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Cover Product and Betti Polynomial of
Graphs

Aurora Llamas and José Martinez-Bernal

Abstract. The cover product of disjoint graphs G and H with fixed vertex covers C(G) and C(H),
is the graph G ® H with vertex set V(G) u V(H) and edge set
E(G)UE(H)u{{i,j}:i€C(G),je C(H)}.

We describe the graded Betti numbers of G® H in terms of those of G and H. As applications we ob-
tain: (i) For any positive integer k there exists a connected bipartite graph G such that reg R/I(G) =
us(G) + k, where, I(G) denotes the edge ideal of G, reg R/I(G) is the Castelnuovo-Mumford reg-
ularity of R/I(G) and ugs(G) is the induced or strong matching number of G; (ii) The graded Betti
numbers of the complement of a tree depends only upon its number of vertices; (iii) The h-vector
of R/I(G & H) is described in terms of the h-vectors of R/I(G) and R/I(H). Furthermore, in a
different direction, we give a recursive formula for the graded Betti numbers of chordal bipartite
graphs.

1 Introduction

Let R := Kk[x1,...,x,] be the polynomial ring over a field k with degx; = 1. The
edge ideal for a (simple) graph G, with vertex set {1,...,n}, is the monomial ideal
I(G) = (xixj : {i,j} isanedge of G). In general, each monomial ideal I < R has
associated a minimal graded free resolution

0—> @R(-)¥ — - —> DR(-))™ — R— RII —0
J J

where R(-j) denotes the R-module obtained by shifting the degrees of R by j, and
the nonnegative integers f3;;(R/I) := f3;; are called the graded Betti numbers of R/I.
A basic problem in commutative algebra is to describe these numbers as well as some
homological invariants associated with them. But, even for edge ideals, which are
quadratic and square-free, these problems are wide open. An interpretation of these
invariants in terms of combinatorial information encoded in the graph have been the
focus of much research over the last number of years; see, e.g., [8,17-20, 24, 32, 34],
or [14,23] for surveys on these developments. Two such invariants are the projective
dimension and the (Castelnuovo-Mumford) regularity:

pdim R/I:= max{i:f;; #0} and regR/I:=max{j—i:p;;#0}.
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Projective dimension and regularity tell us the length and the width of the minimal
resolution of R/I. So, these two invariants provide an estimate of the complexity of
computing a minimal resolution.

For edge ideals, one can mention some representative results about these invari-
ants:

(i) Let a(G) denote the cardinality of a largest minimal vertex cover of G (defini-
tions are given below). Then pdim R/I(G) > a(G), with equality if G is sequen-
tially Cohen-Macaulay (say, chordal graphs [10], or more generally graphs with
no chordless cycles of length other than 3 or 5 [33]).

(ii) For any graph G, it holds that reg R/I(G) > ps(G), where us(G) denotes the
induced or strong matching number of G [19, Lemma 2.2]. If §;;(R/I(G)) # 0
foragraph G, theni+1 < j < 2i [14, Thm. 3.2.3],s0 pdim R/I(G) > regR/I(G) >
us(G). If abipartite graph G is unmixed or sequentially Cohen-Macaulay, then
reg R/I(G) = pus(G); see [20] and [30], respectively. The same is true for chordal
bipartite graphs, or more generally for weakly chordal graphs [34, Prop. 20].

(iii) Let G be a chordal graph and let G denote its complement. If i > 1and j #
i +1, then B;;(R/I(G)) = 0; otherwise, B;;(R/I(G)) = ¥.(c(H) — 1), where H
runs over all the induced subgraphs of G with j vertices, and ¢(H) denotes the
number of connected components of H [8, Thm. 3.2] (Theorem 5.6).

To our knowledge, not much is known even for bipartite graphs. After comput-
ing many examples, we were led to suspect that for any connected bipartite graph
G, us(G) < regR/I(G) < us(G) + 1, but this turned out to be false. In fact, with
this problem in mind we were guided to our main result, Theorem 3.5, and, as one of
its applications we will prove that for any positive integer k there exists a connected
bipartite graph such that reg R/I(G) = us(G) + k. As another application, we will
show that the graded Betti numbers of the complement of a tree depend only upon
its number of vertices.

Define the Betti polynomial of R/I as follows:

P Lo
B(R/L;x,y) = 'ZO > Bixiyi
i=0 j

Note that the x-degree and the y-degree correspond to the projective dimension and
regularity of R/I. Betti polynomials were introduced in [8, Def. 6.1]; we interchange
the role of the variables x and y used there. Here we study the Betti polynomial
in the case that I is the edge ideal of a graph. To keep our notation simple we will
write B(G; x, y) instead of B(R/I(G); x, y), and similarly for 8;;(G), pdim(G) and
reg(G). We remark that if G has no edges, then B(G;x, y) := 1. Betti polynomi-
als provide a compact way of encoding the graded Betti numbers. For instance, in
[17, Thm. 5.2.4] it is shown that

Zr+s=i+1; r,s>1 (T)(?) lf] =i+1,

ﬁij(Km,n) = {0 ifj # il
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where K, , denotes the complete bipartite graph. From this result (Example 3.3), it
follows that

1) B(Kpus %, y) =1+xy[ 1+ x)" -1][(1+x)" -1].

