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Abstract. It is shown that a C2 flow on a compact three-dimensional manifold that
preserves a smooth measure and has a continuous family of cones satisfying a
certain invariance property must be ergodic.

0. Introduction
By the results of M. Wojtkowski [W], any flow on a compact Riemannian manifold
M which preserves a smooth measure and has a measurable family of cones satisfying
a certain invariance condition must have at least one nonzero Lyapunov exponent
almost everywhere. In the case when M is three dimensional this implies that all
Lyapunov exponents (except the one corresponding to the flow direction) are
nonzero almost everywhere. It then follows from the theory of Pesin [P] that the
flow has an ergodic component of positive measure. Here we prove that if M is
three dimensional and we have a continuous family of cones on a connected open
subset U of M such that Wojtkowski's invariance condition is satisfied for the flow
induced on U, and the orbit of almost every point passes through U, then the flow
is ergodic. We show that the stable and unstable foliations guaranteed by [P] fill
up (modulo a subset of measure zero) with 'long' leaves some neighborhood of
every point in U. The continuity of the family of cones is used to force uniform
transversality of stable and unstable manifolds in such neighborhoods.

The main new application of our result is to prove the existence of real analytic
ergodic geodesic flows on S2 [BG2]. V. Donnay [Dl], [D2], [D3] had already found
C°° geodesic flows on S2 with nonzero Lyapunov exponents almost everywhere,
and he also has written a different proof of ergodicity in the C°° case [D4], based
on an outline in [D2]. His technique seems to involve a direct construction of stable
and unstable manifolds for his particular examples.

A. Katok [K] has recently extended our method to higher dimensions. He showed
that under similar assumptions on a continuous cone family, symplectic diff eomorph-
isms and flows preserving a contact form are ergodic and, in fact, Bernoulli. The
results of [W] and [P] also apply in this situation. Katok's proof uses a new
'noncontraction' theorem for unstable manifolds that was not needed for our case,
in which the unstable manifolds are one dimensional.

An earlier version of the result in the present paper was circulated in [BG1].
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1. Formulation of the result
Let M be a C3, compact, connected, three dimensional Riemannian manifold and
(i a measure on M that is equivalent to the Riemannian volume. Consider a C2

flow ( p ' o n M that leaves fj. invariant. Let X be the vector field that generates <p'.
A cone X in a real two dimensional vector space is a subset J£=jfc{v, w) =

{av + bw. a6>0} where v and w are linearly independent vectors and a, beU. We
call lnt(X) = {av + bw: ab>0 or a = 5 = 0} the interior of 3C and %* =
{av + bw: ab < 0} the complement of "X. If P is a two dimensional distribution defined
on a subset S of M, a family of cones in P over S is a set {3if(x): xe S} such that
3f (x) is a cone in P(x) for each xeS. The family is continuous if S is covered by
relatively open subsets S, on each of which there are continuous vector fields t>, and
wt with 3C(x) = 3fC(Vi(x), w,(x)) for each xeS*.

THEOREM 1.1. Let U ^ M be a connected open set with X{x)^Q for every xeU.
Suppose there is a continuous two dimensional distribution P defined on U and a
continuous family X(x) of cones in P over U such that
(i) P(x) and X(x) span TXM for eachxe U;
(ii) d(p'P(x) = P{(p'x) whenever xe Uand <p'xe U;
(iii) d<p'3£{x)^J{{(p'x) whenever xe U, cp'xe U and f >0;
(iv) for each xeU there is t(x)>0 such that <p'ix)x€U and d(p'(x)3V(x)c

Then the flow <p' is ergodic with respect to ft on U = \^J {<p'U: teU}.

Remarks, (i) If the orbit of /t-a.e. point of M enters U, then <p' is ergodic on M.
(ii) An analogous theorem holds for diffeomorphisms of surfaces. The proof of

Theorem 1.1 carries over easily to this case.
The remainder of this paper is devoted to the proof of Theorem 1.1. In § 2 we

summarize and reformulate the results from fP] and [W] that we need. In § 3
we complete the proof of Theorem 1.1.

2. Stable and unstable manifolds
In the rest of this paper we shall assume the hypothesis of Theorem 1.1.

Osceledec's multiplicative ergodic theorem [O] implies that for /A-a.e. xe M the
Lyapunov exponents of v

X+(v)= lim -log ||d<p'i;|| and x~(v)= lim -log ||d(p't)||

are defined for every nonzero ve TXM. We then have the following result, which is
essentially contained in [W].

