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On the complete separation of unique �1
spreading models and the Lebesgue
property of Banach spaces
Harrison Gaebler, Pavlos Motakis , and Bünyamin Sarı
Abstract. We construct a reflexive Banach space XD with an unconditional basis such that all
spreading models admitted by normalized block sequences in XD are uniformly equivalent to the
unit vector basis of �1 , yet every infinite-dimensional closed subspace of XD fails the Lebesgue
property. This is a new result in a program initiated by Odell in 2002 concerning the strong
separation of asymptotic properties in Banach spaces.

1 Introduction

In Banach space theory, an asymptotic notion refers to a concept describing the
behavior of the norm of linear combinations of vectors sampled in a specified asymp-
totic fashion from a certain type of structure. For example, the seminal notion of a
spreading model of a bounded sequence (xn)∞n=1 is defined as the unit vector basis
(e i)∞i=1 of c00 with the seminorm given by

∣
n
∑
i=1

a i e i ∣ = lim
k1→∞

lim
k2→∞

⋅ ⋅ ⋅ lim
kn→∞

∥
n
∑
i=1

a i xk i∥,

provided that this iterated limit exists for all choices of coefficients a1 , . . . , an . Here,
the structure in question is a bounded sequence of vectors in a Banach space, and
vectors are sampled over a sparse set of sufficiently large indices. Using Ramsey’s
Theorem, Brunel and Sucheston proved in [9] that every bounded sequence in a
Banach space has a subsequence generating some spreading model. Similar notions
about different types of structures have been introduced and studied over the years.
One such example is the notion of asymptotic models, introduced by Odell and
Halbeisen in [13], concerning the norm of linear combinations of vectors sampled
from an array of sequences. A different type of such a notion is asymptotic spaces,
introduced by Maurey, Milman, and Tomczak-Jaegerman in [17], concerning the
norm of linear combinations of vectors picked in a finite-round two-player game
between a vector chooser and a finite-codimensional subspace chooser. The different
types of asymptotic notions are relevant to the study of many subjects in Banach
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space theory, such as the distortion problem in [18] using asymptotic spaces, the
invariant subspace problem in reflexive Banach spaces in [4] using spreading models,
the uniform approximation properties of bounded linear operators in [2] using joint
spreading models, the coarse geometry of Banach spaces in [7] using asymptotic
models, unique maximal ideals in the operators of stopping time-type Banach spaces
in [16] using spreading models, and quotients algebras of operator spaces in [20] using
asymptotic versions. The wide applicability of these tools has led to an independent
study of their uniqueness properties and a desire to better understand their intercon-
nections. Among the most outspoken promoters of this program was Odell, who in
this context posed several questions of the following type (see [22], [23], and [15]): Let
P, Q be properties of Banach spaces that are stable under passing to closed subspaces
and assume that P implies Q. If a Banach space X satisfies Q, must it have an infinite-
dimensional closed subspace satisfying P? For such P and Q, if there exists a Banach
space X satisfying Q and all infinite-dimensional subspaces of which fail P, then we
say that P is completely separated from Q. For a detailed discussion on positive and
negative results in this context, we refer the reader to [5]. We prove such a complete
separation theorem for P the Lebesgue property and Q the property of admitting a
unique �1 spreading model.

Let X be a Banach space. A function f ∶ [0, 1] → X is Riemann-integrable if it is
bounded and continuous up to a set of Lebesgue measure zero (see, for example,
[12, Theorem 18] or [10, Theorem. 2.1.3.]). However, the converse statement is false in
general. Indeed, it is easy to check that the function which maps the rationals in [0, 1]
to the unit vector basis of c0 is Riemann-integrable. A Banach space X is therefore said
to have the Lebesgue property if every Riemann-integrable function f ∶ [0, 1] → X is
continuous up to a set of Lebesgue measure zero. The first and third named authors
recently in [11] characterized the Lebesgue property in terms of a new asymptotic
notion. In particular, a Banach space X has the Lebesgue property if and only if every
normalized basic sequence in X is Haar-�+1 (see [11] or Section 2 of this paper for the
precise definition of Haar-�+1 ). It is also proved in [11] that for the properties

