𝑗 ≤ 𝐽𝑖 ,
Γ(𝑧) exp(i𝜋𝑧/2), ℎ𝑖 𝑗 even for all 1 ≤ 𝑗 ≤ 𝐽𝑖 .

(8.7)

Then, on writing 𝑧𝑘 = 1 − 𝑧1 − · · · − 𝑧𝑘−1, one has

ℐb (X) =
2𝐽 ∗

𝜋
〈X0〉

∫
(𝜁1)

· · ·
∫
(𝜁𝑘−1)

𝑘∏
𝑖=1

𝒦𝑖 (𝑧𝑖)
𝑏𝑧𝑖𝑖

𝐽𝑖∏
𝑗=1

(
𝑋

1−ℎ𝑖 𝑗 𝑧𝑖
𝑖 𝑗

1 − 2ℎ𝑖 𝑗 𝑧𝑖−1

1 − ℎ𝑖 𝑗 𝑧𝑖

) d𝑧1 · · · d𝑧𝑘−1

(2𝜋i)𝑘−1 .

Note that (5.10) implies that �𝑧𝑘 = 𝜁𝑘 .

Proof. We start with the absolutely convergent Mellin identity

𝑒(𝑤) =
∫
𝒞

Γ(𝑠) exp
(

1
2

sgn(𝑤)i𝜋𝑠
)
|2𝜋𝑤 |−𝑠 d𝑠

2𝜋i

for 𝑤 ∈ R \ {0} and 𝒞 the contour

(−1 − i∞,−1 − i] ∪ [−1 − i, 1
𝑘 − i] ∪ [ 1

𝑘 − i, 1
𝑘 + i] ∪ [ 1

𝑘 + i,−1 + i] ∪ [−1 + i] ∪ [−1 + i∞),

which can simply be checked by moving the contour to the left and comparing power series. Integrating
this over 𝒴 as in (5.2) based on ∫

1
2𝑌 ≤𝑦≤𝑌

𝑦−ℎ𝑠 d𝑦 =
1 − 2ℎ𝑠

1 − ℎ𝑠 𝑌
1−ℎ𝑠

and using the definition (5.4), we obtain

𝐼𝑖 (𝑏𝑖𝛽,X𝑖) = 2𝐽𝑖
∫
𝒞

𝒦𝑖 (𝑧𝑖)
(2𝜋 |𝑏𝑖𝛽 |)𝑧𝑖

𝐽𝑖∏
𝑗=1

(
𝑋

1−ℎ𝑖 𝑗 𝑧𝑖
𝑖 𝑗

1 − 2ℎ𝑖 𝑗 𝑧𝑖−1

1 − ℎ𝑖 𝑗 𝑧𝑖

) d𝑧𝑖
2𝜋i

(8.8)

for every i. Note that sgn(yh𝑖
𝑖 ) is always 1 if and only if ℎ𝑖 𝑗 is even for all 1 ≤ 𝑗 ≤ 𝐽𝑖 . At this point, we

can straighten the contour and replace it with �𝑧𝑖 = 𝜁𝑖 . The expression is still absolutely convergent,
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provided that (8.6) holds. We insert this formula into (5.5) for 𝑖 = 1, . . . , 𝑘 − 1 getting

ℐb(X) = 〈X0〉
∫ ∞

−∞
2𝐽1+···+𝐽𝑘−1

∫ (𝑘−1)

�𝑧𝑖=𝜁𝑖

𝑘−1∏
𝑖=1

𝒦𝑖 (𝑧𝑖)
(2𝜋 |𝑏𝑖 |)𝑧𝑖

𝐽𝑖∏
𝑗=1

(
𝑋

1−ℎ𝑖 𝑗 𝑧𝑖
𝑖 𝑗

1 − 2ℎ𝑖 𝑗 𝑧𝑖−1

1 − ℎ𝑖 𝑗 𝑧𝑖

) dz
(2𝜋i)𝑘−1

× 𝐼𝑘 (𝑏𝑘 𝛽,X𝑘 ) |𝛽 |−𝑧1−···−𝑧𝑘−1𝑑𝛽.

The integral in 𝛽 is still absolutely convergent, by (5.3) and (5.10). It is the two-sided Mellin transform
of 𝐼𝑘 (𝑏𝑘 𝛽,X𝑘 ) in 𝛽 at 𝑧𝑘 = 1 − 𝑧1 − · · · − 𝑧𝑘−1. An evaluation can be read off from (8.8) by Mellin
inversion, and the lemma follows. �

We are now prepared to describe our method in detail.

8.1. Step 1: initial manipulations

Let 𝜒 : (Z \ {0})𝐽 → [0, 1] be the characteristic function on the set of solutions to the torsor equation
(1.2) subject to 𝑏1 = · · · = 𝑏𝑘 = 1, and let 𝜓 : (Z \ {0})𝐽 → [0, 1] be the characteristic function on
J-tuples of nonzero integers satisfying the coprimality conditions (1.4). For 1 ≤ 𝜈 ≤ 𝑁 , let

𝑃𝜈 (x) =
∏
𝑖 𝑗

|𝑥𝑖 𝑗 |𝛼
𝜈
𝑖 𝑗 (8.9)

denote the monomials appearing in the height conditions (1.3). We start with some smoothing. Let
0 < Δ < 1/10 and define

𝐹Δ ,𝐵 (x) =
𝑁∏
𝜈=1

𝑓Δ

(
𝑃𝜈 (x)
𝐵

)
.

Then the counting function

𝑁Δ (𝐵) =
∑

x∈(Z\{0})𝐽
𝜓(x)𝜒(x)𝐹Δ ,𝐵 (x)

satisfies

𝑁Δ (𝐵(1 − Δ)) ≤ 𝑁 (𝐵) ≤ 𝑁Δ (𝐵). (8.10)

We remove the coprimality conditions encoded in 𝜓 by Möbius inversion. As in [9, Lemma 2.1], we have

𝑁Δ (𝐵) =
∑

g∈N𝑟
𝜇(g)

∑
x∈(Z\{0})𝐽

𝜒(𝛾 · x)𝐹Δ ,𝐵 (𝛾 · x),

where for given g ∈ N𝑟 , we wrote

𝛾 = (𝛾𝑖 𝑗 ) ∈ N𝐽 , 𝛾𝑖 𝑗 = lcm{𝑔𝜌 | (𝑖, 𝑗) ∈ 𝑆𝜌} (8.11)

for 0 ≤ 𝑖 ≤ 𝑘 , 1 ≤ 𝑗 ≤ 𝐽𝑖 . In the following, we will need (7.10) of Hypothesis 7.2 only for b = 𝛾. For
later purposes, we state the following elementary lemma.

Lemma 8.2. For 𝛾 ∈ N𝐽 as in (8.11), 𝛿 > 0, 1 ≤ 𝜌 ≤ 𝑟 , and 𝜂 = (𝜂𝑖 𝑗 ) ∈ R𝐽≥0, the series∑
g∈N𝑟

𝛾−𝜂𝑔𝛿𝜌
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is convergent provided that ∑
(𝑖, 𝑗) ∈𝑆𝜌

𝜂𝑖 𝑗 > 1 + 𝛿

holds for all 1 ≤ 𝜌 ≤ 𝑟 .

Proof. Suppose that
∑
(𝑖, 𝑗) ∈𝑆𝜌 𝜂𝑖 𝑗 ≥ 1 + 𝛿 + 𝛿0 for all 𝜌 and some 𝛿0 > 0. The sum in question can be

written as an Euler product, and a typical Euler factor has the form∑
𝛼∈N𝑟0

𝑝 𝑓 (𝛼) , 𝑓 (𝛼) = 𝛿𝛼𝜌 −
∑
𝑖, 𝑗

𝜂𝑖 𝑗 max
(𝑖, 𝑗) ∈𝑆𝑡

𝛼𝑡 .

This is

1 +𝑂
( ∞∑
𝛼=1

(1 + 𝛼)𝑟

𝑝𝛼(1+𝛿0)

)
.

The statement is now clear. �

For 1 ≤ 𝑇 ≤ 𝐵, we define

𝑁Δ ,𝑇 (𝐵) =
∑
|g | ≤𝑇

𝜇(g)
∑

x∈(Z\{0})𝐽
𝜒(𝛾 · x)𝐹Δ ,𝐵 (𝛾 · x).

By (7.10), (7.9) (recall Δ ≤ 1/10) and Lemma 8.2, and by an estimate that is often called Rankin’s trick,

|𝑁Δ ,𝑇 (𝐵) − 𝑁Δ (𝐵) | ≤
∑
|g |>𝑇

𝑁𝛾,𝛾 (2𝐵, 2𝐵, 1) 
 𝐵(log 𝐵)𝑐2+𝜀
∑
|g |>𝑇

𝛾−𝜂

≤ 𝐵(log 𝐵)𝑐2+𝜀
∑

g
𝛾−𝜂

( |g|
𝑇

) 𝛿2−𝜀

 𝐵(log 𝐵)𝑐2+𝜀𝑇−𝛿2 . (8.12)

Next, we write each factor 𝑓Δ in the definition of 𝐹Δ ,𝐵 as its own Mellin inverse so that

𝑁Δ ,𝑇 (𝐵) =
∑
|g | ≤𝑇

𝜇(g)
∫ (𝑁 )

(1)

∑
x∈(Z\{0})𝐽

𝜒(𝛾 · x)
𝛾v

∏
𝑖 𝑗

|𝑥𝑖 𝑗 |−𝑣𝑖 𝑗
𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁

,

where

v = (𝑣𝑖 𝑗 ) = 𝒜1s ∈ C𝐽 (8.13)

and 𝒜1 = (𝛼𝜈𝑖 𝑗 ) ∈ R𝐽×𝑁 is as before. By partial summation, we obtain∑
x∈(Z\{0})𝐽

𝜒(𝛾 · x)
𝛾v

∏
𝑖 𝑗

|𝑥𝑖 𝑗 |−𝑣𝑖 𝑗 =
1
𝛾v

(∏
𝑖, 𝑗

𝑣𝑖 𝑗

) ∫
[1,∞)𝐽

∑
0< |𝑥𝑖 𝑗 | ≤𝑋𝑖 𝑗

𝜒(𝛾 · x)X−v−1 dX

=
1
𝛾v

(∏
𝑖, 𝑗

𝑣𝑖 𝑗

1 − 2−𝑣𝑖 𝑗
) ∫

[1,∞)𝐽

∑
1
2 𝑋𝑖 𝑗< |𝑥𝑖 𝑗 | ≤𝑋𝑖 𝑗

𝜒(𝛾 · x)X−v−1 dX,

so that

𝑁Δ ,𝑇 (𝐵) =
∑
|g | ≤𝑇

𝜇(g)
∫ (𝑁 )

(1)

1
𝛾v

(∏
𝑖, 𝑗

𝑣𝑖 𝑗

1 − 2−𝑣𝑖 𝑗
) ∫

[1,∞)𝐽

𝒩𝛾∗ (X)
Xv+1 dX

𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁
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in the notation of Hypothesis 5.1, where

𝛾∗ =
( 𝐽𝑖∏
𝑗=1
𝛾
ℎ𝑖 𝑗
𝑖 𝑗

)
1≤𝑖≤𝑘

∈ N𝑘 . (8.14)

We emphasize that we need (5.9) of Hypothesis 5.1 only for b = 𝛾∗.

8.2. Step 2: removing the cusps

We would like to insert the asymptotic formula from Hypothesis 5.1. This gives a meaningful error
term only if min 𝑋𝑖 𝑗 is not too small, and the formula is only applicable if (5.11) holds. Thus, for
0 < 𝛿 < 1, 0 < 𝜆 ≤ 1 we define the set

ℛ𝛿,𝜆 =
{
X = (X1, . . . ,X𝑘 ) ∈ [1,∞)𝐽 : min

𝑖, 𝑗
𝑋𝑖 𝑗 ≥ max 𝑋 𝛿

𝑖 𝑗 , min
1≤𝑖≤𝑘

Xh𝑖
𝑖 ≥

(
max

1≤𝑖≤𝑘
Xh𝑖
𝑖

)1−𝜆}
.

Correspondingly, we put

𝑁Δ ,𝑇 , 𝛿,𝜆 =
∑
|g | ≤𝑇

𝜇(g)
∫ (𝑁 )

(1)

1
𝛾v

(∏
𝑖, 𝑗

𝑣𝑖 𝑗

1 − 2−𝑣𝑖 𝑗
) ∫

ℛ𝛿,𝜆

𝒩𝛾∗ (X)
Xv+1 dX

𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁

. (8.15)

While 𝜆 is fixed, 𝛿 is allowed to depend on B and will later be chosen as a negative power of log 𝐵. In
particular, all subsequent estimates will be uniform in 𝛿.

Lemma 8.3. We have

𝑁Δ ,𝑇 (𝐵) − 𝑁Δ ,𝑇 , 𝛿,𝜆 
 𝑇𝑟𝐵(log 𝐵)𝑐2+𝜀 (𝛿 + (log 𝐵)−1).

Proof. This is essentially [9, Lemma 5.1]. The idea is to revert all steps from Section 8.1 and apply the
bound (7.10). By a change of variables, we have

𝑁Δ ,𝑇 , 𝛿,𝜆 =
∑
|g | ≤𝑇

𝜇(g)
∫ (𝑁 )

(1)

1
𝛾v

(∏
𝑖, 𝑗

𝑣𝑖 𝑗

1 − 2−𝑣𝑖 𝑗
) ∑
𝜎∈{0,1}𝐽

(−1) |𝜎 |1

×
∫
−̃𝜎 ·ℛ𝛿,𝜆

∑
0< |𝑥𝑖 𝑗 | ≤𝑋𝑖 𝑗

𝜒(𝛾 · x) (𝜎̃ · X)−v dX
〈X〉

𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁

,

where we recall the notation (8.1). By partial summation, this equals

∑
|g | ≤𝑇

𝜇(g)
∫ (𝑁 )

(1)

(∏
𝑖, 𝑗

1
1 − 2−𝑣𝑖 𝑗

) ∑
𝜎∈{0,1}𝐽

(−1) |𝜎 |1 2−
∑
𝑖 𝑗 𝜎𝑖 𝑗 𝑣𝑖 𝑗

×
∑

x∈−̃𝜎 ·ℛ𝛿,𝜆

𝜒(𝛾 · x)
𝛾vxv

𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁

.
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We conclude that

|𝑁Δ ,𝑇 (𝐵) − 𝑁Δ ,𝑇 , 𝛿,𝜆 | ≤
∑
|g | ≤𝑇

∑
𝜎∈{0,1}𝐽




 ∫ (𝑁 )

(1)

(∏
𝑖, 𝑗

1
1 − 2−𝑣𝑖 𝑗

)
× 2−

∑
𝑖 𝑗 𝜎𝑖 𝑗 𝑣𝑖 𝑗

∑
x∈(Z\{0})𝐽 \−̃𝜎 ·ℛ𝛿,𝜆

𝜒(𝛾 · x)
𝛾vxv

𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁




.
Finally, we write each factor (1 − 2−𝑣𝑖 𝑗 ) as a geometric series and apply Mellin inversion to recast the
right-hand side as∑

|g | ≤𝑇

∑
𝜎∈{0,1}𝐽

∑
k∈N𝐽0

∑
x∈(Z\{0})𝐽 \−̃𝜎 ·ℛ𝛿,𝜆

𝜒(𝛾 · x)𝐹Δ ,𝐵 (𝛾 · ("k + 𝜎) · x).
Note that any x ∉ −̃𝜎 ·ℛ𝛿,𝜆 in the support of 𝐹Δ ,𝐵 (𝛾 · ("k + 𝜎) · x) satisfies

min
𝑖 𝑗
|𝑥𝑖 𝑗 | ≤ ((1 + Δ)𝐵) 𝛿 or min

1≤𝑖≤𝑘

𝐽𝑖∏
𝑗=1
|𝑥𝑖 𝑗 |ℎ𝑖 𝑗 ≤

(
max

1≤𝑖≤𝑘

𝐽𝑖∏
𝑗=1
|2𝑥𝑖 𝑗 |ℎ𝑖 𝑗

)1−𝜆

so that

|𝑁Δ ,𝑇 (𝐵) − 𝑁Δ ,𝑇 , 𝛿,𝜆 | ≤ 2𝐽
∑
|g | ≤𝑇

∑
k∈N𝐽0

𝑁𝛾,𝛾 ·̃k((1 + Δ)𝐵, ((1 + Δ)𝐵)
𝛿 , 𝜆)

by (7.8). The lemma follows from (7.10). Note that 𝛿∗2 > 0 in (7.10) ensures that the k-sum converges. �

8.3. Step 3: the error term in the asymptotic formula

We insert Hypothesis 5.1 into (8.15). For convenience, we now write Ψb(X) = 𝑁b (X) −ℰbℐb (X). In
this section, we estimate the contribution of the error Ψb(X), which amounts to bounding

𝐸Δ ,𝑇 , 𝛿,𝜆 =
∑
|g | ≤𝑇




 ∫ (𝑁 )

(1)

1
𝛾v

(∏
𝑖, 𝑗

𝑣𝑖 𝑗

1 − 2−𝑣𝑖 𝑗
) ∫

ℛ𝛿,𝜆

Ψ𝛾∗ (X)
Xv+1 dX

𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁




.
For X ∈ ℛ𝛿,𝜆, we use (5.12) and min 𝑋−𝛿𝛿1

𝑖 𝑗 ≤
∏

𝑖 𝑗 𝑋
−𝛿𝛿1/𝐽
𝑖 𝑗 to conclude that

Ψ𝛾∗ (X) 
 𝛾𝐶h
( 𝑘∏
𝑖=0

𝐽𝑖∏
𝑗=1
𝑋

1−ℎ𝑖 𝑗 𝜁𝑖+𝜀−𝛿𝛿1/𝐽
𝑖 𝑗

)
.

Thus, the X-integral is absolutely convergent provided that

�𝑣𝑖 𝑗 > 1 − ℎ𝑖 𝑗 𝜁𝑖 − 𝛿𝛿1/𝐽 (8.16)

holds for each 𝑖, 𝑗 . We now choose appropriate contours for the s-integral. By (8.13), the choice
�s = 𝜎 = (𝜎𝜈) ∈ R𝑁>0 as in (7.6) is admissible to ensure (8.16). These contours stay also to the right of
the poles of 𝑓̂Δ at 𝑠 = 0 (and in fact inside the validity of (8.3) and (8.4) if 𝛿3 is sufficiently small) and
to the right of the poles of (1 − 2−𝑣𝑖 𝑗 )−1 at �𝑣𝑖 𝑗 = 0 by (5.10) if 𝛿 is sufficiently small. By (7.6), this 𝜎
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satisfies
∑
𝜎𝜈 = 1. We now shift each 𝑠𝜈-contour to �𝑠𝜈 = 𝜎𝜈 − 𝛿𝛿1/(2𝐽𝐴), where

𝐴 = max
𝑖 𝑗

∑
𝜈

𝛼𝜈𝑖 𝑗 .

