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Abstract

We review characteristics of data traffic which we term stylized facts: burstiness, long-
range dependence, heavy tails, bursty behavior determined by high-bandwidth users,
and dependence determined by users without high transmission rates. We propose an
infinite-source Poisson input model which supplies traffic in adjacent time slots. We
study properties of the model as slot width decreases and traffic intensity increases. This
model has the ability to account for many of the stylized facts.
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1. Introduction

Measurements on data networks often show empirical features that are surprising by the
standards of classical queueing and telephone network models. Measurements often consist
of data giving bit rate or packet rates. This means that a window resolution is selected
(e.g. 10 seconds, 1 second, 10 milliseconds, 1 millisecond, etc.) and the number of bits or
packets in adjacent windows or slots recorded. Significant examples include Duffy et al.
(1993), Leland et al. (1993), and Willinger et al. (1995), (1997).

Despite the fact that collected data is for time slots of modest size, many of the theoretical
attempts to create models to explain the empirical observations concentrate on large time scales
and cumulative traffic over large time intervals. See, e.g. Heath et al. (1998), Kaj and Taqqu
(2004), Konstantopoulos and Lin (1998), Levy and Taqqu (2000), Maulik and Resnick (2003),
Mikosch et al. (2002), and Taqqu et al. (1997). For such models, it is difficult to find agreement
with many existing data sets (Guerin et al. (2003)).

Many network data sets exhibit distinctive properties, which, in analogy with empirical
finance, we will term stylized facts:

• Heavy tails abound (Leland et al. (1994), Willinger et al. (1998), Willinger and Paxson
(1998), Willinger (1998)) for such things as file sizes (Arlitt and Williamson (1996),
Resnick and Rootzén (2000)), transmission rates, and transmission durations (Maulik et
al. (2002), Resnick (2003)).

• The number of bits or packets per slot exhibits long-range dependence across time slots
(see, e.g. Leland et al. (1993) or Willinger et al. (1995)). There is also a perception of
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self-similarity, as the width of the time slot varies across a range of time scales exceeding
a typical round-trip time.

• Network traffic is bursty with rare but influential periods of very high transmission rates
punctuating typical periods of modest activity.

Burstiness, a somewhat vague concept, is an important feature of traffic because of the sudden
peak loads it introduces into the network. Attempts to understand this phenomenon empirically
(Sarvotham et al. (2005)) use the α/β-decomposition of users in which the α-users transmit
large files at very high rate and the β-users transmit the rest. An alternative description creates
a dichotomy between mice and elephants (Ben Azzouna et al. (2004)) depending on whether a
file is typical or very large. Some stylized facts suggested by the stimulating empirical study
of Sarvotham et al. (2005) are as follows.

• Large files over fast links contribute to α-traffic. The α-component consitutes a small
fraction of the total workload but is entirely responsible for burstiness. Often a single
dominant high-rate connection causes a burst.

• Most of the dependence structure across time slots is carried by the β-traffic. The
long-range dependence structure of the β-traffic approximates the complete dependence
structure.

• The quantity of traffic in a time window is distributionally approximated by the normal
distribution when there are high levels of aggregation across users and heavy loading.
β-traffic is much more likely to appear Gaussian than is α-traffic.

Owing to measurements being taken for fixed time slots, we begin our attempt to provide
models explaining the empirically observed stylized facts by modeling the quantity of data
in adjacent time slots of length δ. Then, to obtain approximations and to provide a clarified
asymptotic picture of the behavior, we let δ → 0 and see what limits exist. In particular, we
seek a model that explains the origins of burstiness.

2. Model description

The model for data traffic generation is a slight modification of the M/G/∞ input model,
also termed the infinite-source Poisson model, as we assume that the transmission rates are
random (see Maulik et al. (2002)). We assume that a homogeneous Poisson process on R with
points {�k} activates data transmission sessions. The parameter or rate of the Poisson process is
λ ≡ λ(δ), and each transmission activation time �k has three additional associated quantities,
(Rk, Lk, Fk). These three quantities have the following physical interpretations:

• R represents the rate of the transmission.

• L represents the duration of the transmission.

• F represents the size of the transmitted file.

Obviously these three quantities are related by the following relation: F = RL.

We assume that the marks {(Rk, Lk, Fk), −∞ < k < ∞} are independent and identically
distributed and independent of {�k}. The univariate marginal distributions of the triple are

G(x) = P[F1 ≤ x], FR(x) = P[R1 ≤ x], FL(x) = P[L1 ≤ x].
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We suppose that all three distributions are heavy tailed, i.e.

Ḡ(x) = x−αF LF (x), F̄R(x) = x−αRLR(x), F̄L(x) = x−αLL(x),

where LF , LR , and L are all slowly varying and we assume that the three tail parameters satisfy

1 < αF , αR, αL < 2.

There is empirical evidence justifying these assumptions: see Ben Azzouna et al. (2004),
Campos et al. (2005), Guerin et al. (2003), Heffernan and Resnick (2005), Leland et al. (1994),
Maulik et al. (2002), Park and Willinger (2000), Resnick (2003), (2004), Riedi and Willinger
(2000), Sarvotham et al. (2005), and Willinger et al. (1995).

Under these assumptions, the counting function of the points {(�k, Rk, Lk, Fk)} on
R × [0, ∞)3,

N =
∑

k

ε(�k,Rk,Lk,Fk)

(where εx is the probability measure putting all mass at x), is a Poisson random measure with
mean measure

λ ds P[(R1, L1, F1) ∈ (dr, dl, du)] =: µ#(ds, dr, dl, du).

See, e.g. Kallenberg (1983), Neveu (1977), or Resnick (1987, p. 135), (1992, Chapter 4.4).
For a time window of length δ, we will consider weak limits of the process

A(δ) := {A(kδ, (k + 1)δ], −∞ < k < ∞}, (2.1)

as δ ↓ 0. Here A(kδ, (k + 1)δ] represents the total amount of work input to the system in the
kth time slot, (kδ, (k + 1)δ]. We will define this precisely for k = 0; the definitions for other
values of k will be obvious by analogy.

Distinguish four disjoint regions in R × [0, ∞)3:

R>0,1 = {(s, r, l, u) : 0 < s ≤ δ, 0 < s + l ≤ δ},
R>0,2 = {(s, r, l, u) : 0 < s ≤ δ, s + l > δ},
R<0,1 = {(s, r, l, u) : s < 0, 0 < s + l ≤ δ},
R<0,2 = {(s, r, l, u) : s < 0, s + l > δ}.

The region R>0,1 corresponds to sessions which start and end in (0, δ] while the region R>0,2

describes sessions starting in (0, δ] but ending after δ. Region R<0,1 has sessions starting prior
to time 0 and ending in (0, δ] while R<0,2 has sessions initiated prior to 0 and ending after δ.
(See Figure 1.)

Corresponding to this decomposition of regions, if we restrict the Poisson random measure
to the four regions we obtain four independent Poisson processes,

N(· ∩ R>0,1), N(· ∩ R>0,2), N(· ∩ R<0,1), N(· ∩ R<0,2), (2.2)

and we use these to express A(0, δ) =: A(δ) as the sum of four independent contributions, as
follows:

A(δ) = A>0,1(δ) + A>0,2(δ) + A<0,1(δ) + A<0,2(δ),
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Figure 1: Four regions.

where
A>0,1(δ) =

∑
k

RkLk 1{(�k,Rk,Lk,Fk)∈R>0,1},

A>0,2(δ) =
∑

k

Rk(δ − �k) 1{(�k,Rk,Lk,Fk)∈R>0,2},

A<0,1(δ) =
∑

k

Rk(Lk + �k) 1{(�k,Rk,Lk,Fk)∈R<0,1},

A<0,2(δ) =
∑

k

Rkδ 1{(�k,Rk,Lk,Fk)∈R<0,2} .

