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Abstract A variety is finitely universal if its lattice of subvarieties contains an isomorphic copy of every
finite lattice. We show that the 6-element Brandt monoid generates a finitely universal variety of monoids
and, by the previous results, it is the smallest generator for a monoid variety with this property. It is
also deduced that the join of two Cross varieties of monoids can be finitely universal. In particular, we
exhibit a finitely universal variety of monoids with uncountably many subvarieties which is the join of
two Cross varieties of monoids whose lattices of subvarieties are the 6-element and the 7-element chains,
respectively.
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1. Introduction

A variety is a class of algebras of a fixed type that is closed under the formation of
homomorphic images, subalgebras and arbitrary direct products. A variety is finitely
based if it can be defined by a finite set of identities, otherwise, it is non-finitely based.
A variety is finitely generated if it is generated by a finite algebra. A variety is small
if it contains only finitely many subvarieties. A finitely generated, finitely based, small
variety of algebras is called a Cross variety. Cross varieties have been heavily investigated
for many years. For classical algebras such as groups [24], associative rings [17, 23] and
Lie rings [1], every finite member generates a Cross variety. However, this result is not
true for arbitrary algebras. In general, the variety V generated by a finite algebra can be
non-Cross in several ways, for instance, V can be non-finitely based, the lattice L(V) of
subvarieties of V can be infinite or even uncountable, and V can be finitely universal in
the sense that L(V) contains an isomorphic of every finite lattice.
Examples of finitely universal varieties of semigroups have been known since the early

1970s [3], and the smallest semigroup generating such a variety is of order four [18];
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see Section 12 in the survey [32] for more information. For a long time, however, it
was unknown if finitely universal varieties of monoids exist [13, Question 6.3]. The first
examples of finitely universal varieties of monoids have recently been found [6]; in fact,
there also exist finitely universal varieties that are finitely generated, but an explicit
smallest example have not been found; see Section 4 in the very recent survey [7] for
more details. Unlike semigroups, the variety generated by any monoid of order five or
less is not finitely universal [8, 21]. This naturally leads to the following problem.

Problem 1 (see [7, Problem 4.7]). Is there a monoid of order six that generates a
finitely universal variety of monoids?

The 6-element Brandt monoid:

B1
2 := 〈a, b | aba = a, bab = b, aa = bb = 0〉 ∪ {1},

is one of the most famous finite monoids. It can be represented as the matrix semigroup:(
0 0

0 0

)
,

(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
,

(
1 0

0 1

)
.

The Brandt monoid B1
2 is perhaps the most ubiquitous harbinger of complex behaviour

in all finite semigroups. In particular, B1
2 has no finite basis for its identities [25] and is

one of the four smallest semigroups with this property [22]. It generates a monoid variety
with uncountably many subvarieties [13, 15] and, moreover, it is the smallest generator
for a monoid variety with uncountably many subvarieties [8, 21].
The 6-element monoid:

A1
2 := 〈a, b | aba = a, bab = b, aa = 0, bb = b〉 ∪ {1},

is one more of the most famous 6-element monoids. It can be represented as the matrix
semigroup:(

0 0

0 0

)
,

(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
1 0

1 0

)
,

(
0 1

0 1

)
,

(
1 0

0 1

)
.

It is well known that A1
2 generates a variety properly containing that generated by B1

2 .
The monoid A1

2 as well as the 6-element Brandt monoid B1
2 plays a critical role in the

theory of semigroup varieties. So, the following question is of fundamental interest.

Problem 2 ([6, Question 6.2]). Which, if any, of the monoids B1
2 and A1

2 generates
a finitely universal variety?

Problems 1 and 2 are addressed in the present article. We exhibit a finitely universal
monoid variety C and show that C is contained in the variety generated by the Brandt
monoid B1

2 . Problems 1 and 2 are thus completely solved.
The new finitely universal variety C allows us to construct examples of two small

varieties of monoids with an incredibly complex join resulting in solving the following
problem.
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Problem 3 ([6, Question 6.4]).

(i) Are there varieties of monoids V1 and V2 that are not finitely universal such that
the join V1 ∨ V2 is finitely universal?

(ii) Are there small varieties of monoids V1 and V2 such that the join V1∨V2 is finitely
universal?

Remark 1. Problem 3(i) has an affirmative answer within the context of varieties of
semigroups, that is, there are two semigroup varieties that are not finitely universal such
that their join is finitely universal. However, one of these varieties is not small, so that
they do not provide an affirmative answer to Problem 3(ii) within the context of varieties
of semigroups; see Section 6.3 in [6] for more details.

In fact, we not only provide an affirmative solution to Problem 3, but establish a much
stronger counterintuitive result. Namely, we prove that there are two Cross varieties
of monoids, whose lattices of subvarieties are the 6-element and the 7-element chains,
respectively, such that the join of these two varieties is finitely universal and contains
uncountably many subvarieties. Moreover, we construct infinitely examples of finitely
universal varieties with uncountably many subvarieties which are the join of two Cross
varieties.
The article consists of five sections. Background information and some basic results

are first given in § 2. In § 3, we introduce the variety C, which, as we show in § 4, turns
out to be finitely universal (Theorem 1). Then we formulate our main results announced
above (Theorems 2 and 3) and deduce them from Theorem 1. The technical core of the
article is § 4; it is devoted to the proof of Theorem 1. We prove Theorem 1 by showing
that the lattice Eq(A) of equivalence relations on every sufficiently large finite set A is
anti-isomorphic to some subinterval of the lattice L(C) of subvarieties. In view of the well-
known theorem of Pudlák and Tůma [29] stating that every finite lattice is embeddable
in a lattice of equivalence relations on a finite set, Theorem 1 thus holds. The article ends
with some open problems in § 5.

2. Preliminaries

Acquaintance with rudiments of universal algebra is assumed of the reader. Refer to the
monograph [4] for more information.

2.1. Words, identities and deduction

Let X ∗ denote the free monoid over a countably infinite alphabet X . Elements of X
are called variables and elements of X ∗ are called words. The content of a word w, that
is, the set of all variables occurring in w is denoted by con(w). For a word w and a
variable x, let occx(w) denote the number of occurrences of x in w. A variable x is called
simple [multiple] in a word w if occx(w) = 1 [respectively, occx(w) > 1]. The set of
all simple [multiple] variables of a word w is denoted by sim(w) [respectively, mul(w)].
A non-empty word w is called linear if con(w) = sim(w). For any A ⊆ con(w), let
w(A ) denote the word obtained by applying the substitution that fixes the variables in
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A and assigns the empty word 1 to all other variables. Further, for any A ⊆ con(w), let
wA := w(con(w) \ A ). The expression iwx means the ith occurrence of a variable x in
a word w. If the ith occurrence of x precedes the j th occurrence of y in a word w, then
we write (iwx) < (jwy).
An identity is written as u ≈ v, where u,v ∈ X ∗; it is nontrivial if u 6= v. A variety V

satisfies an identity u ≈ v, if for any monoid M ∈ V and any substitution ϕ : X → M ,
the equality ϕ(u) = ϕ(v) holds in M. An identity u ≈ v is directly deducible from an
identity s ≈ t if there exist some words a,b ∈ X ∗ and substitution ϕ : X → X ∗ such
that {u,v} =

{
aϕ(s)b,aϕ(t)b

}
. A nontrivial identity u ≈ v is deducible from a set Σ of

identities if there exists some finite sequence u = w0,w1, . . . ,wm = v of distinct words
such that each identity wi ≈ wi+1 is directly deducible from some identity in Σ.

Proposition 1 (Birkhoff’s Completeness Theorem for Equational Logic; see
[4, Theorem II.14.19]). Let V be the variety defined by some set Σ of identities.
Then V satisfies an identity u ≈ v if and only if u ≈ v is deducible from Σ.

Two sets of identities Σ1 and Σ2 are equivalent (within a variety V) if Σ1 and Σ2 define
the same variety (within V).

2.2. Factor monoids

A word u is a factor of a word w if w = v′uv′′ for some v′,v′′ ∈ X ∗. For any set W
of words, the factor monoid of W , denoted by M(W ), is the monoid that consists of all
factors of words in W and a zero element 0, with multiplication · given by:

u · v :=

uv if uv is a factor of w ∈ W ,

0 otherwise;

the empty word ∅ more conveniently written as 1, is the identity element of M(W ).
A word w is an isoterm for a variety V if V violates any nontrivial identity of the form
w ≈ w′. Given any set W of words, let M(W ) denote the variety generated by the factor
monoid M(W ). One advantage in working with factor monoids is the relative ease of
checking if a variety M(W ) is contained in some given variety.

Lemma 1. ([12, Lemma 3.3]). For any variety V and any set W of words, the
inclusion M(W ) ⊆ V holds if and only if any word in W is an isoterm for V.

3. Main results

3.1. The variety C

Here, we introduce the variety C, which, as we prove in § 4, is finitely universal. All
other finitely universal varieties in this article contain it. We need some notation. We
denote by Sk the symmetric group on the set {1, 2, . . . , k}. As usual, Sn

k denote the nth
direct power of Sk. If ξ ∈ Sn

k , then we denote by ξi the ith component of ξ. For any n ≥ 2

https://doi.org/10.1017/S0013091524000178 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000178


Minimal monoids generating varieties with complex subvariety lattices 621

and ξ ∈ Sn
2 , we define the word:

wξ := p

( n∏
i=1

ai

)
a

( n∏
i=1

x
(i)
1ξi
x
(i)
2ξi

)
b

( n∏
i=1

bi

)
qr,

where

p :=

( n∏
i=1

ziti

)( n∏
i=1

z′it
′
i

)( n∏
i=1

z′′i t
′′
i

)
, (1)

q :=

( n∏
i=0

siyi

)
t, (2)

r := by0

( n∏
i=1

x
(i)
1 ziaiz

′
ibiz

′′
i x

(i)
2 yi

)
a. (3)

For any n ≥ 2, we denote by Wn the set of all words of the form wξ with ξ ∈ Sn
2 .