Then �𝑣𝑖 𝑗 ≥ 1 − ℎ𝑖 𝑗 𝜁𝑖 − 𝛿𝛿1/(2𝐽) in accordance with (8.16), and poles of any (1 − 2−𝑣𝑖 𝑗 )−1 or 𝑓̂Δ (𝑠𝜈)
remain on the left of the lines of integration provided that 𝛿 is less than a sufficiently small constant (it
will later tend to zero as 𝐵 → ∞). Having shifted the s-contour in this way, we estimate trivially. The
ℛ𝛿,𝜆-integral is 
 𝛿−𝐽 so that

𝐸Δ ,𝑇 , 𝛿,𝜆 
 𝛿−𝐽𝐵1− 𝛿𝛿1𝑁
2𝐽𝐴

∑
|g | ≤𝑇

𝛾𝐶h
∫ (𝑁 ) 


〈v〉∏

𝜈

𝑓̂Δ (𝑠𝜈)



 | ds|


 𝑇𝐶𝑆+𝑟𝛿−𝐽𝐵1− 𝛿𝛿1𝑁
2𝐽𝐴 Δ−𝐽+𝜀 (8.17)

by (8.4) (which is still applicable if 𝛿3 is sufficiently small) with 𝒟 = id, 𝑐 = 𝜀, ‖a‖1 = 𝐽, where

𝑆 =
𝑟∑
𝜌=1

∑
(𝑖, 𝑗) ∈𝑆𝜌

ℎ𝑖 𝑗 . (8.18)

8.4. Step 4: inserting the asymptotic formula

We now insert the main term in Hypothesis 5.1 into (8.15). In order to compute this properly, we reinsert
the cuspidal contribution and replace the range ℛ𝛿,𝜆 of integration with [1,∞)𝐽 . In this section, we
estimate the error

𝐸∗Δ ,𝑇 , 𝛿,𝜆 =
∑
|g | ≤𝑇




 ∫ (𝑁 )

(1)

1
𝛾v

(∏
𝑖, 𝑗

𝑣𝑖 𝑗

1 − 2−𝑣𝑖 𝑗
) ∫

[1,∞)𝐽 \ℛ𝛿,𝜆

ℰ𝛾∗ℐ𝛾∗ (X)
Xv+1 dX

𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁




.
We interchange the s- and X-integral and compute the s-integral first. Writing as before each (1−2−𝑣𝑖 𝑗 )−1

as a geometric series, we obtain

∫ (𝑁 )

(1)

1
𝛾vXv

(∏
𝑖, 𝑗

𝑣𝑖 𝑗

1 − 2−𝑣𝑖 𝑗
) 𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁

=
∑

k∈N𝐽0

∫ (𝑁 )

(1)
(k̃ · 𝛾 · X)−v〈v〉

𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁

,

and 〈v〉
∏

𝜈 ( 𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈 ) is a linear combination of terms of the form
∏𝑁

𝜈=1 𝑠
𝑎𝜈
𝜈 𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈 for vectors

a = (𝑎𝜈) ∈ N𝑁0 with ‖a‖1 = 𝐽. The inverse Mellin transform of 𝑠𝑎 𝑓̂Δ (𝑠) is D𝑎 𝑓Δ , where D is the
differential operator 𝑓 (𝑥) ↦→ −𝑥 𝑓 ′(𝑥). Hence, defining

𝐹 (a)Δ ,𝐵 (x) =
𝑁∏
𝜈=1
D𝑎𝜈 𝑓Δ

(
|𝑃𝜈 (x) |
𝐵

)
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with 𝑃𝜈 as in (8.9), we see that 𝐸∗Δ ,𝑇 , 𝛿,𝜆 is bounded by a linear combination of terms of the form

∑
|g | ≤𝑇

∫
[1,∞)𝐽 \ℛ𝛿,𝜆

|ℰ𝛾∗ℐ𝛾∗ (X) |
〈X〉

∑
k∈N𝐽0

|𝐹 (a)Δ ,𝐵 (k̃ · 𝛾 · X) | dX


 Δ−𝐽
∑
|g | ≤𝑇

𝛾h
∑

k∈N𝐽0

∫
[1,∞)𝐽 \ℛ𝛿,𝜆

(∏
𝑖 𝑗

𝑋
−ℎ𝑖 𝑗 𝜁𝑖
𝑖 𝑗

)
𝐹0,𝐵 (1+Δ) (k̃ · 𝛾 · X) dX

by Lemma 5.3, (5.9) and (8.2). By (7.11) with b = (1, . . . , 1), y = k̃ ·𝛾 and 𝐻 = ((1+Δ)𝐵) 𝛿 , we obtain

𝐸∗Δ ,𝑇 , 𝛿,𝜆 
 𝑇𝑆+𝑟Δ−𝐽𝐵(log 𝐵)𝑐2+𝜀 (𝛿 + (log 𝐵)−1) (8.19)

with S as in (8.18). Again, 𝛿∗2 > 0 in (7.11) ensures that the k-sum converges. Combining Lemma 8.3,
(8.17) and (8.19) and choosing 𝛿 = (log 𝐵)−1+𝜀 , we have shown

𝑁Δ ,𝑇 (𝐵) = 𝑁 (1)Δ ,𝑇 (𝐵) +𝑂 (𝑇
𝑆+𝑟Δ−𝐽𝐵(log 𝐵)𝑐2−1+𝜀), (8.20)

where

𝑁 (1)Δ ,𝑇 (𝐵) =
∑
|g | ≤𝑇

𝜇(g)
∫ (𝑁 )

(1)

1
𝛾v

(∏
𝑖, 𝑗

𝑣𝑖 𝑗

1 − 2−𝑣𝑖 𝑗
) ∫

[1,∞)𝐽

ℰ𝛾∗ℐ𝛾∗ (X)
Xv+1 dX

𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) ds
(2𝜋i)𝑁

.

We insert Lemma 8.1 and integrate over X. This gives

𝑁 (1)Δ ,𝑇 (𝐵) =
2𝐽 ∗

𝜋

∑
|g | ≤𝑇

𝜇(g)
∫ (𝑁 )

(1)

∫ (𝑘−1)

�𝑧𝑖=𝜁𝑖

ℰ𝛾∗

𝛾v (𝛾∗)z
( 𝑘∏
𝑖=1

𝒦𝑖 (𝑧𝑖)
𝐽𝑖∏
𝑗=1

1 − 2ℎ𝑖 𝑗 𝑧𝑖−1

1 − ℎ𝑖 𝑗 𝑧𝑖

)
×
( 𝑘∏
𝑖=0

𝐽𝑖∏
𝑗=1

𝑣𝑖 𝑗

(1 − 2−𝑣𝑖 𝑗 )𝑤𝑖 𝑗

) 𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) dz
(2𝜋i)𝑘−1

ds
(2𝜋i)𝑁

,

where 𝑤𝑖 𝑗 = 𝑣𝑖 𝑗 + ℎ𝑖 𝑗 𝑧𝑖 − 1 and we recall our convention 𝑧𝑘 = 1 − 𝑧1 − · · · − 𝑧𝑘−1. If we write
w = (𝑤𝑖 𝑗 ) ∈ C𝐽 , then by (8.13) and (7.3), we have

w = 𝒜1s +𝒜2z∗, z∗ = (𝑧1, . . . , 𝑧𝑘−1, 1). (8.21)

This explains the seemingly artificial definition of 𝒜2. We can simplify this first by recalling the
definition (8.14) of 𝛾∗, which implies 𝛾v (𝛾∗)z = 𝛾w+1. Next, we use our convention ℎ0 𝑗 = 0 and insert a
redundant factor 2𝐽0

∏𝐽0
𝑗=1 (1− 2ℎ0 𝑗 𝑧0−1). We also write 𝜅 = 𝑘 − 1. In this way, we can recast 𝑁 (1)Δ ,𝑇 (𝐵) as

2𝐽

𝜋

∑
|g | ≤𝑇

𝜇(g)
∫ (𝑁 )

(1)

∫ (𝜅)

�𝑧𝑖=𝜁𝑖

ℰ𝛾∗

𝛾w+1

( 𝑘∏
𝑖=1

𝒦𝑖 (𝑧𝑖)
) 1
〈w〉

𝜙(v)
𝜙(v − w)

𝑁∏
𝜈=1

(
𝑓̂Δ (𝑠𝜈)𝐵𝑠𝜈

) dz
(2𝜋i)𝜅

ds
(2𝜋i)𝑁

where

𝜙(v) =
𝑘∏
𝑖=0

𝐽𝑖∏
𝑗=1

𝑣𝑖 𝑗

1 − 2−𝑣𝑖 𝑗
. (8.22)
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8.5. Step 5: contour shifts

In this section, we evaluate asymptotically 𝑁 (1)Δ ,𝑇 (𝐵) by contour shifts. Let 𝜎 = (𝜎𝜈) ∈ R𝑁>0 be as in
(7.6). For some small 𝜀 > 0, we shift the s-contour to�𝑠𝜈 = 𝜎𝜈 +𝜀 without crossing any poles. Shifting
a little further to the left will pick up the poles at w = 0, whose residues produce the main term for
𝑁 (𝐵). To make this transparent, we make a change of variables as follows.

By (7.4), we have rk(𝒜) = rk(𝒜1 𝒜2) = 𝑅, so we can choose R linearly independent members of
the linear forms 𝑤𝑖 𝑗 in s and z∗ = (𝑧1, . . . , 𝑧𝑘−1, 1), say 𝑤 (1) , . . . , 𝑤 (𝑅) , and then the remaining 𝑤𝑖 𝑗
are linearly dependent. Since also rk(𝒜1) = 𝑅, we may, for fixed z, change variables in the s-integral
by completing the R functions 𝑤 (1) , . . . , 𝑤 (𝑅) to a basis in any way such that the determinant of the
Jacobian is ±1. We call the new variables y = (𝑦1, . . . , 𝑦𝑁 ).

We can describe this also in terms of matrices. We pick a maximal linearly independent set of R
rows 𝑍1, . . . , 𝑍𝑅 of the matrix (𝒜1 𝒜2). Let 𝑍𝑅+1, . . . , 𝑍𝐽 denote the remaining rows of (𝒜1 𝒜2), and
let ℬ = (𝑏𝑘𝑙) ∈ R(𝐽−𝑅)×𝑅 be the unique matrix satisfying

ℬ

(
𝑍1
...
𝑍𝑅

)
=

(
𝑍𝑅+1
...
𝑍𝐽

)
. (8.23)

That is, ℬ expresses the remaining 𝑤𝑖 𝑗 in terms of the selected linearly independent set. Again by (7.4),
we can also write the last row (𝒜3 𝒜4) of 𝒜 as a linear combination of 𝑍1, . . . , 𝑍𝑅, say

𝑅∑
ℓ=1

𝑏ℓ𝑍ℓ = (𝒜3 𝒜4). (8.24)

The coefficients 𝑏𝑘𝑙 and 𝑏ℓ play the same role as in Lemma 4.7. Choose a matrix

𝒞 = (𝒞1 𝒞2) =
#$$$%

𝑍1
...
𝑍𝑅

∗ 0

&'''( ∈ R
𝑁×(𝑁+𝑘) , (𝒞1 ∈ R𝑁×𝑁 ,𝒞2 ∈ ℛ𝑁×𝑘 ), (8.25)

with ∗ ∈ R(𝑁−𝑅)×𝑁 chosen such that 𝒞1 ∈ R𝑁×𝑁 satisfies det𝒞1 = 1. This is possible since
rk(𝒜1) = 𝑅 by (7.4). Given s ∈ C𝑁 , z ∈ C𝑘−1, we define the vector

(𝑦1, . . . , 𝑦𝑁 )� = y = y(s, z∗) = 𝒞(s, z∗)� = 𝒞1s� +𝒞2z∗�. (8.26)

We write

𝜂 = y(𝜎, (𝜁1, . . . , 𝜁𝑘−1, 1)) ∈ R𝑁 , 𝜂∗ = y(𝜎 + 𝜀 · 1, (𝜁1, . . . , 𝜁𝑘−1, 1)) ∈ R𝑁

with 𝜎 as in (7.6) and some fixed 𝜀 > 0. In the new variables y, the path of integration �𝑠𝜈 = 𝜎𝜈 + 𝜀
becomes �𝑦𝜈 = 𝜂∗𝜈 . Moreover, by (8.23) and (8.24), we have

〈w〉 = 𝑦1 · · · 𝑦𝑅
𝐽−𝑅∏
𝜄=1

ℒ𝜄 (y), ℒ𝜄 (y) =
𝑅∑
ℓ=1

𝑏 𝜄ℓ 𝑦ℓ (8.27)

and

−1 +
𝑁∑
𝜈=1

𝑠𝜈 = ℒ(y), ℒ(y) =
𝑅∑
ℓ=1

𝑏ℓ 𝑦ℓ . (8.28)
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Thus, we can recast 𝑁 (1)Δ ,𝑇 (𝐵) as

2𝐽

𝜋

∑
|g | ≤𝑇

𝜇(g)
∫ (𝜅)

�𝑧𝑖=𝜁𝑖

∫ (𝑁 )

�𝑦𝜈=𝜂∗𝜈

ℰ𝛾∗

𝛾w+1
𝜙(v)

𝜙(v − w)

( 𝑁∏
𝜈=1

𝑓̂Δ (𝑠𝜈)
) ( 𝑘∏

𝑖=1
𝒦𝑖 (𝑧𝑖)

)
× 𝐵1+ℒ (y)

𝑦1 · · · 𝑦𝑅
∏𝐽−𝑅

𝜄=1 ℒ𝜄 (y)
dy

(2𝜋i)𝑁
dz

(2𝜋i)𝜅 , (8.29)

where now s, v,w are linear forms in y, z∗ given by (8.13), (8.21), (8.23) and (8.26). We now shift the
𝑦1, . . . , 𝑦𝑅-contours appropriately within a sufficiently small 𝜀-neighborhood of 𝜂 (in which in particular
𝜙(v)/𝜙(v − w)

∏
𝜈 𝑓̂Δ (𝑠𝜈) is holomorphic), always keeping �𝑧𝑖 = 𝜁𝑖 . Recalling definitions (8.22) and

(8.7) as well as v − w = (1 − ℎ𝑖 𝑗 𝑧𝑖 𝑗 )𝑖 𝑗 , we record the bound

𝒟

(
ℰ𝛾∗

𝛾w+1

(
𝜙(v)

𝑁∏
𝜈=1

𝑓̂Δ (𝑠𝜈)
) ( 1
𝜙(v − w)

𝑘∏
𝑖=1

𝒦𝑖 (𝑧𝑖)
))

 𝑇𝑆Δ−𝐽−𝑐 |s|−𝑐∞

( 𝑘∏
𝑖=1

|𝑧𝑖 |𝜁𝑖−
1
2−𝐽𝑖+𝜀

)
= 𝑇𝑆Δ−𝐽−𝑐

( 𝑘∏
𝑖=1

|𝑧𝑖 |𝜁𝑖−
1
2−𝐽𝑖+𝜀

)

𝒞−1
1 y −𝒞−1

1 (𝒞2z∗)


−𝑐
∞ (8.30)

that holds for any fixed linear differential operator𝒟with constant coefficients in 𝑠1, . . . , 𝑠𝑁 , 𝑧1, . . . , 𝑧𝑘−1
and any fixed 𝑐 > 0. This follows from Stirling’s formula, (8.4), (5.9) and (8.18). In particular, choosing
𝑐 > 𝑁 and recalling (8.6), this expression is absolutely integrable over z and y. We return to (8.29) and
evaluate the (𝑦1, . . . , 𝑦𝑅)-integral asymptotically by appropriate contour shifts. The integrals that arise
are of the form

𝐵(log 𝐵)𝛼0

∫ (𝑅) 𝐵ℓ (ỹ)𝐻 (ỹ)
ℓ1(ỹ) · · · ℓ𝐽0 (ỹ)

dỹ
(2𝜋𝑖)𝑅0

,

where 𝛼0 ∈ N0, ℓ1, . . . , ℓ𝐽0 are linear forms in 𝑅0 variables spanning a vector space of dimension 𝑅0, ℓ is
a linear form, the contours of integration are in an 𝜀-neighborhood of�𝑦𝜈 = 0 and H is a holomorphic
function in this region satisfying the bound (8.30); initially, we have 𝑅0 = 𝑅, 𝐽0 = 𝐽, 𝛼0 = 0. As long
as �ℓ(ỹ) > 0, we can shift one of the variables to the left (if appearing with positive coefficient) or
to the right (if appearing with negative coefficient), getting a small power saving in B in the remaining
integral and picking up the residues on the way. Inductively, we see that in each step 𝐽0 − 𝑅0 + 𝛼0 is
nonincreasing. Recalling the definition of 𝑐2 in (7.5), we obtain eventually

𝑁 (1)Δ ,𝑇 (𝐵) =𝑐
∗𝑐fin (𝑇)𝑐∞(Δ)𝐵(log 𝐵)𝑐2 +𝑂 (𝑇𝑆+𝑟+𝜀Δ−𝐽−𝑁−𝜀𝐵(log 𝐵)𝑐2−1) (8.31)

for some constant 𝑐∗ ∈ Q (to be computed in a moment) and

𝑐fin (𝑇) =
∑
|g | ≤𝑇

𝜇(g)
ℰ𝛾∗

〈𝛾〉 ,

𝑐∞(Δ) =
2𝐽

𝜋

∫ (𝜅)

�𝑧𝑖=𝜁𝑖

∫ (𝑁−𝑅)

�𝑦𝜈=𝜂∗𝜈

( 𝑁∏
𝜈=1

𝑓̂Δ (𝑠𝜈) |𝑦1=· · ·=𝑦𝑅=0

) ( 𝑘∏
𝑖=1

𝒦𝑖 (𝑧𝑖)
) d𝑦𝑅+1 · · · d𝑦𝑁

(2𝜋i)𝑁−𝑅
dz

(2𝜋i)𝜅 . (8.32)

That the multiple integral in the formula for 𝑐∞(Δ) is absolutely convergent follows again from (8.30).
Combining (8.31) with (8.12) and (8.20), we have shown

𝑁Δ (𝐵) = 𝑐∗𝑐fin (𝑇)𝑐∞(Δ)𝐵(log 𝐵)𝑐2 +𝑂
(
𝐵(log 𝐵)𝑐2−1+𝜀 (𝑇𝑆+𝑟Δ−𝐽−𝑁−𝜀 + 𝑇−𝛿2 log 𝐵)

)
(8.33)

for any 1 < 𝑇 < 𝐵.
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8.6. Step 6: computing the leading constant

We proceed to compute explicitly the leading constant in (8.33). In this subsection, we consider 𝑐∗ and
𝑐fin (𝑇), and we start with the former. To this end, we observe that in the course of the contour shifts,
only the polar behavior at w = 0 is relevant so that

𝑐∗ = lim
𝐵→∞

1
(log 𝐵)𝑐2

∫ (𝑅)
𝐵ℒ (𝑦)

𝑅∏
ℓ=1

𝐹 (𝑦ℓ )
𝐽−𝑅∏
𝜄=1

ℒ𝜄 (y)−1 dy
(2𝜋i)𝑅

for any function F that is holomorphic except for a simple pole at 0 with residue 1, provided the integral
is absolutely convergent. We choose 𝐹 = 𝑓̂Δ0 for some Δ0 > 0 as in (8.2)–(8.3), recall the notation
(8.27)–(8.28) and insert the formula 𝑠−1 =

∫ 1
0 𝑡

𝑠−1 d𝑡 for �𝑠 > 0. In this way, we get the absolutely
convergent expression

𝑐∗ = lim
𝐵→∞

1
(log 𝐵)𝑐2

∫ (𝑅)
𝐵ℒ (𝑦)

𝑅∏
ℓ=1

𝑓̂Δ0 (𝑦ℓ )
∫
[0,1]𝐽−𝑅

𝐽−𝑅∏
𝜄=1
𝑡
ℒ𝜄 (y)−1
𝜄 dt dy

(2𝜋i)𝑅

= lim
𝐵→∞

∫ (𝑅)
𝐵ℒ (𝑦)

𝑅∏
ℓ=1

𝑓̂Δ0 (𝑦ℓ )
∫
[0,∞]𝐽−𝑅

𝐽−𝑅∏
𝜄=1

𝐵−𝑟𝜄ℒ𝜄 (y) dr dy
(2𝜋i)𝑅

= lim
𝐵→∞

∫
[0,∞]𝐽−𝑅

∫ (𝑅) ( 𝑅∏
ℓ=1

𝑓̂Δ0 (𝑦ℓ )
)
𝐵
∑
ℓ (𝑏ℓ−

∑
𝜄 𝑟𝜄𝑏𝜄ℓ )𝑦ℓ dy

(2𝜋i)𝑅
dr

= lim
𝐵→∞

∫
[0,∞]𝐽−𝑅

𝑅∏
ℓ=1

𝑓Δ0

(
𝐵−𝑏ℓ+

∑
𝜄 𝑟𝜄𝑏𝜄ℓ

)
dr.

Here, we used a change of variables along with 𝑐2 = 𝐽−𝑅 in the first step, cf. (7.5), and Mellin inversion
in the last step. This formula holds for every Δ0 > 0, so we can take the limit Δ0 → 0 getting

𝑐∗ = vol
{
r ∈ [0,∞]𝐽−𝑅 : 𝑏ℓ −

𝐽−𝑅∑
𝜄=1
𝑟 𝜄𝑏 𝜄ℓ ≥ 0 for all 1 ≤ ℓ ≤ 𝑅

}
. (8.34)

Next, we investigate 𝑐fin (𝑇). We can complete the g-sum at the cost of an error∑
|g |>𝑇




ℰ𝛾∗

〈𝛾〉




 
∑
g

(∏
𝑖 𝑗

𝛾
−1+ℎ𝑖 𝑗𝛽𝑖
𝑖 𝑗

) ( |g|
𝑇

) 𝛿4−𝜀

 𝑇−𝛿4+𝜀

by (5.9), (8.11), (8.14), (8.5) and Lemma 8.2 so that

𝑐fin (𝑇) = 𝑐fin +𝑂 (𝑇−𝛿4+𝜀), 𝑐fin =
∑

g
𝜇(g)

ℰ𝛾∗

〈𝛾〉 . (8.35)

Using (5.8), we can rewrite 𝑐fin in terms of local densities (note that the sum is absolutely convergent).
Recall that g = (𝑔1, . . . , 𝑔𝑟 ) is indexed by the coprimality conditions 𝑆1, . . . , 𝑆𝑟 in (1.4). For a given
choice of 𝛼1, . . . , 𝛼𝑟 ∈ {0, 1}, let

𝑆(𝛼) =
⋃
𝛼𝜌=1

𝑆𝜌, 𝛿(𝑖 𝑗 , 𝛼) =
{

1, (𝑖, 𝑗) ∈ 𝑆(𝛼),
0, (𝑖, 𝑗) ∉ 𝑆(𝛼).
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Then

𝑐fin =
∏
𝑝

∑
𝛼∈{0,1}𝑟

(−1) |𝛼 |1
𝑝#𝑆 (𝛼) · lim

𝐿→∞

1
𝑝𝐿 (𝐽−1) #

{
x mod 𝑝𝐿 :

𝑘∑
𝑖=1

𝐽𝑖∏
𝑗=1
(𝑝 𝛿 (𝑖 𝑗 ,𝛼)𝑥𝑖 𝑗 )ℎ𝑖 𝑗 ≡ 0 mod 𝑝𝐿

}
.