As a further notational device, we will adopt the convention that for a region R of the (s, r, l, u)-
space, AR(t1, t2] will denote the cumulative work input to the system in time interval (t1, t2]
from points (�R

k , RR
k , LR

k , FR
k ) in region R.

We can represent the restrictions of N to each of the four regions given in (2.2) as empirical
measures of a Poisson number of independent, identically distributed points whose joint distri-
butions are respectively the mean measure µ# restricted to that region and normalized to be a
probability measure (see, e.g. Resnick (1992, p. 341)). For example,

N(· ∩ R>0,1) =
P >0,1(δ)∑

k=1

ε
(�

>0,1
k ,R

>0,1
k ,L

>0,1
k ,F

>0,1
k ),

where P >0,1(δ) is Poisson-distributed with parameter

µ#(R>0,1) =
∫

R>0,1
λ ds P[(R1, L1, F1) ∈ (dr, dl, du)]

=
∫ δ

0
λ ds P[L1 + s < δ]

=
∫ δ

0
λFL(δ − s) ds

= δF̂L(δ)
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(where F̂L(x) = ∫ x

0 FL(y) dy) and {(�>0,1
k , R

>0,1
k , L

>0,1
k , F

>0,1
k )} are independent and iden-

tically distributed with joint distribution

µ#(· ∩ R>0,1)

µ#(R>0,1)
.

In what follows, we sometimes use the convention that P A(δ) is Poisson-distributed with
parameter equal to the mean measure of the region A.

2.1. Specifying the dependence structure for (R, L, F)

Depending on the dependence structure of the triple (R, L, F ), it is possible to have different
limit behavior for A(δ) of (2.1). We distinguish two cases, which we denote by RL and RF:

• In case RL the random variables R and L are independent (cf. Maulik et al. (2002)).

• In case RF the random variables R and F are independent.

Standing assumption for this paper: We focus here on the RF model, in which R and F

are independent. This choice has statistical justification (see the evidence in Campos et al.
(2005) and Heffernan and Resnick (2005)) and meets the approval of network engineers, who
argue that network rates are assigned without knowledge of the size of the file to be transmitted.
The model seems natural since it assumes that file size distributions are unaffected by network
state; but even if transmission rates are functions of the network state, we would still have
the assumed independence property of the RF model. The RL model is also of interest and
undoubtedly leads to different conclusions, but its analysis is not straightforward and certainly
not analogous to the RF model. We hope to consider it elsewhere.

Undoubtedly, in practice it is not true that R and F are actually independent, but rather
that they satisfy some form of asymptotic independence. However, assuming asymptotic
independence rather than full independence would lead to unacceptable complications in the
analysis and proofs without changing the conclusions, and thus we feel that choosing full
independence of F and R is an appropriate modeling assumption.

2.2. RF model

We assume that the rates of transmission are independent of the file sizes. Durations of
transmission are computed using the relation L = F/R. From Breiman’s theorem (Breiman
(1965)), this means that the distribution tail of the random variable L is given by

F̄L(l) ∼ E(1/R)αF Ḡ(l), l → ∞,

provided we assume that
E(1/R)αF +η < ∞

for some η > 0. Here ‘∼’means the ratio of the two sides converges to 1, and Ḡ(l) = 1−G(l).
By using the property that the random variables R and F are heavy tailed, we can easily

derive the tail behavior of the random variables AR(δ) with

R ∈ {R<0,1, R<0,2, R>0,1, R>0,2};
that is, R is one of the four regions shown in Figure 1. The tails are given by

P[AR(δ) > x] ∼ λCR δαR+1

αF + αR

Ḡ(x)F̄R(x),
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where

C>0,1 = αF

αR + 1
,

C<0,2 = αR

αF − 1
,

C>0,2 = C<0,1 = αR

αR + 1
.

Therefore, for finite values of δ > 0, the tails of all the regions are regularly varying with index
−(αF + αR). In the sequel, we will note that this will be not the case in the limit as δ → 0.

Since our limiting procedure will shrink the observation window (0, δ], there is no hope of
obtaining a weak limit in (2.1) unless we increase the arrival rate, λ = λ(δ), of sessions. Thus,
we adopt a heavy-traffic limit theorem philosophy and imagine moving through a family of
models indexed by δ, as δ ↓ 0. A convenient and effective choice of λ is

λ(δ) = 1

δF̄R(δ−1)
. (2.3)

Note that, since 1 < αR < 2, this choice of λ guarantees that as δ → 0,

λ(δ) = 1

δαR+1LR(δ−1)
→ ∞,

δλ(δ) = 1

δαRLR(δ−1)
→ ∞.

Using assumption (2.3), the behavior of the random variables A(·)(δ) is as follows:

• A<0,1(δ) is equal in distribution to A>0,2(δ).

• A<0,2(δ) does not converge weakly without scaling, and with centering and scaling
converges to a Gaussian random variable.

• A>0,1(δ) converges in distribution to a compound Poisson random variable.

• A>0,2(δ), suitably centered, converges weakly to an infinitely divisible random vari-
able with finite variance and a Lévy measure with a regularly varying tail with index
−(αF + αR), where αF + αR > 2.

3. Limits for the cumulative input, A(δ)

We now present the details of the limiting arguments yielding distributional approximations
for inputs from each of the four regions.

3.1. Region R>0,2

This, recall, is the region contributing input in (0, δ] from sessions starting in (0, δ] but
terminating after δ.
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3.1.1. Characteristic function. For θ ∈ R, we compute

E(eiθA>0,2(δ)) = E

(
exp

{
iθ

P >0,2(δ)∑
i=1

R
>0,2
i (δ − �

>0,2
i )

})

= exp{E(P >0,2(δ))[E(eiθR
>0,2
1 (δ−�

>0,2
1 )) − 1]}

= exp

{ ∫∫∫
0<s<δ, s+l>δ, r>0

(eiθr(δ−s) − 1)λ dsFL,R(dl, dr)

}

= exp

{ ∫ δ

0

∫
r>0

(eiθr(δ−s) − 1) P

[
F

R
> δ − s, R ∈ dr

]
λ ds

}
(3.1)

= exp

{ ∫ δ

0

∫ ∞

0
(eiθrs − 1)Ḡ(rs)FR(dr)λ ds

}

= exp

{
λ

∫ ∞

0

∫ rδ

0
(eiθs − 1)Ḡ(s)r−1FR(δ−1 dr) ds

}

= exp

{ ∫ ∞

0

( ∫ r

0
(eiθs − 1)Ḡ(s) ds

)
r−1 FR(δ−1 dr)

F̄R(δ−1)

}
,

where we have used the definition of λ in (2.3) and FL,R is the joint distribution of the random
pair (L, R). By interchanging the order of integration, we obtain

E(eiθA>0,2(δ)) = exp

{ ∫ ∞

0
(eiθs − 1)Ḡ(s)

( ∫ ∞

s

r−1µδ(dr)

)
ds

}
,

where

µδ(dr) := FR(δ−1dr)

F̄R(δ−1)
.

Writing

ν
>0,2
δ (ds) = (ν

>0,2
δ )′(s) ds = Ḡ(s)

( ∫ ∞

s

r−1µδ(dr)

)
ds,

we obtain

E(eiθA>0,2(δ)) = exp

{ ∫ ∞

0
(eiθs − 1)ν

>0,2
δ (ds)

}
. (3.2)

3.1.2. Properties of ν
>0,2
δ .

Proposition 1. As δ → 0,

ν
>0,2
δ

v−→ ν
>0,2
0

on (0, ∞]; that is, we have vague convergence to a limit. Furthermore, the limit measure ν
>0,2
0

is a Lévy measure with density
αR

1 + αR

Ḡ(x)x−αR−1.