(P1) every asymptotic model of X is equivalent to the unit vector basis of �1,
(P2) X satisfies the Lebesgue property,
(P3) every spreading model of X is equivalent to the unit vector basis of �1

the implications (P1) �⇒ (P2) �⇒ (P3) are true. However, (P2) /�⇒ (P1) because
the Tsirelson sum of Tsirelson spaces, (T ⊕ T ⊕ . . .)T , has the Lebesgue property but
no unique asymptotic model (see, for example, [11]) and (P3) /�⇒ (P2) because there
exist Schur spaces that do not have the Lebesgue property (e.g. [14],[21]) and Schur
spaces satisfy (P3). The complete separation of (P1) from (P2) was proved in [11] by
showing that the Banach space X iw constructed in [5] has the Lebesgue property, and
yet, every subspace of X iw contains a c0-asymptotic model. The complete separation
of (P2) from (P3) was not attempted in [11], and it is the purpose of the present article.
By carrying out a substantial modification of the construction in [5], we are able to
achieve this new result. We construct a Banach space XD with an unconditional basis
such that every spreading model of XD is uniformly equivalent to the unit vector basis
of �1 and such that every subspace of XD fails the Lebesgue property.
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Separation of �1 spreading models and the Lebesgue property 3

Let us explain the main properties of XD. Denote by D the binary tree ∪∞n=0{0, 1}n .
Following standard convention, {0, 1}0 is a singleton containing the empty sequence.
For n ∈ N ∪ {0} and λ ∈ {0, 1}n , we write ∣λ∣ = n and say λ has height n. We considerD
with the usual partial order with minimum the empty sequence, and, otherwise, λ ≤ μ
means ∣λ∣ ≤ ∣μ∣ and λ(i) = μ(i), for 1 ≤ i ≤ ∣λ∣. The characterization of the Lebesgue
property in terms of Haar-�+1 sequences from [11] easily yields the following (see
Remark 2.2): a Banach space X has the Lebesgue property if and only if, for every
collection (xλ)λ∈D of norm-one vectors in X, there exists a constant θ > 0 such that,
for every n ∈ N, there exists a subset V ⊂ {0, 1}n such that

θ ≤ 1
2n ∥∑

λ∈V
xμλ∥

for some choice of nodes (μλ)λ∈V with μλ ≥ λ. In the space XD, every infinite-
dimensional subspace contains a lexicographically block collection (xλ)λ∈D of norm-
one vectors such that for any n ∈ N and collection (μλ)λ∈{0,1}n in D such that μλ ≥ λ,
λ ∈ {0, 1}n ,

max
λ∈{0,1}n

∣aλ ∣ ≤ ∥ ∑
λ∈{0,1}n

aλ xμλ∥ ≤ 3 max
λ∈{0,1}n

∣aλ ∣,(1.1)

for any scalars (aλ)λ∈{0,1}n . Therefore, XD fails the Lebesgue property. At the same
time, every normalized weakly null sequence in XD has a subsequence generating a
spreading model that is 102-equivalent to the unit vector basis of �1. In particular, it
follows from James’s characterization of reflexivity for spaces with an unconditional
basis that XD is reflexive.

Our construction relies on the method of saturation under constraints with
increasing weights, also employed in [5]. The major difference lies in the involvement
of an additional metric constraint. A distantly related version of this constraint was
also present in [19], but its application and role were significantly different as it
produced an operator-algebraic outcome (see [19, Section 2]). The earliest form of
saturation under constraints is due to Odell and Schlumprecht (see [24] and [25]).
It has since been extensively developed – for example, in the papers [4], [8], [5],
and many others. Let us elaborate on the main ingredients of our construction. The
norm of the space XD is defined via a norming set; that is, there is a subset W of
c00 containing the unit vector basis (e∗i )∞i=1 such that, for x ∈ c00, ∥x∥ = sup{∣⟨ f , x⟩∣ ∶
f ∈ W}, where ⟨⋅, ⋅⟩ denotes the standard duality pairing of c00 × c00. The space XD