Evidently, |Wn| = |Sn
2 | = 2n.

Theorem 1. The variety C := M({Wn | n ≥ 2}) is finitely universal.

Remark 2. Recall that a variety is periodic if it satisfies the identity xm+k ≈ xm for
some m, k ≥ 1; in this case, the number m is the index of the variety. Varieties of index 1
are completely regular, that is, consist of unions of groups. The lattice of subvarieties
of every completely regular variety of semigroups and, therefore, monoids is modular
and moreover, Arguesian; this fundamental result was established in three different ways
by Pastijn [26, 27] and Petrich and Reilly [28] (see also Section 5.3 in the survey [7]).
Thus, varieties of index 1 are not finitely universal. For each m ≥ 3, an example of a
finitely universal variety of index m was found in [6]. As for varieties of index 2, a finitely
universal example was unknown so far; see [6, Question 6.1] or [7, Question 4.10]. It is
easy to see that the variety C satisfies the identity x2 ≈ x3 and so is of index 2. Thus,
Theorem 1 provides an example of a finitely universal variety of monoids of index 2.

The proof of Theorem 1 is given in § 4. For the rest of § 3, we discuss our main results
and show how to deduce them from Theorem 1.

3.2. The join of two Cross varieties

Let N denote the variety defined by the identities:

x2 ≈ x3, x2y ≈ yx2, xyxzx ≈ x2yz, xzxyty ≈ xzyxty, xzytxy ≈ xzytyx. (4)

It is verified in [5, Theorem 1.1] that the lattice L(M(xzytxy)∨N) is as shown in Fig. 1,
where T is the variety of all trivial monoids and the interval [M(xzytxy),M(xzytxy)∨N]
contains uncountably many varieties. In particular, the lattices L(M(xzytxy)) and L(N)
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Figure 1. The lattice L(M(xzytxy) ∨ N).

are the 6-element and the 7-element chains, respectively. The following counterintuitive
result provides a complete solution to Problem 3.

Theorem 2. There are two Cross varieties of monoids such that the join of these
varieties is finitely universal and contains uncountably many subvarieties. Namely, the
varieties M(xzytxy) and N satisfy this property.

The proof of Theorem 2 requires one intermediate result.

Lemma 2. Let u ≈ v be an identity of M(xzytxy). Suppose that u ∈ Wn. Then
v = pv′qr, where the words p, q and r are defined by the equalities (1), (2) and (3),

respectively, while v′ is a linear word with con(v′) = {a, ai, b, bi, x(i)1 , x
(i)
2 | 1 ≤ i ≤ n}.

Proof. In view of Lemma 3.1 in [10], v = pv′qr′, where the words p and q are defined
by the equalities (1) and (2), respectively, while v′ and r′ are linear words with con(v′) =

{a, ai, b, bi, x(i)1 , x
(i)
2 | 1 ≤ i ≤ n} and con(r) = con(r′). Since u(b, s0, t, y0) = bs0y0tby0

and the identity u ≈ v is satisfied by M(xzytxy), the word v(b, s0, t, y0) must coincide
with bs0y0tby0. Therefore, (1r′b) < (1r′y0). By a similar argument we can show that all
the variables occur in r′ in the same order as in r and, therefore, r′ = r. �

Proof of Theorem 2. It is shown in the Erratum to [12] that the variety M(xzytxy)
is finitely based. In view of this fact and Fig. 1, M(xzytxy) is a Cross variety. A finite
generator for the variety N is also exhibited in the Erratum to [12]. Thus, N is also a
Cross variety.
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Let n ≥ 2, ξ ∈ Sn
2 andwξ ≈ w be an identity ofM(xzytxy)∨N. It follows from Lemma 2

that w = pw′qr, where the words p, q and r are defined by the equalities (1), (2) and (3),

respectively, while w′ is a linear word with con(w′) = {a, ai, b, bi, x(i)1 , x
(i)
2 | 1 ≤ i ≤ n}.

Further, consider arbitrary x, y ∈ con(w′) with (1wξ
x) < (1wξ

y). Then wξ(x, y, t) = xyta

with a ∈ {xy, yx}. Since N violates xyta ≈ yxta, it follows that (1wx) < (1wy). Therefore,

w′ =

( n∏
i=1

ai

)
a

( n∏
i=1

x
(i)
1ξi
x
(i)
2ξi

)
b

( n∏
i=1

bi

)

and so w = wξ. We have proved that every word in Wn is an isoterm for M(xzytxy)∨N.
Thus, C ⊆ M(xzytxy)∨N by Lemma 1. Now Theorem 1 applies, yielding that the variety
M(xzytxy) ∨ N is finitely universal. Finally, M(xzytxy) ∨ N contains uncountably many
subvarieties by [5, Theorem 1.1]. �

Remark 3. Theorem 2 implies that a cover of a Cross variety of monoids can be
finitely universal. In contrast, it is unknown whether or not the similar result holds
within the context of varieties of semigroups. Although it is known that the class of
Cross semigroup varieties is closed under neither joins nor covers [31].

For a monoid K, we denote by K the variety generated by K. We have the following
result on the join M(xyx) ∨G for a group G of finite exponent.

Corollary 1. Let G be a group of finite exponent which does not satisfy the identities:

xyzxy ≈ yxzyx and xyzyx ≈ yxzxy. (5)

Then M(xyx)∨G is a non-finitely based finitely universal variety with uncountably many
subvarieties.

The proof of Corollary 1 requires one auxiliary result.

Lemma 3. The variety M(xzytxy) ∨ N is a subvariety of M(xyzxy, xyzyx).

Proof. Obviously, M(xzytxy) ⊆ M(xyzxy, xyzyx). Further, it is shown in the proof
of Lemma 3.14 in [10] that if a variety contains M(xyx) but does not contain N, then it
satisfies one of the identities xyzxy ≈ yxzxy, xyzxy ≈ xyzyx or xyzxy ≈ yxzyx. Since these
three identities do not hold in M(xyzxy, xyzyx), it follows that N ⊆ M(xyzxy, xyzyx).
Therefore, M(xzytxy) ∨ N is a subvariety of M(xyzxy, xyzyx). �

Proof of Corollary 1. Since the group G does not satisfy the identities (5), this
group is non-abelian, whence M(xyx) ∨ G is non-finitely based by [19, Theorem 3]. Let
xyzxy ≈ v be an identity of M(xyx) ∨ G. Since xyx is an isoterm for M(xyx) ∨ G, we
have v ∈ {xyzxy, xyzyx, yxzxy, yxzyx}. The word v cannot coincide with yxzyx because
G violates the identities (5). Let m denote the exponent of G. If v = xyzyx, then G
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satisfies the identities

xy ≈ (xy)m+1 ≈ (xy)m(yx) ≈ yx,

contradicting the fact that G is a non-abelian group. If v = yxzxy, then G satisfies the
identities:

xy ≈ (xy)m+1 ≈ (yx)(xy)m ≈ yx,

contradicting the fact that the group G is non-abelian again. Therefore, v = xyzxy. We
see that xyzxy is an isoterm for M(xyx) ∨ G. By similar arguments we can show that
xyzyx is an isoterm for M(xyx) ∨ G as well. Now Lemmas 1 and 3 apply, yielding that
M(xzytxy) ∨ N is a subvariety of M(xyx) ∨G. Hence the variety M(xyx) ∨G is finitely
universal and contains uncountably many subvarieties by Theorem 2. �

Remark 4. By the theorem of Oates and Powell [24], if G is a finite group, then G
is a Cross variety. Hence Corollary 1 provides plenty of examples of non-finitely based
finitely universal varieties of monoids with uncountably many subvarieties which are the
join of two Cross varieties. Namely, they are the varieties of the form M(xyx)∨G for any
finite group G violated the identities (5). For example, for each prime p> 2, consider the
dihedral group:

Dp := 〈a, b | ap = b2 = (ab)2 = 1〉,

(the group of symmetries of a regular polygon with p sides). This group does not satisfy
the identities (5). Indeed, consider the substitutions ϕ : X → Dp and ψ : X → Dp

defined by:

ϕ(v) :=


ab if v = x ,

b if v = y ,

1 otherwise,

and ψ(v) :=


a if v = x ,

b if v = y ,

1 otherwise.

It is routine to check that:

ϕ(xyzxy) = ψ(xyzyx) = a2 and ϕ(yxzyx) = ψ(yxzxy) = ap−2.

Since p> 2 and p is prime, we have a2 6= ap−2. Hence Dp violates the identities (5). It
is well known that Dp is a minimal non-abelian group of order 2p; see [11, Section 1.9].
From this it can be easily deduced that the lattice L(Dp) is as shown in Fig. 2 (we
denote by Zk the variety of all abelian groups of exponent dividing k). Thus, we have a
countably infinite series of finitely universal varieties of monoids with uncountably many
subvarieties which are the join of two Cross varieties whose lattices of subvarieties are
5-element.

Remark 5. The following is claimed in the proof of Corollary 3.1 in [5]: M(xzytxy)∨N
is a subvariety of M(xyx) ∨ G for any finite non-abelian group G. In fact, this result is
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T

Dp

Z2p

ZpZ2

Figure 2. The lattice L(Dp).

wrong in general. For example, it is easy to see that the quaternion group:

Q8 := 〈i, j, k | i2 = j2 = k2 = ijk〉,

satisfies the identities (5), whence N * M(xyx) ∨ Q8. As we have shown in the proof
of Corollary 1, the discussed result is true whenever G is a finite group violated the
identities (5).