As we will see in our main result, Theorem 3.5, finding Betti polynomials, rather than
describing the Betti numbers explicitly, will provide us with a tool to describe relation-
ships among graded Betti numbers of different graphs or their induced subgraphs.
A set of vertices of a graph G is said to be independent if no two vertices are joined
by an edge. A vertex cover of G is a set of vertices C € V(G) suchthaten C # @
for any edge e of G, or equivalently if V(G)\C is an independent set of G. We define
the cover product of two disjoint graphs G and H, with fixed vertex covers C(G) and
C(H), respectively, as the graph G ® H with vertex set V(G) u V(H) and edge set

E(G)UE(H) U {{i,j}:i¢C(G),jeC(H)}.

Our aim is to describe the Betti polynomial of G @ H in terms of those of G and H.
To simplify notation we do not specify in G ® H the dependence of the vertex covers
C(G) and C(H). The cover product of two graphs is a natural generalization of the
join of two graphs, but to our knowledge, it has not been studied yet.

Our main result is the following theorem.

Theorem3.5  Let G and H be graphs with vertex covers C(G) and C(H), respectively.
Set m = |C(G)| and n = |C(H)|. Then

B(G®H;x,y) = (1+x)"B(G;x,y) + (1+x)™B(H; x, ¥) + B(Kp.n3 %, )5

where B(G; x, y) = B(G;x,y) — 1 and K, , denotes the complete bipartite graph on
m + n vertices.

Since the Betti polynomial of the complete bipartite graph depends only upon the
numbers of vertices m and n, we remark that Theorem 3.5 describes the Betti poly-
nomial of G ® H in terms of those of G and H and just the cardinalities of the vertex
covers C(G) and C(H). A combinatorial understanding of this result would be help-
ful in the study of graded Betti numbers.

Several applications are given:

* Recall that the induced or strong matching number of G, us(G) (following the no-
tation in [11]), is the largest k such that the disjoint union of k edges is an induced
subgraph of G. In the direction of studying reg(G) for bipartite graphs, as suggested
in [30, Question 3.5], we obtain Corollary 3.7: For any positive integer k there exists
a connected bipartite graph G such that us(G) = 2k and reg(G) = us(G) + k.

* The h-vector of R/I(G ® H) can be described in terms of the h-vectors of R/I(G)
and R/I(H); see Theorem 4.1. We remark that our main result and Theorem 4.1
generalize the results [24, Cor. 3.4, Cor. 4.11] and [32, Lemma 5.4], where the vertex
covers consist of all the vertices of G and H, respectively.

* A graph is said to be chordal if it contains no induced cycle with four or more
vertices. For a chordal graph G, a description of B(G; x, y), where G denotes the
complement of G, is well known; see Theorem 5.6 below. However, from that de-
scription it is not evident that the Betti polynomial of the complement of a tree only
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depends upon its number of vertices. We observe Corollary 5.3: If G is a tree on n+1
vertices, then B(G;x,y) =1+ x'y[(5)x? + -+ (n = 1)(")x"].

Finally, in a different direction, we show (see Proposition 6.7) that there is a recur-
sive formula for the graded Betti numbers of chordal bipartite graphs. A consequence
of this result is that these numbers do not depend on the characteristic of the field.

A collection of interesting open problems related to Betti numbers can be found
in [25]. In what follows, we refer to [2] and [3] for unexplained terminology on graph
theory and algebraic combinatorics, respectively.

2 Some Examples

Since we will describe the Betti polynomial of G ® H in terms of those of G and H,
let us recall the Betti polynomials of some other graphs. Denote by K, the complete
graph on n vertices and by C,, the cycle on n vertices.

Example 2.1 ([17, Thm. 5.1.1])
B(Kpsx,y) =1+ xy[1+2(1+x) + -+ (n-1)(1+x)"?]
=1+x Y[ (5)x* ++ (n-1)(1)x"].
Example 2.2 ([5,6]) Forn >4,
B(Cyix,y) = B(Ku_3x, y) + xy[ "2 = (1+x)" 2+ x"y].

Example 2.3 It is well known that Betti numbers depends upon the characteristic
of the field. Let G be the graph on 11 vertices given in [19], up to relabeling:

G ={{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7.8},{8,9},{9,10}, {10, 11},
{1,1},{1,6},{1,7},{2,5},{2,9},{2,11}, {3,5},{3,7}, {3,8},{4,6},
{4,10}, {4,11},{5,9},{6,9},{8,10} } .

In characteristic 0, using CoCoA [1],

Bo(G;x, ) =1+ 25xy + 80x%y + 25x%y* + 95x° y +152x° y* + 40x*y
+ 356x4y2 + 6x5y + 4009(5)/2 + 245366)/2 + 80x7y2 + 11x8y2,

while in characteristic 2, B,(G; x, ) = Bo(Gs x, y) + x8y° + x° .