is the completion of c00 under this norm. We fix a pair of lacunary sequences m j ,
n j , j ∈ N, of natural numbers. The first sequence is used to define a collection of
weights {∏�

i=1 m j i ∶ j1 , . . . , j� ∈ N}, which is closed under multiplication. To each
weight ∏�

i=1 m j i , we associate a Schreier family Sn j1+n j2+ ⋅ ⋅ ⋅ +n j�
. This is a compact

collection of finite subsets of N recalled in Section 2. Every f in W satisfies ∥ f ∥∞ ≤ 1,
and it is either of the form ±e∗i or

f = 1
w( f )

d
∑
q=1

fq ,(1.2)
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where w( f ) = ∏�
i=1 m j i and f1 , . . . , fd are successively supported vectors such that the

set {min supp( fq) ∶ 1 ≤ q ≤ d} is in the collection Sn j1+n j2+ ⋅ ⋅ ⋅ +n jd
. A Banach space

defined by a norming set on which only the aforementioned restrictions are imposed
is asymptotic-�1 (see, for example, [1]), an asymptotic property implying having a
unique �1 asymptotic model and thus also the Lebesgue property. To avoid this
without compromising the uniform uniqueness of �1 spreading models, just as in [5],
we additionally demand that for f in W as in (1.2), the sequence w( f1), . . . , w( fd)
is increasing sufficiently rapidly in relation to the supports of f1,. . ., fd . Imposing
these additional restrictions on W yields a Banach space with a uniformly unique �1
spreading model and no asymptotic-�1 subspace; however, as it was proved in [11], it
still satisfies the Lebesgue property. The intuitive explanation for this is the following:
despite the imposed restrictions on W, there are sufficiently many functionals yielding
the required �+1 estimates on normalized collections (xλ)λ∈D in the defined Banach
space.

To address this, we impose an additional metric constraint on W. Recall that D
is a totally bounded metric space with the metric d(λ, μ) = 2−n , where, if λ ≠ μ,
n ∈ N ∪ {0} is the maximum height for which there exists ν ∈ {0, 1}n with ν ≤ λ
and ν ≤ μ. We fix a bijection ϕ ∶ {m j ∶ j ∈ N} →D, and to every f ∈ W of weight
∏�

i=1 m j i , we associate the node λ = ϕ(m( f )), where m( f ) is the maximum of
m j1 , . . . , m j� . We then impose on W the restriction that for every f as in (1.2), the
nodes ϕ(m( f1)), . . . , ϕ(m( fd)) approximate some λ in the completion of D, and
the quantification of the approximation depends on the tuple (n j1 , . . . , n j�) and
the supports of the fq , 1 ≤ q ≤ d. Modulo some subtle but significant details, the
construction of the space XD is complete.

Using a standard technique, in every block-subspace Y of XD, we build a collection
of vectors (xm j) j∈N such that, for every j ∈ N, the norm of xm j can only be effectively
estimated by functionals of weight w( f ) = m j ; that is, xm j is an exact vector. We
then consider the D-indexed collection (xϕ−1(λ))λ∈D. This witnesses the failure
of the Lebesgue property in Y. Indeed, for n ∈ N, denote {0, 1}n = {λ1 , . . . , λ2n}
and let m j1 ,. . .,m j2n such that ϕ(m j1) ≥ λ1,. . .,ϕ(m j2n ) ≥ λ2n . Then the nodes
ϕ(m j1),. . .ϕ(m j2n ) form a 2−n separated set in D. For every f ∈ W as in (1.2),
ϕ(m( f1)),. . .,ϕ(m( fd)) approximate a λ in the completion of D, and thus, roughly
speaking, the components of f only contribute to the norm of very few of the xm j i

,
1 ≤ i ≤ 2n , yielding the �∞-estimate (1.1).