3.3. Minimal monoids generating finitely universal varieties

Here we provide a complete solution to Problems 1 and 2. As we have mentioned
in the introduction, every monoid of order five or less generates a non-finitely universal
variety [8, Proposition 6.9]. Examples of finitely universal varieties generated by 6-element
monoids are provided by the following theorem.

Theorem 3. The 6-element monoids B1
2 and A1

2 generate finitely universal varieties.

Proof. It is easy to show that xyzxy and xyzyx are isoterms for B1
2; see the proof of

Theorem 10 in [25]. This fact and Lemma 1 imply that M(xyzxy, xyzyx) ⊆ B1
2. Then

M(xzytxy)∨N is a subvariety of B1
2 by Lemma 3 and, therefore, the variety B1

2 is finitely
universal by Theorem 2. Since A1

2 properly contains B1
2, the variety A1

2 is also finitely
universal. �

3.4. Finitely generated finitely based varieties

Recall that a variety is locally finite if every finitely generated member of it is finite.
More than being just non-finitely based, the varieties B1

2 and A1
2 are inherently non-

finitely based in the sense that every locally finite variety containing it is non-finitely
based [30]. However, it is verified in [14, Theorem 3.2] that the variety M(xyzxy, xyzyx)
is defined by the first four identities in (4). Hence Theorem 2 and Lemma 3 imply the
following result providing an affirmative answer to Question 6.3 in [6].

Theorem 4. There is a finitely universal variety of monoids that is both finitely based
and finitely generated.
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4. Proof of Theorem 1

We verify Theorem 1 modulo Proposition 2 below and then prove this proposition.

Proof of Theorem 1. The inclusion M(Wn) ⊆ C and Proposition 2 imply that the
lattice Eq(Wn) of equivalence relations on the set Wn is anti-isomorphic to a sublattice
of L(C). Since |Wn| = 2n, it is easy to see that, for any k = 1, 2, . . . , 2n, the lattice
Eq({1, 2, . . . , k}) is anti-isomorphic to a sublattice of Eq(Wn). Therefore, the lattice L(C)
contains an anti-isomorphic copy of every finite lattice of equivalence relations. To com-
plete the proof, it remains to refer to the theorem of Pudlák and Tůma [29], which states
that every finite lattice can be embedded in a finite lattice of equivalence relations. The
variety C is thus finitely universal. �

The subvariety of a variety V defined by a set Σ of identities is denoted by VΣ. Given
any set W ⊆ X ∗ of words and any equivalence relation π ∈ Eq(W ), define:

Id(π) := {u ≈ v | (u,v) ∈ π, u,v ∈ W }.

For any set A, the universal relation on A is denoted by υA.

Proposition 2. For each n ≥ 2, the lattice Eq(Wn) is anti-isomorphic to the interval
[M(Wn){Id(υWn)},M(Wn)] of the lattice L(M(Wn)).

The proof of Proposition 2 requires some intermediate results.

Lemma 4. For each n ≥ 2, the words xy, xyx, xyzxty, xzytxy and xytzsxzy are isoterms
for the variety M(Wn){Id(υWn)}.

Proof. Consider the substitution ϕ : X → X ∗ defined by:

ϕ(v) :=



x
(1)
2 if v = x ,

x
(2)
1 if v = y ,

y1 if v = z ,

x
(2)
2 x

(3)
1 x

(3)
2 x

(4)
1 x

(4)
2 · · ·x(n)1 x

(n)
2 bb1b2 · · · bn s0y0s1 if v = t ,

s2y2s3y3 · · · snyn tby0 x(1)1 z1a1z
′
1b1z

′′
1 if v = s,

v otherwise.

Obviously, ϕ(xytzsxzy) is a factor of wε, where ε is the identity element of Sn
2 . It follows

that a nontrivial identity of the form xytzsxzy ≈ a implies a nontrivial identity wε ≈
w. Therefore, xytzsxzy is an isoterm for M(Wn). Further, it is routine to check that
M (xytzsxzy) satisfies wξ ≈ wη for any ξ, η ∈ Sn

2 . Hence xytzsxzy is an isoterm for
M(Wn){Id(υWn)} by Lemma 1. By similar arguments we can show that the words xy,
xyx, xyzxty, xzytxy are isoterms for M(Wn){Id(υWn)} as well. �

Lemma 5. Let n ≥ 2 and u ≈ v be an identity of M(Wn){Id(υWn)}. Suppose that
u ∈ Wn. Then v ∈ Wn.
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Proof. According to Lemma 4, the words xytzsxzy and xzytxy are isoterms for the
variety M(Wn){Id(υWn)}. Then Lemmas 1 and 2 apply, yielding that v = pv′qr, where
the words p, q and r are defined by the equalities (1), (2) and (3), respectively, while v′ is

a linear word with con(v′) = {a, ai, b, bi, x(i)1 , x
(i)
2 | 1 ≤ i ≤ n}. Further, (1vai) < (1vai+1)

for any i = 1, 2, . . . , n−1 since u(ai, ai+1, si, t, yi) coincides (up to renaming of variables)
with the word xytzsxzy which is an isoterm for M(Wn){Id(υWn)}. By a similar argument
we can show that:

(1van) < (1va), (1va) < (1vx
(1)
1 ), (1va) < (1vx

(1)
2 ),

(1vx
(i)
1 ) < (1vx

(i+1)
1 ), (1vx

(i)
1 ) < (1vx

(i+1)
2 ),

(1vx
(i)
2 ) < (1vx

(i+1)
1 ), (1vx

(i)
2 ) < (1vx

(i+1)
2 ),

(1vx
(n)
1 ) < (1vb), (1vx

(n)
2 ) < (1vb), (1vb) < (1vb1), (1vbi) < (1vbi+1),

for any i = 1, 2, . . . , n− 1. It follows that v = wη for some η ∈ Sn
2 and so v ∈ Wn. �

Lemma 6. Let n ≥ 2, ξ, ζ, η ∈ Sn
2 and w ∈ X ∗. Assume that wζ = aϕ(wξ)b and

w = aϕ(wη)b for some words a,b ∈ X ∗ and substitution ϕ : X → X ∗. If the identity
wζ ≈ w is nontrivial, then ϕ is the identity map on con(wξ) and so a = b = 1 and
(wζ ,w) = (wξ,wη).

Proof. Since the identity wζ ≈ w is nontrivial, Proposition 1 and Lemma 5 imply
that w = wν for some ν ∈ Sn

2 \{ζ}. Then there is j ∈ {1, 2, . . . , n} such that (1νj , 2νj) =

(2ζj , 1ζj). This is only possible when x
(j)
1ζj

∈ con(ϕ(x
(k)
1ξk

)) and x
(j)
2ζj

∈ con(ϕ(x
(k)
2ξk

)) for

some k ∈ {1, 2, . . . , n} with (1ξk, 2ξk) 6= (1ηk, 2ηk). We note that the word wζ is square-
free and every factor of length > 1 of wζ has exactly one occurrence in wζ . It follows
that:

(*) ϕ(c) is either the empty word 1 or a variable for any c ∈ mul(wζ).

In view of this fact, x
(j)
1ζj

= ϕ(x
(k)
1ξk

) and x
(j)
2ζj

= ϕ(x
(k)
2ξk

). Further, since (2wζ
x
(j)
1 ) <

(2wζ
x
(j)
2 ) and (2wξ

x
(k)
1 ) < (2wξ

x
(k)
2 ), we have x

(j)
1 = ϕ(x

(k)
1 ) and x

(j)
2 = ϕ(x

(k)
2 ) (this

means that ξk = ζj). Hence

ϕ(zkakz
′
kbkz

′′
k ) = zjajz

′
jbjz

′′
j .

It follows from (∗) that ϕ(ak) = aj , ϕ(bk) = bj , ϕ(zk) = zj , ϕ(z
′
k) = z′j and ϕ(z′′k ) = z′′j .

Then

ϕ

(( n∏
i=k+1

ai

)
a

( n∏
i=1

x
(i)
1ξi
x
(i)
2ξi

)
b

(k−1∏
i=1

bi

))
=

( n∏
i=j+1

ai

)
a

( n∏
i=1

x
(i)
1ζi
x
(i)
2ζi

)
b

(j−1∏
i=1

bi

)
.