By inclusion-exclusion, this equals

𝑐fin =
∏
𝑝

lim
𝐿→∞

1
𝑝𝐿 (𝐽−1) #

{
x mod 𝑝𝐿 :

𝑘∑
𝑖=1

𝐽𝑖∏
𝑗=1
𝑥
ℎ𝑖 𝑗
𝑖 𝑗 ≡ 0 mod 𝑝𝐿 ,

({𝑥𝑖 𝑗 : (𝑖, 𝑗) ∈ 𝑆𝜌}, 𝑝) = 1 for 1 ≤ 𝜌 ≤ 𝑟

}
. (8.36)

Combining (8.33) and (8.35), we conclude

𝑁Δ (𝐵) = 𝑐∗𝑐fin𝑐∞(Δ)𝐵(log 𝐵)𝑐2 +𝑂
(
𝐵(log 𝐵)𝑐2−1−𝛿0Δ−𝐽−𝑁−𝜀

)
for 𝛿0 = min(𝛿2,min(𝛿4, 1) (𝑆 + 𝑟 + 1)−1) > 0, upon choosing 𝑇 = (log 𝐵)1/(𝑆+𝑟+1) . Since 𝑁Δ (𝐵)
is obviously nonincreasing in Δ , we conclude from (8.10) and the previous display that 𝑁 (𝐵) =
(1 + 𝑜(1))𝑐∗𝑐fin𝑐∞𝐵(log 𝐵)𝑐2 as 𝐵→∞ with

𝑐∞ = lim
Δ→0

𝑐∞(Δ), (8.37)

and this limit must exist. We have proved

Theorem 8.4. Suppose that we are given a diophantine equation (1.2) with 𝑏1 = · · · = 𝑏𝑘 = 1 and
height conditions (1.3) whose variables are restricted by coprimality conditions (1.4). Suppose that
Hypotheses 5.1 and 7.2 and (7.4), (7.6), (8.5), (8.6) hold. Then we have the asymptotic formula

𝑁 (𝐵) = (1 + 𝑜(1))𝑐∗𝑐fin𝑐∞𝐵(log 𝐵)𝑐2 , 𝐵→∞. (8.38)

Here, 𝑐∗ is given in (8.34) (using the notation (8.27)–(8.28)), 𝑐fin in (8.36), 𝑐∞ in (8.37) and (8.32) and
𝑐2 in (7.5).

More precisely, we need (5.9) of Hypothesis 5.1 only for b = 𝛾∗ and (7.10) of Hypothesis 7.2 only
for b = 𝛾.

9. The Manin–Peyre conjecture

In Sections 5–8, we established an asymptotic formula for a certain counting problem, subject to several
hypotheses. By design, we presented this in an axiomatic style without recourse to the underlying
geometry. In the section, we relate the asymptotic formula in Theorem 8.4 to the Manin–Peyre conjecture.
In particular, we compute 𝑐∞ explicitly, and we will show (under conditions that are easy to check) that
the leading constant 𝑐∗𝑐fin𝑐∞ agrees with Peyre’s constant for almost Fano varieties as in Part I. This
applies in particular to the spherical Fano varieties in Part III of the paper.

9.1. Geometric interpretation of 𝑐∞
In this subsection, we establish the following alternative formulation of the constant 𝑐∞. Recall – cf.
(8.25) – that the first R rows of 𝒞 = (𝒞1𝒞2) are R linearly independent rows of (𝒜1𝒜2), let’s say
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indexed by a set I of pairs (𝑖, 𝑗) with 0 ≤ 𝑖 ≤ 𝑘 , 1 ≤ 𝑗 ≤ 𝐽𝑖 with |𝐼 | = 𝑅. Let

Φ∗(t) =
𝑘∑
𝑖=1

∏
(𝑖, 𝑗) ∈𝐼

𝑡
ℎ𝑖 𝑗
𝑖 𝑗 , (9.1)

and let ℱ be the affine (𝑅 − 1)-dimensional hypersurface Φ∗(t) = 0 over R. Let 𝜒𝐼 be the characteristic
function on the set ∏

(𝑖, 𝑗) ∈𝐼
|𝑡𝑖 𝑗 |𝛼

𝜇
𝑖 𝑗 ≤ 1, 1 ≤ 𝜇 ≤ 𝑁.

In order to avoid technical difficulties that are irrelevant for the applications we have in mind, we make
the simplifying assumption that

one of the 𝑘 monomials in Φ∗ consists of only one variable, which has exponent 1. (9.2)

Without loss of generality, we can assume that this is the first monomial. (Assumption (9.2) can be
removed if necessary and follows from assumption (4.8).)

Lemma 9.1. Suppose that {(1, 𝑗) ∈ 𝐼} = {(1, 1)} and ℎ11 = 1. Then 𝑐∞ is given by the surface integral

𝑐∞ = 2𝐽−𝑅
∫
ℱ

𝜒𝐼 (t)
‖∇Φ∗(t)‖ dℱt. (9.3)

Proof. We return to the definition (8.32) of 𝑐∞(Δ) and compute the y-integral for fixed z. Let us write
𝐹 (y) =

∏𝑁
𝜈=1 𝑓̂Δ (𝑠𝜈). We recall from (8.26) that y = 𝒞1s + 𝒞2z∗ with det𝒞1 = 1, and we view s as a

function of y (for fixed z). By Mellin inversion one confirms the formula∫ (𝑁−𝑅)

�𝑦𝜈=𝜂∗𝜈

𝐹 (0, . . . , 0, 𝑦𝑅+1, . . . 𝑦𝑁 )
d𝑦𝑅+1 · · · d𝑦𝑁
(2𝜋i)𝑁−𝑅

=
∫
R𝑅
>0

∫ (𝑁 )

�𝑦𝜈=𝜂∗𝜈

𝐹 (y)𝑡𝑦1
1 · · · 𝑡𝑦𝑅𝑅

dy
(2𝜋i)𝑁

dt
〈t〉 .

Note that by Mellin inversion, the t-integral on the right-hand side is absolutely convergent, even
though the combined y, t-integral is not. (This formula is a distributional version of the ‘identity’∫ ∞

0 𝑡𝑦−1 d𝑡 = 𝛿𝑦=0.) Let us write 𝒞 = (𝒞1 𝒞2) = (𝑐𝜈𝜇) ∈ R𝑁×(𝑁+𝑘) and 𝒞2z∗ = z̃ ∈ C𝑁 . We change
back to s-variables and compute the s-integral in the preceding display by Mellin inversion, getting∫

R𝑅
>0

𝑁∏
𝜇=1

𝑓Δ

( 𝑅∏
ℓ=1
𝑡
−𝑐ℓ,𝜇
ℓ

)
𝑡 𝑧̃1
1 · · · 𝑡 𝑧̃𝑅𝑅

dt
〈t〉 .

By construction this integral is absolutely convergent for every fixed z with �𝑧𝑖 = 𝜁𝑖 . Plugging back
into the definition, we obtain

𝑐∞(Δ) =
2𝐽

𝜋

∫ (𝜅)

�𝑧𝑖=𝜁𝑖

𝑘∏
𝑖=1

𝒦𝑖 (𝑧𝑖)
∫
R𝑅
>0

𝑁∏
𝜇=1

𝑓Δ

( 𝑅∏
ℓ=1
𝑡
−𝑐ℓ,𝜇
ℓ

)
𝑡 𝑧̃1
1 · · · 𝑡 𝑧̃𝑅𝑅

dt
〈t〉

dz
(2𝜋i)𝜅 .

Here, the z-integral is absolutely convergent since the multiple integral in (8.32) was absolutely con-
vergent. The combined t, z-integral, however, is not absolutely convergent. Recall that 𝜅 = 𝑘 − 1,
𝑧𝑘 = 1 − 𝑧1 − · · · − 𝑧𝜅 and 𝒦𝑖 (𝑧) was defined in (8.7) with inverse Mellin transform 𝑥 ↦→ 𝐾𝑖 (𝑥), say,
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where 𝐾𝑖 (𝑥) = cos(𝑥) or exp(i𝑥). In order to avoid convergence problems, we define, for 𝜀 > 0, the
function

𝐾 (𝜀)𝑖 (𝑥) = 𝐾𝑖 (𝑥)𝑒−(𝜀𝑥)
2
=

{
cos(𝑥)𝑒−(𝜀𝑥)2

, ℎ𝑖 𝑗 odd for some 1 ≤ 𝑗 ≤ 𝐽𝑖 ,
𝑒𝑖𝑥𝑒−(𝜀𝑥)

2
, ℎ𝑖 𝑗 even for all 1 ≤ 𝑗 ≤ 𝐽𝑖 ,

(9.4)

and its Mellin transform 𝒦
(𝜀)
𝑖 (𝑧) =

∫ ∞
0 𝐾 (𝜀)𝑖 (𝑥)𝑥𝑧−1 d𝑥. This can be expressed explicitly in terms of

confluent hypergeometric functions by [40, 3.462.1], but we do not need this. It suffices to know that
𝒦

(𝜀)
𝑖 (𝑧) is holomorphic in �𝑧 > 0, rapidly decaying on vertical lines, and we have the pointwise limit

lim𝜀→0 𝒦
(𝜀)
𝑖 (𝑧) = 𝒦𝑖 (𝑧) for 0 < �𝑧 < 1. The latter follows elementarily with one integration by parts

by writing ∫ ∞

0
(𝐾𝑖 (𝑥) − 𝐾 (𝜀)𝑖 (𝑥))𝑥𝑧−1 d𝑥 =

∫ 𝜀−1/2

0
+
∫ ∞

𝜀−1/2

 𝜀1/2 + 𝜀1/2 → 0

for 𝜀 → 0. Correspondingly, we write

𝑐 (𝜀)∞ (Δ) = 2𝐽

𝜋

∫ (𝜅)

�𝑧𝑖=𝜁𝑖

𝑘∏
𝑖=1

𝒦
(𝜀)
𝑖 (𝑧𝑖)

∫
R𝑅
>0

𝑁∏
𝜇=1

𝑓Δ

( 𝑅∏
ℓ=1
𝑡
−𝑐ℓ,𝜇
ℓ

)
𝑡 𝑧̃1
1 · · · 𝑡 𝑧̃𝑅𝑅

dt
〈t〉

dz
(2𝜋i)𝜅 .

This multiple integral is now absolutely convergent, and by dominated convergence we have

𝑐∞(Δ) = lim
𝜀→0

𝑐 (𝜀)∞ (Δ). (9.5)

We interchange the t- and z-integral, fix t and compute the z-integral. Mellin inversion yields

𝒦
(𝜀)
𝑘 (1 − 𝑧1 − · · · − 𝑧𝜅 ) =

∫ ∞

0

∫
( 1

2 𝜁𝑘 )
𝒦

(𝜀)
𝑘 (𝑧𝑘 )𝑥−𝑧1−···−𝑧𝑘 d𝑧𝑘

2𝜋i
d𝑥

for �𝑧𝑖 = 𝜁𝑖 , 1 ≤ 𝑖 ≤ 𝜅. Note that on the right-hand side �(𝑧1 + · · · + 𝑧𝑘 ) < 1 (which is why we chose
�𝑧𝑘 = 1

2 𝜁𝑘 ). Again, the double integral is not absolutely convergent, but the x-integral is absolutely
convergent. In particular, after substituting this into the definition of 𝑐 (𝜀)∞ (Δ), we may interchange the
x-integral and the 𝑧1, . . . , 𝑧𝜅 -integral to conclude

𝑐 (𝜀)∞ (Δ) = 2𝐽

𝜋

∫
R𝑅
>0

∫ ∞

0

∫ (𝑘) 𝑘∏
𝑖=1

𝒦
(𝜀)
𝑖 (𝑧𝑖)

𝑁∏
𝜇=1

𝑓Δ

( 𝑅∏
ℓ=1
𝑡
−𝑐ℓ,𝜇
ℓ

)
𝑡 𝑧̃1
1 · · · 𝑡 𝑧̃𝑅𝑅 𝑥

−𝑧1−···−𝑧𝑘 dz
(2𝜋i)𝑘

d𝑥
dt
〈t〉 ,

where �𝑧𝑖 = 𝜁𝑖 , 1 ≤ 𝑖 ≤ 𝜅, �𝑧𝑘 = 1
2 𝜁𝑘 . By Mellin inversion, we can now compute each of the

𝑧1, . . . , 𝑧𝜅 -integrals. We recall our notation z̃ = 𝒞2z∗, so

𝑧 𝑗 =
𝜅∑
𝑖=1
𝑐 𝑗 ,𝑁+𝑖𝑧𝑖 + 𝑐 𝑗 ,𝑁+𝑘 .

This gives

𝑐 (𝜀)∞ (Δ) = 2𝐽

𝜋

∫
R𝑅
>0

∫ ∞

0

[ 𝑁∏
𝜇=1

𝑓Δ

( 𝑅∏
ℓ=1
𝑡
−𝑐ℓ,𝜇
ℓ

)] [
𝐾 (𝜀)𝑘 (𝑥)

𝜅∏
𝑖=1
𝐾 (𝜀)𝑖

(
𝑥

𝑅∏
𝜈=1
𝑡
−𝑐𝜈,𝑁+𝑖
𝜈

)] 𝑅∏
𝜈=1
𝑡
𝑐𝜈,𝑁+𝑘
𝜈 d𝑥

dt
〈t〉 .
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Changing variables 𝑡𝜈 ↦→ 𝑡−1
𝜈 and then 𝑥 ↦→ 2𝜋𝑥

∏𝑅
𝜈=1 𝑡

1+𝑐𝜈,𝑁+𝑘
𝜈 , this becomes

2𝐽
∫
R𝑅
>0

∫ ∞

−∞

[ 𝑁∏
𝜇=1

𝑓Δ

( 𝑅∏
ℓ=1
𝑡
𝑐ℓ,𝜇
ℓ

)] [
𝐾 (𝜀)𝑘 (2𝜋𝑥

𝑅∏
𝜈=1
𝑡
1+𝑐𝜈,𝑁+𝑘
𝜈 )

𝜅∏
𝑖=1
𝐾 (𝜀)𝑖

(
2𝜋𝑥

𝑅∏
𝜈=1
𝑡
𝑐𝜈,𝑁+𝑖+1+𝑐𝜈,𝑁+𝑘
𝜈

)]
d𝑥 dt.

We reindex the variables 𝑡𝜈 as 𝑡𝑖 𝑗 with (𝑖, 𝑗) ∈ 𝐼, as described prior to the statement of the lemma. By
the definition of (𝒜1𝒜2) in (3.10), we then have

𝑅∏
𝜈=1
𝑡
𝑐𝜈,𝑁+𝑖+1+𝑐𝜈,𝑁+𝑘
𝜈 =

∏
(𝑖, 𝑗) ∈𝐼

𝑡
ℎ𝑖 𝑗
𝑖 𝑗 (1 ≤ 𝑖 ≤ 𝜅),

𝑅∏
𝜈=1
𝑡
1+𝑐𝜈,𝑁+𝑘
𝜈 =

∏
(𝑘, 𝑗) ∈𝐼

𝑡
ℎ𝑘 𝑗
𝑘 𝑗

so that

𝑐 (𝜀)∞ (Δ) = 2𝐽
∫ ∞

−∞

∫
R𝑅
>0

[ 𝑁∏
𝜇=1

𝑓Δ

( ∏
(𝑖, 𝑗) ∈𝐼

𝑡
𝛼
𝜇
𝑖 𝑗

𝑖 𝑗

)] [ 𝑘∏
𝑖=1
𝐾 (𝜀)𝑖

(
2𝜋𝑥

∏
(𝑖, 𝑗) ∈𝐼

𝑡
ℎ𝑖 𝑗
𝑖 𝑗

)]
d𝑥 dt.

By symmetry, we may extend t-integral to all of R𝑅, recall (9.4) and write

𝑐 (𝜀)∞ (Δ) = 2𝐽−𝑅
∫ ∞

−∞

∫
R𝑅

ΨΔ (t)𝑒
(
𝑥Φ∗(t)

)
exp

(
− (𝜋𝜀𝑥)2Φ̃(t)

)
d𝑥 dt

with Φ∗ as in (9.1) and

ΨΔ (t) =
𝑁∏
𝜇=1

𝑓Δ

( ∏
(𝑖, 𝑗) ∈𝐼

|𝑡𝑖 𝑗 |𝛼
𝜇
𝑖 𝑗

)
, Φ̃(t) = 4

𝑘∑
𝑖=1

∏
(𝑖, 𝑗) ∈𝐼

𝑡
2ℎ𝑖 𝑗
𝑖 𝑗 .

We compute the x-integral, getting

𝑐 (𝜀)∞ (Δ) = 2𝐽−𝑅
√
𝜋𝜀

∫
R𝑅

ΨΔ (t) exp
(
− (Φ

∗)2(t)
𝜀2Φ̃(t)

) dt√
Φ̃(t)

.

By construction, this is absolutely convergent for every fixed 𝜀 > 0, and the limit as 𝜀 → 0 exists by
(9.5). Let 𝒰 � {t ∈ R𝑅 : | (Φ∗)2(t)/Φ̃(t) | ≤ 1/25}. Writing

exp
(
− (Φ

∗)2(t)
𝜀2Φ̃(t)

)
= exp

(
− (Φ

∗)2(t)
Φ̃(t)

)
exp

(
(1 − 𝜀−2) (Φ

∗)2(t)
Φ̃(t)

)
,

we obtain

𝑐 (𝜀)∞ (Δ) = 2𝐽−𝑅
√
𝜋𝜀

∫
𝒰

ΨΔ (t) exp
(
− (Φ

∗)2(t)
𝜀2Φ̃(t)

) dt√
Φ̃(t)

+𝑂
( 1
𝜀
𝑒 (1−𝜀

−2)/25
)
.

We consider now the equation

Φ∗(t)/
√
Φ̃(t) − 𝑢 = 0 (9.6)

for |𝑢 | ≤ 1/5. It is only at this point that we use (9.2). We write t = (𝑡11, t′) and

Φ∗(t) = 𝑡11 + (Φ∗)′(t′), Φ̃(t) = 4𝑡211 + Φ̃
′(t′).
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Then for 𝑢 = 0, the equation (9.6) has the unique solution 𝑡11 = −(Φ∗)′(t′), while for 0 < |𝑢 | ≤ 1/5,
both u and −𝑢 lead to two solutions

𝑡11 =
−(Φ∗)′(t′) ± |𝑢 |

√
4(Φ∗)′(t′)2 + Φ̃′(t′) (1 − 4𝑢2)

1 − 4𝑢2 � 𝜙±𝑢 (t′).

For 𝑢 = 0, we have 𝜙+0 = 𝜙−0 , and for notational simplicity we write 𝜙±0 = 𝜙 = −(Φ∗)′. Changing
variables, we obtain

2𝐽−𝑅
√
𝜋𝜀

∫
𝒰

ΨΔ (t) exp
(
− (Φ

∗)2(t)
𝜀2Φ̃(t)

) dt√
Φ̃(t)

=
2𝐽−𝑅
√
𝜋𝜀

∫ 1/5

−1/5
exp

(
− 𝑢

2

𝜀2

)
Θ(𝑢) d𝑢,

where

Θ(𝑢) =
∫
R𝑅−1

Ξ(𝜙+𝑢 (t′), t′) dt′, Ξ =
2Φ̃ΨΔ

|2Φ̃Φ∗𝑡11
−Φ∗Φ̃𝑡11 |

.

By a Taylor expansion, we have Θ(𝑢) = Θ(0) +𝑂 (|𝑢 |) for |𝑢 | ≤ 1/5 so that

𝑐∞(Δ) = lim
𝜀→0

2𝐽−𝑅
√
𝜋𝜀

∫ 𝜂

−𝜂
exp

(
− 𝑢

2

𝜀2

)
Θ(𝑢) d𝑢 = 2𝐽−𝑅Θ(0) = 2𝐽−𝑅

∫
R𝑅−1

Ξ(𝜙(t′), t′) dt′

= 2𝐽−𝑅
∫
R𝑅−1

ΨΔ (𝜙(t′), t′)
|Φ∗𝑡11

(𝜙(t′), t′) | dt′.

Here, we can let Δ → 0, obtaining

𝑐∞ = 2𝐽−𝑅
∫
R𝑅−1

𝜒𝐼 (𝜙(t′), t′)
|Φ∗𝑡11

(𝜙(t′), t′) | dt′. (9.7)

(Note that the denominator is 1 by (9.2), but that this formula should also hold without this assumption.)
We write this more symmetrically as follows. If 𝑡𝑖 𝑗 is any component of t′, then by implicit differentiation,
we have

𝜙𝑡𝑖 𝑗 (t) = −
Φ∗𝑡𝑖 𝑗 (𝜙(t

′), t′)
Φ∗𝑡11

(𝜙(t′)t′) ,

so that we can write 𝑐∞ as a surface integral

2𝐽−𝑅
∫
R𝑅−1

𝜒𝐼 (𝜙(t′), t′)
|Φ∗𝑡11

(𝜙(t′), t′) | 𝑑t′ = 2𝐽−𝑅
∫
ℱ

𝜒𝐼 (t)
‖∇Φ∗(t)‖ 𝑑ℱ(t)

as claimed. �

9.2. Comparison with the Manin–Peyre conjecture

Theorem 9.2. Let 𝑋, 𝐻 be as in Proposition 4.11. Suppose that the corresponding counting problem
for 𝑈 ⊂ 𝑋 given by Proposition 3.8 satisfies all assumptions of Theorem 8.4. Then the Manin–Peyre
conjecture holds for X with respect to H, that is,

𝑁𝑋,𝑈,𝐻 (𝐵) = (1 + 𝑜(1))𝑐𝐵(log 𝐵)rk Pic𝑋−1

with Peyre’s constant c.
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Proof. By Proposition 3.8,

𝑁𝑋,𝑈,𝐻 (𝐵) = 2− rk Pic𝑋𝑁 (𝐵)

for 𝑁 (𝐵) as in (1.5). Formula (8.38) in Theorem 8.4 states that

𝑁 (𝐵) = (1 + 𝑜(1))𝑐∗𝑐fin𝑐∞𝐵(log 𝐵)𝑐2 .