Our paper is organized as follows. In Section 2, we recall the required terminology
surrounding Schreier families and special convex combinations. We also recall the
definition of a Haar-�+1 sequence and remark on the formulation of the Lebesgue prop-
erty in terms of normalized collections (xλ)λ∈D. In Section 3, we define the space XD

and prove the uniform uniqueness of �1 spreading models. In Section 4, we define an
auxiliary Banach space Xaux,δ

D
and prove �∞-type estimates for linear combinations of

“simple” vectors in this space. In Section 5, we define and study rapidly increasing
sequences (RISs) and the basic inequality. The former comprise a special class of
sequences in XD, and the latter provides bounds for their linear combinations in terms
of linear combinations of basis vectors in the auxiliary space. In Section 6, we combine
all ingredients prepared in Sections 4 and 5 to construct in every infinite-dimensional

https://doi.org/10.4153/S0008414X24000786 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000786


Separation of �1 spreading models and the Lebesgue property 5

closed subspace of XD a normalized collection (xλ)λ∈D witnessing the failure of the
Lebesgue property.

2 Preliminary information

Let A, B ⊂ N. If max(A) < min(B), then we write A < B. We also write n ≤ A if n ∈ N
is at most min(A) and, by convention, ∅ < A and A < ∅ for every A ⊂ N. We denote
by c00 the vector space that consists of sequences of real numbers that have at most
finitely-many nonzero terms, and we let (e i) be the unit vector basis of c00. Note that
the members of the norming set W are themselves members of c00 and, in particular,
that {±e i}∞i=1 ⊂ W . For this reason, we write e∗i ∈ c00 when referring to e i as a norming
functional. The support of x = (c i) ∈ c00 is the set supp(x) = {i ∈ N ∣ c i ≠ 0}, and we
say that vectors x1 , . . . , xn ∈ c00 are successive if supp(x i−1) < supp(x i) for 2 ≤ i ≤ n.
In this case, we use the shorthand notation x1 < . . . < xn , and we also write n ≤ x if
n ≤ min supp(x). A finite or infinite sequence of successive vectors in c00 is said to be
a block sequence of (e i).

The Schreier sets are an increasing sequence of sets of finite subsets of N. These sets
are defined inductively as follows:

S0 = {{i} ∣ i ∈ N} and S1 = {F ⊂ N ∣ card(F) ≤ F},

and we write that

Sn+1 = {F ⊂ N ∣ F = ∪d
i=1Fi where d ≤ F1 < . . . < Fd ∈ Sn}

once Sn has been defined. We also define the set A3 = {F ⊂ N ∣ card(F) ≤ 3}, and we
will be interested in sets of the form

Sn ∗A3 = {F ⊂ N ∣ F = ∪d
i=1Fi where F1 < . . . < Fd ∈ A3 and {min(Fi)}d

i=1 ∈ Sn}}.

It is easy to see that F ∈ Sn ∗A3 is the union of at most three sets in Sn . A block
sequence x1 < . . . < xk ∈ c00 is said to be Sn-admissible (resp. Sn ∗A3-admissible) if
{min supp(x i)}k

i=1 ∈ Sn (resp. {min supp(x i)}k
i=1 ∈ Sn ∗A3).

Let n ∈ N and let ε > 0. Then, the vector x = ∑i∈F c i e i ∈ c00 is said to be an
(n, ε)-basic special convex combination ((n, ε)-basic scc) if

(1) F ∈ Sn , c i ≥ 0 for each i ∈ F, and ∑i∈F c i = 1,
(2) For every G ⊂ F with G ∈ Sn−1, we have that ∑i∈G c i < ε,

and we refer the reader to [1], [3], or [6] for more information. In particular, note that
∑i∈G c i < 3ε if G ⊂ F with G ∈ Sk ∗A3 for k < n, and there is also the following useful
result which is Proposition 2.3 of [6].

Proposition 2.1 Let n ∈ N. Then, for every infinite subset M ⊂ N and for every F ⊂ M
such that F ∈ Sn is maximal with respect to inclusion, there exist real numbers (c i)i∈F
so that the vector x = ∑i∈F c i e i ∈ c00 is an (n, 3/min(F))-basic scc.