The tail of the Lévy measure is regularly varying with index −(αF + αR).
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Proof. Observe that for s ≥ 1,

(ν
>0,2
δ )′(s) = Ḡ(s)

∫ ∞

s

r−1µδ(dr) ≤ Ḡ(s)µδ(s, ∞]s−1,

and that by Potter’s bounds (see, e.g. Resnick (1987, p. 23)), for some small η, all s ≥ 1, and
all sufficiently small δ, we have the upper bound

(ν
>0,2
δ )′(s) ≤ cḠ(s)s−(αR−η)−1,

which is integrable with respect to Lebesgue measure on any neighborhood of ∞. Hence, by
dominated convergence, for x > 0,

ν
>0,2
δ (x, ∞] =

∫ ∞

x

(ν
>0,2
δ )′(s) ds

→
∫ ∞

x

Ḡ(s)

( ∫ ∞

s

r−1αRr−αR−1 dr

)
ds

= ν
>0,2
0 (x, ∞]

= αR

1 + αR

∫ ∞

x

Ḡ(s)s−αR−1 ds. (3.3)

Regular variation of ν
>0,2
0 (x, ∞] follows from the regular variation of the integrand in (3.3)

and Karamata’s theorem (see, e.g. Resnick (1987, p. 17)). In fact, as x → ∞,

ν
>0,2
0 (x, ∞] ∼ αR

(αR + 1)(αF + αR)
x−αRḠ(x).

To check that ν
>0,2
0 is a Lévy measure, note that

∫ 1

0
s2Ḡ(s)s−αR−1 ds ≤

∫ 1

0
s2s−αR−1 ds < ∞

since 1 < αR < 2.

3.1.3. Weak limit for A>0,2(δ). Now we use (3.2) and write

E

(
exp

{
iθ

(
A>0,2(δ) −

∫ 1

0
sν

>0,2
δ (ds)

)})

= exp

{ ∫ ∞

1
(eiθs − 1)ν

>0,2
δ (ds) +

∫ 1

0
(eiθs − 1 − iθs)ν

>0,2
δ (ds)

}
. (3.4)

The two integrals on the right-hand side of (3.4) each converge as δ → 0.

Let ‘
w−→’ denote weak convergence.

Proposition 2. As δ → 0,
∫ ∞

1
(eiθs − 1)ν

>0,2
δ (ds) →

∫ ∞

1
(eiθs − 1)ν

>0,2
0 (ds), (3.5)

∫ 1

0
(eiθs − 1 − iθs)ν

>0,2
δ (ds) →

∫ 1

0
(eiθs − 1 − iθs)ν

>0,2
0 (ds). (3.6)

https://doi.org/10.1239/aap/1151337076 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337076


Data network models of burstiness 381

Therefore, as δ → 0,

A>0,2(δ) −
∫ 1

0
sν

>0,2
δ (ds)

w−→ X>0,2,

where the limit random variable is infinitely divisible with Lévy measure ν
>0,2
0 and character-

istic function given by the right-hand side of (3.4) with ν
>0,2
δ replaced by ν

>0,2
0 .

Proof. The convergence in (3.5) follows from standard weak convergence, since the inte-
grand is bounded and continuous and

ν
>0,2
δ (·)

ν
>0,2
δ (1, ∞]

w−→ ν
>0,2
0 (·)

ν
>0,2
0 (1, ∞]

as probability measures on (1, ∞].
To prove (3.6), first observe that

|eiθs − 1 − iθs|(ν>0,2
δ )′(s) ≤ θ2s2

2
Ḡ(s)s−1µδ(s, ∞] ≤ cs

F̄R(δ−1s)

F̄R(δ−1)
= c

V (δ−1s)

V (δ−1)
,

where V (s) = sF̄R(s) is regularly varying with index −αR + 1. Now, as δ → 0,

|eiθs − 1 − iθs|(ν>0,2
δ )′(s) → |eiθs − 1 − iθs|(ν>0,2

0 )′(s)

and
V (δ−1s)

V (δ−1)
→ s−αR+1.

Furthermore, by Karamata’s theorem,∫ 1

0

V (δ−1s)

V (δ−1)
ds →

∫ 1

0
s−αR+1 ds = 1

2 − αR

.

The desired result then follows from Pratt’s lemma (Pratt (1960), Resnick (1998, p. 164)), since
this may be applied to both the real and imaginary parts of

(eiθs − 1 − iθs)(ν
>0,2
δ )′(s)

to obtain convergence to the limit after integrating over [0, 1].
3.2. Region R>0,1

The traffic contribution corresponding to this region is

A>0,1(δ) =
P >0,1(δ)∑

i=1

F
>0,1
i . (3.7)

Now,

E(P >0,1(δ)) =
∫∫∫

0<s<δ, r>0, u>0,
0<s+u/r<δ

λ dsG(du)FR(dr)

= λ

∫ δ

0
P[F/R ≤ s] ds = λ

∫ δ

0
P[R/F ≥ s−1] ds

= λ

∫ ∞

δ−1
P[R/F ≥ s]ds

s2 .
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Apply Breiman’s theorem (Breiman (1965)) after assuming that E(F−(αR+η)) < ∞. We then
see that for some η > 0, as δ → 0, the above is asymptotic to

λ

∫ ∞

δ−1
P[R > s]ds

s2 E(F−αR ),

and from Karamata’s theorem this is asymptotic to

λδ

1 + αR

P[R > δ−1] E(F−αR ) ∼ E(F−αR )

1 + αR

.

Thus, as δ → 0,

E(P >0,1(δ)) → E(F−αR )

1 + αR

.

This means that
P >0,1(δ)

w−→ P >0,1(0),

where P >0,1(0) is Poisson-distributed with parameter E(F−αR )/(1 + αR).
Now we observe that the distribution of F

>0,1
1 converges as δ → 0. For x > 0, we have

E(P >0,1(δ)) P[F>0,1
1 ≤ x] =

∫∫∫
0<s<δ, r>0,

s+u/r<δ, u≤x

λ dsG(du)FR(dr)

=
∫ δ

0
P[FR−1 ≤ s, F ≤ x]λ ds

= λ

∫ δ

0
P[RF−1 ≥ s−1, F ≤ x] ds

= λ

∫ ∞

δ−1
P[RF−1 1{F≤x} ≥ s]ds

s2

∼ λδ

1 + αR

P[R > δ−1] E(F−αR 1{F≤x}).

We conclude that, as δ → 0,

P[F>0,1
1 ≤ x] w−→ E(F−αR 1{F≤x})

E(F−αR )
.

This leads to the following result.

Proposition 3. Assume that
E(F )−(αR+η) < ∞.

Then A>0,1(δ) in (3.7) is a compound Poisson-distributed random variable which, as δ → 0,
converges weakly to a limiting compound Poisson-distributed random variable

X>0,1 =
P >0,1(0)∑

i=1

R
>0,1
i (0),
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where P >0,1(0) is a Poisson-distributed random variable with parameter E(F−αR )/(1 + αR),

independent of the independent, identically distributed sequence {R>0,1
i (0), i ≥ 1} which has

common distribution function
E(F−αR 1{F≤x})

E(F−αR )
.

The tail probabilities of this distribution and, hence, of the limiting compound Poisson-distrib-
uted random variable, are regularly varying with index −(αR + αF ) and, in fact, as x → ∞,

E(F−αR 1{F>x})
E(F−αR )

∼ αF

αR + αF

x−αRḠ(x).

3.3. Region R<0,2

In region R<0,2 we have contributions to traffic in (0, δ) from sessions starting prior to 0
and ending after δ.