Note 2.4 In [26], the subgraph polynomial of a graph was introduced: S(G; x, y) =
Y, bi jx'yJ, where b;; is the number of subgraphs of G with i edges and j vertices;
we interchange the role of the variables x and y used there. One may notice that this
polynomial is similar to the Betti polynomial, but associated with the Taylor reso-
lution of R/I(G) [22, Section 6.1]. Since the Hilbert series Hilb(R/I(G), t) can be
computed from any free resolution of R/I(G) [3, Lemma 4.1.13], it follows that if G is
a graph on n vertices, then (1 - )" Hilb(R/I(G), t) = S(G; -1, t), which is the main
result in [9] and [26].
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Let I and ] be monomial ideals of a polynomial ring S over a field, with generating
sets over disjoint sets of variables. If F, and G, are minimal graded free resolutions of
S/Iand S/], respectively, then F, ® G, is a minimal graded free resolution of S/(I+])
[18, Lemma 2.1]. So, for the disjoint union G u H of the graphs G and H, we have the
following lemma.

Lemma 2.5 B(GUH;x,y)=B(G;x,y)B(H;x,y).

The following well-known results are immediate from Lemma 2.5 ([17, Prop. 2.2.8],
[34, Lemma 8], [8, Lemma 6.2], [8, Lemma 6.3], respectively)

Corollary 2.6

(i) pdim(GuH) =pdim(G) + pdim(H);

(i) reg(GuH) =reg(G) +reg(H);

(ili) ifv is an isolated vertex, then B(G;x, y) = B(G\{v};x, y);

(iv) if e = uv is an isolated edge, then B(G;x, y) = (1+xy)B(G\{u,v};x, ).

3 Cover Product

For a vertex v of G, define N(v) = {w € V(G) : vw € E(G)} and N[v] = N(v) u
{v}. For a subset of vertices W of G, denote by G\W the subgraph of G obtained
by deleting the vertices in W. Abusing notation, we write G\v instead of G\{v}. A
useful result is the following lemma.

Lemma 3.1 ([8, Lemma 6.4]) Let G be a graph with a vertex v and a set of vertices
U = {uy,...,ux}, all different from v. If N(v) € N(u) for all u € U, then
B(G;x,y) =B(G\v;x, y) + (1+ x)k[B(G\U;x,y) - B(G\(Uu {v});x,y)] .
Example 3.2 Let u be a vertex of the graph G and let G* be the graph obtained
from G by duplicating the vertex u, i.e.,
V(G")=V(G)u{v'} and E(G*)=E(G)u{u'v':u'eN(u)},

where v’ is a new vertex. (For more about duplicating a vertex, see [21, 27]). By
Lemma 3.1, with U = {u} and v := v/, it follows that

B(G"%;x,y) = (2+x)B(G;x,y) — (1+x)B(G\us x, y).
Example 3.3 B(Kpn;x,y) =1+x7'y[1+ (1+x)™" = (1+x)™ - (1+x)"]. In fact,
B(Ku,n;%, ) = B(Kipyn-13%, y) + (1 + x)"fl[B(Km,l;x,y) - 1]
=l+x [ 1+ (1+x)™" = (1+x)" = (1+x)""]
+(1+x)" 1+ 1+ (14 x)™ = (1+x)" = (1+x)]]
—(1+x)"!
=1+x [ 1+ (1+x)™" = (1+x)" - (1+x)"].

Now write E(G;x,y) = B(G;x,y) -1
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Lemma 3.4 ([24, Cor. 3.4], [32,Lemma5.4]) Let G and H be two graphs with m and
n vertices, respectively. Then, with the vertex covers C(G) = V(G) and C(H) = V(H),

B(G®H;x,y) = (1+x)"B(G;x,y) + (1+x)"B(H; x, y) + B(Kp.n3 %, ).
The following theorem is our main result, and is a generalization of Lemma 3.4.

Theorem 3.5 Let G and H be graphs with vertex covers C(G) and C(H), respectively.
Set m = |C(G)| and n = |C(H)|. Then

(31) B(G®H;x,y) = (1+x)"B(G;x,y) + (1+x)"B(H;x, y) + B(Ky,n3 X, ).

Proof We proceed by induction on |V (G)|+|V (H)|. Suppose |V (G)| = |V(H)| =1
If one of C(G) or C(H) is the empty set, K, has no edges, and so B(Ky;, 3 x, y) = 1.
(Recall that in the introduction, we defined the Betti polynomial of a graph with no
edges to be identically 1.) In this case both sides of equation (3.1) are equal to 1. In the
case where C(G) = V(G) and C(H) = V(H), both sides of equation (3.1) are equal
to B(Ky,1;x, ¥). So, the initial step is verified.