Similarly, if x1 < . . . < xd ∈ c00 and if s i = min supp(x i) for each 1 ≤ i ≤ d, then the
vector x = ∑d

i=1 c i x i is said to be an (n, ε)-special convex combination ((n, ε)-scc) if
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∑d
i=1 c i es i is an (n, ε)-basic scc. It follows in this case that∑d

i=1 c i et i is an (n, 2ε)-basic
scc as well where t i = max supp(x i) for each 1 ≤ i ≤ d because

∑
i∈G

c i = ∑
i∈G1

c i + ∑
i∈G2

c i < ε + ε = 2ε

if G ⊂ {t i}d
i=1 is Sn−1-admissible and is therefore a translation to the right of at most

two sets G1 , G2 ⊂ {s i}d
i=1 with G1 , G2 ∈ Sn−1.

Finally, two specific asymptotic structures appear in this paper. The first is that of a
spreading model from [9], recalled in page 2. It is a consequence of Ramsey’s theorem
that every normalized basic sequence (x i) in a Banach space X has a subsequence that
generates a spreading model of X. We now define the notion of a Haar-�+1 sequence,
and we need first the definition of a Haar system of partitions of N.

Definition 2.1 A collection (An
j )2n−1

j=0,n∈N of infinite subsets of N is said to be a Haar
system of partitions of N if the following two conditions are satisfied:
(1) For every n ∈ N, we have that ∪2n−1

j=0 An
j = N and An

j ∩ An
j′ = ∅ if j ≠ j′.

(2) For every n ∈ N and for every 0 ≤ j ≤ 2n − 1, we have that An
j = An+1

2 j ∪ An+1
2 j+1.

The connection between the Haar-�+1 condition (defined below) and Riemann
integrability is due to the fact that the infinite set An

j of the Haar system of partitions of
N corresponds to the dyadic rational numbers in the dyadic interval ( j

2n , j+1
2n ) (see, for

example, [11, Theorem 3.1]).

Definition 2.2 A normalized basic sequence (x i) in X is said to be Haar-�+1 if, for
every Haar system of partitions (An

j )2n−1
j=0,n∈N of N, there exists a constant C > 0 such

that

C ≤ lim
n→∞

sup
⎧⎪⎪⎨⎪⎪⎩

1
2m

!!!!!!!!!!!

2m−1
∑
j=0

x i j

!!!!!!!!!!!

"""""""""""
m ≥ n and 2m ≤ i j ∈ Am

j

⎫⎪⎪⎬⎪⎪⎭
.

Remark 2.2 For a Banach space X, the following are equivalent.
(1) X has the Lebesgue property.
(2) Every normalized basic sequence in X is Haar-�+1 .
(3) For every collection (xλ)λ∈D of norm-one vectors in X, there exists a constant

θ > 0 such that, for every n ∈ N, there exists a subset V ⊂ {0, 1}n such that

θ ≤ 1
2n ∥∑

λ∈V
xμλ∥

for some choice of nodes (μλ)λ∈V with μλ ≥ λ.
Indeed, the assertion (1) ⇐⇒ (2) is established in [11]. In addition, it is easy

to see that (1) �⇒ (3) as collection witnessing the negation of (3) can be easily
used to construct a Dirichlet-type function with Riemann integral zero. Lastly, for
(3) �⇒ (2), if there exists a normalized basic sequence (x i) in X that is not Haar-�+1 ,
then it is easy to construct a collection (xλ)λ∈D of norm-one vectors for which the
claim of (3) does not hold as follows. Fix an order-preserving bijection D→ {An

j ∣
n ∈ N, 0 ≤ j ≤ 2n − 1} such that, for every n ∈ N, λ ↦ A∣λ∣jλ

, for some 0 ≤ jλ ≤ 2∣λ∣ − 1.
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Separation of �1 spreading models and the Lebesgue property 7

Then, for every λ ∈D, choose iλ ∈ A∣λ∣jλ
such that iλ ≥ 2∣λ∣ and put xλ = x iλ . Note that

(xλ)λ∈D can be chosen Schauder basic in the lexicographical oder of D.