3.3.1. Characteristic function of A<0,2(δ). Since

A<0,2(δ) =
P <0,2(δ)∑

i=1

R
<0,2
i δ, (3.8)

the characteristic function of A<0,2(δ) is computed as follows. For θ ∈ R,

E(eiθA<0,2(δ)) = exp{E(P <0,2(δ))[E(eiθR
<0,2
1 δ) − 1]}

= exp

{ ∫∫∫
s<0, r>0
l>|s|+δ

(eiθrδ − 1)λ dsFL,R(dl, dr)

}

= exp

{
λ

∫ ∞

0

∫ ∞

δ

(eiθrδ − 1)Ḡ(rs) dsFR(dr)

}
,

and, reversing the order of integration and setting Ḡ0(x) = ∫ ∞
x

Ḡ(u)du/ E(F ), we find that

E(eiθA<0,2(δ)) = exp

{
λ

∫ ∞

0
(eiθrδ − 1)r−1Ḡ0(rδ) E(F )FR(dr)

}

= exp

{
λδ

∫ ∞

0
(eiθr − 1)r−1Ḡ0(r)FR(δ−1 dr) E(F )

}

= exp

{ ∫ ∞

0
(eiθr − 1)r−1Ḡ0(r)

FR(δ−1 dr)

F̄ (δ−1)
E(F )

}
.

As before, let

µδ(dr) = FR(δ−1 dr)

F̄R(δ−1)

and define
ν

<0,2
δ (dr) = E(F )r−1Ḡ0(r)µδ(dr).

We conclude that

E(eiθA<0,2(δ)) = exp

{ ∫ ∞

0
(eiθr − 1)ν

<0,2
δ (dr)

}
. (3.9)
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3.3.2. Properties of ν<0,2
δ . The following properties of the measure ν

<0,2
δ are self-evident.

1. As δ → 0, the measures ν
<0,2
δ converge vaguely on (0, ∞]: ν

<0,2
δ

v−→ ν
<0,2
0 . Here, for

x > 0,

ν
<0,2
0 (x, ∞] = E(F )

∫ ∞

x

r−1Ḡ0(r)αRr−αR−1 dr.

2. The tail of the measure ν
<0,2
0 (x, ∞] is regularly varying with index −(αR + αF ) and, in

fact,

ν
<0,2
0 (x, ∞]

x−αR−1Ḡ0(x)
= E(F )

∫ ∞

1
r−1 Ḡ0(xr)

Ḡ0(x)
αRr−αR−1 dr

→ E(F )

∫ ∞

1
r−1r−(αF −1)αRr−αR−1 dr

= E(F )
αR

αR + αF

.

3. The measure ν
<0,2
0 is not a Lévy measure, since

∫ 1

0
r2ν

<0,2
0 (dr) = αR E(F )

∫ 1

0
r−αRḠ0(r) dr

≥ αR E(F )Ḡ0(1)

∫ 1

0
r−αR dr

= ∞.

Since ν
<0,2
0 is not a Lévy measure, we do not expect to obtain an infinitely divisible weak

limit without a Gaussian component for A<0,2(δ).

3.3.3. Gaussian limit. Observe that the quantity

m(δ) := E(F )

∫ 1

0
Ḡ0(r)µδ(dr) (3.10)

is finite, since

m(δ) ≤ E(F )

∫ 1

0
1 µδ(dr) = E(F )

FR(δ−1)

F̄R(δ−1)
< ∞.

Also define

a(δ) :=
(

E(F )

∫ 1

0
rḠ0(r)µδ(dr)

)1/2

. (3.11)

Note that as δ → 0 we have a(δ) → ∞, since for any η > 0,

lim inf
δ→0

a2(δ) ≥ lim inf
δ→0

E(F )

∫ 1

η

rḠ0(r)µδ(dr)

= E(F )

∫ 1

η

rḠ0(r)αRr−αR−1 dr

≥ E(F )

1 − αR

Ḡ0(1)r−αR+1
∣∣∣1

η

→ ∞ as η ↓ 0.
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We now use (3.9) and write

E

(
exp

{
iθ

A<0,2(δ) − m(δ)

a(δ)

})

= exp

{ ∫ ∞

0
(eia−1(δ)θr − 1)ν

<0,2
δ (dr) − iθ

E(F )

a(δ)

∫ 1

0
Ḡ0(r)µδ(dr)

}

= exp

{ ∫ 1

0

(
eia−1(δ)θr − 1 − i

θ

a(δ)
r

)
E(F )r−1Ḡ0(r)µδ(dr)

+
∫ ∞

1
(eia−1(δ)θr − 1)ν

<0,2
δ (dr)

}

=: exp{A + B}.

Consider B. We have

|B| ≤ E(F )

∫ ∞

1
|θ | r

a(δ)
r−1Ḡ0(r)µδ(dr) ≤ O

(
1

a(δ)

)
→ 0 as δ → 0,

since a(δ) → ∞. For A we have A → −θ2/2, since

∣∣∣∣
∫ 1

0

(
eiθa−1(δ)r − 1 − i

θ

a(δ)
r

)
E(F )r−1Ḡ0(r)µδ(dr) + θ2

2

∣∣∣∣
=

∣∣∣∣
∫ 1

0

(
eiθa−1(δ)r − 1 − i

θ

a(δ)
r − 1

2

(
iθr

a(δ)

)2)
E(F )r−1Ḡ0(r)µδ(dr)

∣∣∣∣
≤ 1

a3(δ)

∫ 1

0

1

3! |θ |3r3 E(F )r−1Ḡ0(r)µδ(dr)

and
1

a3(δ)

∫ 1

0
r2Ḡ0(r)µδ(dr) ≤ 1

a(δ)3

∫ 1

0
rḠ0(r)µδ(dr) = 1

a(δ)
→ 0.

In summary, we present the following proposition.

Proposition 4. With m(δ) as defined by (3.10) and a(δ) as given by (3.11), as δ → 0 we have

A<0,2(δ) − m(δ)

a(δ)

w−→ X<0,2,

a N(0, 1) random variable.

Remark 1. The centering may be changed from m(δ) to

m#(δ) := E

( P <0,2(δ)∑
i=1

R
<0,2
i δ

)
= E(P <0,2(δ)) E(R<0,2δ),
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(recall the notation introduced just before the start of Section 2.1), since

E(P <0,2(δ)) E(R<0,2δ) =
∫∫∫

s<0, r>0
l>δ+|s|

rδλ dsFL(dl, dr)

=
∫ ∞

δ

∫ ∞

0
rδḠ(rs)FR(dr)λ ds

= λδ

∫ ∞

0
Ḡ0(rδ)FR(dr) E(F )

=
∫ ∞

0
Ḡ0(r)

FR(δ−1dr)

F̄R(δ−1)
E(F )

= m(δ) + E(F )

∫ ∞

1
Ḡ0(r)µδ(dr)

= m(δ) + o(a(δ)).

Similarly, the scaling may be changed from a(δ) to

a#(δ) :=
√√√√var

( P <0,2(δ)∑
i=1

R
<0,2
i δ

)
=

√
E(P <0,2(δ)) E((R<0,2δ)2).

This follows from

E(P <0,2(δ)) E((R<0,2δ)2) =
∫∫∫

s<0, r>0
l>|s|+δ

δ2r2λ dsFL,R(dl, dr)

=
∫

r>0

∫ ∞

δ

δ2r2λ dsḠ(rs)FR(dr)

= λ

∫ ∞

0
δ2r2

∫ ∞

δ

Ḡ(rs) dsFR(dr)

= λδ

∫ ∞

0
δr

∫ ∞

rδ

Ḡ(s) dsFR(dr)

= λδ

∫ ∞

0
rḠ0(r)FR(δ−1 dr) E(F )

=
∫ ∞

0
rḠ0(r)µδ(dr) E(F ).

Note that as δ → 0,∫ ∞

1
rḠ0(r)µδ(dr) →

∫ ∞

1
rḠ0(r)αRr−αR−1 dr < ∞

since 1 < αR < 2. Therefore,

a2(δ) ∼
∫ ∞

0
rḠ0(r)µδ(dr) E(F ),

as claimed.

https://doi.org/10.1239/aap/1151337076 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337076


Data network models of burstiness 387

3.3.4. Further properties of the scaling function a(δ). The scaling function plays a significant
role in understanding dependence across time slots. Here are two properties we need in the
next section.