Now let G and H be arbitrary graphs. If C(G) = V(G) and C(H) = V(H), the
result is Lemma 3.4. Thus, we may assume that H has a vertex v ¢ C(H). Since C(H)
is a vertex cover of H, in the graph G @ H it holds that N(v) ¢ C(H), and hence
N(v) € N(u) forall u € U := C(G). So, by Lemma 3.1,

B(G® H;x,y) = B( (G® H)\v;x,y)
+(1+ x)'"[B((G ® H)\U;x,y) -B((G® H)\(Uu {v});x,y)] .
By induction, taking the vertex covers C(G) for G and C(H) for H\v,
B(G® (H\v);x,y) = (1+x)"B(G;x, ) + (1+x)"B(H\v; x, ¥) + B(Kp.n3 %, ).
Then, noticing that B((G ® H)\v;x, y) = B(G® (H\v); x, ),
B(G®H;x,y) = (1+x)"B(G;x, y) + (1+ x)"B(H\v; x, ) + B(Kp.n; X, ¥)
+(1+x)"[B(H;x, y) - B(H\v;x,y)]

=(1+x)"B(G;x,y) + (1+x)"B(H; x, y) + B(Kppp;x,y). W
Corollary 3.6 Let G and H be graphs with vertex covers C(G) and C(H), respec-
tively. Set m = |C(G)| and n = |C(H)|. Then
(i) pdim(G® H) = max{n + pdim(G), m + pdim(H), m + n -1},
(i) reg(G ® H) = max{reg(G),reg(H)}.

Corollary 3.7  For any positive integer k there exists a connected bipartite graph G
such that us(G) = 2k and reg(G) = us(G) + k, where ps(G) is the induced matching
number of G.

Proof It is well known [34, Prop. 9] that for the cycle on #n vertices, C,, n > 3, it

holds that reg(C,,) = | (n +1)/3]. In particular, reg(Cg) = 3 = us(Cs) + 1. Let H be
the disjoint union of k copies of Cg. Take G = H ® v, where v is a new vertex, and
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choose C(H) to be a vertex cover of H with no adjacent vertices. Then us(G) = 2k
and reg(G) =3k = us(G) + k. [ |

The complete multipartite graph is the graph K, ., (k > 2) in which vertices
are adjacent if and only if they belong to different partite sets; i.e., if Vi,..., Vj are
disjoint sets of vertices, with n; = |V;|, i = 1,...,k, then K, n, is the graph with
vertices UV; and edges {{i,j} :i € V,,je Vo, p# q}.Setn =3 n;.

Corollary 3.8 ([17, Thm. 5.3.8])

Proof Proceeding by induction on k, if k = 2, the right-hand side of the equation is
equal to

1+ x_ly[l +(Q+x)"" -+ x)" - (1+ x)”z] ,
which coincides with equation (1.1). So we assume that k > 2.

Let us consider V,,, as a graph with no edges; in particular, B(V,,;x, y) = 0. By
Theorem 3.5,

= (14 %)™ B(Kpy,..om 3% ¥) + (1+ )" B(V3 %, ) + B(Kponyuni5 %, ¥)
k-1
=1+ x)"[xy[1+ (k=2)(1+x)" ™ - gl(l +x) ()]

+1+x7 [T+ T+ x)" = (T+x)" 7™ = (1+x)"™]

k
ey {1 (kD) (). .

Let Gy, ..., Gi be graphs over disjoint vertex sets. Let C(G; ) be a fixed vertex cover
of G;, i =1,..., k. Define the multipartite cover product of the graphs G, ..., Gy as
the graph ®*_, G;, with vertices U V(G;) and edges

QE(ci) U{{r.s}:reC(Gy).s€ C(Gy)rp #q}

Set n; = |V(G;)|, n = X n;, ¢; = |C(G;)| and ¢ = ¥ ¢;. A repeated application of
Theorem 3.5 yields the following theorem.

Theorem 3.9

.....
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Sketch of Proof Proceed by induction on k.
B(@leG,-;x,y)
= (1+x)*B(©"'Gisx,y) + (1+ %) *B(Grs %, y) + B(Ke_epne03 %> ¥)
:0+xyq§il+xyﬁrﬁgﬁhx40+BOC1‘%ﬁﬁy)—q ,,,,,
+(1+ x)“"‘]?(Gk;x,y) +B(Keoepe03% Y)

:20+@”@Hﬁmﬁ+ﬁ+@”ﬂ&lqhxﬂ ,,,,,

+ (14 %) B(Gs %, 9) + B(Ke_c 03 %5 ¥)

k

X (1+x) " B(Gisx, y) + (14 2) *B(Kgy,.ooc 3% ) + B(Kemeyy5 % ¥)

k ~
=Y (1+x)79B(Gi3x,y) + B(K,,....c05 % ¥)- [ |

i=1

4 h-vectors

Let A be a simplicial complex of dimension r -1, so r is the largest cardinality of a face.
Its f-polynomial is f(A,t) == t" + fit"™' + - + f,, where f; is the number of faces of
cardinality i, and its h-polynomial is h(A, t) := f(A,t —1). If Hilb(R/I,, t) denotes
the Hilbert series of the Stanley-Reisner ring R/Ix and

(A ) ="+ byt e+ Bgt™,

with kg # 0, then

(4.1) (1-1t)" Hilb(R/I,t) =1+ hyt + - + hyt".
The polynomial in the right-hand side of equation (4.1) is known as the h-vector of
R/I,. Let

0— §R(—j)ﬁw — §R(—j)ﬁ1f — R—> R/Iy — 0

be a minimal graded free resolution of R/I», where R = k[x1,...,x,], the x;’s are
indeterminates, and # is the number of vertices of A. It can be verified [3, Cor. 4.1.14]
that

(4.2) f Y Bii (-1 = (1 )" (L+ Iyt + -+ hyt').
i=0 j

The collection of independent sets of a graph G are the faces of a simplicial com-
plex, known as the independence complex of the graph, and which, for simplicity, we
denote by AG. The Stanley-Reisner ring associated with AG is the ring R/Ix¢, where
Ixg istheideal generated by the non-faces of AG. Since the edges of G are the minimal
non-independent sets of the graph, it holds that Ing = I(G); i.e., R/I(G) is precisely
the Stanley-Reisner ring associated with the independence complex AG.