THEOREM 2.1. For /j.-a.e. xe U, we have x+(v)>0 for every velnt(K(x)) and
X~(v)<0 for every velnt(K*(x)).
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Proof. This follows from § 2 of [W], although the results there are not formally
stated for the flow case. To pass from the discrete time case to the flow case here,
simply note that Wojtkowski's conditions are satisfied by the first return map (<P')LJ

of the time-one map <p' to U. •

THEOREM 2.2. There is a <p'-invariant set A c t / with (JL(U\A) = 0 on which there is
a d<p'-invariant splitting of TXM into one dimensional subbundles, TXM = E°(x)@
Es(x)®Eu(x), xeA, where for each x e A
(i) E°(x) is spanned by X(x);
(ii) x

+(v) = x~(v)<0ifveEs(x)\{0};
(iii) x+(v)=X~(v)>0 ifveEu(x)\{0};
(iv) Eu(x)<=X(x) andEs{x)^3C*{x) ifxeAnU.

Proof. Properties (i), (ii), (iii) are Osceledec's theorem [O] and property (iv) follows
from properties (ii), (iii) and Theorem 2.1. •

If x € M, the global stable manifold of x is the set

Ws(x) = {ye M :dist((p'y,(p'x)^O exponentially as f-»+oo}

and the global unstable manifold is

W(x) = {ye M:dist (<p~'y, (p'x)-*0 exponentially as <-»+oo}.

If x e M, define its weak stable manifold

WOs(x) = U{<f>'Ws(x): tzU}.

For /n-a.e. x e A, Ws(x) and W"(x) are C'-immersed submanifolds that are tangent
to the distributions Es and E" respectively. More precisely, the following result
holds:

THEOREM 2.3. {Pesin) There is a <p'-invariant subset A of A with ^i(A\A) = 0, a
measurable function 8: A -* U+ and measurable maps

a\a":{(x, r)e AxU: \r\ < 8(x)}^M

such that, for each xe A, as(x, 0) = x = a"(x, 0) andas(x, •), a"(x, •) areC1 isometric
embeddings of [-S(x), 8(x)] into M, whose images Vs(x) and V"(x) respectively
satisfy the following properties for all x e A:
(i) V(x)cW(x);
(ii) W(x) = \J{<PlVu(q>-x):ts:0};
(iii) TxV

u(x) = E"(x);
(iv) (p'V"(x)c W(<p'x)forany t;
(v) if ye V ( x ) n A and y = au(x, r0), then a"(y, r-r0) = a"(x, r) whenever both

sides are defined;
(vi) ify e W(x) and /3 is the piece of W(x) joining x to y then the length of<p~'{}

approaches zero as t -* oo;
(vii) the analogues of (i)-(vi) hold for a\ Vs and Ws.

Proof. This follows from the analogues for flows of Theorems 4.1, 4.2 and 6.1
of [P] and Theorem 17 of [FHY]. These flow analogues are discussed in § 9
of [P]. •
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We shall call Vs(x) and V"(x) the local stable and unstable manifolds of x,
respectively. Their behavior can be uniformly controlled outside subsets of arbitrarily
small measure. More precisely, we have:

THEOREM 2.4. (Pesin) For each e > 0 there is a closed subset AE c A such that
(i) S(x)>e/ora//xeAE;
(ii) S is continuous on AE;
(iii) Vs(x) and V"{x) vary continuously in the C1 topology for x e AE;
(iv) if xeAe, veEs(x), weEu(x) and f>0, \\d<p~'v\\>e(l + s)' and \\d<p'w\\>

(v)

Proof. This follows from the analogues for flows of Proposition 4.1 and Theorems
4.2 and 4.3 in [P]. See § 9 of [P]. •

The 'foliations' of local stable and unstable manifolds have the property of absolute
continuity. We formulate this only for V", since the situation for Vs is analogous.
Let x e AE be a density point of AE, and B a ball with center x. Define a Ae-transversal
to V"(x) in B to be a C1 submanifold T of B such that
(i) T intersects V{x).
(ii) Tn V(y) contains at most one point for each ye 8 n A t .
(iii) Any intersection of T with V"(y) for ye B n AE is transversal.
If 7*! and T2 are two such transversals there is a transition map r from a subset of
T, to T2 denned as follows. If ye. Bn AE and V"(>>) intersects both T, and T2, then

If S is a C1 submanifold of M, let As denote the measure induced on S by the
Riemannian metric of M.

THEOREM 2.5. (Pesin) For each e>0 , there is r (e)>0, tvif/i the property that ifx e Ae

is a density point of Af, T) and T2 are Ae-transversals to V(x) in B(x, r(e)) and r
is the transition map defined above, then Ari(Dom T ) > 0, AT2(ImT)>0 and T IS
absolutely continuous with respect to XTl and \Tl.