If k > j + 1, then ϕ(bk−j) = x
(n)
2ζn

and ϕ(bk−j+1) = b1 contradicting the fact that

(2wξ
bk−j) < (2wξ

bk−j+1) and (2wζ
b1) < (2wζ

x
(n)
2ζn

). If k = j + 1, then ϕ(b) = x
(n)
2ζn

and
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ϕ(b1) = b contradicting the fact that (2wξ
b) < (2wξ

b1) and (2wζ
b1) < (2wζ

x
(n)
2ζn

). Hence

k ≤ j. By a similar argument we can show that j ≤ k and, therefore, k = j. Then ϕ(x
(i)
1ξi

) =

x
(i)
1ζi

and ϕ(x
(i)
2ξi

) = x
(i)
2ζi

for any i = 1, 2, . . . , n by (∗). Since (2wζ
x
(i)
1 ) < (2wζ

x
(i)
2 ) and

(2wξ
x
(i)
1 ) < (2wξ

x
(i)
2 ), this implies that ξ = ζ and

ϕ(ziaiz
′
ibiz

′′
i ) = ziaiz

′
ibiz

′′
i ,

for any i = 1, 2, . . . , n. Now (∗) applies again, yielding that ϕ(ai) = ai, ϕ(bi) = bi,
ϕ(zi) = zi, ϕ(z

′
i) = z′i, ϕ(z

′′
i ) = z′′i for any i = 1, 2, . . . , n. It follows that ϕ(a) = a,

ϕ(b) = b and ϕ(yi) = yi for all i = 1, 2, . . . , n− 1. Hence ϕ(y0) = y0, ϕ(yn) = yn and so
ϕ(t) = t, ϕ(ti) = ti, ϕ(t

′
i) = t′i, ϕ(t

′′
i ) = t′′i , ϕ(si) = si. Thus, ϕ is the identity map on

con(wξ). Hence a = b = 1 and so (wζ ,w) = (ϕ(wξ), ϕ(wη)) = (wξ,wη) as required. �

Corollary 2. Let n ≥ 2 and u ≈ v be an identity of M(Wn){Id(π)} for some π ∈
Eq(Wn). Suppose that u ∈ Wn. Then v ∈ Wn and (u,v) ∈ π.

Proof. In view of Proposition 1, there is some finite sequence u = v0,v1, . . . ,vm = v
of distinct words such that each identity vi ≈ vi+1 is either holds in M(Wn) or directly
deducible from some identity in Id(π). According to Lemma 5, the word vi belongs to
Wn for any i = 0, 1, . . . ,m. Then Lemma 1 and the fact that the words v0,v1, . . . ,vm

are pairwise distinct imply that M(Wn) violates vi ≈ vi+1 for any i = 0, 1, . . . ,m − 1.
Therefore, vi ≈ vi+1 is directly deducible from some identity in Id(π). Now Lemma 6
applies, yielding that (vi,vi+1) ∈ π, whence (u,v) ∈ π. �

Lemma 7. Let n ≥ 2 and ζ ∈ Sn
2 . A word w is an isoterm for the variety

M(Wn){Id(υWn)} if one of the following holds:

(i) w is obtained from wζ by replacing some occurrence of a multiple variable with
a variable h /∈ con(wζ);

(ii) w is obtained from wζ by replacing some factor of length > 1 with a variable
h /∈ con(wζ);

(iii) w is a proper factor of wζ .

Proof. (i) The word w is obtained from wζ by replacing some occurrence of a multiple
variable c with the variable h /∈ con(wζ). Clearly, ψ(w) = wζ , where ψ : X → X ∗ is
the substitution defined by:

ψ(v) :=

c if v = h,

v if v 6= h.

Since xy is an isoterm for M(Wn) by Lemma 4 and c, h ∈ sim(w), it follows that w is
an isoterm for M(Wn). Hence, by Proposition 1, if w is not an isoterm for the variety
M(Wn){Id(υWn)}, then some nontrivial identity w ≈ w′ is directly deducible from some
identity of the form wξ ≈ wη. By symmetry, we may assume that w = aϕ(wξ)b and
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w′ = aϕ(wη)b for some words a,b ∈ X ∗ and substitution ϕ : X → X ∗. Hence wζ =
ψ(w) = ψ(a)ψ(ϕ(wξ))ψ(b). Then ψ(w

′) 6= ψ(w) because xy is an isoterm for the variety
defined by the identity wξ ≈ wη by Lemma 4, c, h ∈ sim(w) and the identity w ≈ w′ is
nontrivial. Now Lemma 6 applies, yielding that the substitution ψϕ is the identity map
on con(wξ) and so ψ(a) = ψ(b) = 1 and wζ = wξ. Then a = b = 1 by the definition of
the substitution ψ. Thus, w = ϕ(wξ). Since c ∈ sim(w), there is c′ ∈ sim(wξ) such that
c ∈ con(ϕ(c′)). Clearly, ψ(c) = c. Hence c ∈ con(ψ(ϕ(c′))). Since the substitution ψϕ is
the identity map on con(wξ), we have c = c′ contradicting the fact that c ∈ mul(wζ) =
mul(wξ) and c

′ ∈ sim(wξ).
(ii) The word w is obtained from wζ by replacing some factor cd with the variable

h /∈ con(wζ). Since every factor of length > 1 of wζ contains a multiple variable, we may
assume without any loss that c ∈ mul(wζ). Then the word ψ(w) is obtained from wζ by
replacing an occurrence of c with the variable h, where ψ : X → X ∗ is the substitution
defined by:

ψ(v) :=

hd if v = h,

v if v 6= h.

By Part (i), the word ψ(w) is an isoterm for M(Wn){Id(υWn)}. Hence w is an isoterm
for M(Wn){Id(υWn)} as well.
(iii) Let w1 and w2 denote words obtained from wζ by replacing the variables 1wζ

z1
and 2wζ

a with the variable h, respectively. Clearly, if some proper factor of wζ is not an

isoterm for M(Wn){Id(υWn)}, then at least one of the words w1 or w2 is not an isoterm
for M(Wn){Id(υWn)} as well. Thus, w is an isoterm for M(Wn){Id(υWn)} by Part (i). �

Lemma 8. Let n ≥ 2 and u be a word such that uC = wζ for some ζ ∈ Sn
2 and

C ⊆ con(u). Assume that the following three claims hold:

(a) every factor of length > 1 of u has exactly one occurrence in u;
(b) there are no simple variables between 1ua1 and 1ubn and between 2ub and 2ua in

u;
(c) for some c ∈ C , either (1ua1) < (1uc) < (1ubn) or (2ub) < (2uc) < (2ua).

If u ≈ v is a nontrivial identity directly deducible from some identity of the form
wξ ≈ wη with ξ, η ∈ Sn

2 , then vC = wζ .

Proof. By symmetry, we may assume that u = aϕ(wξ)b and v = aϕ(wη)b for some
words a,b ∈ X ∗ and substitution ϕ : X → X ∗. Then wζ = ψ(u) = ψ(a)ψ(ϕ(wξ))ψ(b),
where ψ : X → X ∗ is the substitution defined by:

ψ(v) :=

1 if v ∈ C ,

v if v /∈ C .

Arguing by contradiction, suppose that vC = ψ(v) 6= wζ . Then, by Lemma 6, the
substitution ψϕ is the identity map on con(wξ) and so ψ(a) = ψ(b) = 1 and wζ = wξ.
Hence con(ab) ⊆ C . Assume that (1ua1) < (1uc) < (1ubn) for some c ∈ C . Then there
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is c′ ∈ con(wξ) such that ϕ maps some occurrence of c′ to a factor of u containing

1uc. The fact that ψ(ϕ(c′)) = c′ implies that ϕ(c′) is a word of length > 1. By the
condition of the lemma, the word u may contain at most one occurrence of the factor
ϕ(c′). This only possible when c′ ∈ sim(wξ). Since there are no simple variables between

1ua1 and 1ubn in u, it follows that con(ϕ(c′)) must contain either a1 or bn contradicting
ψ(ϕ(c′)) = c′. Therefore, vC = ψ(v) = wζ . By a similar argument we can show that if
(2ub) < (2uc) < (2ua) for some c ∈ C , then vC = ψ(v) = wζ . �

A block of a word w is a maximal factor of w that does not contain any simple variables
in w. A word w is called block-linear if every block of w is a linear word.

Lemma 9. Let n ≥ 2 and u be a block-linear word such that u{c,h} = wζ for some
ζ ∈ Sn

2 and c, h ∈ X with h ∈ sim(u) and occc(u) = 2. Assume that, for some x, y ∈
mul(wζ) and i, j with {i, j} = {1, 2}, the word iux iuc iuy is a factor of u, while the
word juc forms a block of u. If u ≈ v is a nontrivial identity of M(Wn){Id(υWn)}, then
v{c,h} = wζ .

Proof. In view of Proposition 1, there is some finite sequence u = v0,v1, . . . ,vm = v
of distinct words such that each identity vi ≈ vi+1 either holds in M(Wn) or is directly
deducible from some identity in Id(υWn). We will use induction on m.
Induction base: m =1. If u = v0 ≈ v1 = v holds in M(Wn), then the required claim

follows from Lemma 1. If u = v0 ≈ v1 = v is directly deducible from some identity
in Id(υWn), then the condition of the lemma implies that the conditions (a), (b) and (c)
of Lemma 8 holds. So, we can apply Lemma 8, yielding that v{c,h} = wζ .
Induction step: m > 1. First, notice that, as in the induction base, (v1){c,h} = wζ by

Lemmas 1 and 8. Since xyx is an isoterm for the variety M(Wn){Id(υWn)} by Lemma 4,
the word juc forms a block of v1. Hence jv1

x and jv1
y do not lie in the block of v1

containing jv1
c. Then, since xyzxty and xzytxy are isoterms for M(Wn){Id(υWn)} by

Lemma 4, (iv1x) < (iv1c) < (iv1y) and so the word iv1
x iv1

c iv1
y is a factor of v1. Thus,

we can apply the induction assumption, yielding that v{c,h} = wζ as required. �

Lemma 10. Let n ≥ 2 and u be a block-linear word such that uc = wζ for some
ζ ∈ Sn

2 and c ∈ mul(u) with occc(u) = 2. Assume that, for some x, y ∈ mul(wζ), the
word 2ux 2uc 2uy is a factor of u and one of the following holds:

(i) x 6= b, y 6= a and 1uc is not adjacent to 1ux and 1uy in u;
(ii) x= b, the variables 1uc and 1ux lie in different blocks of u and 1uc is not adjacent

to 1uy in u;
(iii) y= a, the variables 1uc and 1uy lie in different blocks of u and 1uc is not adjacent

to 1ux in u.