Let fl(G, t) := 1+ hyt+---+ hst® be the h-vector of R/I(G) = R/Ipg. Let Gy, ..., G
be graphs over disjoint sets of vertices. Set n; = |V(G;)| and n = 3 n;. Let C(G;) be
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a fixed vertex cover of G;,i = 1,...,k. Set ¢; = |C(G;)| and ¢ = ¥ ¢;. Furthermore,
r; =dim AG; +1and r = dim A(@LG,-) +1.

Theorem 4.1
N k o
(1- t)”_rh(®f:1G,-, )= 0-t)" (G, t) - (k-1)(1-t)°.
i=1

Proof

(1- t)n_r]jl(®Gi, t) = B(®G;;—t, 1), (equation (4.2))

(1 _ t)nf—rf+c—c,-lfl(Gi’ t) _ Z(l _ t)c—c,- + B(KCl

I
M=

..... ck§—t,t)

Il
—

(1- t)ni_ri+c_ci/jl(Gi, £) - (k-1)(1-t), (Corollary 3.8). |

M~

i=1

5 Complements of Trees
Define Ti(x) = T>(x) = 0, and, for n > 3,

Tu(x) = (xy) [ B(Kpois %, y) = 1] =1+ 2(1+ x) + -+ (n = 2)(1+x)" .
Lemma 5.1 Forl<k < nitholds that

B(Kusx,y) = (1+ x)E(Kn_l;x,y) +B(Ky,n-k3%, ¥)
+xy(L+ )" [ T (x) = 1+ x) Ti(x) ]

We recall some more definitions. A clique of a graph is a set of pairwise adjacent
vertices. A vertex v is said to be simplicial if N(v) is a clique. It is well known that
chordal graphs always have a simplicial vertex [7]. Actually, a graph is chordal if and
only if one can repeatedly find a simplicial vertex and delete it from the graph until
no vertex is left [12].

Corollary 5.2 Let G be a connected chordal graph such that any two maximal cliques

intersect in at most two vertices. If G has n vertices and ny maximal cliques of cardinality
k, then

B(G;x,y) = B(K,_1;x,y) — xy kZ ne(1+x)"* T (x).
>3

Proof Proceed by induction on n. If n =1 or 2, both sides of the equation are equal
to 1. Assume n > 3. Let v be a simplicial vertex of G and set i = [N(v)|. We have
E(G) = E(G\v) U {uv : u € V(G)\N(v)}. Let G’ = G\v and H’ be the graph
consisting only of the vertex v. Fix C(G’) = V(G)\N[v] and C(H") = {v}. Note that
G = G' ® H' and G\v is connected.
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Let my, be the number of maximal cliques of cardinality k in G\v. Then m; = n; +1,
Mip1 =N — Land mg = ny fork #i,i+ 1L

B(G;x,y) =B(G' ® H';x, y)
=(1+ x)g(?v;x,y) + B(Ky,p—i-1;%, ¥), (Theorem 3.5)
= (1+x)[B(Kp_2; %, y) — xy kz m(1+x)" 7F T (x)] + B(Kpn—io3 % )
>3

= (1+x)B(Ky_2;%,y) - xy kz m(1+x)" *Ti(x) + B(Kyu_i 13 %, ¥)
>3
=(1+ x)E(K,,,z;x,y) —xy ¥ np(1+ x)"_ka(x) +B(Ky,p-i-13%, y)
k>3
+xy(1+ x)"’("“) Tipa(x) —xy(1+x)"'T;(x)

=B(Ky_13%,9) —xy ¥ np(1+x)" *Ti(x), (Lemma5.1). [ |
k=3

Corollary 5.3 If G is a tree with n + 1 vertices, then
B(Gix,y) = B(Kp,x,p) =1+ xy[ (5)x* ++ (n=1)(")x"].
Proof Apply Corollary 5.2, with ny = 0 for all k > 3. ]

Corollary 5.4 Let G be a connected chordal graph with n vertices. There are integers
ms, My, ..., M, such that

B(G;x,y) = B(K,_1;x,y) —xy kz my(1+ x)"_ka(x).
>3

Proof Proceed by induction on #, cases n = 1, 2 being clear. We illustrate one more
case. For n = 3, if G is a path on three vertices, take 0 = m3 = my = . f Gis a
triangle, take m3 =1, 0 = my = ms = ---. Let v be a simplicial vertex of G and set
j = |N(v)|.- We proceed similarly as in the proof of Corollary 5.2.