Comparing definition (4.6) with expression (8.36) for 𝑐fin, the definitions (4.10) and (8.34) of 𝑐∗, and
definition (4.12) with expression (9.7) for 𝑐∞ (which are both valid since assumption (4.8) implies
(9.2)), then Proposition 4.11 shows that the leading constant for 𝑁𝑋,𝑈,𝐻 (𝐵) is Peyre’s constant, and
𝑐2 = 𝐽 − 𝑅 = rk Pic 𝑋 − 1 by (4.9), (7.5) and Lemma 3.10. Therefore, Proposition 3.8 combined with
(8.38) agrees with the Manin–Peyre conjecture. �

The following part provides numerous applications and shows how to apply this in practice.

Part III Application to spherical varieties

Having established the relevant theory in Part I and Part II of the paper, we are now prepared to prove
Manin’s conjecture for concrete families of varieties. In particular, as a consequence of Theorem 10.1,
we obtain Manin’s conjecture for all smooth spherical Fano threefolds of semisimple rank one and type T.

10. Spherical varieties

10.1. Luna–Vust invariants

Let G be a connected reductive group over Q. Let Q(𝑋) be the function field of a spherical G-variety
X over Q. Only in this section and in Section 11.1, let B denote a Borel subgroup of G with character
group 𝔛(𝐵). The weight lattice is defined as

ℳ =

{
𝜒 ∈ 𝔛(𝐵) :

there exists 𝑓𝜒 ∈ Q(𝑋)× such that
𝑏 · 𝑓𝜒 = 𝜒(𝑏) · 𝑓𝜒 for every 𝑏 ∈ 𝐵

}
.

Note that for every 𝜒 ∈ ℳ, the function 𝑓𝜒 is uniquely determined up to a constant factor because of
the dense B-orbit in X. The set of colors 𝒟 is the set of B-invariant prime divisors on X that are not G-
invariant. Moreover, we have the valuation cone 𝒱 ⊆ 𝒩Q = Hom(ℳ,Q), which can be identified with
the Q-valued G-invariant discrete valuations on Q(𝑋)×. By Losev’s uniqueness theorem [52, Theorem
1], the combinatorial invariants (ℳ,𝒱,𝒟) uniquely determine the birational class of (i. e., the open
G-orbit in) the spherical G-variety X over Q.

Now, let Δ be the set of all B-invariant prime divisors on X. There is a map 𝔠 : Δ → 𝒩Q defined by
〈𝔠(𝐷), 𝜒〉 = 𝜈𝐷 ( 𝑓𝜒), where 𝜈𝐷 is the valuation on Q(𝑋)× induced by the prime divisor D. For every
G-orbit 𝑍 ⊆ 𝑋 , we define 𝒲𝑍 = {𝐷 ∈ Δ : 𝑍 ⊆ 𝐷}. Then the collection

CF 𝑋 = {(cone(𝔠(𝒲𝑍 )),𝒲𝑍 ∩𝒟) : 𝑍 ⊆ 𝑋 is a 𝐺 − orbit}

is called the colored fan of X. According to the Luna–Vust theory of spherical embeddings [54, 50],
the colored fan CF 𝑋 uniquely determines the spherical G-variety X over Q among those in the same
birational class.

The divisor class group Cl 𝑋 can be computed from CF 𝑋: By [18, Proposition 4.1.1], the maps
ℳ → ZΔ , 𝜒 ↦→ div 𝑓𝜒 and ZΔ → Cl 𝑋 , 𝐷 ↦→ [𝐷] fit into the exact sequence ℳ → ZΔ → Cl 𝑋 → 0.

Spherical varieties with 𝒱 = 𝒩Q are called horospherical. These include flag varieties and toric
varieties. In the latter case, 𝐺 = 𝐵 = 𝑇 is a torus, and we have 𝒱 = 𝒩Q and 𝒟 = ∅.
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10.2. Semisimple rank one

Let X be a spherical G-variety over Q. If the connected reductive group G has semisimple rank one, we
may assume𝐺 = SL2×G𝑟m by passing to a finite cover. As a further simplification, we replace the action
by a smart action as introduced in [1, Definition 4.3]. As before, let 𝐺/𝐻 = (SL2 ×G𝑟m)/𝐻 be the open
orbit in X. Let 𝐻 ′ ×G𝑟m = 𝐻 · G𝑟m ⊆ SL2 ×G𝑟m. Then the homogeneous space SL2/𝐻 ′ is spherical, and
hence either 𝐻 ′ is a maximal torus in SL2 (the case T) or 𝐻 ′ is the normalizer of a maximal torus in
SL2 (the case N) or the homogeneous space SL2/𝐻 ′ is horospherical. Since the action is smart, in the
horospherical case𝐻 ′ is either a Borel subgroup in SL2 (the case B) or the whole group SL2 (the case G).

Now, let 𝑇 ⊂ 𝐺 = SL2 × G𝑟m be a maximal torus, and let 𝛼 ∈ 𝔛(𝑇) � 𝔛(𝐵) be the simple root
with respect to a Borel subgroup 𝐵 ⊂ 𝐺. It follows from the general theory of spherical varieties that
in the cases T and N, we always have 𝒱 = {𝑣 ∈ 𝒩Q : 〈𝑣, 𝛼〉 ≤ 0}. The colored cones of the form
(Q≥0 · 𝑢, ∅) ∈ CF 𝑋 , where 𝑢 ∈ ℳ ∩𝒱 is a primitive element, correspond to the G-invariant prime
divisors in X. Let (Q≥0 · 𝑢0 𝑗 , ∅) ∈ CF 𝑋 for 𝑗 = 1, . . . , 𝐽0 be those with 𝑢 ∈ 𝒱 ∩ (−𝒱), and let
(Q≥0 · 𝑢3 𝑗 , ∅) ∈ CF 𝑋 for 𝑗 = 1, . . . , 𝐽3 be those with 𝑢 ∉ 𝒱 ∩ (−𝒱). We denote by 𝐷𝑖 𝑗 the G-invariant
prime divisor in X corresponding to (Q≥0 · 𝑢𝑖 𝑗 , ∅) ∈ CF 𝑋 . Then we have 𝔠(𝐷𝑖 𝑗 ) = 𝑢𝑖 𝑗 .

We define ℎ3 𝑗 = −〈𝑢3 𝑗 , 𝛼〉. The following descriptions of the Cox rings in the different cases can be
explicitly obtained from [18, Theorem 4.3.2] or [33, Theorem 3.6].

Case T: There are two colors 𝐷11, 𝐷12 ∈ 𝒟, and we have 𝔠(𝐷11) + 𝔠(𝐷12) = 𝛼∨|ℳ . The Cox ring is
given by

ℛ(𝑋) = Q[𝑥01, . . . , 𝑥0𝐽0 , 𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑥31, . . . , 𝑥3𝐽3 ]/(𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥ℎ31
31 · · · 𝑥

ℎ3𝐽3
3𝐽3

), (10.1)

cf. (1.6), with

deg(𝑥11) = deg(𝑥21) = [𝐷11] ∈ Cl 𝑋 , deg(𝑥12) = deg(𝑥22) = [𝐷12] ∈ Cl 𝑋 , and
deg(𝑥𝑖 𝑗 ) = [𝐷𝑖 𝑗 ] ∈ Cl 𝑋 for 𝑖 ∈ {0, 3}.

Case N: There is one color 𝐷11 ∈ 𝒟, and we have 𝔠(𝐷11) = 1
2𝛼

∨|ℳ . The Cox ring is given by

ℛ(𝑋) = Q[𝑥01, . . . , 𝑥0𝐽0 , 𝑥11, 𝑥12, 𝑥21, 𝑥31, . . . , 𝑥3𝐽3 ]/(𝑥11𝑥12 − 𝑥2
21 − 𝑥

ℎ31
31 · · · 𝑥

ℎ3𝐽3
3𝐽3

)

with

deg(𝑥11) = deg(𝑥12) = deg(𝑥21) = [𝐷11] ∈ Cl 𝑋 , deg(𝑥𝑖 𝑗 ) = [𝐷𝑖 𝑗 ] ∈ Cl 𝑋 for 𝑖 ∈ {0, 3}.

Case B: We mention this case only for completeness since X is isomorphic to a toric variety here (as an
abstract variety with a different group action). There is one color 𝐷11 ∈ 𝒟, and we have 𝔠(𝐷11) = 𝛼∨|ℳ .
The Cox ring is given by ℛ(𝑋) = Q[𝑥01, . . . , 𝑥0𝐽0 , 𝑥11, 𝑥12] with

deg(𝑥11) = deg(𝑥12) = [𝐷11] ∈ Cl 𝑋 , deg(𝑥0 𝑗 ) = [𝐷0 𝑗 ] ∈ Cl 𝑋 .

Case G: We mention this case only for completeness since X is a toric G𝑟𝑚-variety here. We have
𝒟 = ∅. The Cox ring is given by ℛ(𝑋) = Q[𝑥01, . . . , 𝑥0𝐽0 ] with deg(𝑥0 𝑗 ) = [𝐷0 𝑗 ] ∈ Cl 𝑋.

10.3. Ambient toric varieties

Every quasiprojective variety X with finitely generated Cox ring may be embedded into a toric variety
𝑌◦ with nice properties, as described in [2, 3.2.5].

https://doi.org/10.1017/fms.2023.123 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.123


68 V. Blomer et al.

For a spherical variety X, this is explicitly described in [35]. According to [18, Theorem 4.3.2], the
Cox ring of X is generated by the union of sets 𝑥𝐷1, . . . , 𝑥𝐷𝑟𝐷 ∈ ℛ(𝑋) for every 𝐷 ∈ Δ . We have
𝑟𝐷 = 1 if 𝐷 ∉ 𝒟 and 𝑟𝐷 ≥ 2 if 𝐷 ∈ 𝒟. Each 𝑥𝐷𝑖 corresponds to a ray 𝜌𝐷𝑖 in the fan Σ◦ of the ambient
toric variety 𝑌◦.

Even if X is projective, the quasiprojective toric variety 𝑌◦ might not be projective. This is the case
if and only if the colored cones in CF 𝑋 do not cover 𝒩Q.

Any 𝒲 ⊆ Δ defines a pair (cone(𝔠(𝒲)),𝒲 ∩ 𝒟). If cone(𝔠(𝒲)) is strictly convex, we call
the pair a supported colored cone if cone(𝔠(𝒲))◦ ∩ 𝒱 ≠ ∅ and an unsupported colored cone if
cone(𝔠(𝒲))◦ ∩ 𝒱 = ∅. If we can extend CF 𝑋 by some of these unsupported colored cones to a
collection (CF 𝑋)ext such that every face (in the sense of [71, Definition 15.3]) of a colored cone is again
in (CF 𝑋)ext such that different colored cones intersect in faces and such that the colored cones cover
the whole space 𝒩Q, then (CF 𝑋)ext yields a toric variety Y that completes 𝑌◦.

We recall here how to obtain the fan Σ of the toric variety Y from the (possibly extended) colored
fan (CF 𝑋)ext. Let Ψ𝐷 = {𝜌𝐷1, . . . , 𝜌𝐷𝑟𝐷 }, and define Ψ 𝑗

𝐷 = Ψ𝐷 \ {𝜌𝐷 𝑗 } for every 1 ≤ 𝑗 ≤ 𝑟𝐷 . For
every subset 𝒲 ⊆ Δ , consider the sets of cones

Φ(𝒲) =
{

cone
( ⋃
𝐷∈𝒲

Ψ𝐷 ∪
⋃

𝐷∈Δ\𝒲
Ψ 𝑗 (𝐷)
𝐷

)
: 𝑗 ∈ NΔ\𝒲 , 1 ≤ 𝑗 (𝐷) ≤ 𝑟𝐷

}
.

Then we have

Σ =
⋃

(cone(𝔠 (𝒲)) ,𝒲∩𝒟) ∈(CF𝑋 )ext

Φ(𝒲) and Σmax =
⋃

(cone(𝔠 (𝒲)) ,𝒲∩𝒟) ∈(CF𝑋 )ext,max

Φ(𝒲). (10.2)

10.4. Manin’s conjecture

We present now the main result of this paper, which implies all theorems stated in the introduction.

Theorem 10.1. Let X be a smooth split spherical almost Fano variety of semisimple rank one and type
T over Q with semiample 𝜔∨𝑋 satisfying (2.3) whose colored fan CF 𝑋 contains a maximal cone without
colors.

The corresponding counting problem as in Proposition 3.8 features a torsor equation (1.6) with
exponents ℎ𝑖 𝑗 , a height matrix 𝒜 as in (7.1) and coprimality conditions 𝑆1, . . . 𝑆𝑟 as in (1.4). Choose 𝜁
satisfying (5.10) and (8.6), let 𝜆 be as in (5.13) and choose 𝜏 (2) as in (7.18).

With these data, assume that (7.24) and (7.35) hold. Then the Manin–Peyre conjecture holds for X
with respect to the anticanonical height function (3.7).

Proof. It is enough to check all assumptions of Theorem 9.2.
We observe that X is as in Proposition 4.11 by our assumptions. In particular by (10.1), its Cox ring

is as required. By (10.2), a maximal cone without colors in CF 𝑋 gives four maximal cones 𝜎 ∈ Σmax
such that the variables corresponding to the rays of 𝜎 include precisely one of 𝑥11, 𝑥21 and precisely one
of 𝑥12, 𝑥22 in (10.1); it is not hard to see that one of these four cones satisfies (4.8).

Next, we check that Theorem 8.4 applies. The counting problem is of the required form by Proposition
3.8 and (10.1). Hypothesis 5.1 holds by Proposition 5.2, whose assumptions are satisfied by (10.1) and
which allows us to choose

𝛽 =
(1
2
− 1

5 max𝑖 𝑗 ℎ𝑖 𝑗
,

1
2
− 1

5 max𝑖 𝑗 ℎ𝑖 𝑗
,

2
5 max𝑖 𝑗 ℎ𝑖 𝑗

)
,

so that (8.5) holds. Condition (8.6) means 𝜁3 < 1/2 which is consistent with (5.10). Hypothesis 7.2
holds by Proposition 7.6. The conditions (7.4), (7.6) hold by Lemmas 3.10 and 3.11. �
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The assumption (2.3) can be read off of the colored fan CF 𝑋 , using the method described in
Section 10.3. The existence of a maximal cone without colors in CF 𝑋 is straightforward to check and
clearly holds in all our examples below; alternatively, (4.8) can be checked directly. As mentioned after
Proposition 7.6, if (7.24) fails, we can apply an alternative, but slightly more complicated criterion.
Assumption (7.35) requires elementary linear algebra (and can be checked quickly by computer if
desired).

Remark 10.2. If the torsor equation is 𝑥11𝑥12+𝑥21𝑥22+𝑥31𝑥33 = 0, we can use [9, Proposition 1.2] instead
of Proposition 5.2 to verify Hypothesis 5.1, which conveniently yields again 𝛽 = (1/3+𝜀, 1/3+𝜀, 1/3+𝜀)
and more importantly

𝜆 = 1.

The advantage is that the third line of (7.32) is trivially satisfied (the polytope is empty) so that checking
(7.35) requires a little less computational effort.

11. Spherical Fano threefolds

11.1. Geometry

According to [44, §6.3], all horospherical smooth Fano threefolds are either toric or flag varieties.
Furthermore, there are nine smooth Fano threefolds over Q that are spherical but not horospherical;
they are equipped with an action of 𝐺 = SL2 × Gm. The notation T and N in [44, Table 6.5] and in our
Table 11.1 refers to the cases in Section 10.2.

We proceed to describe the four T cases 𝑋1, . . . , 𝑋4 in Table 11.1 that are not equivariant G3
a-

compactifications [46] in more detail. In each case, we first construct a split form over Q following the
elementary description from the Mori–Mukai classification, and then we give the description using the
Luna–Vust theory of spherical embeddings from Hofscheier’s list. Finally, we describe in each case an
ambient toric variety 𝑌𝑖 satisfying (2.3) that can be used with Sections 2–4.

Let 𝜀1 ∈ 𝔛(𝐵) be a primitive character of Gm composed with the natural inclusion 𝔛(Gm) → 𝔛(𝐵).

11.1.1. 𝑋1 of type III.24 and 𝑋4 of type IV.7
Consider P2

Q
× P2

Q
with coordinates (𝑧11 : 𝑧21 : 𝑧31) and (𝑧12 : 𝑧22 : 𝑧32), and the hypersurface

𝑊4 = V(𝑧11𝑧12 − 𝑧21𝑧22 − 𝑧31𝑧32) ⊂ P2
Q
× P2
Q

of bidegree (1, 1). This is a smooth Fano threefold of type
II.32. It contains the curves

𝐶01 = V(𝑧11, 𝑧21, 𝑧32) = {(0 : 0 : 1)} × V(𝑧32),
𝐶02 = V(𝑧12, 𝑧22, 𝑧31) = V(𝑧31) × {(0 : 0 : 1)}

Table 11.1. Smooth Fano threefolds that are spherical but not horospherical..

rk Pic Hofscheier Mori–Mukai torsor equation remark

2 𝑇112 II.31 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥
2
32 eq. G3

a -cpct.
2 𝑁16, 𝑁17 II.30 𝑥11𝑥12 − 𝑥2

21 − 𝑥31𝑥32 eq. G3
a -cpct.

2 𝑁18 II.29 𝑥11𝑥12 − 𝑥2
21 − 𝑥31𝑥

2
32𝑥33

3 𝑇118 III.24 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32 variety 𝑋1
3 𝑇121 III.20 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥

2
33 variety 𝑋2

3 𝑁03 III.22 𝑥11𝑥12 − 𝑥2
21 − 𝑥31𝑥32

3 𝑁19 III.19 𝑥11𝑥12 − 𝑥2
21 − 𝑥31𝑥32

4 𝑇03 IV.8 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32 variety 𝑋3
4 𝑇122 IV.7 𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32 variety 𝑋4

https://doi.org/10.1017/fms.2023.123 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.123


70 V. Blomer et al.

of bidegrees (0, 1) and (1, 0), respectively. Let 𝑋1 be the blow-up of 𝑊4 in the curve 𝐶01. This is a
smooth Fano threefold of type III.24. Moreover, let 𝑋4 be the further blow-up in the curve 𝐶02 (which
is disjoint from the curve 𝐶01 in 𝑊4). This is a smooth Fano threefold of type IV.7. We may define an
action of 𝐺 = SL2 × Gm on𝑊4 by

(𝐴, 𝑡) ·
((
𝑧11 𝑧22
𝑧21 𝑧12

)
, 𝑧31, 𝑧32

)
=

(
𝐴 ·

(
𝑧11 𝑧22
𝑧21 𝑧12

)
·
(
𝑡−1 0
0 𝑡

)
, 𝑧31, 𝑧32

)
,

which turns 𝑊4 into a spherical variety. The following description using the Luna–Vust theory of
spherical embeddings can be easily verified. The lattice ℳ has basis ( 1

2𝛼 + 𝜀1,
1
2𝛼 − 𝜀1). We denote the

corresponding dual basis of the lattice 𝒩 by (𝑑1, 𝑑2). Then there are two colors with valuations 𝑑1 and
𝑑2, and the valuation cone is given by 𝒱 = {𝑣 ∈ 𝒩Q : 〈𝑣, 𝛼〉 ≤ 0}. Since the curves 𝐶01 and 𝐶02 are G-
invariant, the varieties 𝑋1 and 𝑋4 are spherical G-varieties and the blow-up morphisms 𝑋4 → 𝑋1 → 𝑊4
can be described by maps of colored fans. The following figure illustrates this.

𝑢31

𝑢32

𝑑2

𝑑1

𝑢02

𝑢01

−→
𝑢31

𝑢32

𝑑2

𝑑1

𝑢01

−→
𝑢31

𝑢32

𝑑2

𝑑1

Here, the elements 𝑢31 = −𝑑1 and 𝑢32 = −𝑑2 are the valuations of the G-invariant prime divisorsV(𝑧31)
and V(𝑧32), respectively, while the elements 𝑢01 = 𝑑1 − 𝑑2 and 𝑢02 = −𝑑1 + 𝑑2 are the valuations of
the exceptional divisors 𝐸01 and 𝐸02 over 𝐶01 and 𝐶02, respectively. In particular, we see that 𝑋1 is the
fourth line and that 𝑋4 is the last line of Hofscheier’s list.

The dotted circles in the colored fans of 𝑋1 and 𝑋4 specify projective ambient toric varieties 𝑌1 and
𝑌4, respectively. From the description of Σmax in Section 10.3, we deduce that 𝑌1 and 𝑌4 are smooth,
that −𝐾𝑋1 is ample on 𝑌1 and that −𝐾𝑋4 is ample on 𝑌4. Hence, assumption (2.3) holds.

11.1.2. 𝑋2 of type III.20
Consider P4

Q
with coordinates (𝑧11 : 𝑧12 : 𝑧21 : 𝑧22 : 𝑧33) and the hypersurface 𝑄 = V(𝑧11𝑧12 − 𝑧21𝑧22 −

𝑧2
33) ⊂ P

4
Q

. It contains the lines

𝐶31 = V(𝑧12, 𝑧22, 𝑧33), 𝐶32 = V(𝑧11, 𝑧21, 𝑧33).