3 Construction of XD and uniformly unique �1 spreading model

In this section, we define the norming set W inducing the Banach space XD. It is
defined as an increasing union W = ∪∞k=0Wk , where W0 = {±e∗i }∞i=1, and, in each step,
having defined Wk , we formulate the operations and constraints that are used to pro-
duce Wk+1. The quantification of the metric constraints discussed in the introduction
is defined inductively and carries a certain complexity; this is necessary to balance the
uniform uniqueness of �1 spreading models with the �∞ estimates on tree-indexed
collection. At the end of this section, we prove that every normalized weakly null
sequence in XD has a subsequence generating a spreading model that is 102-equivalent
to the unit vector basis of �1.

Fix a pair of strictly increasing sequences (m j) and (n j) of positive integers such
that m1 = 100, n1 = 1,

(1) m j+1 ≥ j2m2
j , for every j ∈ N,

(2) n j+1 > 4
log(100)n j log(m j+1).

LetD = ∪∞n=0{0, 1}n with the partial order and metric d defined in the introduction.
We note that the completion D of D is a compact metric space. Denote M = {∞} ∪
{m j ∶ j ∈ N} and let ϕ ∶M→D be a bijection so that the nodes of D are ordered
lexicographically with respect to M; that is, ϕ(∞) = ∅, ϕ(m1) = (0), ϕ(m2) = (1),
ϕ(m3) = (0, 0), and so on. Lastly, as a matter of notational convenience, we always
write d(m j , ⋅) instead of the formally correct d(ϕ(m j), ⋅).

Now, let W0 = {±e∗i }∞i=1 ⊂ c00 and write w(±e∗i ) = m(±e∗i ) = ∞ for each i ∈ N.
Then, define the set

W1 = W0 ∪ {
1

m j1 ⋅ ⋅ ⋅m j l

d
∑
k=1

e∗ik
∣ e∗i1

<. . .<e∗id
are

Sn j1+ ⋅ ⋅ ⋅ +n jl
-admissible} ,

where w( f ) = m j1 ⋅ ⋅ ⋅m j l , w⃗( f ) = (m j1 , . . . , m j�), and m( f ) = max1≤z≤l m jz for
f ∈ W1/W0. For f in W1/W0, w⃗( f ) may not be uniquely defined, and thus neither
are w( f ) and m( f ). The notation w⃗( f ) = (m j1 , . . . , m j�) means that f admits a
representation as above, and it is fixed while working with f. This will also apply
to f ∈ Wk , k > 1. This is common in this type of construction and does not pose
a problem. In fact, insisting on uniquely defining the weight may interfere with
constructing functionals that are used to prove the properties of the space. We next
define the following notion of proximity with respect to D for functionals in W1.

Definition 3.1 The functionals f1 < . . . < fd in W1 are said to be (n, λ)-packed for
some λ ∈D if the following conditions are satisfied:

(1) f1 < . . . < fd are Sn-admissible,
(2) w( f i) ≥ 2max supp( f i−1) for 2 ≤ i ≤ d,
(3) d(m( f i), λ) ≤ 2−max supp( f i−1) for 2 ≤ i ≤ d,
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8 H. Gaebler, P. Motakis, and B. Sarı

and if, in addition, we have that max1≤i≤d d(m( f i), λ) ≤ η. Then f1 < . . . < fd are said
to be (n, λ, η)-packed.

This definition allows for the following inductive definition as well.

Definition 3.2 The functionals f1 < . . . < fd in W1 are said to be (n j1 , . . . , n j l , λ)-
packed for some λ ∈D if the following claims hold:
(1) w( f i) ≥ 2max supp( f i−1) for 2 ≤ i ≤ d,
(2) There exists a partition F1 < . . . < FM of {1, . . . , d} such that the set { fmin(Fk)}M

k=1
is Sn j l

-admissible,
(3) There exist nodes λ1 , . . . , λM ∈D such that

(a) ( f i)i∈F1 is (n j1 , . . . , n j l−1 , λ1)-packed,
(b) ( f i)i∈Fk is (n j1 , . . . , n j l−1 , λk , 2−max supp( fmax(Fk−1)))-packed for 2 ≤ k ≤ M,
(c) d(λk , λ) ≤ 2−max supp( fmax(Fk−1)) for 2 ≤ k ≤ M,

and if, in addition, we have that max1≤i≤d d(m( f i), λ) ≤ η, then we say that
f1 < . . . < fd are (n j1 , . . . , n j l , λ, η)-packed.