Proof. This follows from the analogue for flows of Theorem 4.4 in [P]. •

COROLLARY 2.6. The function r(e) in Theorem 2.5 may be chosen so that ifxeAe is
a density point of AE, the following properties of a measurable set A c B{x, r(e))n Ae

are equivalent:
(i) /n(A) = 0;
(ii) Av«(v)( V(y) n A) = 0 /or M-a.e. ^ e B(x, r(e)) n AE.

Proo/ It follows from (iii) of Theorem 2.4 that r(e) can be chosen so that for every
xeA E , B(x, r(e)) has a C'-foliation in which every leaf is a AE-transversal to V"(x)
in B(x, r(e)). The corollary follows from Theorem 2.5 and Fubini's theorem. •

We shall use the following global version of Corollary 2.6.

COROLLARY 2.7. Let Ac U be ^.-measurable. The following are equivalent:
(i)
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(ii) A H,.(x)( W{x) n A) = 0 for /i-a.e. X E A ;
(iii) A w»(x)( W

s(x) n A) = 0 /or /u,-a.e. x e A.

Proo/ (i)=»(ii). Assume /*(A) = 0. Then A = Unez <Pn^ has /u(A) = 0. Fix e >0. Let
.A A w w

4 = A n A ; . It follows from Corollary 2.6 that for /u.-a.e. ye Ae,
A v w ( V ^ ) / 2 ( j ) n A J = 0, (1)

where V"(e)/2(y) is the image of [-r(e)/2, r(e)/2] under the map aM(>>, •) from
Theorem 2.3. Let He = {>> e AE: (1) holds}. For /x-a.e. x € Ae, <p~"x e He for arbitrarily
large neZ+. For such x it follows from Theorem 2.3 that W"(x) =
U{<p"Vrie)/2(<P~"x): n^O and <p~"xeH.} and consequently \w»(x)(W(x)nAe) =
0. Since / i ( i \U,>o A1/n) = 0, it follows that Aw»(x)( W(x) n A) = 0 for /i-a.e. x e A.

(«)=>(/). This follows easily from Corollary 2.6.
(i) <£>(»/). The proof is analogous to that of (i)o(ii). •

We need one more consequence of absolute continuity. If x e A, we shall call
Ws(x) or Wu(x) long if it contains arbitrarily long C1 curves with x as midpoint.

PROPOSITION 2.8. Both Ws(x) and W(x) are long for /j,-a.e. xe A.

Proof. We consider only W, since the argument for Ws is very similar. If x e A,
let Vu+(x) and V"~(x) be the images of [0, S(x)] and [-S(x), 0] respectively under
the map a"(x, •) defined in Theorem 2.3. For 17>0, let

AM = { « A t : A v . w ( V " + W n A , ) > > ) and \yM( V""(x)n A,)> r,}.
It follows from Theorem 2.3(ii) and Theorem 2.4(iv) that W"(x) is long if <p~'x e A£>7,
for arbitrarily large t. The Poincare recurrence theorem implies that fi-a.c. xe AE7J

has ip"'xeAM for arbitrarily large t. Since Ue>oAe has full measure in A, the
proposition follows from Lemma 2.9 below. •

LEMMA 2.9. For each e > 0,

M(A.\A.,,)-»0 as 7,^0.

Proof. If not, there is a /*-measurable set BsAE such that )ii(B)>0 and
B n Ae>, = 0 for every TJ > 0. It follows from Corollary 2.6 that there is y e Ac such
that AV"(y)(V"(y)nB)>0. Clearly any beV"(y)r\B which is a density point
(w.r.t. AV"<v)) °f V"(y)nB is in AET, for some 17 >0, contradicting the definition
of B. D

A

3. Ergodicity on U
Hypothesis (iv) of Theorem 1.1 and the continuity of the cone family 3£(x) imply
that each xe U has a neighborhood Uxs £/ with

^-'(x)^*(<p'(xV) S Int 5TO0
for each ye Ux. It follows easily that there is a continuous family of cones 3T~(x)
in P over U such that, for each xe U,

3 r ( x ) c int (ar*(*)), (2)

3f(<p'x):fs0 and ?'xe l/}c Int X~(x). (3)
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It follows from (3), Theorem 2.2(iv) and the invariance properties of X and Es that
£s(x)c3T(x) i fxeAnt / . (4)

LEMMA 3.1. For fi-a.e. xe A, we have TyW{x)<^X{y) for every ye W"(x)n U and
TzW

s(x) c X~(z) for every z e Ws(x) n U.