Let 𝑋2 be the blow-up of Q in the lines 𝐶31 and 𝐶32. This is a smooth Fano threefold of type III.20. We
may define an action of 𝐺 = SL2 × Gm on Q by

(𝐴, 𝑡) ·
((
𝑧11 𝑧22
𝑧21 𝑧12

)
, 𝑧33

)
=

(
𝐴 ·

(
𝑧11 𝑧22
𝑧21 𝑧12

)
·
(
𝑡−1 0
0 𝑡

)
, 𝑧33

)
,

which turns Q into a spherical variety. Since the lines 𝐶31 and 𝐶32 are G-invariant, the variety 𝑋2 is a
spherical G-variety. Since 𝑋2 is also the blow-up of𝑊4 in the curve 𝐶33 = V(𝑧31, 𝑧32), it has the same
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birational invariants as 𝑊4 and the blow-up morphisms 𝑄 ← 𝑋2 → 𝑊4 can be described by maps of
colored fans as illustrated in the following picture.

𝑑2

𝑑1

𝑢33

←−
𝑢31

𝑢32

𝑑2

𝑑1

𝑢33

−→
𝑢31

𝑢32

𝑑2

𝑑1

In particular, we see that 𝑋2 is the fifth line of Hofscheier’s list.
As before, the dotted circle in the colored fan of 𝑋2 specifies a projective ambient toric variety 𝑌2,

which satisfies (2.3).

11.1.3. 𝑋3 of type IV.8
Consider𝑊3 = P1

Q
× P1
Q
× P1
Q

with coordinates (𝑧01 : 𝑧02), (𝑧11 : 𝑧21) and (𝑧12 : 𝑧22). This is a smooth
Fano threefold of type III.27. Let 𝐶31 be the curve V(𝑧02, 𝑧11𝑧12 − 𝑧21𝑧22) of tridegree (0, 1, 1) on𝑊3.
Let 𝑋3 be the blow-up of 𝑊3 in 𝐶31. This is a smooth Fano threefold of type IV.8. We may define an
action of 𝐺 = SL2 × Gm on𝑊3 by

(𝐴, 𝑡) ·
(
𝑧01, 𝑧02,

(
𝑧11 𝑧22
𝑧21 𝑧12

))
=

(
𝑡 · 𝑧01, 𝑧02, 𝐴 ·

(
𝑧11 𝑧22
𝑧21 𝑧12

))
,

which turns𝑊3 into a spherical variety. Its Luna–Vust description is a follows. The lattice ℳ has basis
(𝛼, 𝜀1). We denote the corresponding dual basis of the lattice 𝒩 by (𝑑, 𝜀∗1). Then there are two colors
with the same valuation 𝑑 = 1

2𝛼
∨, and the valuation cone is given by 𝒱 = {𝑣 ∈ 𝒩Q : 〈𝑣, 𝛼〉 ≤ 0}.

Since the curve 𝐶31 is G-invariant, the variety 𝑋3 is a spherical G-variety and the blow-up morphism
𝑋3 → 𝑊3 can be described by the map of colored fans in the figure below.

𝑢32

𝑢01

𝑢02

𝑑

𝑢31

−→
𝑢32

𝑢01

𝑢02

𝑑

Here, the elements 𝑢01 = −𝜀∗1 and 𝑢02 = 𝜀∗1 are the valuations of the G-invariant prime divisors
V(𝑧01) and V(𝑧02), respectively, the element 𝑢32 = −𝑑 is the valuation of the G-invariant prime divisor
V(𝑧11𝑧12 − 𝑧21𝑧22), and 𝑢31 = −𝑑 + 𝜀∗1 is the valuation of the exceptional divisor 𝐸31 over 𝐶31. This is
the penultimate line of Hofscheier’s list.

The dotted circles in the colored fan of 𝑋3 are meant to specify a projective ambient toric variety
𝑌3, but since there are two colors with the same valuation d, the picture is ambiguous. There are three
possibilities for which unsupported colored cones could be added to the colored cone of 𝑋3 to obtain
an ambient toric variety:

1. (cone(𝑢01, 𝑑), {𝐷11}) and (cone(𝑢02, 𝑑), {𝐷11}),
2. (cone(𝑢01, 𝑑), {𝐷12}) and (cone(𝑢02, 𝑑), {𝐷12}) or
3. (cone(𝑢01, 𝑑), {𝐷11, 𝐷12}) and (cone(𝑢02, 𝑑), {𝐷11, 𝐷12}).
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From the description of Σmax in Section 10.3, we deduce that the ambient toric variety in case (3) is
singular. On the other hand, in cases (1) and (2), the ambient toric variety is smooth, and −𝐾𝑋3 not
ample but semiample on it. We fix 𝑌3 to be as in case (1), satisfying (2.3).

11.2. Cox rings and torsors

We proceed to compute explicitly the Cox rings ℛ(𝑋) in the examples from Section 11.1 using
Section 10.2 together with [30] since we work over Q here. To obtain the universal torsor 𝒯 = 𝑋0,
we compute the set 𝑍𝑌 as in Section 2.2. Moreover, we give simplified expressions for 𝑍𝑋 = 𝑍𝑌 ∩
Specℛ(𝑋), which can be verified using the equation Φ. Finally the anticanonical class is computed
using [17, 4.1 and 4.2] or [2, Proposition 3.3.3.2]. In the case of a spherical variety of semisimple rank
one of type T or N, this is simply the sum of all B-invariant divisors.

11.2.1. Type III.24
We have

ℛ(𝑋1) = Q[𝑥01, 𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑥31, 𝑥32]/(𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32)

with Pic 𝑋1 � Z3, where

deg(𝑥01) = (0, 0, 1), deg(𝑥11) = deg(𝑥21) = (0, 1,−1),
deg(𝑥12) = deg(𝑥22) = (1, 0, 0), deg(𝑥31) = (0, 1, 0), deg(𝑥32) = (1, 0,−1).

Note that each generator 𝑥𝑖 𝑗 of the Cox ring corresponds to the strict transform of V(𝑧𝑖 𝑗 ) or to the
element 𝑢𝑖 𝑗 in Section 11.1.1. The anticanonical class is −𝐾𝑋1 = (2, 2,−1). A universal torsor over 𝑋1 is

𝒯1 = Specℛ(𝑋1) \ 𝑍𝑌1 = Specℛ(𝑋1) \ 𝑍𝑋1 ,

where

𝑍𝑌1 = V(𝑥11, 𝑥21, 𝑥31) ∪ V(𝑥11, 𝑥21, 𝑥32) ∪ V(𝑥12, 𝑥22, 𝑥01) ∪ V(𝑥12, 𝑥22, 𝑥32) ∪ V(𝑥01, 𝑥31),
𝑍𝑋1 = V(𝑥11, 𝑥21) ∪ V(𝑥12, 𝑥22, 𝑥32) ∪ V(𝑥01, 𝑥31).

11.2.2. Type III.20
The Cox ring is

ℛ(𝑋2) = Q[𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑥31, 𝑥32, 𝑥33]/(𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥
2
33)

with Pic 𝑋2 � Z3, where

deg(𝑥11) = deg(𝑥21) = (0, 1, 0), deg(𝑥12) = deg(𝑥22) = (1, 0, 0),
deg(𝑥31) = (0, 1,−1), deg(𝑥32) = (1, 0,−1), deg(𝑥33) = (0, 0, 1).

The anticanonical class is −𝐾𝑋2 = (2, 2,−1). A universal torsor over 𝑋2 is

𝒯2 = Specℛ(𝑋2) \ 𝑍𝑌2 = Specℛ(𝑋2) \ 𝑍𝑋2 ,

where

𝑍𝑌2 = V(𝑥11, 𝑥21, 𝑥31) ∪ V(𝑥11, 𝑥21, 𝑥33) ∪ V(𝑥12, 𝑥22, 𝑥32) ∪ V(𝑥12, 𝑥22, 𝑥33) ∪ V(𝑥31, 𝑥32),
𝑍𝑋2 = V(𝑥11, 𝑥21, 𝑥31) ∪ V(𝑥11, 𝑥21, 𝑥33) ∪ V(𝑥12, 𝑥22, 𝑥32) ∪ V(𝑥12, 𝑥22, 𝑥33) ∪ V(𝑥31, 𝑥32).
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11.2.3. Type IV.8
The Cox ring is

ℛ(𝑋3) = Q[𝑥01, 𝑥02, 𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑥31, 𝑥32]/(𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32)

with Pic 𝑋3 � Z4, where

deg(𝑥01) = (1, 0, 0, 0), deg(𝑥02) = (1, 0, 0,−1),
deg(𝑥11) = deg(𝑥21) = (0, 0, 1, 0), deg(𝑥12) = deg(𝑥22) = (0, 1, 0, 0),
deg(𝑥31) = (0, 0, 0, 1), deg(𝑥32) = (0, 1, 1,−1).

The anticanonical class is −𝐾𝑋3 = (2, 2, 2,−1). A universal torsor over 𝑋3 is

𝒯3 = Specℛ(𝑋3) \ 𝑍𝑌3 = Specℛ(𝑋3) \ 𝑍𝑋3 ,

where

𝑍𝑌3 = V(𝑥11, 𝑥21, 𝑥31) ∪ V(𝑥11, 𝑥21, 𝑥32) ∪ V(𝑥12, 𝑥22) ∪ V(𝑥02, 𝑥32) ∪ V(𝑥01, 𝑥02) ∪ V(𝑥01, 𝑥31),
𝑍𝑋3 = V(𝑥11, 𝑥21) ∪ V(𝑥12, 𝑥22) ∪ V(𝑥02, 𝑥32) ∪ V(𝑥01, 𝑥02) ∪ V(𝑥01, 𝑥31).

11.2.4. Type IV.7
The Cox ring is

ℛ(𝑋4) = Q[𝑥01, 𝑥02, 𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑥31, 𝑥32]/(𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32)

with Pic 𝑋4 � Z4, where

deg(𝑥01) = (0, 0, 0, 1), deg(𝑥02) = (0, 0, 1, 0),
deg(𝑥11) = deg(𝑥21) = (0, 1, 0,−1), deg(𝑥12) = deg(𝑥22) = (1, 0,−1, 0),
deg(𝑥31) = (0, 1,−1, 0), deg(𝑥32) = (1, 0, 0,−1).

The anticanonical class is −𝐾𝑋4 = (2, 2,−1,−1). A universal torsor is over 𝑋4 is

𝒯4 = Specℛ(𝑋4) \ 𝑍𝑌4 = Specℛ(𝑋4) \ 𝑍𝑋4 ,

where

𝑍𝑌4 = V(𝑥11, 𝑥21, 𝑥01) ∪ V(𝑥11, 𝑥21, 𝑥31) ∪ V(𝑥11, 𝑥21, 𝑥32)
∪ V(𝑥12, 𝑥22, 𝑥02) ∪ V(𝑥12, 𝑥22, 𝑥31) ∪ V(𝑥12, 𝑥22, 𝑥32)
∪ V(𝑥02, 𝑥32) ∪ V(𝑥01, 𝑥02) ∪ V(𝑥01, 𝑥31),

𝑍𝑋4 = V(𝑥11, 𝑥21) ∪ V(𝑥12, 𝑥22) ∪ V(𝑥02, 𝑥32) ∪ V(𝑥01, 𝑥02) ∪ V(𝑥01, 𝑥31).

Note that this is the same variety as 𝒯3 but with a different action of G4
m,Q.

11.3. Counting problems

Applying Proposition 3.8 to the Cox rings of the previous section gives the following counting problems,
in which U is always the subset where all Cox coordinates are nonzero. To lighten the notation, we
generally write {𝑥, 𝑦} to mean x or y, and as in the introduction, we write 𝑁 𝑗 (𝐵) for 𝑁𝑋 𝑗 ,𝑈 𝑗 ,𝐻 𝑗 (𝐵).

https://doi.org/10.1017/fms.2023.123 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.123


74 V. Blomer et al.

Corollary 11.1. (a) We have

𝑁1 (𝐵) =
1
8

#

{
x ∈ Z7

≠0 :
𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32 = 0, max |𝒫1 (x) | ≤ 𝐵,
(𝑥11, 𝑥21) = (𝑥12, 𝑥22, 𝑥32) = (𝑥01, 𝑥31) = 1

}
,

where

𝒫1 (x) =
{
𝑥2

31𝑥
2
32𝑥01, 𝑥

2
32𝑥

3
01{𝑥11, 𝑥21}2, 𝑥2

31𝑥32{𝑥12, 𝑥22},
𝑥31{𝑥11, 𝑥21}{𝑥12, 𝑥22}2, 𝑥01{𝑥11, 𝑥21}2{𝑥12, 𝑥22}2

}
.

(b) We have

𝑁2 (𝐵) =
1
8

#

⎧⎪⎪⎪⎨⎪⎪⎪⎩x ∈ Z7
≠0 :

𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥
2
33 = 0, max |𝒫2 (x) | ≤ 𝐵,

(𝑥11, 𝑥21, 𝑥31) = (𝑥11, 𝑥21, 𝑥33) = 1
(𝑥12, 𝑥22, 𝑥32) = (𝑥12, 𝑥22, 𝑥33) = (𝑥31, 𝑥32) = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

where

𝒫2(x) =
{
𝑥32{𝑥11, 𝑥21}2{𝑥12, 𝑥22}, 𝑥2

32𝑥33{𝑥11, 𝑥21}2, 𝑥31{𝑥11, 𝑥21}{𝑥12, 𝑥22}2,

𝑥2
31𝑥33{𝑥12, 𝑥22}2, 𝑥2

31𝑥
2
32𝑥

3
33

}
.

(c) We have

𝑁3 (𝐵) =
1

16
#

{
x ∈ Z8

≠0 :
𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32 = 0, max |𝒫3 (x) | ≤ 𝐵,
(𝑥11, 𝑥21) = (𝑥12, 𝑥22) = (𝑥02, 𝑥32) = (𝑥01, 𝑥02) = (𝑥01, 𝑥31) = 1

}
,

where

𝒫3(x) =
{
𝑥2

02𝑥
3
31𝑥

2
32, 𝑥

2
01𝑥31𝑥

2
32, 𝑥

2
02{𝑥11, 𝑥21}2{𝑥12, 𝑥22}2𝑥31

𝑥2
01{𝑥11, 𝑥21}{𝑥12, 𝑥22}𝑥32, 𝑥01𝑥02{𝑥11, 𝑥21}2{𝑥12, 𝑥22}2

}
.

(d) We have

𝑁4 (𝐵) =
1

16
#

{
x ∈ Z8

≠0 :
𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32 = 0, max |𝒫4 (x) | ≤ 𝐵,
(𝑥11, 𝑥21) = (𝑥12, 𝑥22) = (𝑥02, 𝑥32) = (𝑥01, 𝑥02) = (𝑥01, 𝑥31) = 1

}
,

where

𝒫4 (x) =
{
𝑥01𝑥02𝑥

2
31𝑥

2
32, 𝑥

2
01{𝑥11, 𝑥21}𝑥31𝑥

2
32, 𝑥

2
02{𝑥12, 𝑥22}𝑥2

31𝑥32,

𝑥2
01{𝑥11, 𝑥21}2{𝑥12, 𝑥22}𝑥32, 𝑥

2
02{𝑥11, 𝑥21}{𝑥12, 𝑥22}2𝑥31, 𝑥01𝑥02{𝑥11, 𝑥21}2{𝑥12, 𝑥22}2

}
.

Proof. This is a special case of Proposition 3.8. Note that the coprimality conditions are derived from
the expressions for 𝑍𝑋 (instead of 𝑍𝑌 ) from Section 11.2. It can be explicitly verified using the equation
Φ that this is correct even over Z as required here. �
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11.4. Application: proof of Theorem 1.1

We now show how to use Theorem 10.1 in practice and complete the proof of Theorem 1.1 for the
varieties 𝑋1, . . . , 𝑋4.

11.4.1. The variety 𝑋4
By Corollary 11.1(d), we have 𝐽 = 8 torsor variables 𝑥𝑖 𝑗 with 0 ≤ 𝑖 ≤ 3, 1 ≤ 𝑗 ≤ 2 satisfying the
equation

𝑥11𝑥12 + 𝑥21𝑥22 + 𝑥31𝑥32 = 0 (11.1)

(after changing the signs of 𝑥22, 𝑥32) with 𝑘 = 3 and ℎ𝑖 𝑗 = 1 for 𝑖 ≥ 1, ℎ0 𝑗 = 0. In particular, Remark
10.2 applies. We have 𝑁 = 17 height conditions with corresponding exponent matrix

𝒜1 =
#$$$%

1 2 2 2 2 2 2 1 1 1 1
1 2 2 2 2 2 2 1 1 1 1

1 2 2 1 1 2 2
1 1 1 2 2 2 2

1 2 2 1 1 2 2
1 1 1 2 2 2 2

2 1 1 2 2 1 1 1 1
2 2 2 1 1 1 1 1 1

&'''( ∈ R
8×17
≥0 , 𝒜2 =

#$$$%
−1
−1

1 −1
1 −1

1 −1
1 −1

−1 −1
−1 −1

&'''( ∈ R
8×3.

As usual, missing entries indicate zeros. We have 𝑟 = 5 coprimality conditions with

𝑆1 = {(1, 1), (2, 1)}, 𝑆2 = {(1, 2), (2, 2)}, 𝑆3 = {(0, 2), (3, 2)}, (11.2)

𝑆4 = {(0, 1), (0, 2)}, 𝑆5 = {(0, 1), (3, 1)}. (11.2)

We choose

𝜏 (2) = (1, . . . , 1︸���︷︷���︸
𝐽0

, 2
3 , . . . ,

2
3 ), 𝜁 = ( 1

3 ,
1
3 ,

1
3 ). (11.4)

(In our case 𝐽0 = 2, but we will use the same definition also in other cases later.) Using a computer
algebra system, we confirm 𝐶2 (𝜏 (2) ), 𝐶2 ((1 − ℎ𝑖 𝑗/3)𝑖 𝑗 ), and with 𝑐2 = 3, we find

dim(ℋ ∩𝒫) = 3, dim(ℋ ∩𝒫𝑖 𝑗 ) = 2 for all (𝑖, 𝑗),

confirming (7.35). We have now checked all assumptions of Theorem 10.1.
We show in Appendix A how to derive Hypothesis 7.2 without computer help and how to compute

the Peyre constant in explicit algebraic terms.

11.4.2. The variety 𝑋3
This is very similar to the previous case, so we can be brief. By Corollary 11.1(c), we have the same
torsor variables as in the previous application satisfying (11.1). The corresponding exponent matrix is
given by

𝒜1 =
#$$$%

2 2 2 2 2 1 1 1 1
2 2 2 2 2 1 1 1 1

2 2 1 1 2 2
2 2 1 1 2 2
2 2 1 1 2 2

2 2 1 1 2 2
3 1 1 1 1 1
2 2 1 1 1 1

&'''( ∈ R
8×14
≥0 .
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We choose 𝜏 (2) and 𝜁 as before and confirm (7.35) in the same way with

dim(ℋ ∩𝒫) = 3, dim(ℋ ∩𝒫𝑖 𝑗 ) = 1 for (𝑖, 𝑗) = (0, 1) and dim(ℋ ∩𝒫𝑖 𝑗 ) = 2 otherwise.

11.4.3. The variety 𝑋1
Again, the computations are a minor variation on the previous two cases. By Corollary 11.1(a), the
height matrix is

𝒜1 =
#$$%

1 3 3 1 1 1 1
2 1 1 2 2

1 2 2 2 2
2 1 1 2 2

1 2 2 2 2
2 2 2 1 1 1 1
2 2 2 1 1

&''( ∈ R7×13
≥0 .

We make the same choice (11.4) for 𝜏 (2) and 𝜁 and confirm (7.35) with 𝑐2 = 2 and

dim(ℋ ∩𝒫) = 2, dim(ℋ ∩𝒫𝑖 𝑗 ) = 0 for (𝑖, 𝑗) = (1, 2), (2, 2), (3, 1), dim(ℋ ∩𝒫𝑖 𝑗 ) = 1 otherwise.

11.4.4. The variety 𝑋2
This case has some new features, as the torsor equation has a slightly different shape. By Corollary
11.1(b), we have 𝐽0 = 0 and 𝐽 = 7 torsor variables satisfying the more complicated torsor equation

𝑥11𝑥12 + 𝑥21𝑥22 + 𝑥31𝑥32𝑥
2
33 = 0.

The height matrix is given by

𝒜1 =
#$$%

2 2 2 1 1
1 1 2 2 2

2 2 2 1 1
1 1 2 2 2

1 1 1 1 2 2 2
1 1 1 1 2 2 2

1 1 1 1 3

&''( ∈ R7×13
≥0 , 𝒜2 =

#$$%
1 −1
1 −1

1 −1
1 −1

−1 −1
−1 −1
−2 −2 1

&''( ∈ R7×3.

Proposition 5.2 ensures the validity of Hypothesis 5.1 with 𝜆 = 1/45, 000. We have 𝑟 = 5 coprimality
conditions

𝑆1 = {(1, 1), (2, 1), (3, 1)}, 𝑆2 = {(1, 1), (2, 1), (3, 3)}, 𝑆3 = {(1, 2), (2, 2), (3, 2)},
𝑆4 = {(1, 2), (2, 2), (3, 3)}, 𝑆5 = {(3, 1), (3, 2)}.