If u ≈ v is a nontrivial identity of M(Wn){Id(υWn)}, then vc = wζ .

Proof. In view of Proposition 1, there is some finite sequence u = v0,v1, . . . ,vm = v
of distinct words such that each identity vi ≈ vi+1 either holds in M(Wn) or is directly
deducible from some identity in Id(υWn). We will use induction on m.
Induction base: m =1. If u = v0 ≈ v1 = v holds in M(Wn), then the required claim

follows from Lemma 1. If u = v0 ≈ v1 = v is directly deducible from some identity
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in Id(υWn), then the condition of the lemma implies that every factor of length > 1 of u
has exactly one occurrence in u and (2ub) < (2uc) < (2ua). Then we can apply Lemma 8,
yielding that vc = wζ .
Induction step: m > 1. First, notice that, as in the induction base, (v1)c = wζ by

Lemmas 1 and 8. By symmetry, it suffices to verify only Parts (i) and (ii). The proof of
Part (ii) is very similar to the proof of Part (i) but a bit simpler and we omit it. So, we
assume below that (i) holds.

By symmetry, we may assume without any loss that x ∈ {a, ai, b, bi, x(i)1 , x
(i)
2 | 1 ≤ i ≤

n} and y ∈ {y0, yi, zi, z′i, z′′i | 1 ≤ i ≤ n}. Then the variables 1uc and 1uy do not lie in
the same block of u because these variables are not adjacent to each other in u. The
variables 1uc and 2uc also do not lie in the same block of the word u because this word is
block-linear. Since xzytxy and so xzytyx are isoterms for M(Wn){Id(υWn)} by Lemma 4
and occc(u) = 2, this implies that occc(v1) = 2 and (2v1c) < (2v1y). Further, if 1uc and

1ux do not lie in the same block of u, then (2v1x) < (2v1c) and so 2v1
x 2v1

c 2v1
y is

a factor of v1. If 1uc and 1ux lie in the same block of u, then (2v1z) < (2v1c), where
z ∈ {y0, yi, zi, z′i, z′′i | 1 ≤ i ≤ n} is the variable such that 2wζ

z 2wζ
x is a factor of wζ ,

and, therefore, either 2v1
x 2v1

c 2v1
y or 2v1

z 2v1
c 2v1

x is a factor of v1.
Suppose that 1v1

c is adjacent to 1v1
x. If u ≈ v1 holds in M(Wn), then the word (v1)x

coincides (up to renaming of variables) with wζ and ux 6= (v1)x contradicting the fact
that wζ is an isoterm for M(Wn). Therefore, u ≈ v1 is directly deducible from some
identity wξ ≈ wη in Id(υWn). Then (v′

1)c = wζ 6= u′
c, where u

′ := ψ(u), v′
1 := ψ(v1) and

ψ : X → X ∗ is the substitution defined by:

ψ(v) :=


x if v = c,

c if v = x ,

v otherwise.

According to Lemma 5, there is ν ∈ Sn
2 \ {ζ} such that u′

c = wν . In particular, 1u′x and

1u′c lie in the same block of u′. Evidently, u′ ≈ v′
1 is directly deducible from wξ ≈ wη,

the word 2u′z 2u′c 2u′x is a factor of u′, and 1u′c is not adjacent to 1u′x and 1u′z in
u′. Then (v′

1)c = wν by Lemma 8 contradicting the fact that ζ 6= ν. Thus, 1v1
c is not

adjacent to 1v1
x in v1 in any case.

Further, since xyx is an isoterm for the variety M(Wn){Id(υWn)} by Lemma 4 and

1uy and 1uc do not lie in the same block of u, the variables 1v1
y and 1v1

c cannot lie
in the same block of v1. Hence 1v1

c is not adjacent to 1v1
y in v1. So, if 2v1

x 2v1
c 2v1

y
is a factor of v1, then we can apply the induction assumption, yielding that vc = wζ .
If 2v1

z 2v1
c 2v1

x is a factor of v1, then 1v1
c and 1v1

x must lie in the same block of
v1 because xzytxy is an isoterm for M(Wn){Id(υWn)}. In this case, 1v1

c and 1v1
z lie in

different blocks of v1 and so 1v1
c is not adjacent to 1v1

z in v1. Therefore, we can apply
the induction assumption again, yielding that vc = wζ as required. �

Lemma 11. Let n ≥ 2 and u be a block-linear word such that uc = wζ for some
ζ ∈ Sn

2 and c ∈ mul(u) with occc(u) = 2. Assume that, for some x, y ∈ mul(uζ), the word

1ux 1uc 1uy is a factor of u, while 2uc is not adjacent to 2ux and 2uy in u. If u ≈ v is
an identity of M(Wn){Id(υWn)}, then vc = wζ .
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Proof. Evidently, x, y ∈ {a, ai, b, bi, x(i)1 , x
(i)
2 | 1 ≤ i ≤ n}. If (2uy0) < (2uc) < (2uyn),

then the required claim follows from Lemma 10(i). So, since the word u is block-linear,
it remains to consider the case when one of the words 2uc 2ub, 2ub 2uc, 2uc 2ua, 2ua 2uc,

2uc 1uyj or 1uyj 2uc with j ∈ {0, 1, . . . , n} is a factor of u.
In view of Proposition 1, there is some finite sequence u = v0,v1, . . . ,vm = v of

distinct words such that each identity vi ≈ vi+1 either holds in M(Wn) or is directly
deducible from some identity in Id(υWn). We will use induction on m.
Induction base: m =1. If u = v0 ≈ v1 = v holds in M(Wn), then the required claim

follows from Lemma 1. If u = v0 ≈ v1 = v is directly deducible from some identity
in Id(υWn), then the condition of the lemma implies that every factor of length > 1 of
u has exactly one occurrence in u and (1ua1) < (1uc) < (1ubn). Then we can apply
Lemma 8, yielding that vc = wζ .
Induction step: m > 1. First, notice that, as in the induction base, (v1)c = wζ

by Lemmas 1 and 8. If either 2uc 1uyj or 1uyj 2uc is a factor of u for some j ∈
{0, 1, . . . , n}, then u(c, sj , t, x) = xcsjctx and u(c, sj , t, y) = cysjcty. Since the word
xyzxty and so the word yxzxty are isoterms for M(Wn){Id(υWn)} by Lemma 4, this
implies that v1(c, sj , t, x) = xcsjctx and v1(c, sj , t, y) = cysjcty. If either 2uc 2ub or

2ub 2uc is a factor of u, then x 6= b, y 6= b and so u(c, s0, t, x, y0) = xcs0y0tcy0x
and u(c, s0, t, y, y0) = cys0y0tcy0y. Since xytzsxzy and so yxtzsxzy are isoterms for
M(Wn){Id(υWn)} by Lemma 4, this implies that v1(c, s0, t, x, y0) = xcs0y0tcy0x and
v1(c, s0, t, y, y0) = cys0y0tcy0y. By a similar argument we can show that if one of the
words 2uc 2ua or 2ua 2uc is a factor of the word u, then v1(c, sn, t, x, yn) = xcsnyntxync
and v1(c, sn, t, y, yn) = cysnyntyync. Thus, we have proved that occc(v1) = 2, the word

1v1
x 1v1

c 1v1
y is a factor v1, while 2v1

c is not adjacent to 2v1
x and 2v1

y in v1. So, we
can apply the induction assumption, yielding that vc = wζ . �

Corollary 3. Let n ≥ 2 and u be a word such that uh = wζ for some ζ ∈ Sn
2 and

h ∈ sim(u). Assume that h is adjacent to two different multiple variables of u. If u ≈ v
is an identity of M(Wn){Id(υWn)}, then vh = wζ .

Proof. Obviously, there is j ∈ {0, 1, . . . , n} such that 2uyj is not adjacent to 1uh in
u. Then Lemmas 10 and 11 imply that (ϕ(v))h = (ϕ(u))h = wζ , where ϕ : X → X ∗ is
the substitution given by:

ϕ(v) :=

sjh if v = sj ,

v if v 6= sj .

It remains to note that vh = (ϕ(v))h. �

Lemma 12. Let n ≥ 2 and u be a word such that u{c1,c2} = wζ for some ζ ∈ Sn
2 and

c1, c2 ∈ mul(u) with occc1(u) = occc2(u) = 2. Assume that, for some x, y ∈ mul(wζ),
the word 2ux 2uc1 2uc2 2uy is a factor of u, while 1uc1 and 1uc2 lie in the same blocks
as 1uy and 1ux in u, respectively. If u ≈ v is an identity of M(Wn){Id(υWn)}, then
v{c1,c2} = wζ .
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Proof. In view of Proposition 1, there is some finite sequence u = v0,v1, . . . ,vm = v
of distinct words such that each identity vi ≈ vi+1 either holds in M(Wn) or is directly
deducible from some identity in Id(υWn). We will use induction on m.
Induction base: m =1. If u = v0 ≈ v1 = v holds in M(Wn), then the required claim

follows from Lemma 1. If u = v0 ≈ v1 = v is directly deducible from some identity
in Id(υWn), then the condition of the lemma implies that every factor of length > 1 of u
has exactly one occurrence in u and (2ub) < (2uc1) < (2ua). Then we can apply Lemma 8,
yielding that v{c1,c2} = wζ .
Induction step: m > 1. First, notice that, as in the induction base, (v1){c1,c2} = wζ

by Lemmas 1 and 8. Since xyx is an isoterm for the variety M(Wn){Id(υWn)} by Lemma 4,

1v1
c1 and 1v1

c2 lie in the same blocks as 1v1
y and 1v1

x in v1, respectively, and occc1(v1) =
occc2(v1) = 2. Further, 1uy and 1ux lie in different blocks of u. Hence, since xzytxy is
an isoterm for the variety M(Wn){Id(υWn)} by Lemma 4, the word 2v1

x 2v1
c
1 2v1

c
2 2v1

y
must be a factor of v1. Thus, we can apply the induction assumption, yielding that
v{c1,c2} = wζ as required. �

Lemma 13. Let n ≥ 2 and u be a word such that u{c1,c2} = wζ for some ζ ∈ Sn
2 and

c1, c2 ∈ mul(u) with occc1(u) = occc2(u) = 2. Assume that, for some x, y ∈ mul(wζ), the
word 1ux 1uc1 1uc2 1uy is a factor of u, while 2uc1 and 2uc2 are adjacent to 2uy and 2ux
in u, respectively. If u ≈ v is an identity of M(Wn){Id(υWn)}, then v{c1,c2} = wζ .