Proposition 5. (a) For any t > 0,

lim
δ→0

∫ 1
0 rḠ0(tr)µδ(dr)∫ 1

0 rµδ(dr)
= 1. (3.12)

(b) The growth rate of a(δ) is given by

a2(δ) = E(F )

∫ 1

0
rḠ0(r)µδ(dr)

∼ E(F )

∫ 1

0
rµδ(dr)

∼ E(F ) E(R)
(δ−1)(αR−1)

LR(δ−1)

= E(F ) E(R)

δ−1F̄R(δ−1)

→ ∞.

Proof. (a) Since Ḡ0 ≤ 1, we see that 1 is an upper bound of the ratio in (3.12). To obtain a
lower bound, observe that

∫ 1
0 rµδ(dr) → ∞ as δ → 0, since for any η > 0,

∫ 1

0
rµδ(dr) ≥

∫ 1

η

rµδ(dr)

→
∫ 1

η

rαRr−αR−1 dr

= αR

αR − 1
[η−(αR−1) − 1]

→ ∞ as η ↓ 0,

since 1 < αR < 2. Therefore,

∫ 1
0 rḠ0(tr)µδ(dr)∫ 1

0 rµδ(dr)
≥

∫ η

0 rḠ0(tr)µδ(dr)∫ 1
0 rµδ(dr)

≥ Ḡ0(tη)
∫ η

0 rµδ(dr)∫ 1
0 rµδ(dr)

= Ḡ0(tη)

∫ 1
0 rµδ(dr)∫ 1
0 rµδ(dr)

+ o(1)

→ Ḡ0(tη) as δ → 0

→ 1 as η → 0.
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(b) To find the growth rate of a(δ), observe that

∫ 1

0
rµδ(dr) =

∫ 1

0

( ∫ r

0
dv

)
µδ(dr)

=
∫ 1

0

∫ 1

v

µδ(dr) dv

=
∫ 1

0
µδ(v, ∞] dv − µδ(1, ∞]

=
∫ δ−1

0 F̄R(v) dv

δ−1F̄R(δ−1)
− 1.

We conclude that

δ−1F̄R(δ−1)

[
1 +

∫ 1

0
rµδ(dr)

]
→ E(R).

This coupled with
∫ 1

0 rµδ(dr) → ∞ proves the result.

3.4. Region R<0,1

In this section we prove that

A<0,1(δ)
d= A>0,2(δ).

The reasoning behind this is as follows. Recall that

A<0,1(δ) =
∑

k

Rk(Lk + �k) 1{(�k,Rk,Lk,Fk)∈R<0,1} .

It is well known that in the M/G/∞ model the departure process has the same distribution as the
arrival process, namely the Poisson distribution with rate λ. The process A<0,1(δ) accumulates
the contribution from 0 to δ of those sessions ending in (0, δ) and starting before time 0.
However, we may re-index Poisson points by swapping the termination and start times. The
region A<0,1(δ) will then correspond to the sessions starting in (0, δ] and terminating outside
it, which is exactly the contribution of the region R>0,2, namely A>0,2(δ). A more formal
proof is given in the following proposition.

Proposition 6. We have

A<0,1(δ)
d= A>0,2(δ)

and, therefore, as δ → 0,

A<0,1(δ) −
∫ 1

0
sν

<0,1
δ (ds)

w−→ X<0,1,

where ν
<0,1
δ = ν

>0,2
δ and X<0,1 d= X>0,2, with the quantities indexed by ‘ >0,2’ defined as in

Proposition 3.
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Proof. We compute the characteristic function as follows. For θ ∈ R,

E

(
exp

{
iθ

P <0,1(δ)∑
i=1

R
<0,1
i (�

<0,1
i + L

<0,1
i )

})

= exp{E(P <0,1(δ))[E(eiθR
<0,1
1 (�

<0,1
1 +L

<0,1
1 )) − 1]}

= exp

{ ∫∫∫
s<0, r>0

|s|<l≤|s|+δ

(eiθr(s+l) − 1)λ dsFL,R(dl, dr)

}
,

and by changing variable according to s′ = δ − (l + s) we obtain

E

(
exp

{
iθ

P <0,1(δ)∑
i=1

R
<0,1
i (�

<0,1
i + L

<0,1
i )

})

= exp

{ ∫∫∫
r>0, s′+l>δ

0<s′<δ

(eiθ(δ−s′) − 1)λ ds′FL,R(dl, dr)

}

= E(eiθA>0,2(δ)).

In the last step we used (3.1).

3.5. Discussion and summary

We here summarize the contributions of the four regions to cumulative traffic in (0, δ).

1. For region R>0,2, we have

X>0,2(δ) := A>0,2(δ) −
∫ 1

0
sν

>0,2
δ (ds)

w−→ X>0,2, as δ → 0,

a spectrally positive, infinitely divisible random variable with Lévy measure ν
>0,2
0 whose

tail probabilities are regularly varying with index −(αF +αR). Observe that αF +αR > 2,
whence E(X>0,2)2 < ∞.

2. For region R>0,1, we have

A>0,1(δ)
w−→ X>0,1,

a compound Poisson-distributed random variable with tail probabilities which are regu-
larly varying with index −(αF + αR). Note that, for some c > 0,

P[X>0,1 > x] ∼ c P[X>0,2 > x] as x → ∞.

3. For region R<0,2, we have

X<0,2(δ) := A<0,2(δ) − m(δ)

a(δ)

w−→ X<0,2 ∼ N(0, 1).
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4. For region R<0,1, we have

A<0,1(δ)
d= A>0,2(δ),

whence

X<0,1(δ) := A<0,1(δ) −
∫ 1

0
sν

>0,2
δ (ds)

w−→ X<0,1 d= X>0,2.

We may thus write

A(δ) = X>0,2(δ) +
∫ 1

0
sν

>0,2
δ (ds) + A>0,1(δ) + a(δ)X<0,2(δ)

+ m(δ) + X<0,1(δ) +
∫ 1

0
sν

>0,2
δ (ds).

We conclude that

A(δ) − m(δ) − 2
∫ 1

0
sν

>0,2
δ (ds) = X>0,2(δ) + A>0,1(δ) + a(δ)X<0,2(δ), (3.13)

where the summands on the right-hand side are independent and

X<0,1(δ)
d= X>0,2(δ)

w−→ X>0,2 (infinitely divisible),

A>0,1(δ)
w−→ X>0,1 (compound Poisson),

X<0,2(δ)
w−→ X<0,2 (normal).

Also,

A(δ) − m(δ) − 2
∫ 1

0 sν
>0,2
δ (ds)

a(δ)

w−→ X<0,2 ∼ N(0, 1). (3.14)

Inspection of the decomposition in (3.13) and (3.14) reveals that the centered cumulative
traffic input in the time slot (0, δ] has an asymptotically normal component on spatial scale
a(δ) plus a component which asymptotically mixes an infinitely divisible and a compound
Poisson distribution. For traffic at fine time scales with a high degree of aggregation, resulting
in a large number of sessions, the Gaussian component will thus obscure the more ‘spikey’,
high-rate transmissions represented in our model by the infinitely divisible and compound
Poisson-distributed components.

This helps to explain why measurements with very high traffic aggregation reveal a Gaussian
distribution. The normal component is due to the sessions that start before the time slot and
end after the time slot. Thus, they will also be responsible for the dependence structure of
the process. As we will see in the next section, the contribution of the infinitely divisible and
compound Poisson-distributed components to the dependence across time slots is of lower order
than is the contribution of the Gaussian components.

4. Dependence structure across time slots

We now analyze the weak limits of the stochastic process

A(δ) := {A(kδ, (k + 1)δ], −∞ < k < ∞}
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defined in (2.1). We will see that the family of R
∞-valued random elements indexed by δ

converges to a limiting Gaussian sequence,

X∞ = (X∞(k), −∞ < k < ∞},
with corr(X∞(0), X∞(k)) = 1. The price paid for letting δ → 0 is thus the introduction of
a limit sequence with degenerate dependence structure. The consequence of sampling at too
high a frequency (using economic terminology) is perfect correlation. However, we will see
that for fixed δ > 0 we have long-range dependence across time slots.