We see that (7.24) holds. We choose

𝜏 (2) = ( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1)

satisfying (7.18) and confirm 𝐶2 (𝜏 (2) ), 𝐶2 ((1 − ℎ𝑖 𝑗/3)𝑖 𝑗 ). Finally, we note that 𝑐2 = 2 and compute2

dim(ℋ ∩𝒫) = 2,

dim(ℋ ∩𝒫𝑖 𝑗 ) =
{

1, (𝑖, 𝑗) = (3, 1), (3, 2), (3, 3),
0, otherwise,

dim(ℋ ∩𝒫(1/44800, 𝜋)) = −1

2Dimension −1 indicates that the set is empty.
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for the vector (1 − ℎ𝑖 𝑗/3)𝑖 𝑗 , and

dim(ℋ ∩𝒫) = 0,

dim(ℋ ∩𝒫𝑖 𝑗 ) =
{

0, (𝑖, 𝑗) = (3, 1), (3, 2),
−1, otherwise,

dim(ℋ ∩𝒫(1/44800, 𝜋)) = −1

for the vector 𝜏 (2) . This confirms (7.35).

12. Higher-dimensional examples

12.1. Geometry

Consider 𝐺 = SL2 × G𝑟𝑚 and, for 𝑖 = 1, . . . , 𝑟 , let 𝜀𝑖 ∈ 𝔛(𝐵) be a primitive character of Gm composed
with the natural inclusion 𝔛(Gm) → 𝔛(𝐵) into the i-th factor G𝑚 of G. Let 𝑇SL2 ⊂ SL2 be a maximal
torus, and let 𝜒 : 𝑇SL2 → G𝑚 be a primitive character. We consider the subgroup

𝐻 = {(𝜆, 𝜒(𝜆), 1, . . . , 1) : 𝜆 ∈ 𝑇SL2 } ⊂ 𝐺.

Then 𝐺/𝐻 is a spherical homogeneous space of semisimple rank one and type T. The lattice ℳ

has basis ( 1
2𝛼 + 𝜀1,

1
2𝛼 − 𝜀1, 𝜀2, . . . , 𝜀𝑟 ). We denote the corresponding dual basis of the lattice 𝒩 by

(𝑑1, 𝑑2, 𝑒3, . . . , 𝑒𝑟+1). There are two colors 𝐷11 and 𝐷12 with valuations 𝑑1 and 𝑑2, respectively. The
valuation cone is given by 𝒱 = {𝑣 ∈ 𝒩Q : 〈𝑣, 𝛼〉 ≤ 0}.

12.1.1. The fourfold 𝑋5
Let 𝑟 = 2, and consider the polytope in 𝒩Q spanned by the vectors

𝑑1 = (1, 0, 0), 𝑑2 = (0, 1, 0), 𝑢31 = (0,−1, 0), 𝑢32 = (−1, 0, 0),
𝑢33 = (−1, 0,−1), 𝑢01 = (1,−1, 1), 𝑢02 = (1,−1, 0), 𝑢03 = (−1, 1, 0).

The colored spanning fan of this polytope, as defined in [36, Remark 2.6], contains the following
maximal colored cones:

(cone(𝑑1, 𝑑2, 𝑢33), {𝐷11, 𝐷12}), (cone(𝑑1, 𝑢02, 𝑢33), {𝐷11}), (cone(𝑑2, 𝑢03, 𝑢33), {𝐷12}),
(cone(𝑢01, 𝑢02, 𝑢31), ∅), (cone(𝑢01, 𝑢03, 𝑢32), ∅), (cone(𝑢01, 𝑢31, 𝑢32), ∅),
(cone(𝑢31, 𝑢32, 𝑢33), ∅), (cone(𝑢03, 𝑢32, 𝑢33), ∅), (cone(𝑢02, 𝑢31, 𝑢33), ∅).

It can be verified that each colored cone satisfies the conditions of the smoothness criterion [21,
Théorème A]; see also [34, Theorem 1.2]. Let 𝑋5 be the spherical embedding of 𝐺/𝐻 corresponding to
this colored fan. Then 𝑋5 is a smooth Fano fourfold with Picard number 5.

The unsupported colored spanning fan of the polytope above (i. e., including the unsupported colored
cones) specifies a projective ambient toric variety 𝑌5. From the description of Σmax in Section 10.3, we
deduce that 𝑌5 is smooth and that −𝐾𝑋5 is ample on 𝑌5; hence (2.3) holds.

12.1.2. The fivefold 𝑋6
Let 𝑟 = 3, and consider the polytope in 𝒩Q spanned by the vectors

𝑑1 = (1, 0, 0, 0), 𝑑2 = (0, 1, 0, 0), 𝑢31 = (−1, 0, 1, 0), 𝑢32 = (−1,−1, 1, 0),
𝑢01 = (−1, 1,−1,−1), 𝑢02 = (1,−1, 0, 1), 𝑢03 = (0, 0,−1, 0).
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The colored spanning fan of this polytope contains the following maximal colored cones:

(cone(𝑑1, 𝑑2, 𝑢01, 𝑢31), {𝐷11, 𝐷12}), (cone(𝑑1, 𝑑2, 𝑢02, 𝑢31), {𝐷11, 𝐷12}),
(cone(𝑑1, 𝑢01, 𝑢31, 𝑢32), {𝐷11}), (cone(𝑑1, 𝑢02, 𝑢31, 𝑢32), {𝐷11}),
(cone(𝑑1, 𝑢02, 𝑢03, 𝑢32), {𝐷11}), (cone(𝑑1, 𝑢01, 𝑢03, 𝑢32), {𝐷11}),
(cone(𝑑2, 𝑢01, 𝑢03, 𝑢31), {𝐷12}), (cone(𝑑2, 𝑢02, 𝑢03, 𝑢31), {𝐷12}),
(cone(𝑢02, 𝑢03, 𝑢31, 𝑢32), ∅), (cone(𝑢01, 𝑢03, 𝑢31, 𝑢32), ∅).

As in the previous example, we obtain a smooth spherical Fano fivefold 𝑋6 with Picard number 3 in a
smooth projective ambient toric variety 𝑌6 on which −𝐾𝑋6 is ample.

12.1.3. The sixfold 𝑋7
Let 𝑟 = 4, and consider the polytope in 𝒩Q spanned by the vectors

𝑑1 = (1, 0, 0, 0, 0), 𝑑2 = (0, 1, 0, 0, 0), 𝑢01 = (0, 0, 1, 0, 0), 𝑢02 = (0, 0, 0, 1, 0),
𝑢03 = (0, 0, 0, 0, 1), 𝑢31 = (0,−1, 0, 0, 0), 𝑢32 = (−1, 0, 0, 0, 1), 𝑢33 = (−1, 0, 0, 0, 0),
𝑢34 = (−1, 0,−1,−1,−1), 𝑢35 = (−1,−1,−1,−1,−1).

As above, we obtain a smooth spherical Fano sixfold 𝑋7 with Picard number 5 in a smooth projective
ambient toric variety 𝑌7 on which −𝐾𝑋7 is ample.

12.1.4. The sevenfold 𝑋8
Let 𝑟 = 5, and consider the polytope in 𝒩Q spanned by the vectors

𝑑1 = (1, 0, 0, 0, 0, 0), 𝑑2 = (0, 1, 0, 0, 0, 0), 𝑢01 = (0, 0, 1, 0, 1, 0),
𝑢02 = (0, 0, 0, 1, 0, 1), 𝑢03 = (0, 0, 0, 0, 0, 1), 𝑢04 = (0, 0, 1, 0, 0,−1),
𝑢05 = (0, 0, 0, 1, 0, 0), 𝑢06 = (0, 0, 0, 0, 1, 1), 𝑢31 = (0,−1, 0, 0, 0, 0),
𝑢32 = (−1, 0,−1,−1,−1,−1), 𝑢33 = (−1,−1, 0, 0, 0, 0), 𝑢34 = (−1,−1,−1,−1,−1,−1).

As above, we obtain a smooth spherical Fano sevenfold 𝑋8 with Picard number 6 in a smooth projective
ambient toric variety 𝑌8 on which −𝐾𝑋8 is ample.

12.2. Cox rings and torsors

We argue as in Section 11.2.

12.2.1. The fourfold 𝑋5
The Cox ring is

ℛ(𝑋5) = Q[𝑥01, 𝑥02, 𝑥03, 𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑥31, 𝑥32, 𝑥33]/(𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥33)

with Pic 𝑋5 � Cl 𝑋5 � Z5, where

deg(𝑥01) = deg(𝑥33) = (1, 0, 0, 0, 0), deg(𝑥02) = (0, 1, 0, 1, 0), deg(𝑥03) = (0, 1, 0, 0, 0),
deg(𝑥11) = deg(𝑥21) = (0, 0, 1, 0, 0), deg(𝑥12) = deg(𝑥22) = (0, 0, 0, 0, 1),
deg(𝑥31) = (−1, 0, 0,−1, 1), deg(𝑥32) = (0, 0, 1, 1, 0).

The anticanonical class is −𝐾𝑋5 = (1, 2, 2, 1, 2). A universal torsor over 𝑋5 is

𝒯5 = Specℛ(𝑋5) \ 𝑍𝑋5 ,
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where

𝑍𝑋5 = V(𝑥31, 𝑥11, 𝑥21) ∪ V(𝑥02, 𝑥12, 𝑥22) ∪ V(𝑥12, 𝑥22, 𝑥31) ∪ V(𝑥32, 𝑥11, 𝑥21)
∪ V(𝑥31, 𝑥03) ∪ V(𝑥02, 𝑥32) ∪ V(𝑥02, 𝑥03) ∪ V(𝑥33, 𝑥01) ∪ V(𝑥12, 𝑥22, 𝑥32) ∪ V(𝑥03, 𝑥11, 𝑥21).

12.2.2. The fivefold 𝑋6
The Cox ring is

ℛ(𝑋6) = Q[𝑥01, 𝑥02, 𝑥03, 𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑥31, 𝑥32]/(𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥
2
32)

with Pic 𝑋6 � Cl 𝑋6 � Z3, where

deg(𝑥01) = deg(𝑥02) = (0, 0,−1), deg(𝑥03) = (1, 0, 1), deg(𝑥11) = deg(𝑥21) = (1, 0, 0),
deg(𝑥12) = deg(𝑥22) = (0, 1, 0), deg(𝑥31) = (1,−1, 0), deg(𝑥32) = (0, 1, 0).

The anticanonical class is −𝐾𝑋6 = (3, 1,−1). A universal torsor over 𝑋6 is

𝒯6 = Specℛ(𝑋6) \ 𝑍𝑋6 ,

where

𝑍𝑋6 = V(𝑥01, 𝑥02) ∪ V(𝑥32, 𝑥12, 𝑥22) ∪ V(𝑥03, 𝑥31, 𝑥11, 𝑥21).

12.2.3. The sixfold 𝑋7
The Cox ring is

ℛ(𝑋7) = Q[𝑥01, 𝑥02, 𝑥03, 𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑥31, . . . , 𝑥35]/(𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥33𝑥34𝑥
2
35)

with Pic 𝑋7 � Cl 𝑋7 � Z5, where

deg(𝑥01) = deg(𝑥02) = (−1,−1, 0, 1, 0), deg(𝑥03) = (−2,−1, 0, 1, 0),
deg(𝑥11) = deg(𝑥21) = (0, 0, 0, 1, 0), deg(𝑥12) = deg(𝑥22) = (0, 0, 0, 0, 1),
deg(𝑥31) = (1, 1, 1,−1, 1), deg(𝑥32) = (1, 0, 0, 0, 0), deg(𝑥33) = (0, 1, 0, 0, 0),
deg(𝑥34) = (0, 0, 1, 0, 0), deg(𝑥35) = (−1,−1,−1, 1, 0).

The anticanonical class is −𝐾𝑋7 = (−3,−2, 1, 4, 2). A universal torsor over 𝑋7 is

𝒯7 = Specℛ(𝑋7) \ 𝑍𝑋7 ,

where

𝑍𝑋7 = V(𝑥01, 𝑥02, 𝑥03, 𝑥34) ∪ V(𝑥01, 𝑥02, 𝑥03, 𝑥35) ∪ V(𝑥01, 𝑥02, 𝑥32, 𝑥34)
∪ V(𝑥01, 𝑥02, 𝑥32, 𝑥35) ∪ V(𝑥03, 𝑥33) ∪ V(𝑥11, 𝑥21, 𝑥32)
∪ V(𝑥11, 𝑥21, 𝑥33) ∪ V(𝑥12, 𝑥22, 𝑥31) ∪ V(𝑥12, 𝑥22, 𝑥35) ∪ V(𝑥31, 𝑥34).

12.2.4. The sevenfold 𝑋8
The Cox ring is

ℛ(𝑋8) = Q[𝑥01, . . . , 𝑥06, 𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑥31, . . . , 𝑥34]/(𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥
2
33𝑥

2
34)
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with Pic 𝑋8 � Cl 𝑋8 � Z6, where

deg(𝑥01) = (1, 1, 0,−1, 0, 0), deg(𝑥02) = (1, 1,−1, 0, 0, 0),
deg(𝑥03) = deg(𝑥05) = (0, 0, 1, 0, 0, 0), deg(𝑥04) = deg(𝑥06) = (0, 0, 0, 1, 0, 0),
deg(𝑥11) = deg(𝑥21) = (0, 0, 0, 0, 1, 0), deg(𝑥12) = deg(𝑥22) = (0, 0, 0, 0, 0, 1),
deg(𝑥31) = (0, 1, 0, 0,−1, 1), deg(𝑥32) = (0, 1, 0, 0, 0, 0),
deg(𝑥33) = (−1,−1, 0, 0, 1, 0), deg(𝑥34) = (1, 0, 0, 0, 0, 0).

The anticanonical class is −𝐾𝑋8 = (2, 3, 1, 1, 1, 2). A universal torsor over 𝑋8 is

𝒯8 = Specℛ(𝑋8) \ 𝑍𝑋8 ,

where

𝑍𝑋8 = V(𝑥01, 𝑥02, 𝑥32) ∪ V(𝑥01, 𝑥02, 𝑥34) ∪ V(𝑥03, 𝑥05) ∪ V(𝑥04, 𝑥06)
∪ V(𝑥11, 𝑥21, 𝑥33) ∪ V(𝑥12, 𝑥22, 𝑥31) ∪ V(𝑥12, 𝑥22, 𝑥34) ∪ V(𝑥31, 𝑥32).

12.3. Counting problems

Corollary 12.1. (a) We have

𝑁5 (𝐵) =
1
32

#

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x ∈ Z10

≠0 :

𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥33 = 0, max |𝒫5 (x) | ≤ 𝐵
(𝑥31, 𝑥11, 𝑥21) = (𝑥02, 𝑥12, 𝑥22) = (𝑥12, 𝑥22, 𝑥31) = 1
(𝑥32, 𝑥11, 𝑥21) = (𝑥31, 𝑥03) = (𝑥02, 𝑥32) = 1
(𝑥02, 𝑥03) = (𝑥33, 𝑥01) = (𝑥12, 𝑥22, 𝑥32) = (𝑥03, 𝑥11, 𝑥21) = 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

with

𝒫5 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{𝑥01, 𝑥33}2𝑥2

02{𝑥12, 𝑥22}𝑥31{𝑥11, 𝑥21}2, 𝑥32{𝑥01, 𝑥33}3𝑥2
02𝑥

2
31{𝑥11, 𝑥21},

𝑥03{𝑥01, 𝑥33}𝑥02{𝑥12, 𝑥22}2{𝑥11, 𝑥21}2, 𝑥03𝑥
2
32{𝑥01, 𝑥33}3𝑥02𝑥

2
31,

𝑥2
03𝑥32{𝑥01, 𝑥33}{𝑥12, 𝑥22}2{𝑥11, 𝑥21}, 𝑥2

03𝑥
2
32{𝑥01, 𝑥33}2{𝑥12, 𝑥22}𝑥31

⎫⎪⎪⎪⎬⎪⎪⎪⎭.
(b) We have

𝑁6 (𝐵) =
1
8

#

{
x ∈ Z9

≠0 :
𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥

2
32 = 0, max |𝒫6 (x) | ≤ 𝐵

(𝑥01, 𝑥02) = (𝑥32, 𝑥12, 𝑥22) = (𝑥03, 𝑥31, 𝑥11, 𝑥21) = 1

}
,

with

𝒫6(x) =
{
{𝑥01, 𝑥02}{𝑥12, 𝑥22, 𝑥32}4𝑥3

31, {𝑥01, 𝑥02}{𝑥11, 𝑥21}3{𝑥12, 𝑥22, 𝑥32},
{𝑥01, 𝑥02}4𝑥3

03{𝑥12, 𝑥22, 𝑥32}

}
.

(c) We have

𝑁7 (𝐵) =
1
32

#

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x ∈ Z12

≠0 :

𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥33𝑥34𝑥
2
35 = 0, max |𝒫7 (x) | ≤ 𝐵

(𝑥01, 𝑥02, 𝑥03, 𝑥34) = (𝑥01, 𝑥02, 𝑥03, 𝑥35) = (𝑥01, 𝑥02, 𝑥32, 𝑥34) = 1
(𝑥01, 𝑥02, 𝑥32, 𝑥35) = (𝑥03, 𝑥33) = (𝑥11, 𝑥21, 𝑥32) = 1
(𝑥11, 𝑥21, 𝑥33) = (𝑥12, 𝑥22, 𝑥31) = (𝑥12, 𝑥22, 𝑥35) = (𝑥31, 𝑥34) = 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,
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with

𝒫7 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥2
31𝑥32𝑥

2
33𝑥

5
34𝑥

6
35, {𝑥12, 𝑥22}2𝑥32𝑥

2
33𝑥

5
34𝑥

4
35, {𝑥11, 𝑥21}𝑥2

31𝑥33𝑥
4
34𝑥

5
35,

{𝑥11, 𝑥21}{𝑥12, 𝑥22}2𝑥33𝑥
4
34𝑥

3
35, 𝑥03{𝑥11, 𝑥21}2𝑥2

31𝑥
2
34𝑥

3
35,

𝑥03{𝑥11, 𝑥21}2{𝑥12, 𝑥22}2𝑥2
34𝑥35, 𝑥

2
03{𝑥11, 𝑥21}2{𝑥12, 𝑥22}2𝑥32𝑥34,

𝑥3
03{𝑥11, 𝑥21}2𝑥2

31𝑥
2
32𝑥35, 𝑥

3
03{𝑥11, 𝑥21}2{𝑥12, 𝑥22}𝑥31𝑥

2
32, 𝑥

4
03{𝑥12, 𝑥22}2𝑥5

32𝑥
2
33𝑥34,

𝑥5
03𝑥

2
31𝑥

6
32𝑥

2
33𝑥35, 𝑥

5
03{𝑥12, 𝑥22}𝑥31𝑥

6
32𝑥

2
33, {𝑥01, 𝑥02}𝑥03{𝑥11, 𝑥21}2{𝑥12, 𝑥22}2𝑥34,

{𝑥01, 𝑥02}2𝑥03{𝑥11, 𝑥21}2𝑥2
31𝑥35, {𝑥01, 𝑥02}2𝑥03{𝑥11, 𝑥21}2{𝑥12, 𝑥22}𝑥31,

{𝑥01, 𝑥02}3{𝑥11, 𝑥21}{𝑥12, 𝑥22}2𝑥33𝑥34, {𝑥01, 𝑥02}4{𝑥12, 𝑥22}2𝑥32𝑥
2
33𝑥34,

{𝑥01, 𝑥02}4{𝑥11, 𝑥21}𝑥2
31𝑥33𝑥35, {𝑥01, 𝑥02}4{𝑥11, 𝑥21}{𝑥12, 𝑥22}𝑥31𝑥33,

{𝑥01, 𝑥02}5𝑥2
31𝑥32𝑥

2
33𝑥35, {𝑥01, 𝑥02}5{𝑥12, 𝑥22}𝑥31𝑥32𝑥

2
33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(d) We have

𝑁8 (𝐵) =
1

64
#

⎧⎪⎪⎪⎨⎪⎪⎪⎩x ∈ Z14
≠0 :

𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥
2
33𝑥

2
34 = 0, max |𝒫8 (x) | ≤ 𝐵

(𝑥01, 𝑥02, 𝑥32) = (𝑥01, 𝑥02, 𝑥34) = (𝑥03, 𝑥05) = (𝑥04, 𝑥06) = 1
(𝑥11, 𝑥21, 𝑥33) = (𝑥12, 𝑥22, 𝑥31) = (𝑥12, 𝑥22, 𝑥34) = (𝑥31, 𝑥32) = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭,
where 𝒫8 (x) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{𝑥03, 𝑥05}{𝑥04, 𝑥06}𝑥2
31𝑥

4
32𝑥

3
33𝑥

5
34, {𝑥03, 𝑥05}{𝑥04, 𝑥06}{𝑥12, 𝑥22}2𝑥4

32𝑥33𝑥
3
34,

{𝑥03, 𝑥05}{𝑥04, 𝑥06}{𝑥11, 𝑥21}{𝑥12, 𝑥22}2𝑥3
32𝑥

2
34, {𝑥03, 𝑥05}{𝑥04, 𝑥06}{𝑥11, 𝑥21}3𝑥2

31𝑥32𝑥
2
34,

𝑥02{𝑥03, 𝑥05}2{𝑥04, 𝑥06}{𝑥11, 𝑥21}3𝑥2
31𝑥34, 𝑥

2
02{𝑥03, 𝑥05}3{𝑥04, 𝑥06}{𝑥11, 𝑥21}{𝑥12, 𝑥22}2𝑥32,

𝑥2
02{𝑥03, 𝑥05}3{𝑥04, 𝑥06}{𝑥11, 𝑥21}2{𝑥12, 𝑥22}𝑥31, 𝑥

3
02{𝑥03, 𝑥05}4{𝑥04, 𝑥06}{𝑥12, 𝑥22}2𝑥32𝑥33,

𝑥4
02{𝑥03, 𝑥05}5{𝑥04, 𝑥06}𝑥2

31𝑥
3
33𝑥34, 𝑥

4
02{𝑥03, 𝑥05}5{𝑥04, 𝑥06}{𝑥12, 𝑥22}𝑥31𝑥

2
33,

𝑥01{𝑥03, 𝑥05}{𝑥04, 𝑥06}2{𝑥11, 𝑥21}3𝑥2
31𝑥34, 𝑥

2
01{𝑥03, 𝑥05}{𝑥04, 𝑥06}3{𝑥11, 𝑥21}{𝑥12, 𝑥22}2𝑥32,

𝑥2
01{𝑥03, 𝑥05}{𝑥04, 𝑥06}3{𝑥11, 𝑥21}2{𝑥12, 𝑥22}𝑥31, 𝑥

3
01{𝑥03, 𝑥05}{𝑥04, 𝑥06}4{𝑥12, 𝑥22}2𝑥32𝑥33,

𝑥4
01{𝑥03, 𝑥05}{𝑥04, 𝑥06}5𝑥2

31𝑥
3
33𝑥34, 𝑥

4
01{𝑥03, 𝑥05}{𝑥04, 𝑥06}5{𝑥12, 𝑥22}𝑥31𝑥

2
33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Proof. This is analogous to Corollary 11.1. �

12.4. Application: proof of Theorem 1.2

All cases can be proved exactly as in Section 11.4.