We now define the next set of weighted functionals

W2 = W1 ∪ {
1

m j1 ⋅ ⋅ ⋅m j l

d
∑
i=1

f i ∣
f1<. . .< fd are in W1 and are

(n j1 , . . . ,n j l ,λ)-packed for some λ∈D}

with w( f ) = m j1 ⋅ ⋅ ⋅m j l , w⃗( f ) = (m j1 , . . . , m j�), and m( f ) = max1≤z≤l m jz . Now,
once we have defined the sets W0 , W1 , . . . , Wk , we replace W1 in Definitions 3.1 and
3.2 with Wk , and we write that

Wk+1 = Wk ∪ {
1

m j1 ⋅ ⋅ ⋅m j l

d
∑
i=1

f i ∣
f1<. . .< fd are in Wk and are

(n j1 , . . . ,n j l ,λ)-packed for some λ∈D}

for each k ∈ N. We then define our norming set W = ∪∞k=0Wk , and we let the Banach
space XD be the completion of c00 with respect to the norm that is given by ∥x∥ =
sup{ f (x) ∣ f ∈ W} for x ∈ c00.

Remark 3.1 By induction on k, where W = ∪∞k=0Wk , it is easy to prove the following.
(1) For every (n j1 , . . . , n j� , λ)-packed sequence f1 < ⋅ ⋅ ⋅ < fd in W,

f = 1
m j1 ⋅ ⋅ ⋅m j�

d
∑
i=1

f i

is in W.
Incorporating a nested induction on �, the following items can be shown.
(2) A subsequence of a (n j1 , . . . , n j� , λ)-packed sequence f1 < ⋅ ⋅ ⋅ < fd in W is also

(n j1 , . . . , n j� , λ)-packed.
(3) If f1 < ⋅ ⋅ ⋅ < fd is a (n j1 , . . . , n j� , λ)-packed sequence in W and g1 < ⋅ ⋅ ⋅ < gd are

in c00 such that, for 1 ≤ i ≤ d and s ∈ supp(g i), we have ∣g i(es)∣ = ∣ f i(es)∣, then
g1,. . .,gd are also in W, and they are (n j1 , . . . , n j� , λ)-packed.

In particular, (2) and (3) yield that W is closed under restricting the supports of its
members to subsets and changing the signs of their scalar coefficients, and thus, (e i)
is a 1-unconditional basis for XD.

https://doi.org/10.4153/S0008414X24000786 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000786


Separation of �1 spreading models and the Lebesgue property 9

We now prove that every spreading model of XD is uniformly equivalent to the
unit vector basis of �1. In fact, the precise statement of the following theorem is slightly
stronger than this assertion; it will be required in its full generality later, in the proof
of Proposition 5.2.

Theorem 3.2 Let (xr) be a normalized block sequence of (e i). Then, there exists an
infinite subset Ω ⊂ N such that, for every j0 ∈ N, there is the estimate

∥∑
r∈F

cr xr∥ ≥ 0.99 1
m j0

∑
r∈Γ
∣cr ∣

for every subset Γ ⊂ Ω such that (xr)r∈Γ are Sn j0
-admissible and for every choice (cr)r∈Γ

of scalars.

Proof Choose for every r ∈ N a norming functional fr ∈ W so that fr(xr) = 1 and so
that supp( fr) ⊂ supp(xr). Then, there are two cases to consider.