We begin by considering convergence of finite-dimensional distributions.

4.1. Convergence of finite-dimensional distributions

In this section we prove the following result.

Proposition 7. For any nonnegative integer k, as δ → 0 we have

1

a(δ)

⎛
⎜⎜⎜⎝

A(0, δ] − b(δ)

A(δ, 2δ] − b(δ)
...

A(kδ, (k + 1)δ] − b(δ)

⎞
⎟⎟⎟⎠

w−→

⎛
⎜⎜⎜⎝

X∞(0)

X∞(1)
...

X∞(k)

⎞
⎟⎟⎟⎠

in R
k+1, where

b(δ) = 2
∫ 1

0
vḠ(v)

∫ ∞

v

r−1µδ(dr) dv −
∫ 1

0
E(F )Ḡ0(r, ∞]µδ(dr) (4.1)

and X∞(i) ∼ N(0, 1), 0 ≤ i ≤ k, with corr(X∞(i), X∞(j)) = 1.

Proof. Along with the regions R<0,1, R<0,2, R>0,1, and R>0,2, used to analyze the
convergence in distribution of A(0, δ], we need the analogously defined regions R<kδ,1, R<kδ,2,
R>kδ,1, and R>kδ,2, where, e.g.

R<kδ,2 = {(s, r, l, u) : s < kδ, s + l > (k + 1)δ},
R>kδ,2 = {(s, r, l, u) : kδ < s < (k + 1)δ, s + l > (k + 1)δ}.

(See Figure 2.)
Additionally, for analyzing dependence between A(0, δ] and A(kδ, (k + 1)δ] we will need

the regions R11, R12, R21, and R22, which contain points (�k, Rk, Lk, Fk) contributing to
both A(0, δ] and A(kδ, (k+1)δ]. (See Figure 3.) In particular, points in R22 = R<0,2∩R<kδ,2

make a contribution
A22 =

∑
{k : (�k,Rk,Lk,Fk)∈R22}

Rkδ

to both A(0, δ] and A(kδ, (k + 1)δ].

4.1.1. Behavior of A22. By analogy with (3.8), A22 is a Poissonized sum of independent,
identically distributed random variables, and we compute its characteristic function in a similar
manner, to obtain

E(eiθA22
) = exp

{ ∫∫∫
s<0, r>0

l>(k+1)δ+|s|

(eiθrδ − 1)λ dsFL,R(dl, dr)

}
.
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R<kδ,2

kδ (k + 1)δ t

l

R>kδ,2

R<kδ,1

R>kδ,1

Figure 2: Four regions for analyzing contributions in the kth time slot.

R22

R12
R21

R11

kδ (k + 1)δ t

l

0 δ

R<0,(δ,(k+1)δ]

kδ (k + 1)δ t0 δ

l

Figure 3: Regions for dependence analysis.

By repeating the calculation which led to (3.9), we find that this is equal to

exp

{ ∫ ∞

0
(eiθr − 1) E(F )Ḡ0((k + 1)r)r−1µδ(dr)

}
. (4.2)

With

a2
k (δ) :=

∫ 1

0
E(F )Ḡ0((k + 1)r)rµδ(dr),

mk(δ) :=
∫ 1

0
E(F )Ḡ0((k + 1)r)µδ(dr),

we find that
A22 − mk(δ)

ak(δ)

w−→ X22 ∼ N(0, 1)

in R, as δ → 0.
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Note that, from Proposition 5, we have

ak(δ) ∼ a(δ) ∼
(

E(F )

∫ 1

0
rµδ(dr)

)1/2

as δ → 0.

4.1.2. Contributions from other regions. Let

R<0,(δ,(k+1)δ] = {(s, r, l, u) : s < 0, δ < |s| + l ≤ (k + 1)δ}
(see Figure 3) and write

A(0, δ] = A>0,1(0, δ] + A>0,2(0, δ] + A<0,1(0, δ] + A<0,2(0, δ]
= A>0,1(0, δ] + A>0,2(0, δ] + (A<0,1(0, δ] + A<0,(δ,(k+1)δ](0, δ]) + A22(0, δ].

Now, by following the calculation in Section 3.3.1, we find that

E(eiθA<0,(δ,(k+1)δ](0,δ]) = exp

{ ∫ ∞

0
(eiθr − 1) E(F )r−1G0(r, (k + 1)r]µδ(dr)

}
,

and
ν

<0,(δ,(k+1)δ]
δ (dr) := E(F )r−1G0(r, (k + 1)r]µδ(dr)

converges to a Lévy measure with density

E(F )r−1G0(r, (k + 1)r]αRr−αR−1dr. (4.3)

This means that

A<0,(δ,(k+1)δ](0, δ] −
∫ 1

0
E(F )G0(r, (k + 1)r]µδ(dr)

converges to an infinitely divisible random variable with Lévy measure whose density is given
by (4.3). Hence,

A<0,(δ,(k+1)δ](0, δ] −
∫ 1

0
E(F )G0(r, (k + 1)r]µδ(dr)

is op(a(δ)). We conclude that

A(0, δ] − 2
∫ 1

0
vḠ(v)

∫ ∞

v

r−1µδ(dr) dv

−
∫ 1

0
E(F )G0(r, (k + 1)r]µδ(dr) −

∫ 1

0
E(F )Ḡ0((k + 1)r)µδ(dr)

= A(0, δ] − 2
∫ 1

0
vḠ(v)

∫ ∞

v

r−1µδ(dr) dv −
∫ 1

0
E(F )Ḡ0(r, ∞]µδ(dr)

= A22(0, δ] − mk(δ) + op(a(δ)).

Likewise, we consider A(iδ, (i + 1)δ] for 1 ≤ i ≤ k. We set (see Figure 4)

R<0,((i+1)δ,(k+1)δ] = {(s, r, l, u) : s < 0, (i + 1)δ < s + l < (k + 1)δ},
R(0,iδ],((i+1)δ,∞] = {(s, r, l, u) : 0 < s ≤ iδ, s + l > (i + 1)δ},
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Figure 4: Regions for dependence analysis.

and write

A(iδ, (i + 1)δ] = A>iδ,1(iδ, (i + 1)δ] + A>iδ,2(iδ, (i + 1)δ] + A<iδ,1(iδ, (i + 1)δ]
+ (A<0,((i+1)δ,(k+1)δ](iδ, (i + 1)δ] + A22(iδ, (i + 1)δ]

+ A(0,iδ],((i+1)δ,∞](iδ, (i + 1)δ]).
Now,

E(exp{iθA<0,((i+1)δ,(k+1)δ](iδ, (i + 1)δ]})
= exp

{ ∫ ∞

0
(eiθr − 1) E(F )r−1G0((i + 1)r, (k + 1)r]µδ(dr)

}
,

E(exp{iθA(0,iδ],((i+1)δ,∞](iδ, (i + 1)δ]})
= exp

{ ∫ ∞

0
(eiθr − 1) E(F )r−1G0(r, (i + 1)r]µδ(dr)

}
.

Therefore, keeping in mind that

A22(kδ, (k + 1)δ] = A22(iδ, (i + 1)δ] = A22(0, δ],
we have

A(iδ, (i + 1)δ] − 2
∫ 1

0
vḠ(v)

∫ ∞

v

r−1µδ(dr) dv −
∫ 1

0
E(F )Ḡ0(r)µδ(dr)

= A(iδ, (i + 1)δ] − 2
∫ 1

0
vḠ(v)

∫ ∞

v

r−1µδ(dr) dv −
∫ 1

0
E(F )G0(r, (i + 1)r]µδ(dr)

−
∫ 1

0
E(F )G0((i + 1)r, (k + 1)r]µδ(dr) − mk(δ)

= A22(0, δ] − mk(δ) + op(a(δ)).
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We thus have
⎛
⎜⎜⎜⎝

A(0, δ] − b(δ)

A(δ, 2δ] − b(δ)
...