12.4.1. The variety 𝑋5
By Corollary 12.1(a), we have 𝐽 = 10 torsor variables 𝑥𝑖 𝑗 satisfying the equation

𝑥11𝑥12 + 𝑥21𝑥22 + 𝑥31𝑥32𝑥33 = 0.
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We have 𝑁 = 34 height conditions with corresponding exponent matrix

𝒜1 =

#$$$$$%

1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3
1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 2 2

2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1
1 1 2 2 1 2 2 1 1 2 2 2 2 1

1 2 2 2 2 1 1 2 2 2 2 1 1 1
1 1 2 2 1 2 2 1 1 2 2 2 2 1

1 2 2 2 2 1 1 2 2 2 2 1 1 1
1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 2 2 2
2 1 2 1 1 1 2 1 1 1 1 1 1 2 2 2 1 1
2 1 2 1 1 1 3 1 1 1 1 3 2 2 3 2 2

&'''''(
, 𝒜2 =

#$$$$$%

−1
−1
−1

1 −1
1 −1

1 −1
1 −1

−1 −1
−1 −1
−1 −1

&'''''(
.

Proposition 5.2 gives us 𝜆 = 1/34300. We have 𝑟 = 10 coprimality conditions, and we see immediately
in this and all other cases that (7.24) holds. We choose

𝜏 (2) = (1, 1, 1, 2
3 , . . . ,

2
3 ) = (1 − ℎ𝑖 𝑗/3)𝑖 𝑗 .

We verify 𝐶2 (𝜏 (2) ) and 𝐶2 ((1 − ℎ𝑖 𝑗/3)𝑖 𝑗 ) and compute and confirm (7.35) by

dim(ℋ ∩𝒫) = 4, dim(ℋ ∩𝒫𝑖 𝑗 ) = 3, dim(ℋ ∩𝒫(1/34300, 𝜋)) = 0.

12.4.2. The variety 𝑋6
By Corollary 12.1(b), we have 𝐽 = 9 torsor variables 𝑥𝑖 𝑗 satisfying the equation

𝑥11𝑥12 + 𝑥21𝑥22 + 𝑥31𝑥
2
32 = 0.

We have 𝑁 = 24 height conditions with corresponding exponent matrix

𝒜1 =

#$$$$%
1 1 1 1 1 1 1 1 1 4 4 4

1 1 1 1 1 1 1 1 1 4 4 4
3 3 3 3 3 3

3 3 3 3 3 3
1 4 1 1 1 4 1 1

3 3 3 3 3 3
4 1 1 1 4 1 1 1

3 3 3 3 3 3
4 1 1 1 4 1 1 1

&''''(
, 𝒜2 =

#$$$$%
−1
−1
−1

1 −1
1 −1

1 −1
1 −1

−1 −1
−2 −2 1

&''''(
.

Proposition 5.2 yields 𝜆 = 1/34300. We choose

𝜏 (2) = (1, 1, 1, 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1)

satisfying (7.18). We verify 𝐶2 (𝜏 (2) ) and 𝐶2 ((1 − ℎ𝑖 𝑗/3)𝑖 𝑗 ) and compute

dim(ℋ ∩𝒫) = 2,
dim(ℋ ∩𝒫𝑖 𝑗 ) = −1, (𝑖, 𝑗) = (1, 1), (2, 1), dim(ℋ ∩𝒫𝑖 𝑗 ) = 1 otherwise,
dim(ℋ ∩𝒫(1/34300, 𝜋)) = −1 for all 𝜋

for the vector (1 − ℎ𝑖 𝑗/3)𝑖 𝑗 and

dim(ℋ ∩𝒫) = 1,

dim(ℋ ∩𝒫𝑖 𝑗 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, (𝑖, 𝑗) = (3, 1),
0, (𝑖, 𝑗) = (0, 1), (0, 2), (0, 3),
−1, otherwise,

dim(ℋ ∩𝒫(1/34300, 𝜋)) = −1 for all 𝜋

for the vector 𝜏 (2) . This confirms (7.35).
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12.4.3. The variety 𝑋7
By Corollary 12.1(c), we have 𝐽 = 12 torsor variables 𝑥𝑖 𝑗 satisfying the equation

𝑥11𝑥12 + 𝑥21𝑥22 + 𝑥31𝑥32𝑥33𝑥34𝑥
2
35 = 0.

We have 𝑁 = 80 height conditions; the corresponding matrix 𝒜1 is

#$$$$$$$$%

1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5
1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5

1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1

2 2 2 2 2 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 2 1 1
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1

2 2 2 2 2 2 2 1 1 2 1 2 2 1 1 2 2 2 1 1 1 2 2 1 1 2 2 2 1 1 1
2 2 2 2 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1
1 1 1 1 1 1 1 2 2 2 2 2 2 5 5 6 6 6 1 1 1 1 1 1 1 1 1 1
2 2 1 1 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 1 1 1 2 1 1 1 2 2 2 1 1 1 1 2 1 1 1 2 1 1 1 2 2 2
5 5 4 4 5 4 4 4 4 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 4 5 3 4 3 5 3 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

&''''''''(
,

Proposition 5.2 yields 𝜆 = 1/70, 000. We choose

𝜏 (2) = (1, 1, 1, 1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1)

satisfying (7.18). We verify 𝐶2 (𝜏 (2) ) and 𝐶2 ((1 − ℎ𝑖 𝑗/3)𝑖 𝑗 ) and compute

dim(ℋ ∩𝒫) = 4,

dim(ℋ ∩𝒫𝑖 𝑗 ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, (𝑖, 𝑗) = (0, 1), (0, 2),
0, (𝑖, 𝑗) = (1, 1), (2, 1),
2, (𝑖, 𝑗) = (1, 2), (2, 2),
3, otherwise,

dim(ℋ ∩𝒫(1/70, 000, 𝜋)) = −1 for all 𝜋

for the vector (1 − ℎ𝑖 𝑗/3)𝑖 𝑗 and

dim(ℋ ∩𝒫) = 0,

dim(ℋ ∩𝒫𝑖 𝑗 ) =
{

0, (𝑖, 𝑗) = (3, 1), (3, 2), (3, 3), (3, 4),
−1, otherwise,

dim(ℋ ∩𝒫(1/70, 000, 𝜋)) = −1 for all 𝜋

for the vector 𝜏 (2) . This confirms (7.35).

12.4.4. The variety 𝑋8
By Corollary 12.1(d), we have 𝐽 = 14 torsor variables 𝑥𝑖 𝑗 with 0 ≤ 𝑖 ≤ 3, 𝐽0 = 6, 𝐽1 = 𝐽2 = 2, 𝐽3 = 4
satisfying the equation

𝑥11𝑥12 + 𝑥21𝑥22 + 𝑥31𝑥32𝑥
2
33𝑥

2
34 = 0

with 𝑘 = 3. We have 𝑁 = 156 height conditions; it is straightforward to extract the corresponding
matrices𝒜1,𝒜2 from Corollary 12.1(d), which we do not spell out for obvious space reasons. Proposition
5.2 yields 𝜆 = 1/70, 000. We choose

𝜏 (2) = (1, 1, 1, 1, 1, 1, 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1)
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satisfying (7.18). We verify 𝐶2 (𝜏 (2) ) and 𝐶2 ((1 − ℎ𝑖 𝑗/3)𝑖 𝑗 ) and compute

dim(ℋ ∩𝒫) = 5,

dim(ℋ ∩𝒫𝑖 𝑗 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, (𝑖, 𝑗) = (1, 1), (2, 1)
2, (𝑖, 𝑗) = (1, 2), (2, 2),
4, otherwise,

dim(ℋ ∩𝒫(1/34300, 𝜋)) = −1 for all 𝜋

for the vector (1 − ℎ𝑖 𝑗/3)𝑖 𝑗 and

dim(ℋ ∩𝒫) = 3,

dim(ℋ ∩𝒫𝑖 𝑗 ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1, (𝑖, 𝑗) = (1, 1), (1, 2), (2, 1), (2, 2),
0, (𝑖, 𝑗) = (3, 4)
3, (𝑖, 𝑗) = (3, 1), (3, 2),
2, otherwise,

dim(ℋ ∩𝒫(1/70, 000, 𝜋)) = −1 for all 𝜋

for the vector 𝜏 (2) . This confirms (7.35).

13. A singular example

As in Section 11.1.1, we consider the spherical G-variety𝑊4 = V(𝑧11𝑧12 − 𝑧21𝑧22 − 𝑧31𝑧32) ⊂ P2
Q
× P2
Q

.
Let 𝑋† → 𝑊4 be the blow-up in the two disjoint G-invariant curves

𝐶01 = V(𝑧12, 𝑧22, 𝑧31) = V(𝑧31) × {(0 : 0 : 1)}, 𝐶33 = V(𝑧31, 𝑧32).

The anticanonical divisor −𝐾𝑋† is not ample but semiample. Moreover,

𝐻1(𝑋†,𝒪𝑋† ) = 𝐻2(𝑋†,𝒪𝑋† ) = 0

since 𝑋† is smooth and rational. Hence, 𝑋† is an almost Fano variety. We obtain an anticanonical
contraction 𝜋 : 𝑋† → 𝑋†. Here, 𝑋† is a singular Fano variety with desingularization 𝑋†. The sequence
of morphisms𝑊4 ← 𝑋† → 𝑋† corresponds to the following sequence of maps of colored fans.

𝑢31

𝑢32

𝑑2

𝑑1 ←−
𝑢31

𝑢33 𝑢32

𝑢01
𝑑2

𝑑1 −→

𝑢32
𝑢33

𝑢01
𝑑2

𝑑1

We denote by 𝐸31 the G-invariant exceptional divisor contracted by 𝜋. The singular locus of 𝑋† is
𝜋(𝐸31). The dotted circles in the colored fan of 𝑋† specify a smooth projective ambient toric variety 𝑌†
such that −𝐾𝑋† is ample on 𝑌†.

In the same way as before, a universal torsor of 𝑋† can be obtained. The straightforward computations
are omitted. This leads to the following counting problem.
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Corollary 13.1. We have

𝑁†(𝐵) = 1
16

#

⎧⎪⎪⎪⎨⎪⎪⎪⎩x ∈ Z8
≠0 :

𝑥11𝑥12 − 𝑥21𝑥22 − 𝑥31𝑥32𝑥
2
33 = 0, max |𝒫†(x) | ≤ 𝐵

(𝑥11, 𝑥21, 𝑥33) = (𝑥11, 𝑥21, 𝑥31) = (𝑥01, 𝑥11, 𝑥21) = 1
(𝑥12, 𝑥22) = (𝑥01, 𝑥32) = (𝑥01, 𝑥33) = (𝑥31, 𝑥32) = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭,
with

𝒫†(x) =
{
𝑥01𝑥

2
31𝑥

2
32𝑥

3
33, {𝑥11, 𝑥21}𝑥31𝑥

2
32𝑥

2
33, {𝑥11, 𝑥21}2{𝑥12, 𝑥22}𝑥32,

𝑥3
01{𝑥12, 𝑥22}2𝑥2

31𝑥33, 𝑥
2
01{𝑥11, 𝑥21}{𝑥12, 𝑥22}2𝑥31

}
.

By the same type of computations as before, one concludes Theorem 1.3 from Corollary 13.1 and
Theorem 10.1 applied to the almost Fano variety 𝑋†.

A. Some explicit computations

We return to the variety 𝑋4 discussed in Section 11.4.1 and explain how to obtain Hypothesis 7.2 by
‘bare hands’ and how to compute Peyre’s constant explicitly. We use 𝑋4 as a showcase, the computations
are similar (and similarly uninspiring) in the other cases.

Recall from (7.22) and (11.4) that for Hypothesis 7.2, we need to show∑
X

∗
(𝑋01𝑋02 (𝑋11𝑋12𝑋21𝑋22𝑋31𝑋32)2/3)𝛼 
 𝐵𝛼 (log 𝐵)2(1 + log𝐻) (A.1)

for fixed 0 < 𝛼 < 1, where each 𝑋𝑖 𝑗 is restricted to a power of 2 and subject to

min(𝑋𝑖 𝑗 ) ≤ 𝐻 and
∏
𝑖 𝑗

𝑋
𝛼𝜈𝑖 𝑗
𝑖 𝑗 ≤ 𝐵.

By symmetry, we can assume without loss of generality that

𝑋12 ≥ 𝑋22, 𝑋21 ≥ 𝑋11.

The columns 𝜈 = 4, 5 and 𝜈 = 2, 3 of in the matrix 𝒜1 yield

𝑋31𝑋12 max(𝑋31𝑋32, 𝑋12𝑋21)𝑋2
02 ≤ 𝐵, 𝑋32𝑋21 max(𝑋31𝑋32, 𝑋12𝑋21)𝑋2

01 ≤ 𝐵, (A.2)

respectively. Let us first assume that min(𝑋𝑖 𝑗 ) " min(𝑋11, 𝑋22, 𝑋31, 𝑋32), that is, 𝑋01, 𝑋02 are not the
smallest parameters. Summing over 𝑋01, 𝑋02, we bound the X-sum in (A.1) by∑

X

( 𝐵(𝑋11𝑋12𝑋21𝑋22𝑋31𝑋32)2/3

(𝑋12𝑋21𝑋31𝑋32)1/2 max(𝑋31𝑋32, 𝑋12𝑋21)

)𝛼
≤
∑

X

(𝐵(𝑋31𝑋32)1/6(𝑋21𝑋22)2/3

max(𝑋31𝑋32, 𝑋12𝑋21)5/6
)𝛼
.

Here and in similar situations, the precise summation conditions on X and the variables involved will
always be clear from the context. Suppose that the minimum is taken at 𝑋11 or 𝑋22. We glue together
the variables 𝑋31𝑋32 = 𝑋3, say, where 𝑋3 runs over powers of 2 with multiplicity 𝑂 (log 𝐵). Summing
over 𝑋3, the X-sum becomes

log 𝐵
∑

𝑋22≤𝑋12≤𝐵
𝑋11≤𝑋21≤𝐵

min(𝑋11 ,𝑋22) ≤𝐻

(
𝐵(𝑋22𝑋11)2/3

(𝑋12𝑋21)2/3

)𝛼

 𝐵𝛼 (log 𝐵)2(1 + log𝐻).
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If the minimum is taken at 𝑋31 or 𝑋32, there are only 𝑂 (1 + log𝐻) possibilities for the value of 𝑋3, and
we can argue in the same way.

Finally, we treat the case where the minimum is taken at 𝑋01 or 𝑋02. Without loss of generality
(by symmetry), assume 𝑋01 ≤ 𝑋02. We use (A.2) to sum over 𝑋02 and then sum over 𝑋11 ≤ 𝑋21 and
𝑋22 ≤ 𝑋12. In this way, we bound the X-sum in (A.1) by∑

X

(𝐵1/2𝑋01(𝑋11𝑋12𝑋21𝑋22𝑋31𝑋32)2/3

(𝑋31𝑋12 max(𝑋31𝑋32, 𝑋12𝑋21))1/2
)𝛼


∑

X

( 𝐵1/2𝑋01 (𝑋2
12𝑋

2
21𝑋31𝑋32)2/3

(𝑋31𝑋12 max(𝑋31𝑋32, 𝑋12𝑋21))1/2
)𝛼
,

where the sum is restricted to 𝑋01, 𝑋12, 𝑋21, 𝑋31, 𝑋32 powers of 2 satisfying 𝑋01 ≤ 𝐻 and the second
bound in (A.2). We now distinguish two cases. If 𝑋31𝑋32 ≥ 𝑋12𝑋21, we sum over 𝑋12 ≤ 𝑋31𝑋32/𝑋21,
getting ∑

𝑋01≤𝐻
𝑋2

32𝑋21𝑋31𝑋
2
01≤𝐵

(
𝐵1/2𝑋01𝑋32(𝑋31𝑋21)1/2

)𝛼



∑
𝑋01≤𝐻,𝑋21 ,𝑋31≤𝐵

𝐵𝛼 
 𝐵𝛼 (log 𝐵)2(1 + log𝐻).

If 𝑋31𝑋32 ≤ 𝑋12𝑋21, we sum over 𝑋31 ≤ 𝑋12𝑋21/𝑋32 instead, obtaining the same result.
Now, we compute the Peyre constant. We start with the computation of the Euler product 𝑐fin. By

(11.2), (8.11) and (8.14), we have

𝛾 = ([𝑔4, 𝑔5], [𝑔3, 𝑔4], 𝑔1, 𝑔2, 𝑔1, 𝑔2, 𝑔5, 𝑔3]) ∈ N8, 𝛾∗ = (𝑔1𝑔2, 𝑔1𝑔2, 𝑔3𝑔5) ∈ N3.

A simple computation (cf. Lemma 5.4) shows

ℰb =
∞∑
𝑞=1

𝑞−6
∑ ∗

𝑎 mod 𝑞

3∏
𝑖=1

( ∑
𝑥,𝑦 mod 𝑞

𝑒
( 𝑎
𝑞
𝑏𝑖𝑥𝑦

))
=

∞∑
𝑞=1

𝜙(𝑞) (𝑞, 𝑏1) (𝑞, 𝑏2) (𝑞, 𝑏3)
𝑞3

for b ∈ N3 so that

𝑐fin =
∑
g∈N5

𝜇(g)
𝑔2

1𝑔
2
2𝑔3𝑔5 [𝑔4, 𝑔5] [𝑔3, 𝑔4]

∞∑
𝑞=1

𝜙(𝑞) (𝑞, 𝑔1𝑔2)2(𝑞, 𝑔3𝑔5)
𝑞3 .

We expand this into an Euler product, and by brute force computation one verifies

𝑐fin =
∏
𝑝

(
1 − 1

𝑝

)4 (
1 + 1

𝑝

) (
1 + 3

𝑝
+ 1
𝑝2

)
.

In order to compute 𝑐∗ and 𝑐∞, we follow the argument in Section 8.5. We can take the rows 3, 4, 5, 6
(i.e., corresponding to (𝑖 𝑗) = (11), (12), (21), (22)) of (𝒜1 𝒜2) as 𝑍1, . . . , 𝑍4 in (8.23) so that

𝑦1 = 𝑤11 = 𝑠3 + 2𝑠7 + 2𝑠9 + 𝑠11 + 𝑠13 + 2𝑠16 + 2𝑠17 + 𝑧1 − 1,
𝑦2 = 𝑤12 = 𝑠4 + 𝑠6 + 𝑠7 + 2𝑠10 + 2𝑠11 + 2𝑠14 + 2𝑠16 + 𝑧1 − 1,
𝑦3 = 𝑤21 = 𝑠2 + 2𝑠6 + 2𝑠8 + 𝑠10 + 𝑠12 + 2𝑠14 + 2𝑠15 + 𝑧2 − 1,
𝑦4 = 𝑤22 = 𝑠5 + 𝑠8 + 𝑠9 + 2𝑠12 + 2𝑠13 + 2𝑠15 + 2𝑠17 + 𝑧2 − 1,
𝑦5 = 𝑠1 + · · · + 𝑠17 − 1.

An explicit choice for a vector 𝜎 satisfying (7.6) is, for instance,

𝜎 = ( 1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
18 ,

1
12 ,

1
12 ,

1
18 ) ∈ R

17
>0.
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The linear forms ℒ𝜄 (y) in (8.27) containing the entries of the matrix ℬ ∈ R4×5 are given by

𝑤31 = 𝑦5 + 𝑦3 − 𝑦2 + 𝑦1 − 𝑦4, 𝑤32 = 𝑦5 − 𝑦3 + 𝑦2 − 𝑦1 + 𝑦4,

𝑤01 = 2𝑦5 − 𝑦2 − 𝑦4, 𝑤02 = 2𝑦5 − 𝑦3 − 𝑦1.

By contour shifts as in Section 8.5 or by the explicit formula (8.34), we compute

𝑐∗ =
1
3!
· 1

12
.