B(G;x,y) = (1+x)B(G\v;x, y) + B(Ky,n_j-13X, ¥),  (Theorem 3.5)
= (1+x)B(K,_2;%,y) - xy k§3 mi(1+x)" " Ty (x) + B(Kyn-jo13 X, )
= (1+x)B(Ky_25%,y) - xy k§3 mi(1+x)" " Ty (x) + B(Kyn—j13 X, )
+xy(1+x)"" 0D Tjsi(x) £ xy(1+x)" 7 Tj(x), (Adding and subtracting)

=B(Ky-1;%,y) —xy ¥ mp(1+x)" *Ti(x), (Lemmas.). [ |
k>3

Question 5.5 Can the my’s of Corollary 5.4 be described in terms of the combina-
torics of the graph?

An explicit description of B(G; x, y) is given in [8].

Theorem 5.6 ([8, Thm. 3.2]) Let G be a chordal graph. Then
B(Gix,y) =1+ x'y X (c(H) - 1)xHI,
H
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where H runs over all the induced subgraphs of G, and c¢(H) denotes the number of
connected components of H.

6 Recursive Formulae

Following [13], an edge e = uv is called a splitting edge if N(u) ¢ N[v] or N(v) ¢
N[u]. To simplify notation, for an edge e = uv we define N[e] = N(u) u N(v),
and write G\e to mean the graph obtained from G by deleting the edge e, but not its
vertices. Another useful result is the following theorem.

Theorem 6.1 ([13, Thm. 3.7]) Let e be a splitting edge of G and k = |[N[e]| - 2. Then
B(G;x,y) = B(G\e; x, y) + xy(1+x)*B(G\N[e]; x, ).

Example 6.2 Return to Example 3.2. Let G* be the graph obtained from G* by
adding the edge e = uv’. This edge e is a splitting edge of G, so, by Theorem 6.1,

B(G%x, ) = (2+x)B(Gs x, y)=(1+x)B(G\u; x, y)+xy(1+x) N B(G\N[u]; x, ).

Recall that a graph is chordal if and only if one can repeatedly find a simplicial
vertex and delete it from the graph until no vertex is left [12]. Since any edge incident
to a simplicial vertex is a splitting edge, Theorem 6.1 gives a recursive way to compute
the Betti polynomial of a chordal graph.

Corollary 6.3 Let v be a simplicial vertex of G. Let ey, ..., e, be all the edges con-
taining v and k; = |N[e;]| - 2. Then

B(G;x,y) = B(G\v;x, y) + xy iZ;(l +x)B(G\N[e:]; x, y).

Proof Apply Theorem 6.1 to the graphs G, G\e;, (G\e1)\ea, - ... [ |

Corollary 6.3 may be rewritten as follows.

Corollary 6.4 Let v be a simplicial vertex of G. Let v1,...,v, be all the vertices
adjacent tov and k; = [N[v;]| - 2. Then

.
B(G;x,y) =B(G\v;x,y) +xy X (1+ x)kiB( G\N[v,-];x,y) .
i=1
Example 6.5 Let P, denote the chordless path graph on n vertices. It follows from
Corollary 6.4 that, for n > 3,
B(Py;x,y) = B(Py_13%,¥) + xy(1+ x)B(Py-35x, ).

Note 6.6 Similar recurrences, which seem to be new, are satisfied by B(C,; x, y).
They may be verified using [17, Thms. 7.6.28, 7.7.34]. Let A, (x, y) = x3¢y"2k2(x + y)
if n = 3k + 2, and zero otherwise. Then, for n > 5,

B(Cpu;x,y) = B(Cpo13%, ¥) + xy(1+ x)B(Cp-3; %, ¥) = Lu(x, y).
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Also, for n > 5,

B(Cp;x,y) = B(Py_i3%, ) + 2xy(1+ x)B(Py_45%, y) + x*yB(Cp_3; X, y).

A graph G is called weakly chordal if neither G nor its complement contains an
induced cycle with five or more vertices. By definition, non-adjacent vertices u and
v form a two-pair of G if any chordless path joining them has exactly two edges; or
equivalently, if the removal of their common neighbors in G leaves them in different
connected components. An edge e = uv of G is called a co-pair edge if u and v form
a two-pair in the complement of G. It is well known that a graph is weakly chordal
if and only if each induced subgraph either is a clique or contains a two-pair of the
subgraph [15].

Proposition 6.7 Let G be a weakly chordal graph, e = uv a co-pair edge of G and
k=|N[e]|-2. If N(u) nN(v) = @, then

B(G;x,y) =B(G\e;x, y) +xy(1+ x)kB(G\N[e];x, y).

Proof Since u and v form a two-pair of G, it holds that e is not the middle edge of any
induced chordless path on four vertices in G. This, together with N(u) n N(v) = &,
implies that N(u) € N(v;) forallv; € N(v)\u. In fact, let w € N(u). The path wuvv;
may not be chordless. Since N(u) n N(v) = @ implies that w ¢ N(v) and v; ¢ N(u),
it must hold that w € N(v;). Then, by Lemma 3.1,

B(Gix,») = B(G\us . ) + (1+ x)*) [ B(G\(N(»)\w)sx, y) - BG\N ()i, )],
where k(v) = [N(v)\ul|. By a similar argument for the graph G\e, and taking into
account Corollary 2.6(iii),

B(G\esx,y) = B(G\usx, y) + (1+x)* [ B(G\(N[V]\u) x, ) - B(G\N[V]: . »)].