A(kδ, (k + 1)δ] − b(δ)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

A22(0, δ] − mk(δ)

A22(0, δ] − mk(δ)
...

A22(0, δ] − mk(δ)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

op(a(δ))

op(a(δ))
...

op(a(δ))

⎞
⎟⎟⎟⎠

and the conclusion of Proposition 7 follows.

4.2. Correlation structure

Despite the fact that in the limit as δ → 0 we get a degenerate dependence structure, for a
fixed δ > 0, decay of correlations over time slots spaced by k exhibits long-range dependence
as k → ∞. In this section we will prove the following result.

Proposition 8. For any fixed δ > 0, as k → ∞ we have

cov(A(0, δ], A(kδ, (k + 1)δ]) ∼ const. Ḡ0(k) ∼ const. k−(αF −1)LF (k)

and, thus, the stationary sequence {A(kδ, (k + 1)δ], −∞ < k < ∞} exhibits long-range
dependence.

Referring to Figure 3, we see that we can write

A(0, δ] = A11(0, δ] + A12(0, δ] + A22(0, δ] + A21(0, δ] + I1

=
∑

{k : (�k,Lk,Rk,Fk)∈R11}
Rk(δ − �k) +

∑
{k : (�k,Lk,Rk,Fk)∈R12}

Rk(δ − �k)

+
∑

{k : (�k,Lk,Rk,Fk)∈R22}
Rkδ +

∑
{k : (�k,Lk,Rk,Fk)∈R21}

Rkδ + I1

and

A(kδ, (k + 1)δ] = A11(kδ, (k + 1)δ] + A12(kδ, (k + 1)δ] + A22(kδ, (k + 1)δ]
+ A21(kδ, (k + 1)δ] + I2

=
∑

{k : (�k,Lk,Rk,Fk)∈R11}
Rk(�k + Lk − δk) +

∑
{k : (�k,Lk,Rk,Fk)∈R12}

Rkδ

+
∑

{k : (�k,Lk,Rk,Fk)∈R22}
Rkδ +

∑
{k : (�k,Lk,Rk,Fk)∈R21}

Rk(�k + Lk − kδ) + I2,

where I1 and I2 are independent of the other summands and of each other and do not affect
covariance calculations. We thus have

cov(A(0, δ], A(kδ, (k + 1)δ])
= cov(A11(0, δ], A11(kδ, (k + 1)δ]) + cov(A12(0, δ], A12(kδ, (k + 1)δ])

+ cov(A22(0, δ], A22(kδ, (k + 1)δ]) + cov(A21(0, δ], A21(kδ, (k + 1)δ]). (4.4)

The dominant term comes from the region R22, as we now show.
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4.2.1. Contribution to the covariance from R22. Since

A22(0, δ] = A22(kδ, (k + 1)δ],
we have

cov(A22(0, δ], A22(kδ, (k + 1)δ]) = var(A22(0, δ]).
If P is a Poisson-distributed random variable independent of the sequence {ξn, n ≥ 1}, then

var

( P∑
i=1

ξi

)
= E(P ) E(ξ2

1 ).

Therefore, we have

var(A22(0, δ]) =
∫∫∫

s<0, r>0
l>(k+1)δ+|s|

r2δ2λ dsFL,R(dl, dr)

=
∫ ∞

(k+1)δ

λ ds

∫ ∞

0
r2δ2Ḡ(rs)FR(dr)

= λδ2
∫ ∞

0
rḠ0((k + 1)rδ)FR(dr) E(F )

= λδ

∫ ∞

0
rḠ0((k + 1)r)FR(δ−1 dr) E(F )

=
∫ ∞

0
rḠ0((k + 1)r)µδ(dr)

=: a#
k (δ)2.

We now discuss the growth rate of a#
k (δ)2 as a function of k, keeping δ > 0 fixed.

Proposition 9. For any fixed δ > 0, as k → ∞ we have

a#
k (δ)2 =

∫ ∞

0
rḠ0((k + 1)r)µδ(dr) ∼ Ḡ0(k)

∫ ∞

0
r2−αF µδ(dr),

where the integral on the right-hand side is finite.

Proof. It is no loss of generality to suppose, for convenience, that δ = 1 and to neglect
FR(1) in the denominator of µδ . We must then show that

∫ ∞

0
r

Ḡ0(kr)

Ḡ0(k)
FR(dr) →

∫ ∞

0
r2−αF FR(dr). (4.5)

By Fubini’s theorem, the left-hand side is equal to

∫ ∞

0

∫ s

0
rFR(dr)

Ḡ(ks)k

E(F )Ḡ0(k)
ds.

Since

Ḡ0(k) ∼ kḠ(k)

E(F )(αF − 1)
,
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it suffices to show that ∫ ∞

0

∫ s

0
rFR(dr)

Ḡ(ks)

Ḡ(k)
ds(αF − 1) (4.6)

converges to the right-hand side of (4.5).
To do so, we break the integral in (4.6) into an integration over [0, 1] and an integration over

(1, ∞). For s > 1, we have, by Potter’s bounds, that for any small η > 0, all sufficiently large
k, and some constant c,

Ḡ(kr)

Ḡ(k)
≤ cr−αF +η.

On [1, ∞), the integrand is bounded by E(R)cr−αF +η, which is integrable there. Thus, by
dominated convergence we may integrate to the limit over [1, ∞). On [0, 1] the integrand in
(4.6) is bounded (neglecting constants) by sḠ(ks)/Ḡ(k) → s1−αF . Since Karamata’s theorem
implies that ∫ 1

0
s

Ḡ(ks)

Ḡ(k)
ds →

∫ 1

0
s1−αF ds = 1

2 − αF

,

the desired result follows from Pratt’s lemma (Pratt (1960), Resnick (1998, p. 164)).

4.2.2. Contribution to the covariance from other terms. We now show that the contribution to
the covariance from the other three terms in (4.4) is o(Ḡ0(k)). We use the following formula
in doing so: if P is a Poisson-distributed random variable independent of the independent,
identically distributed sequence {(ξn, ηn), n ≥ 1}, then

cov

( P∑
i=1

ξi,

P∑
i=1

ηi

)
= E(P ) E(ξ1η1). (4.7)

Contribution from R11. Evaluating the expression on the right-hand side of (4.7) for region
R11 yields the following formula:∫∫∫

0<s≤δ, r>0
kδ<l+s≤(k+1)δ

r2(δ − s)(s + l − kδ)λ dsFL,R(dl, dr)

≤ λδ2
∫ δ

0

∫
r>0

kδ−s<l≤kδ+δ−s

r2FL,R(dl, dr) ds

= λδ2
∫ kδ

(k−1)δ

∫
r>0

r2
∫

sr<u≤(δ+s)r

G(du)FR(dr) ds

= λδ2
∫ kδ

(k−1)δ

∫
r>0

r2G(sr, (δ + s)r]FR(dr) ds

≤ λδ2
∫ kδ

(k−1)δ

∫
r>0

r2Ḡ(sr)FR(dr) ds

= λδ2
∫

r>0
rG0((k − 1)rδ, krδ] E(F )FR(dr)

=
∫

r>0
rG0((k − 1)r, kr] E(F )µδ(dr)

= o(Ḡ0(k)),
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where the first inequality holds because on the region of integration both (δ−s) and (s+ l−kδ)

are bounded by δ, and where the last assertion follows because a#
k (δ) is of order Ḡ0(k).