To compute 𝑐∞, we need to choose a matrix 𝒞 as in (8.25), that is, variables 𝑦6, . . . , 𝑦17 as functions
of s. A simple possible choice is 𝑦𝜈 = 𝑠𝜈 , 6 ≤ 𝜈 ≤ 17 (Jacobi-determinant −1). In these variables, we
have( 17∏

𝜈=1
𝑠𝜈

)
|𝑦1=· · ·=𝑦5=0 =

( 17∏
𝜈=6

𝑦𝜈

)
(2(𝑦6 + · · · + 𝑦13) + 3(𝑦14 + 𝑦15 + 𝑦16 + 𝑦17) − 3 + 2𝑧1 + 2𝑧2)

× (2𝑦6 + 2𝑦8 + 𝑦10 + 𝑦12 + 2𝑦14 + 2𝑦15 + 𝑧2 − 1) (2𝑦7 + 2𝑦9 + 𝑦11 + 𝑦13 + 2𝑦16 + 2𝑦17 + 𝑧1 − 1)
× (𝑦6 + 𝑦7 + 2𝑦10 + 2𝑦11 + 2𝑦14 + 2𝑦16 + 𝑧1 − 1) (𝑦8 + 𝑦9 + 2𝑦12 + 2𝑦13 + 2𝑦15 + 2𝑦17 + 𝑧2 − 1).

For fixed 𝑧1, 𝑧2, the integrand is a rational function in 𝑦6, . . . , 𝑦17, and we simply shift each contour to
+∞ or −∞ (again it does not matter which direction we choose) and pick up the poles. After a long
computation (or a quick application of a computer algebra system), we obtain

𝑐∞ =
28

𝜋

∫ (2)

(1/3)
𝒦(𝑧1)𝒦(𝑧2)𝒦(𝑧3)

2(3 − 𝑧2
3)

(𝑧1 − 1)2(𝑧2 − 1)2(𝑧3 − 1)2
d𝑧1 d𝑧2

(2𝜋i)2
,

with 𝒦(𝑧) = Γ(𝑧) cos(𝜋𝑧/2), 𝑧3 = 1 − 𝑧1 − 𝑧2. Let us define

K(𝑧) = Γ(𝑧) cos(𝜋𝑧/2)
(𝑧 − 1)2

, K∗(𝑧) = 2Γ(𝑧) cos(𝜋𝑧/2) (3 − 𝑧2)
(𝑧 − 1)2

,

and let us denote by

Ǩ(𝑥) =
∫
(1/3)
K(𝑧)𝑥−𝑧 d𝑧

2𝜋i
, 𝑥 > 0,

and similarly by Ǩ∗ the corresponding inverse Mellin transforms. By [40, 6.246], we have Ǩ(𝑥) = Si(𝑥)/𝑥,
where Si(𝑥) =

∫ 𝑥

0 sin 𝑡 𝑑𝑡/𝑡 is the integral sine. To deal with convergence issues, let

𝒞 = (−10 − 𝑖∞,−10 − 𝑖] ∪ [−10 − 𝑖, 1/3] ∪ [1/3,−10 + 𝑖] ∪ [−10 + 𝑖,−10 + 𝑖∞).

Then

𝜋

28 𝑐∞ =
∫ (2)

(1/3)
K(𝑧1)K(𝑧2)K∗(1 − 𝑧1 − 𝑧2)

d𝑧1 d𝑧2

(2𝜋𝑖)2
=
∫ (2)

(1/3)
K(𝑧1)K(1 − 𝑧1 − 𝑧2)K∗(𝑧2)

d𝑧1 d𝑧2

(2𝜋𝑖)2

=
∫ ∞

0
Ǩ(𝑥)

∫
(1/3)
K(𝑧1)𝑥−𝑧1

d𝑧1
2𝜋i

∫
𝒞

K∗(𝑧2)𝑥−𝑧2
d𝑧2
2𝜋i

d𝑥 =
∫ ∞

0
Ǩ(𝑥)2

∫
𝒞

K∗(𝑧2)𝑥−𝑧2
d𝑧2
2𝜋i

d𝑥.

The 𝑧2-integral is also an inverse Mellin transform, but in order to avoid convergence issues, we
compute it directly by shifting the contour to the far left and collect the poles. Comparing power series
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(cf. [40, 8.232, 8.253]), we obtain∫
𝒞

K∗(𝑧)𝑥−𝑧 d𝑧
(2𝜋i) =

4Si 𝑥 + 4 sin 𝑥 − 2𝑥 cos 𝑥
𝑥

.

For this and related expressions appearing in the computation of the Peyre constant of the varieties
𝑋1, . . . , 𝑋4, the following lemma can be used. Let

F(𝑥) =
∫ 𝑥

0
cos

( 𝜋𝑡2
2

)
d𝑡.

Lemma A.1. We have∫ ∞

0

(
Si 𝑥
𝑥

)3
d𝑥 =

33
32
𝜋 − 1

32
𝜋3,

∫ ∞

0

(
Si 𝑥
𝑥

)2 sin 𝑥
𝑥

d𝑥 =
1
4
𝜋 + 𝜋

48
(21 − 𝜋2),∫ ∞

0

(
Si 𝑥
𝑥

)2
cos(𝑥) d𝑥 =

𝜋(12 − 𝜋2)
24

.

Moreover, ∫ ∞

0

(Si 𝑥)2

𝑥2

( 𝜋
2𝑥

)1/2
F
((2𝑥
𝜋

)1/2
)

d𝑥 = −𝜋
3

72
+ 𝜋

(
59
54
− 4

9
log 2

)
,∫ ∞

0

(Si 𝑥) sin 𝑥
𝑥2

( 𝜋
2𝑥

)1/2
F
((2𝑥
𝜋

)1/2
)

d𝑥 =
𝜋

36
(25 − 12 log 2).

Proof. The first integral is computed in [6, Theorem 3]. To compute the second, we observe that∫ ∞

0

(
Si(𝑥)
𝑥

)2 sin(𝑥)
𝑥

d𝑥 =
∫ 1

0

∫ 1

0

∫ ∞

0

sin(𝑥) sin(𝑡𝑥) sin(𝑠𝑥)
𝑥3 d𝑥

d𝑡 d𝑠
𝑡𝑠

.

By the residue theorem, it is readily seen that the inner integral equals

𝜋

16
((𝑠 + 𝑡 + 1)2 − (𝑠 + 𝑡 − 1)2sgn(𝑠 + 𝑡 − 1) − (𝑠 − 𝑡 + 1)2sgn(𝑠 − 𝑡 + 1) − (𝑡 − 𝑠 + 1)2sgn(𝑡 − 𝑠 + 1))

=
𝜋

16

{
−2 + 4𝑠 − 2𝑠2 + 4𝑡 + 4𝑠𝑡 − 2𝑡2, 𝑠 + 𝑡 ≥ 1
8𝑠𝑡, 𝑠 + 𝑡 ≤ 1

for 0 ≤ 𝑠, 𝑡 ≤ 1, and a straightforward computation gives the desired result. Similarly, one computes the
other integrals. �

The previous lemma confirms the evaluation

𝑐∞ = 32(47 − 𝜋2).

B. Final remarks

Here, we show that 𝑋3, . . . , 𝑋8, 𝑋
†, 𝑋† do not belong to any of the families of varieties described in the

introduction for which Manin’s conjecture is already known. Whether or not 𝑋1, 𝑋2 are biequivariant
compactifications of a unipotent group is not obvious to us, but it is not hard to see that they are
certainly neither horospherical nor equivariant compactifications of G𝑑a nor wonderful compactification
of a semisimple group of adjoint type.

Proposition B.1. None of the varieties 𝑋3, . . . , 𝑋8, 𝑋
†, 𝑋† is isomorphic to a biequivariant compactifi-

cation of a unipotent group.
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Table B.1. Flag varieties of simple groups and of dimension up to 6..

root system parabolic subgroup dim𝐺/𝑃 𝒵 rk Cl𝐺/𝑃 remark

𝐴1 𝛼1 1 (2) 1 toric
𝐴2 𝛼1 2 (3) 1 toric
𝐴2 𝛼1 , 𝛼2 3 (3, 3) 2
𝐴3 𝛼1 3 (4) 1 toric
𝐴3 𝛼2 4 (6) 1
𝐴3 𝛼1 , 𝛼2 5 (4, 6) 2
𝐴3 𝛼1 , 𝛼3 5 (4, 4) 2
𝐴3 𝛼1 , 𝛼2 , 𝛼3 6 (4, 4, 6) 3
𝐴4 𝛼1 4 (5) 1 toric
𝐴4 𝛼2 6 (10) 1
𝐴5 𝛼1 5 (6) 1 toric
𝐴6 𝛼1 6 (7) 1 toric
𝐵2 𝛼1 3 (5) 1
𝐵2 𝛼2 3 (4) 1 toric
𝐵2 𝛼1 , 𝛼2 4 (4, 5) 2
𝐵3 𝛼1 5 (7) 1
𝐵3 𝛼3 6 (8) 1
𝐶3 𝛼1 5 (6) 1 toric
𝐶3 𝛼3 6 (14) 1
𝐷4 𝛼1 6 (8) 1
𝐺2 𝛼1 5 (7) 1
𝐺2 𝛼2 5 (14) 1
𝐺2 𝛼1 , 𝛼2 6 (7, 14) 2

Proof. By [22, Proposition 1.1], the effective cone of every equivariant compactification of G3
a is

simplicial. More generally, by [67, Proposition 7.2], the same is true for biequivariant compactifications
of unipotent groups. However, the effective cones of 𝑋3, . . . , 𝑋8, 𝑋

†, 𝑋† are not simplicial. �

Proposition B.2. Neither 𝑋1 nor 𝑋2 is isomorphic to an equivariant compactification of G3
a .

Proof. By [46], only the first two entries of Table 11.1 are equivariant compactifications of G3
a . �

Proposition B.3. None of the varieties 𝑋1, . . . , 𝑋8, 𝑋
†, 𝑋† is isomorphic to a wonderful compactification

of a semisimple group of adjoint type or to a wonderful variety covered by [39, Corollary 1.5].

Proof. Over Q, the only wonderful variety of dimension 3 and Picard rank 3 is P1 × P1 × P1; see, for
instance, [12]. Hence, 𝑋1 and 𝑋2 are not wonderful varieties.

Moreover, by [18, Example 2.3.5], the effective cone of a wonderful compactification of a semisimple
group of adjoint type is simplicial. Similarly, by [39, Section 3.3], the effective cone of a wonderful
variety covered by [39, Corollary 1.5] is simplicial. Hence, the result for 𝑋3, . . . , 𝑋8, 𝑋

†, 𝑋† follows as
in Proposition B.1. �

Proposition B.4. None of the varieties 𝑋1, . . . , 𝑋8, 𝑋
†, 𝑋† is isomorphic to a horospherical variety.

Proof. By [44, §6] and [12], the varieties in Table 11.1 are not horospherical; hence, 𝑋1, . . . , 𝑋4 are not
horospherical.

Now, let X be a complete horospherical G-variety. After possibly removing a set of codimension at
least 2, we obtain a surjective G-equivariant morphism 𝑋 → 𝐺/𝑃, where 𝑃 ⊆ 𝐺 is a parabolic subgroup
and the fiber Y is a toric variety. The fan of Y is obtained from the colored fan of X by ignoring the
colors. For details, we refer to [3, Section 2]. The generators of the effective cone Eff𝐺/𝑃 are a basis
of the divisor class group Cl𝐺/𝑃. Moreover, we have ℛ(𝑋) = ℛ(𝐺/𝑃) [𝑋1, . . . , 𝑋𝑟 ], where

𝑟 = rk Cl 𝑋 − rk Cl𝐺/𝑃 + dim 𝑋 − dim𝐺/𝑃 = the number of rays in the fan of 𝑌 ;

this follows from [18, Theorem 4.3.2]. See also [33, Theorem 3.8].
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Table B.2. Nontoric flag varieties of dimension up to 6..

root system parabolic subgroup dim𝐺/𝑃 𝒵 rk Cl𝐺/𝑃 𝑟𝑋6 𝑟𝑋7 𝑟𝑋8

𝐴2 𝛼1 , 𝛼2 3 (3, 3) 2 3 6 8
𝐵2 𝛼1 3 (5) 1 4 7 9

𝐴3 𝛼2 4 (6) 1 3 6 8
𝐵2 𝛼1 , 𝛼2 4 (4, 5) 2 2 5 7

𝐴2 × 𝐴1 𝛼1 , 𝛼2 , 𝛽1 4 (2, 3, 3) 3 1 4 6
𝐵2 × 𝐴1 𝛼1 , 𝛽1 4 (2, 5) 2 2 5 7

𝐴3 𝛼1 , 𝛼2 5 (4, 6) 2 1 3
𝐴3 𝛼1 , 𝛼3 5 (4, 4) 2 1 3
𝐵3 𝛼1 5 (7) 1 0 2
𝐺2 𝛼1 5 (7) 1 0 2
𝐺2 𝛼2 5 (14) 1 0 2

𝐴3 × 𝐴1 𝛼2 , 𝛽1 5 (2, 6) 2 1 3
𝐵2 × 𝐴1 𝛼1 , 𝛼2 , 𝛽1 5 (2, 4, 5) 3 −1 0
𝐴2 × 𝐴2 𝛼1 , 𝛼2 , 𝛽1 5 (3, 3, 3) 3 −1 0
𝐵2 × 𝐴2 𝛼1 , 𝛽2 5 (3, 5) 2 1 3

𝐴2 × 𝐴1 × 𝐴1 𝛼1 , 𝛼2 , 𝛽1 , 𝛾1 5 (2, 2, 3, 3) 4 −2 −1
𝐵2 × 𝐴1 × 𝐴1 𝛼1 , 𝛽1 , 𝛾1 5 (2, 2, 5) 3 −1 0

𝐴3 𝛼1 , 𝛼2 , 𝛼3 6 (4, 4, 6) 3 4
𝐴4 𝛼2 6 (10) 1 6
𝐵3 𝛼3 6 (8) 1 6
𝐶3 𝛼3 6 (14) 1 6
𝐷4 𝛼1 6 (8) 1 6
𝐺2 𝛼1 , 𝛼2 6 (7, 14) 2 5

𝐴3 × 𝐴1 𝛼1 , 𝛼2 , 𝛽1 6 (2, 4, 6) 3 4
𝐴3 × 𝐴1 𝛼1 , 𝛼3 , 𝛽1 6 (2, 4, 4) 3 4
𝐵3 × 𝐴1 𝛼1 , 𝛽1 6 (2, 7) 2 5
𝐺2 × 𝐴1 𝛼1 , 𝛽1 6 (2, 7) 2 5
𝐺2 × 𝐴1 𝛼2 , 𝛽1 6 (2, 14) 2 5
𝐴3 × 𝐴2 𝛼2 , 𝛽1 6 (3, 6) 2 5
𝐵2 × 𝐴2 𝛼1 , 𝛼2 , 𝛽1 6 (3, 4, 5) 3 4

𝐴3 × 𝐴1 × 𝐴1 𝛼2 , 𝛽1 , 𝛾1 6 (2, 2, 6) 3 4
𝐵2 × 𝐴1 × 𝐴1 𝛼1 , 𝛼2 , 𝛽1 , 𝛾1 6 (2, 2, 4, 5) 4 3
𝐴2 × 𝐴2 𝛼1 , 𝛼2 , 𝛽1 , 𝛽2 6 (3, 3, 3, 3) 4 3
𝐴2 × 𝐵2 𝛼1 , 𝛼2 , 𝛽1 6 (3, 3, 5) 3 4
𝐵2 × 𝐵2 𝛼1 , 𝛽1 6 (5, 5) 2 5
𝐴2 × 𝐴3 𝛼1 , 𝛼2 , 𝛽1 6 (3, 3, 4) 3 4
𝐴2 × 𝐵2 𝛼1 , 𝛼2 , 𝛽2 6 (3, 3) 3 4
𝐵2 × 𝐴3 𝛼1 , 𝛽1 6 (4, 4, 5) 2 5
𝐵2 × 𝐵2 𝛼1 , 𝛽2 6 (4, 5) 2 5

𝐴2 × 𝐴2 × 𝐴1 𝛼1 , 𝛼2 , 𝛽1 , 𝛾1 6 (2, 3, 3, 3) 4 3
𝐵2 × 𝐴2 × 𝐴1 𝛼1 , 𝛽1 , 𝛾1 6 (2, 3, 5) 3 4

𝐴2 × 𝐴1 × 𝐴1 × 𝐴1 𝛼1 , 𝛼2 , 𝛽1 , 𝛾1 , 𝛿1 6 (2, 2, 2, 3, 3) 5 2
𝐵2 × 𝐴1 × 𝐴1 × 𝐴1 𝛼1 , 𝛽1 , 𝛾1 , 𝛿1 6 (2, 2, 2, 6) 4 3

Table B.2 contains the data of all nontoric flag varieties 𝐺/𝑃 required here. It can be computed from
Table B.1 by forming products. The parabolic subgroup P is described by the complement of the subset
of the simple roots used in [69, Theorem 8.4.3]. It follows that the set of colors of 𝐺/𝑃 is in bijection
with the subset of simple roots given in the tables; see [58, after Définition 2.6]. By [18, Proposition
4.1.1], the rank of Cl𝐺/𝑃 is the number of colors. The dimension of 𝐺/𝑃 can be deduced, for instance,
by [71, p. 9]. For simple G, it follows from [37, Proposition 6.1] that 𝐺/𝑃 is toric if and only if the
Dynkin diagram of G marked with the subset of simple roots given in the tables appears in [57, Lemme
2.13]. The meaning of 𝒵 will be explained below.

First, assume that 𝑋† or 𝑋† is isomorphic to X. Then we have dim 𝑋 = 3. Recall that the effective
cones of 𝑋† and 𝑋† are not simplicial. Since the effective cone of any flag variety is simplicial, we
deduce dim𝐺/𝑃 ≤ 2. It follows that 𝐺/𝑃 is isomorphic to a toric variety, and hence the same is true for
X. But according to Section 13, the Cox rings of 𝑋† and 𝑋† are not polynomial rings, a contradiction.
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Next, assume that 𝑋5 is isomorphic to X. Then we have dim 𝑋 = 4. As before, we obtain dim𝐺/𝑃 ≤ 3
from the fact that the effective cone of 𝑋5 is not simplicial and dim𝐺/𝑃 ≥ 3 from the fact that the
variety 𝑋5 is not isomorphic to a toric one. Hence, we have dim𝐺/𝑃 = 3, and therefore, rk Cl𝐺/𝑃 ≤ 3.
Moreover, we have dim𝑌 = 1 and therefore 𝑟 ≤ 2. We obtain rk Cl 𝑋 ≤ 4, a contradiction to rk Cl 𝑋5 = 5.

Next, assume that 𝑋6 is isomorphic to X. Then we have dim 𝑋 = 5. Let 𝒵(𝑋6) be the ordered tuple
of the dimensions of the homogeneous parts of the Cox ring ℛ(𝑋6) for the generators of the effective
cone of 𝑋6. According to Section 12.2.2, we have

𝒵(𝑋6) = (1, 1, 2, 3).

As in the previous cases, we obtain 3 ≤ dim𝐺/𝑃 ≤ 4. The possible values for 𝒵(𝐺/𝑃) and 𝑟 = 𝑟𝑋6

are given in Table B.2 (the toric cases are excluded). The values for 𝒵(𝐺/𝑃) are computed using
the Weyl dimension formula; see, for instance, [47, Corollary 24.3]. We have a natural surjective map
𝜙 : Cl𝐺/𝑃 × Z𝑟 → Cl 𝑋 compatible with the Cl 𝑋-grading and the finer Cl𝐺/𝑃 × Z𝑟 -grading of
ℛ(𝑋). It maps the cone Eff𝐺/𝑃×Z𝑟≥0 generated by Eff𝐺/𝑃 and the degrees of 𝑋1, . . . , 𝑋𝑟 onto Eff 𝑋 .
Moreover, we have (Eff𝐺/𝑃 × Z𝑟≥0) ∩ ker 𝜙 = {0}. It follows that every element of 𝒵(𝑋6) is a sum
where the summands are taken from the elements of 𝒵(𝑅/𝑃) and from 𝑟𝑋6 times the summand 1 and
each summand may be used at most once in total. This is impossible for all cases in Table B.2. The
same argument works for 𝑋8, which satisfies

𝒵(𝑋8) = (1, 1, 1, 1, 1, 1, 2, 2)

according to Section 12.2.4.
Finally, assume that 𝑋7 is isomorphic to X. According to Section 12.2.3, we have

𝒵(𝑋7) = (1, 1, 1, 1, 1, 1).

It follows that there exists an isomorphism

ℛ(𝑋7) →ℛ(𝐺/𝑃) [𝑋1, . . . , 𝑋𝑟 ],
(𝑥03, 𝑥31, 𝑥32, 𝑥33, 𝑥34, 𝑥35) ↦→ (𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6).

After dividing out the ideal (𝑥03, 𝑥31, 𝑥32, 𝑥33, 𝑥34, 𝑥35), we obtain an isomorphism

Q[𝑥01, 𝑥02, 𝑥11, 𝑥12, 𝑥21, 𝑥22]/(𝑥11𝑥12 − 𝑥21𝑥22) →ℛ(𝐺/𝑃) [𝑋7, . . . , 𝑋𝑟 ].

This is a contradiction since the second ring is factorial by [2, Proposition 1.4.1.5(i)], while the first
ring is not. �
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