Now observe that in the graph G\(N(v)\u) the vertex v has degree 1, so, by Corol-
lary 6.4,

B(G\(N(W)\u)sx, y) = BG\(N[v]\u);x, y) + xy(1+ x) " B(G\N[e]: x, y),
where k(u) = |N(u)\v|. Putting everything together, and using Corollary 2.6(iii)
again, we obtain

B(G;x,y) = B(G\e; x, y) + xy(1+ x)F* I B(G\N[e]; x, y). [ |

A graph that is both weakly chordal and bipartite is called chordal bipartite. Since
the family of weakly chordal graphs is closed under the operation of deleting co-pair
edges [28], it follows that the family of chordal bipartite graphs is closed under the
same operation. Therefore, we have the following corollary from Proposition 6.7.

Corollary 6.8  Betti numbers of chordal bipartite graphs can be computed recursively,
and they do not depend on the characteristic of the field.

Proof Let G bea chordal bipartite graph, and let e = uv be a co-pair edge of G. Since

G is bipartite, the condition N(u) n N(v) = @ is trivially verified. So, Proposition 6.7
can be applied. ]
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Question 6.9 Can the Betti numbers of weakly chordal graphs be computed recur-
sively? Do they depend on the characteristic of the field?

References

[1] J. Abbott, A. M. Bigatti, and G. Lagoio, CoCoA-5: A system for doing computations in
commutative algebra. http://cocoa.dima.unige.it
[2] A.Bondy and U.S.R. Murty, Graph theory. Graduate Texts in Mathematics, 244, Springer, New
York, 2008.
[3] W. Bruns and J. Herzog, Cohen-Macaulay rings. Cambridge Studies in Advanced Mathematics,
39, Cambridge University Press, Cambridge, 1993.
[4] A. Corso and U. Nagel, Monomial and toric ideals associated to Ferrers graphs. Trans. Amer.
Math. Soc. 361(2009), no. 3, 1371-1395.  http://dx.doi.org/10.1090/S0002-9947-08-04636-9
[5] T. de Alwis, Free minimal resolutions. Comm. Algebra 21(1993), no. 12, 4575-4585.
http://dx.doi.org/10.1080/00927879308824817
[6] , Free minimal resolutions and the Betti numbers of the suspension of an n-agon. Int. J.
Math. Math. Sci. 23(2000), no. 3, 211-216.  http://dx.doi.org/10.1155/S0161171200001563
[7]1 G. A. Dirac, On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25(1961), 71-76.
http://dx.doi.org/10.1007/BF02992776
[8] A.Dochtermann and A. Engstrom, Algebraic properties of edge ideals via combinatorial topology.
Electron. J. Combin. 16(2009), no. 2, Research Paper 2.
D. Ferrarello and R. Froberg, The Hilbert series of the clique complex. Graphs Combin. 21(2005),
no. 4, 401-405.  http://dx.doi.org/10.1007/500373-005-0634-z
[10] C. A. Francisco and A. Van Tuyl, Sequentially Cohen-Macaulay edge ideals. Proc. Amer. Math.
Soc. 135(2007), no. 8, 2327-2337.  http://dx.doi.org/10.1090/S0002-9939-07-08841-7
[11] M. Ch. Golumbic and M. Lewenstein, New results on induced matchings. Discrete Appl. Math.
101(2000), no. 1, 157-165.  http://dx.doi.org/10.1016/S0166-218X(99)00194-8
[12] D.R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs. Pacific J. Math. 15(1965),
835-855.  http://dx.doi.org/10.2140/pjm.1965.15.835
[13] H. T Ha and A. Van Tuyl, Splittable ideals and the resolution of monomial ideals. J. Algebra
309(2007), no. 1, 405-425.  http:/dx.doi.org/10.1016/j.jalgebra.2006.08.022
[14] —, Resolutions of square-free monomial ideals via facet ideals: a survey. In: Algebra,
geometry and their interactions, Contemp. Math., 448, American Mathematical Society,
Providence, RI, 2007, pp. 91-117.
[15] R. Hayward, C. Hoang, and F. Maffray, Optimizing weakly triangulated graphs. Graphs Combin.
5(1989), no. 4, 339-349.  http://dx.doi.org/10.1007/BF01788689
[16] M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes. In: Ring theory, II,
(Proc. Second Cond., Univ. Oklahoma, Norman, OKkla., 1975), Lecture Notes in Pure and Appl.
Math., 26, Dekker, New York, 1977, pp. 171-223.
[17] S.Jacques, Betti numbers of graph ideals. Ph.D. Thesis, University of Sheffield, 2004.
arxiv:math/0410107
[18] S.Jacques and M. Katzman, The Betti numbers of forests. arxiv:math/0501226v2
[19] M. Katzman, Characteristic-Independence of Betti numbers of graph ideals. ]. Combin. Theory
Ser. A 113(2006), no. 3, 435-454.  http://dx.doi.org/10.1016/j.jcta.2005.04.005
[20] M. Kummini, Regularity, depth and arithmetical rank of bipartite edge ideals. ]. Algebraic
Combin. 30(2009), no. 4, 429-445.  http:/dx.doi.org/10.1007/s10801-009-0171-6
[21] J. Martinez-Bernal, C. Renteria, and R.H. Villarreal, Combinatorics of symbolic Rees algebras of
edge ideals of clutters. Contemp. Math. 555(2011), 151-164.
[22] E. Miller and B. Sturmfels, Combinatorial commutative algebra. Graduate Texts in Mathematics,
227, Springer-Verlag, New York, 2005.
[23] S.Morey and R. H. Villarreal, Edge ideals: Algebraic and combinatorial properties. In: Progress in
commutative algebra 1, de Gruyter, Berlin, 85-126.
[24] A. Mousivand, Algebraic properties of product of graphs. Comm. Algebra 40(2012), no. 11,
4177-4194.  http://dx.doi.org/10.1080/00927872.2011.605408
[25] L. Peeva and M. Stillman, Open problems on syzygies and Hilbert functions. J. Commut. Algebra
1(2009), no. 1, 159-195.  http://dx.doi.org/10.1216/JCA-2009-1-1-159
[26] P.Renteln, The Hilbert series of the face ring of a flag complex. Graphs Combin. 18(2002), no. 3,
605-619. http://dx.doi.org/10.1007/5003730200045