Proof. In view of Proposition 1, there is some finite sequence u = v0,v1, . . . ,vm = v
of distinct words such that each identity vi ≈ vi+1 either holds in M(Wn) or is directly
deducible from some identity in Id(υWn). We will use induction on m.
Induction base: m =1. If u = v0 ≈ v1 = v holds in M(Wn), then the required claim

follows from Lemma 1. If u = v0 ≈ v1 = v is directly deducible from some identity
in Id(υWn), then the condition of the lemma implies that every factor of length > 1 of
u has exactly one occurrence in u and (1ua1) < (1uc1) < (1ubn). Then we can apply
Lemma 8, yielding that v{c1,c2} = wζ .
Induction step:m > 1. First, notice that, as in the induction base, (v1){c1,c2} = wζ by

Lemmas 1 and 8. Since xzytxy is an isoterm for the variety M(Wn){Id(υWn)} by Lemma 4,
it is easy to show that occc1(v1) = occc2(v1) = 2 and the variables 2v1

c1 and 2v1
c2 are

adjacent to 2v1
y and 2v1

x in v1, respectively. Assume first that {x, y} = {x(k)1 , x
(k)
2 }

for some k ∈ {1, 2, . . . , n}. Evidently, the words u{x,c1} and u{c2,y} coincide (up to
renaming of variables) with wζ , while u{x1,x2} coincides (up to renaming of variables)

with wζ̄ , where ζ̄ := (ζ1, . . . , ζk−1, ζ
2
k , ζk+1, . . . , ζn). Hence if u ≈ v1 holds in M(Wn),

then 1v1
x 1v1

c
1 1v1

c
2 1v1

y is a factor of v1 by Lemma 1; if u ≈ v1 is directly
deducible from some identity in Id(υWn), then we apply Lemma 8 three times, yield-
ing that (1v1x) < (1v1c1) < (1v1c2) < (1v1y) and so 1v1

x 1v1
c
1 1v1

c
2 1v1

y is a

factor of v1 again. Assume now that {x, y} 6= {x(k)1 , x
(k)
2 } for all k = 1, 2, . . . , n. In

this case, there exists j ∈ {0, 1, . . . , n} such that 2uyj lies between 2ux and 2uy in u.
Then the words u(c1, sj , t, x, yj), u(c1, c2, sj , t, yj) and u(c2, sj , t, y, yj) coincide (up to
renaming of variables) with either xysztxzy or yxsztxzy. Since the latter two words are
isoterms for M(Wn){Id(υWn)} by Lemma 4, we have u(c1, sj , t, x, yj) = v1(c1, sj , t, x, yj),
u(c1, c2, sj , t, yj) = v1(c1, c2, sj , t, yj) and u(c2, sj , t, y, yj) = v1(c2, sj , t, y, yj). It follows
that (1v1x) < (1v1c1) < (1v1c2) < (1v1y). We see that 1v1

x 1v1
c
1 1v1

c
2 1v1

y is a factor of
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v1 in any case. Thus, we can apply the induction assumption, yielding that v{c1,c2} = wζ

as required. �

For any n,m, k ≥ 1 and ρ ∈ Sn+m+k, we define the words:

cn,m,k[ρ] :=

( n∏
i=1

ziti

)
xyt

( n+m∏
i=n+1

ziti

)
x

(n+m+k∏
i=1

ziρ

)
y

( n+m+k∏
i=n+m+1

tizi

)
,

c′n,m,k[ρ] :=

( n∏
i=1

ziti

)
yxt

( n+m∏
i=n+1

ziti

)
x

(n+m+k∏
i=1

ziρ

)
y

( n+m+k∏
i=n+m+1

tizi

)
.

Let O denote the variety defined by the first four identities in (4) together with all the
identities of the form:

cn,m,k[ρ] ≈ c′n,m,k[ρ],

with n,m, k ≥ 1 and ρ ∈ Sn+m+k. An island of a word w is a maximal factor of w that
consists of only the second occurrences of variables whose first occurrences lie in the same
block of w. The next statement follows from the dual to Lemma 3.12 in [10].

Lemma 14. If w := p 2wx 2wy q and the variables 2wx and 2wy lie in the same
island of w, then O satisfies the identity w ≈ p yxq.

If xy is an isoterm for a variety V and u ≈ v is an identity of V, then it is easy to see
that either con(u) = mul(u) = con(v) = mul(v) or u ≈ v is of the form:

u0

( m∏
i=1

tiui

)
≈ v0

( m∏
i=1

tivi

)
, (6)

for some m ≥ 1, where sim(u) = sim(v) = {t1, t2, . . . , tm}. For each i = 0, 1, . . . ,m,
we say the blocks ui and vi are corresponding. An identity u ≈ v of the form (6) with
sim(u) = sim(v) = {t1, t2, . . . , tm} is linear-balanced if, for any i = 0, 1, . . . ,m, the
corresponding blocks ui and vi are linear words depending on the same variables. A
linear-balanced identity u ≈ v is reduced if all corresponding blocks of u and v are of
the forms ac and bc, where a and b consist of the first occurrences of variables in u and
v, respectively, while c consists of the second occurrences of variables in both u and v.
Evidently, if u ≈ v is a reduced identity, then every variable occurs in both u and v at
most twice.

Lemma 15. Each variety in the interval [M(xzytxy),O] may be defined within O by
a set of reduced identities.

Proof. We need to show that an arbitrary identity u ≈ v of M(xzytxy) is equivalent
within O to a reduced identity. Let

A := {x ∈ mul(u) | u(xyx) = xyx for some y ∈ sim(u)} and
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B := mul(u) \ A = {x ∈ mul(u) | occx(u) > 2 or 1ux and 2ux lie in the same block of u}.

Since the word xyx is an isoterm for M(xzytxy), it is routine to show that:

A = {x ∈ mul(v) | v(xyx) = xyx for some y ∈ sim(v)} and

B = mul(v) \ A = {x ∈ mul(v) | occx(v) > 2 or 1vx and 2vx lie in the same block of v}.

Let B = {b1, b2, . . . , br}. Arguments similar to those of the proof of Lemma 3.11 in [10]
imply that the identity:

( n∏
i=1

ziti

)
x

(n+m∏
i=1

ziρ

)
x

( n+m∏
i=n+1

tizi

)
≈
( n∏

i=1

ziti

)
x2
(n+m∏

i=1

ziρ

)( n+m∏
i=n+1

tizi

)
,

is satisfied by O for any n,m ≥ 1 and ρ ∈ Sn+m. Then, by Lemma 4.5 in [9], the variety O
satisfies the identities u ≈ b21 · · · b2ruB and v ≈ b21 · · · b2rvB. Hence O{u ≈ v} = O{uB ≈
vB}. The identity uB ≈ vB is linear-balanced and every variable occurs in uB and vB

at most twice. Further, the fourth identity in (4) allows us to swap the first and the
second occurrences of two multiple variables whenever these occurrences are adjacent
to each other. In view of this fact, the variety O satisfies the identities uB ≈ w1 and
vB ≈ w2 for some words w1 and w2 such that each block of w1 or w2 is a product of
two words consisting of the first and the second occurrences of variables, respectively.

This means that wi = a
(i)
0 c

(i)
0 t1a

(i)
1 c

(i)
1 · · · tka(i)k c

(i)
k , where sim(wi) = {t1, t2, . . . , tk} and,

for any j = 0, 1, . . . , k, the word a
(i)
j [respectively, c

(i)
j ] consists of the first [second]

occurrences of variables in wi. Clearly, c
(i)
j can be represented as a product of some

islands c
(i)
j1 , c

(i)
j2 , . . . , c

(i)

jr
(i)
j

of wi. Since w1 ≈ w2 holds in M(xzytxy), it is easy to deduce

from Lemma 1 that rj := r
(1)
j = r

(2)
j and con(c

(1)
j` ) = con(c

(2)
j` ) for any j = 0, 1, . . . , k

and ` = 1, 2, . . . , rj . Now Lemma 14 applies, yielding that O satisfies w1 ≈ w′
1, where

w′
1 := a

(1)
0 c

(2)
0 t1a

(1)
1 c

(2)
1 · · · tka(1)k c

(2)
k . Clearly, the identityw′

1 ≈ w2 is reduced andO{u ≈
v} = O{w′

1 ≈ w2} as required. �

We call an identity w ≈ w′ 1-invertible if w = axy b and w′ = a yxb for some
a,b ∈ X ∗ and x, y ∈ con(ab). Let k > 1. An identity w ≈ w′ is called k -invertible if
there is a sequence of words w = w0,w1, . . . ,wk = w′ such that the identity wi ≈ wi+1

is 1-invertible for each i = 0, 1, . . . , k− 1 and k is the least number with such a property.
For convenience, we will call the trivial identity 0-invertible.
For the rest of this section, the mapping Φ: Eq(Wn) → [M(Wn){Id(υWn)},M(Wn)]

given by:

Φ(π) := M(Wn){Id(π)},

is shown to be an anti-isomorphism. The proof of Proposition 2 is thus complete.
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The mapping Φ is injective

Suppose that Φ(π) = Φ(ρ) for some π, ρ ∈ Eq(Wn), so that M(Wn){Id(π)} =
M(Wn){Id(ρ)}. If (u,v) ∈ ρ, then the variety M(Wn){Id(π)} satisfies the identity u ≈ v,
whence (u,v) ∈ π by Corollary 2. Therefore the inclusion ρ ⊆ π holds; the reverse
inclusion ρ ⊇ π holds by a symmetrical argument, thus π = ρ.