Contribution from R12. For region R12, the expression on the right-hand side of (4.7) yields
the following formula:

∫∫∫
0<s≤δ, r>0
s+l>(k+1)δ

r2δ(δ − s)λ dsFL,R(dl, dr) = λδ

∫ δ

0

∫
r>0

l>kδ+s

r2sFL,R(dl, dr) ds

≤ λδ2
∫ δ

0

∫
r>0

l>kδ+s

r2FL,R(dl, dr) ds

= λδ2
∫ (k+1)δ

kδ

∫
r>0

Ḡ(rs)r2FR(dr) ds

=
∫

r>0
rG0(kr, (k + 1)r] E(F )µδ(dr)

= o(Ḡ0(k)).

In a similar way, we can show that the contribution from region R21 is o(Ḡ0(k)). This
completes the proof of Proposition 8.

5. Dependence structure on a different time scale

In the previous section we discussed dependence over successive slots of length δ. The
asymptotic normality statement of Proposition 7 leads to a degenerate limit, because δ ↓ 0
shrinks the distance between A(0, δ] and A(kδ, (k+1)δ]. Here we investigate (A(0, δ], A(t, t+
δ]) for t > δ and find that as δ ↓ 0 this vector is asymptotically normal with a limiting correlation
ρ(t). The function ρ(t) satisfies

ρ(t) ∼ cḠ0(t) → 0, as t → ∞,

which may be compared with the result of Proposition 8. This provides another interpretation
of the long-range dependence in the model.

Proposition 10. Suppose that t > 0. As δ ↓ 0,

a−1(δ)

(
A(0, δ] − b(δ)

A(t, t + δ] − b(δ)

)
w−→

(
N1 + N

N2 + N

)
,

where b(δ) is given by (4.1), N1, N2, and N are independent normal variables with

N1
d= N2 ∼ N(0, σ 2(t)), N ∼ N(0, ρ(t)),

and

σ 2(t) =
∫ ∞

0 rG0(tr)FR(dr)

E(R)
,

ρ(t) =
∫ ∞

0 rḠ0(tr)FR(dr)

E(R)
,
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whence σ 2(t) + ρ(t) = 1. Thus,

cov(N1 + N, N2 + N) = var(N) = ρ(t).

Furthermore, as t → ∞,

ρ(t) ∼
∫ ∞

0 r2−αF FR(dr)

E(R)
Ḡ0(t).

Proof. As in the proof of Proposition 7, we write

A(0, δ] = A<0,(δ,t+δ](δ) + A<0,(t+δ,∞](δ) + op(a(δ)),

A(t, t + δ] = A(0,t],(t+δ,∞](t, t + δ] + A<0,(t+δ,∞](t, t + δ] + op(a(δ)),

and keep in mind that

A<0,(t+δ,∞](δ) = A<0,(t+δ,∞](t, t + δ]
and

A<0,(δ,t+δ](δ) d= A(0,t],(t+δ,∞](t, t + δ].
The characteristic functions are

E(eiθA<0,(δ,t+δ](δ)) = exp

{ ∫ ∞

0
(eiθr − 1)r−1G0(r, r(1 + t/δ))µδ(dr) E(F )

}

(see (4.2)) and

E(eiθA<0,(t+δ,∞](δ)) = exp

{ ∫ ∞

0
(eiθr − 1)r−1G0

(
r

δ
(t + δ)

)
µδ(dr) E(F )

}
.

If we let

mt(δ) =
∫ 1

0
E(F )Ḡ0

(
r

δ
(t + δ)

)
µδ(dr),

a2
t (δ) =

∫ 1

0
E(F )Ḡ0

(
r

δ
(t + δ)

)
rµδ(dr),

we obtain
at (δ)

−1(A<0,(t+δ,∞](δ) − mt(δ))
w−→ N(0, 1)

from the characteristic function and

a2
t (δ)

a2(δ)
∼

∫ 1
0 Ḡ0((r/δ)(t + δ))rµδ(dr)

E(R)/δ−1F̄R(δ−1)

= δ
∫ δ−1

0 Ḡ0(r(t + δ))rFR(dr)/F̄R(δ−1)

E(R)/δ−1F̄R(δ−1)

→
∫ ∞

0 Ḡ0(rt)rFR(dr)

E(R)

= ρ(t)

from Proposition 5 by dominated convergence, since E(R) < ∞.
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Similarly, the appropriate scaling for A<0,(δ,t+δ](δ) to achieve asymptotic normality is ãt (δ),
where

ãt (δ)
2 := E(F )

∫ 1

0
rG0(r, r(1 + t/δ))µδ(dr)

and, as δ ↓ 0,

ãt (δ)
2 ∼

∫ ∞
0 E(F )rG0(rt)FR(dr)

δ−1F̄R(δ−1)

∼ a2(δ)

∫ ∞
0 rG(rt)FR(dr)

E(R)

= a2(δ)σ 2(t).

The asymptotic form of ρ(t) as t → ∞ is obtained using arguments similar to those
yielding (4.5).

6. Concluding remarks

As summarized in Table 1, our model does a sound job of explaining certain empirically
observed facts that we have termed stylized facts. For a fixed time slot, there is observable
Gaussian behavior for cumulative input as the rate increases and the slot width decreases. This
Gaussian behavior is on a spatial scale a(δ) → ∞, and is responsible for most of the traffic
volume. Hence, this component can model what Sarvotham et al. (2005) called β-traffic.
The spatial scaling obscures heavy-tailed behavior approximated by infinitely divisible random
variables with heavy tails. This heavy-tailed component, which disappears in the limit, is what
generates, for finite-scale δ, the bursty behavior, and seems to be the right candidate to model
the α-traffic component. Sarvotham et al. (2005) pointed out that as the aggregation increases
the traffic becomes more and more Gaussian, which implies that the Gaussian character is
dominant over the bursty character. In addition, for a fixed slot width, dependence across time
slots exhibits long-range dependence, and this dependence is carried mostly by the Gaussian
part, i.e. the β-component.

As the slot width goes to 0, the centered and scaled sequence of inputs in successive slots
converges to a perfectly correlated limiting Gaussian sequence. This is a consequence of the

Table 1: How the model incorporates the stylized facts.

Stylized fact Model

Presence of heavy tails Built-in

LRD across slots Lag-k covariance (see Proposition 8) is of
the order cḠ0(k) for δ fixed and k → ∞

Burstiness Traffic from regions R<0,1∪>0,2∪>0,1 is
infinitely divisible and has a heavy tail

Cumulative traffic per slot (A(0, δ] − b(δ))/a(δ)
D≈ N(0, 1)

is approximately normal

Dependence carried by Covariance from infinitely divisible pieces is
β-traffic of smaller order than that from the Gaussian piece
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Figure 5: Four time series plots of input per slot, corresponding to δ = 10, λ = 0.3372 (top-left),
δ = 10−0.5, λ = 4.763 (top-right), δ = 10−0.75, λ = 17.9 (bottom-left), and δ = 10−1.5, λ = 950.3

(bottom-right).

shrinking slot width and is not surprising. The higher the frequency of sampling, the more
correlation is to be expected. However, inputs in two slots, (0, δ] and (t, t + δ], are jointly
asymptotically normal with a correlation ρ(t), which decays slowly according to Proposition 10,
giving another interpretation of the long-range dependence in the model.

We intend to assume other dependence structures in our modeling in order to investigate
how the conclusions change. In particular, the model LR, where (Lk, Rk) are assumed to be
independent, is a subject for future work. A mixture of the models LR and FR might also be
worth considering.

The model used here offers a reasonable match to what experimenters actually measure.
Another virtue is that it is relatively easy to simulate such a model. For example, in Figure 5
we give four time series plots of length 2449 for the cumulative input per slot, and in Figure 6
we give six normal quantile–quantile plots to graphically assess a normal fit to the simulated
data. Finally, in Figure 7 we give an autocorrelation plot over 700 lags, to illustrate the slow
rate of decay of the dependence as a function of lag.
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Figure 7: Plot of autocorrelation versus the number of lags, for δ = 0.032.
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