[9

https://doi.org/10.4153/CMB-2015-013-3 Published online by Cambridge University Press


http://cocoa.dima.unige.it
http://dx.doi.org/10.1090/S0002-9947-08-04636-9
http://dx.doi.org/10.1080/00927879308824817
http://dx.doi.org/10.1155/S0161171200001563
http://dx.doi.org/10.1007/BF02992776
http://dx.doi.org/10.1007/s00373-005-0634-z
http://dx.doi.org/10.1090/S0002-9939-07-08841-7
http://dx.doi.org/10.1016/S0166-218X(99)00194-8
http://dx.doi.org/10.2140/pjm.1965.15.835
http://dx.doi.org/10.1016/j.jalgebra.2006.08.022
http://dx.doi.org/10.1007/BF01788689
http://arxiv.org/abs/math/0410107
http://arxiv.org/abs/math/0501226v2
http://dx.doi.org/10.1016/j.jcta.2005.04.005
http://dx.doi.org/10.1007/s10801-009-0171-6
http://dx.doi.org/10.1080/00927872.2011.605408
http://dx.doi.org/10.1216/JCA-2009-1-1-159
http://dx.doi.org/10.1007/s003730200045
https://doi.org/10.4153/CMB-2015-013-3

Cover Product and Betti Polynomial of Graphs 333

[27] A. Schrijver, Combinatorial optimization. Algorithms and Combinatorics, 24, Springer-Verlag,
Berlin, 2003.

[28] J. P. Spinrad and R. Sritharan, Algorithms for weakly triangulated graphs. Discrete Appl. Math.
59(1995), no. 2, 181-191.  http://dx.doi.org/10.1016/0166-218X(93)E0161-Q

[29] N. Terai, Alexander duality theorem and Stanley-Reisner rings. Free resolutions of coordinate rings
of projective varieties and related topics (Japanese) (Kyoto, 1998). Surikaisekikenkyusho
Kokyuroku 1078(1999), 174-184.

[30] A. Van Tuyl, Sequentially Cohen-Macaulay bipartite graphs: vertex decomposability and
regularity. Arch. Math. 93(2009), 451-459.  http://dx.doi.org/10.1007/500013-009-0049-9

[31] R.H. Villarreal, Cohen-Macaulay graphs. Manuscripta Math. 66(1990), 277-293.
http://dx.doi.org/10.1007/BF02568497

[32] G. Whieldon, Jump sequences of edge ideals, arXiv:1012.0108v1, 2010.

[33] R. Woodroofe, Vertex decomposable graphs and obstructions to shellability. Proc. Amer. Math.
Soc. 137(2009), no. 10, 3235-3246.  http://dx.doi.org/10.1090/50002-9939-09-09981-X

, Matchings, coverings, and Castelnuovo-Mumford regularity. ]. Commut. Algebra 6(2014),

no. 2, 287-304.  http://dx.doi.org/10.1216/JCA-2014-6-2-287

(34]

Departamento de Matematicas, Cinvestav-IPN, A.P. 14-740, 07000 México D.F.
e-mail: aurora@math.cinvestav.mx jmb@math.cinvestav.mx

https://doi.org/10.4153/CMB-2015-013-3 Published online by Cambridge University Press


http://dx.doi.org/10.1016/0166-218X(93)E0161-Q
http://dx.doi.org/10.1007/s00013-009-0049-9
http://dx.doi.org/10.1007/BF02568497
http://dx.doi.org/10.1090/S0002-9939-09-09981-X
http://dx.doi.org/10.1216/JCA-2014-6-2-287
mailto:aurora@math.cinvestav.mx
mailto:jmb@math.cinvestav.mx
https://doi.org/10.4153/CMB-2015-013-3