The mapping Φ is surjective

It suffices to show that for any variety V from the interval [M(Wn){Id(υWn)},M(Wn)],
there exists some π ∈ Eq(Wn) such that Φ(π) = V. Since Φ(εWn) = M(Wn){Id(εWn)} =
M(Wn), where εWn is the equality relation on Wn, suppose that V 6= M(Wn). Then
there exists a nontrivial set Σ of identities such that V = M(Wn){Σ}; by the inclusions
M(xzytxy) ⊆ M(Wn){Id(υWn)} ⊆ M(Wn) ⊆ O and Lemma 15, the identities in Σ can be
chosen to be reduced. It is shown below that any identity u ≈ v in Σ is equivalent within
M(Wn) to a subset of Id(υWn). By Lemma 2.2 in [6], there exists some π ∈ Eq(Wn) such
that V = M(Wn){Id(π)}, so that Φ(π) = V as required.
Since the identity u ≈ v is reduced (and so linear-balanced), this identity is r -invertible

for some r ≥ 0. We will use induction by r.
Induction base: r =0. Then u = v, whence M(Wn){u ≈ v} = M(Wn){∅}.
Induction step: r > 0. If u ≈ v holds in M(Wn), then M(Wn){u ≈ v} = M(Wn){∅}.

So, we may further assume that u ≈ v is violated by M(Wn). Then there is a substitution
ψ : X → M(Wn) such that ψ(u) 6= ψ(v) in M(Wn). This is only possible when ψ(u) or
ψ(v), say ψ(u), is a non-empty factor of some word wξ in Wn. According to Lemma 7(iii),
every proper factor of wξ is an isoterm for M(Wn){Id(υWn)}. Hence wξ = ψ(u). Clearly,
ψ(v) represents a non-empty word, which does not equal to ψ(u). In view of Lemma 5,
ψ(v) = wη for some η ∈ Sn

2 \ {ξ}. Let V := {x ∈ X | ψ(x) 6= 1}. Clearly, wξ = ψ(u) =
ψ(u(V )) and wη = ψ(v) = ψ(v(V )).
Notice that every factor of length > 1 of wξ has exactly one occurrence in wξ. It follows

that ψ(v) is a variable for any v ∈ V ∩mul(u). Let us now consider an arbitrary variable
c ∈ V ∩ sim(u). If ψ(c) is not a variable, then ψc(u(V )) is obtained from wξ by replacing
some factor of length > 1 with the variable c, where ψc : X → X ∗ is the substitution
defined by

ψc(v) :=

ψ(v) if v 6= c,

c if v = c.

According to Lemma 7(ii), the word ψc(u(V )) is an isoterm for M(Wn){Id(υWn)} con-
tradicting the fact that ψ(u(V )) ≈ ψ(v(V )) is a nontrivial identity of M(Wn){Id(υWn)}.
Therefore, ψ(c) is a variable. Further, if ψ(c) ∈ mul(wξ), then ψc(u(V )) is obtained from
wξ by replacing some occurrence of the multiple variable ψ(c) with the variable c. In
view of Lemma 7(i), the word ψc(u(V )) is an isoterm for M(Wn){Id(υWn)} contradict-
ing the fact that ψ(u(V )) ≈ ψ(v(V )) is a nontrivial identity of M(Wn){Id(υWn)} again.
Therefore, ψ(c) ∈ sim(wξ). Since the identity wξ ≈ wη is reduced, ψ(v1) and ψ(v2) can-
not coincide with each other for distinct v1,v2 ∈ V . Therefore, u(V ) and v(V ) coincide
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(up to renaming of variables) with wξ and wη, respectively. We may assume without any
loss that u(V ) = wξ and v(V ) = wη.
Let V ′ := V ∩ mul(u). For any c ∈ V ′, let č denote the island of u containing 2uc.

Consider arbitrary x, y ∈ V ′ such that 2wξ
x 2wξ

y is a factor of wξ. Clearly, 1ux and

1uy lie in different blocks of u, whence con(x̌) ∩ con(y̌) = ∅. Denote by c the factor of
u lying between the factors x̌ and y̌. Assume that c is non-empty. Corollary 3 together
with the fact that u(V ) = wξ and v(V ) = wη imply that con(c) ⊆ mul(u). Since
the identity u ≈ v is reduced, this implies that c consists of the second occurrences of
variables in u. Let c1 denote the first variable of c. The variables 1uc1 and 1ux do not lie
in the same block of u because 1uc1 belongs to the island x̌ otherwise. Therefore, there
is h ∈ sim(u) such that 1uh lies between 1ux and 1uc1 in u. If the variables 1u1

c1 and

1u1
x lie in the same block of u1 := u(V ∪ {c1}), then taking into account Corollary 3

and the fact that u(V ) = wξ and v(V ) = wη, we conclude that h /∈ V and, in the
word u2 := u(V ∪ {h, c1}), the variable 1u2

h does not lie between 1u2
a1 and 1u2

bn.
Hence 1u2

c1 forms a block of u2 contradicting Lemma 9. Therefore, 1u1
c1 and 1u1

x lie in
different blocks of u1. Then 1u1

y and 1u1
c1 lie in the same block of u1 by Lemma 10. By

similar arguments we can show that if c2 is the last variable of c, then 1u3
x and 1u3

c2
lie in the same block of u3 := u(V ∪ {c2}) (and so c1 6= c2). This implies that the word
u4 := u(V ∪ {c1, c2}) contains the factor 2u4

x 2u4
c
1 2u4

c
2 2u4

y, while 1u4
c1 and 1u4

c2
lie in the same blocks as 1u4

y and 1u4
x in u4, respectively. This contradicts Lemma 12

because v(V ) = wξ and v(V ) = wη. Therefore, the word c must be empty. Since the
variables x and y are arbitrary, we have proved that the word:

r := b̌ y̌0

( n∏
i=1

x̌
(i)
1 žiǎiž

′
ib̌iž

′′
i x̌

(i)
2 y̌i

)
ǎ,

forms a factor of u.
Further, for any c ∈ V ′ \ {a, b}, let ĉ denote the minimal factor of u containing all

first occurrences of variables in con(č). Consider an arbitrary variable x ∈ V ′ \ {a, b}.
Let d denote the last variable of x̂. By the definition of x̂, we have d ∈ con(x̌). Consider
an arbitrary variable e ∈ con(x̂) \ con(x̌) such that some occurrence of e lies between

1ux and 1ud in u. Since the identity u ≈ v is reduced, this occurrence of e must be the
first one in u. By the definition of the island x̌, the variable e is multiple in u. Denote
by y the variable different from x that is adjacent to the second occurrence of d in the
word u5 := u(V ∪ {d}). Then, since x ∈ V ′ \ {a, b} and the word u is block-linear, we
have y ∈ V ′ and either 2u5

x 2u5
d 2u5

y or 2u5
y 2u5

d 2u5
x is a factor of u5. Further,

since 1u5
x and 1u5

y lie in different blocks of u5, the variable 1u5
d is not adjacent to the

variable 1u5
y in u5 as well. If e ∈ V , then 1u5

d is not adjacent to 1u5
x in u5 because

(1ux) < (1ue) < (1ud). Then v(V ) = wξ by Lemma 10(i) contradicting v(V ) = wη.
Therefore, e /∈ V . Since the variable e is arbitrary, we have proved that there are no
variables in V lying between 1ux and 1ud in u.
Suppose that x = bn. In this case, 2ud lies between 2uz

′
n and 2uz

′′
n in u, while 2ue does

not. It follows from the fact that u(V ) = wξ and v(V ) = wη and Lemma 10(i) that either
(2ue) < (2uy0) or (2uyn) < (2ue). It is easy to see that the word u6 := u((V \ {x})∪{d})
coincides (up to renaming variables) with u(V ) = wξ. Since the word xzytxy and so the
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word xzytyx are isoterms for M(Wn){Id(υWn)} by Lemma 4, we have (2vz
′
n) < (2vd) <

(2vz
′′
n). Further, since u(bn−1, d, sn−1, t, yn−1) = bn−1dsn−1yn−1tbn−1yn−1d, we can apply

Lemma 4 again, yielding that v(bn−1, d, sn−1, t, yn−1) = bn−1dsn−1yn−1tbn−1yn−1d.
Hence (1vbn−1) < (1vd). It follows that the word v((V \ {x}) ∪ {d}) coincides (up to
renaming variables) with v(V ) = wη. However, since 1u7

bn−1 1u7
e 1u7

d is a factor of
u7 := u((V \ {x}) ∪ {d, e}) and either (2u7e) < (2u7y0) or (2u7yn) < (2u7e), Lemma 11
implies that v((V \ {x}) ∪ {d}) must coincide (up to renaming variables) with wξ, a
contradiction.
Suppose now that x 6= bn. Denote by z the variable that directly follows 1wξ

x in wξ.