Proof. If ye W"(x) nUnA, then TyW"(x) = E"(y) c X(y) by Theorem 2.3(v) and
(iii), and Theorem 2.2(iv). Similarly if ze Ws(x) n ( / n A , then ^Ws(x) = Es(y)c
X~(y) by (3.4). By Corollary 2.6, /x-a.e. x€ A has

A«,•(»)( Ws(x)\A) = 0 = Aw"(»)( Wu(x)\A). (5)

The lemma now follows since Ws(x) and W"(x) are C'-immersed submanifolds
and the cone families X and X~ are continuous. •

Let A* be the set of points in An U for which (5) and the conclusions of
Proposition 2.8 and Lemma 3.1 hold. Observe that

M(tAA*) = 0. (6)

Call a C1 curve cr in U a X-curve or a X~-curve if Txa e X(x) or X~(x) respectively
for each x e o\ A surface in U of the form U W'o". \t\ < T}, where cr is a 3f~-curve,
will be called a X~ -surface. Since the cone families 5T and X~ are continuous on
U and 3if~ c int (3T*), it is clear that for each xe U there are p(x) > 0 and neighbor-
hoods N,(x) and N2(x) of x such that 7V,(x)c 7V2(x)c £/ and the following
properties hold:
(i) Any intersection in N2(x) of a $f-curve and a ^"-surface is transversal.
(ii) Suppose cr, and cr2 are X and 3if~~ curves respectively, each with length at least

2p(x) and midpoint in N,(x). Then o-x{x) and the ^"-surface \^}{(p'o-2: \t\<
p(x)} intersect in N2(x).

It follows from Lemma 3.1 and Proposition 2.8 that, if y e A* then each component
of W(y)n U (in the submanifold topology on W(y)) is a 3T-curve and each
component of Ws(y)n U is a 3f~-curve.

Proof of Theorem 1.1. For a continuous function/: M^R, set

/+(x)= lim ^ I /(v'x)dr and /"(*)= lim ^ [ f(<p-x) dt.

Ergodicity of tp' on U will follow if we prove that / and / " are constant on a
subset of U with full measure. We shall show that for every xe U the neighborhood
Nj(x) defined above has a subset of full measure on which / + and / " are constant.
Let G-{xe A*:/+(x) and /~(x) are defined and equal}. It follows from (6) and
the Birkhoff ergodic theorem that fx.( U\G) = 0. By Corollary 2.7, there is y e Nx(x) n
G such that Aw^(>)( W

s(y)\G) = 0. Since the set G is ^'-invariant, we have

\w^y)(W
Os(y)\G) = 0. (7)

By Lemma 3.2 below, for/t-a.e. zeGn N^x) there is a point pe W(z)n WOs(y)n
N2(x)n G. Since zeG and z and p lie in the same unstable manifold, /+(z) =
f~(z)=f~(p). Also, f~(p)=f+(p) because peG. Since p and y lie in the same
weak stable manifold, f+{p)=f+(y). Thus f+{z)=f~{z)=f+{y) for ^-a.e. ze

•
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LEMMA 3.2. Let x e U and y e A* n JV,(x). Sef

z ) : zeA*nN 1 (x)

and r ( z ) n W ° I ( ) ' ) n J V 2 ( x ) n G = 0 } .

/ Suppose /u,(A)>0. Then there are e > 0 and zeA such that z is a density
point of AnAe. We may assume that <p~'ze Ae and q>~'z is a density point of Ae

for arbitrarily large positive t. Let z'e W"(z)n W05(.y)n(N2(x)\G) and let p be
the piece of W"(z) that joins z to z'. Choose fo>0 such that <p~'°z e AE is a density
point of Ae and <p~'°P lies in the ball B(<p~'°z, r(e)), where r(e) is denned by
Theorem 2.5. Observe that q>~'°z is a density point of Aen<p~'°A and <p~'°A is a
union of global unstable manifolds. It is clear from Theorem 2.5 that any neighbor-
hood Q of <p~'"z in WOs(<p~'°z) has \w<"^'oz)(Qn<p~'vl)>0. It follows from
Theorem 2.5 that any submanifold T of M that intersects W"(<p~'°z) transversally
at a point z"e B(<p~'°z, r(e)) has Ar(Q'n<p~'°/4)>0 for every neighborhood Q' of
z" in T. Since WOs(y) and W"(z) intersect transversally at z', we may take T =
<p-'o WOs(y) and z" = <p~'°z'. It follows that Aw<«(y)( WOs(y) n 7V2(x) n A) > 0. But this
contradicts (7), since WOs(y) n N2(x) nAnG = 0. D
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