In view of the above, (1ud) < (1uz), whence 1u8
x 1u8

e 1u8
z is a factor of the word

u8 := u(V ∪ {e}). Clearly, 2u8
e is not adjacent to 2u8

x in u8. Then Lemma 11 and
the fact that u(V ) = wξ and v(V ) = wη imply that 2u8

e is adjacent to 2u8
z in u8

contradicting Lemma 13.
Thus, we have proved that if e is a variable lying between 1ux and 1ud in u, then

e ∈ con(x̌). By similar arguments we can show that if d ′ is the first variable of x̂, then
every variable lying between 1ud

′ and 1ux in u must belong to con(x̌). Therefore, we have
proved that con(ĉ) = con(č) for any c ∈ V ′ \ {a, b}.
Now consider arbitrary x, y ∈ V ′ \{a, b} such that 1wξ

x 1wξ
y is a factor of wξ. Denote

by c the factor of u lying between the factors x̂ and ŷ. Assume that c is non-empty.
Then we can take c ∈ con(c). Corollary 3 and the fact that u(V ) = wξ and v(V ) = wη

imply that c ∈ mul(u). Clearly, the variable 2uc does not occur in the islands x̌ and y̌ of
u. It follows that the second occurrence of c is not adjacent to the second occurrences of
x and y in u(V ∪ {c}) contradicting Lemma 11. Therefore, the word c must be empty.
Since the variables x and y are arbitrary, we have proved that the word:

h :=

( n∏
i=1

âi

)
â

( n∏
i=1

x̂
(i)
1ξi

x̂
(i)
2ξi

)
b̂

( n∏
i=1

b̂i

)

forms a factor of u, where â [respectively, b̂] denotes the factor of u lying between the

factors ân and x̂
(1)
1ξ1

[respectively, x̂
(2)
2ξn

and b̂1]. Evidently, a ∈ con(â) and b ∈ con(b̂).

Consider an arbitrary variable c ∈ con(â) \ con(ǎ). It follows from Corollary 3 that

c ∈ mul(u). Further, since con(ân) = con(ǎn) and con(x̂
(1)
1ξ1

) = con(x̌
(1)
1ξ1

), Lemma 11

implies that the second occurrence of c is adjacent to the second occurrence of a in
u(V ∪ {c}). By the definition of the island ǎ, either 2uc and 2ua lie in different blocks of
u or 2uc and 2ua lie in the same block of u but in different islands of this block. If 2uc and

2ua lie in different blocks of u, then there is h ∈ sim(u) such that (2ua) < (1uh) < (2uc)
contradicting Lemma 9 because the second occurrence of c in the word u(V ∪{c, h}) forms
a block in this word. If 2uc and 2ua lie in the same block of u but in different islands of this
block, then there is c1 ∈ mul(u) such that (2ua) < (2uc1) < (2uc) and 1uc1 do not lie in the
block of u containing 1ua and 1uc. Since the identity u((V \{a})∪{c}) ≈ v((V \{a})∪{c})
coincides (up to renaming variables) with wξ ≈ wη and 2u9

yn 2u9
c1 2u9

c is a factor of
the word u9 := u((V \ {a}) ∪ {c, c1}), Lemma 10(iii) implies that 1u9

c1 is adjacent to

1u9
yn in u9 contradicting Lemma 12. Therefore, con(â) ⊆ con(ǎ). By similar arguments

we can show that con(b̂) ⊆ con(b̌).
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In view of the above, there are words t, ti, t
′
i, t

′′
i and si such that the word phqr is a

factor of u, where

p :=

( n∏
i=1

ẑiti

)( n∏
i=1

ẑ′it
′
i

)( n∏
i=1

ẑ′′i t
′′
i

)
, q :=

( n∏
i=0

siŷi

)
t.

By similar arguments one can show that the word v contains a factor:

p̄ ·
( n∏

i=1

ˆ̄ai

)
ˆ̄a

( n∏
i=1

ˆ̄x
(i)
1ηi

ˆ̄x
(i)
2ηi

)
ˆ̄b

( n∏
i=1

ˆ̄bi

)
· q̄r̄

with

p̄ :=

( n∏
i=1

ˆ̄zit̄i

)( n∏
i=1

ˆ̄z′it̄
′
i

)( n∏
i=1

ˆ̄z′′i t̄
′′
i

)
,

q̄ :=

( n∏
i=0

s̄i ˆ̄yi

)
t̄,

r̄ := ˇ̄bˇ̄y0

( n∏
i=1

ˇ̄x
(i)
1

ˇ̄zi ˇ̄aiˇ̄z
′
i
ˇ̄biˇ̄z

′′
i
ˇ̄x
(i)
2

ˇ̄yi

)
ˇ̄a,

such that

• for any c ∈ V ′, the word ˇ̄c is the island of v containing 2vc;
• con(ˆ̄c) = con(ˇ̄c) for any c ∈ V ′ \ {a, b};
• c ∈ con(ˆ̄c) ⊆ con(ˇ̄c) for any c ∈ {a, b}.

Since the identity u ≈ v is reduced, con(č) = con(ˇ̄c) for any c ∈ V ′. Hence con(ĉ) =
con(ˆ̄c) for any c ∈ V ′\{a, b}. Further, one can deduce from Lemma 5 that con(ĉ) = con(ˆ̄c)
for any c ∈ {a, b}.
Clearly, u = a · phqr · b for some a,b ∈ X ∗. Define w := a · ph̃qr · b, where

h̃ :=

( n∏
i=1

âi

)
â

( n∏
i=1

x̂
(i)
1ηi

x̂
(i)
2ηi

)
b̂

( n∏
i=1

b̂i

)
.

Since con(ˆ̄c) = con(ĉ) for any c ∈ V ′ and the identity u ≈ v is reduced, the identity
w ≈ v is (r − r′)-invertible with:

r′ =
∑

i∈{j|ξj 6=ηj}

|x̂(i)
1ξi

| · |x̂(i)
2ξi

| > 0.

Clearly, the identity w ≈ v is reduced. So, we can apply the induction assumption,
yielding thatM(Wn){w ≈ v} = M(Wn){Ψ} for some Ψ ⊆ Id(υWn). Further,M(Wn){wξ ≈
wη} satisfies the identities:
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u = a · phqr · b
≈ a · phqr̃ · b by Lemma 14

≈ a · ph̃qr̃ · b by wξ ≈ wη

≈ a · ph̃qr · b by Lemma 14,

= w,

where

r̃ := (b̌)con(b̂)b̂ŷ0

( n∏
i=1

x̂
(i)
1 ẑiâiẑ

′
ib̂iẑ

′′
i x̂

(i)
2 ŷi

)
â(ǎ)con(â).

Since wξ ≈ wη is a consequence of u ≈ v, this implies that:

M(Wn){u ≈ v} = M(Wn){u ≈ w ≈ v} = M(Wn){wξ ≈ wη, Ψ}.

The mapping Φ is an anti-isomorphism

Let π, ρ ∈ Eq(Wn). If π ⊆ ρ, then the inclusion M(Wn){Id(ρ)} ⊆ M(Wn){Id(π)}
holds, so that Φ(ρ) ⊆ Φ(π). Conversely, assume the inclusion Φ(ρ) ⊆ Φ(π), so that
M(Wn){Id(ρ)} ⊆ M(Wn){Id(π)}. Then for any (u,v) ∈ π, the identity u ≈ v is satisfied
by M(Wn){Id(ρ)}, whence (u,v) ∈ ρ by Corollary 2. Therefore π ⊆ ρ.

5. Some open problems

5.1. Monoids of order at least six

In the present article, we show that the 6-element monoids A1
2 and B1

2 generate finitely
universal varieties. We do not know any of 6-element monoids distinct from A1

2 and B1
2

generating varieties with this property. Thus, the following question is relevant.

Question 1. Is there a 6-element monoid distinct from A1
2 and B

1
2 generating a finitely

universal variety?

As we have mentioned above, the varieties B1
2 and A1

2 are non-finitely based. The
following question is still open.

Question 2. What is the least order of a finitely based monoid that generates a finitely
universal variety?

It is shown in [20] that every monoid of order six distinct from A1
2 and B1

2 generates a
finitely based variety. In view of this result, the affirmative answer to Question 1 provides
a solution to Question 2.

5.2. Lattice universal varieties

Here we remind an open question from [6] and [7]. It follows from [29] that a variety V is
finitely universal if and only if for all sufficiently large n ≥ 1, the lattice Eq({1, 2, . . . , n})
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is anti-isomorphic to some sublattice of L(V). In the present article, finitely universal
varieties V of monoids are exhibited with the stronger property that for all sufficiently
large n ≥ 1, the lattice Eq({1, 2, . . . , n}) is anti-isomorphic to some subinterval of L(V). A
yet even stronger property that a variety V can satisfy is when the lattice Eq({1, 2, 3, . . . })
is anti-isomorphic to some subinterval of L(V); following [32], such a variety is said to be
lattice universal. Lattice universal varieties of semigroups have been found in [2] and [16];
it is natural to question if a variety of monoids can also satisfy this property.

Question 3. ([6, Question 6.5]; see also [7, Question 4.11b)]). Is there a variety
of monoids that is lattice universal?

Notice that, for locally finite varieties the answer to Question 3 is negative. This
immediately follows from the following three folkloric facts: the subvariety lattice of an
arbitrary locally finite variety is algebraic; the lattice Eq({1, 2, 3, . . . }) is not coalgebraic;
an interval of an algebraic lattice is again algebraic.
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