(i) lim supr→∞w( fr) = L < ∞

Here, we may pass to an infinite subset Ω1 ⊂ N so that w( fr) = m j1 ⋅ ⋅ ⋅m j l for
each r ∈ Ω1. Note that each fr with r ∈ Ω1 is then (n j1 , . . . , n j l , λr)-packed for
some λr ∈D. We may then pass to a further infinite subset Ω2 ⊂ Ω1 so that
d(λr , λ) ≤ 1

2 ⋅ 2
−max supp(xr−1) for each r ∈ Ω2/{min(Ω2)} and for some λ ∈D. Now,

let Ω = Ω2 and consider the subsequence (xr)r∈Ω2 . Let Γ ⊂ Ω be a subset such that
the block vectors (xr)r∈Γ are Sn j0

-admissible and let

fr =
1

m j1 ⋅ ⋅ ⋅m j l

dr

∑
q=1

f r
q r ∈ Γ

be the associated norming functionals. For each r ∈ Γ, let F r
1 < . . . < F r

Mr
be the

partition of {1, . . . , dr} and let λr
1 , . . . , λr

Mr
∈D be the corresponding nodes so that

Definition 3.2 is satisfied because the functionals f r
1 < . . . < f r

dr
are (n j1 , . . . , n j l , λr)-

packed. We will now show that the concatenation

f min(Γ)
min(Fmin(Γ)

2 )
< . . . < f min(Γ)

dmin(Γ)
< . . . < f max(Γ)

min(Fmax(Γ)
2 )

< . . . < f max(Γ)
dmax(Γ)

is in W. First, note that there is some κ ∈ N so that each functional in this
concatenation is a member of Wκ. It therefore remains to show that these functionals
are (n j1 , . . . , n j l , n j0 , λ)-packed. Indeed, it follows immediately that they are
Sn j1+ ⋅ ⋅ ⋅ +n j l +n j0

-admissible and are very fast-growing in the sense of Definition 3.2.
Then, let Fmin(Γ) < . . . < Fmax(Γ) be the partition of the number of functionals
in the above concatenation such that ( f i)i∈Fr = { f r

min(F r
2)

, . . . , f r
dr
} and note that

{ fmin(Fr)}r∈Γ = { f r
min(F r

2)
}r∈Γ is Sn j0

-admissible. Moreover,

(1) ( f i)i∈F1 = { f 1
min(F 1

2)
, . . . , f 1

d1
} is (n j1 , . . . , n j l , λ1)-packed.

(2) ( f i)i∈Fr = { f r
min(F r

2)
, . . . , f r

dr
} is (n j1 , . . . , n j l , λr)-packed for each r ∈

Γ/{min(Γ)} and, in addition, for each f i with i ∈ F r
k (where 2 ≤ k ≤ Mr), there is
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10 H. Gaebler, P. Motakis, and B. Sarı

d(m( f i), λr) ≤ d(m( f i), λr
k) + d(λr

k , λr)

≤ 2 ⋅ 2−max supp( fmax(Fr
k−1)
) ≤ 2−max supp( fmax(Fr−1))

so that, in fact, ( f i)i∈Fr is (n j1 , . . . , n j l , λr , 2−max supp( fmax(Fr−1)))-packed.
(3) d(λr , λ) ≤ 1

2 ⋅ 2
−max supp(xr−1) ≤ 2−max supp( fmax(Fr−1)) for each r ∈ Γ/{min(Γ)}.

Putting these pieces together, it follows that the functional

F = 1
m j1 ⋅ ⋅ ⋅m j l m j0

∑
r∈Γ

dr

∑
q=min(F r

2)
f r
q

is (n j1 , . . . , n j l , n j0 , λ)-packed and is therefore a member of Wκ+1 ⊂ W . Now, because
(xr)r∈Ω is itself 1-unconditional, there is the estimate

∥∑
r∈Γ

cr xr∥ = ∥∑
r∈Γ
∣cr ∣xr∥ ≥ F (∑

r∈Γ
∣cr ∣xr)

= 1
m j1 ⋅ ⋅ ⋅m j l m j0

∑
r∈Γ

dr

∑
q=min(F r

2)
f r
q
⎛
⎝∑p∈Γ

∣cp ∣xp
⎞
⎠

= 1
m j0

∑
r∈Γ

∣cr ∣
m j1 ⋅ ⋅ ⋅m j l

dr

∑
q=min(F r

2)
f r
q (xr)

= 1
m j0

∑
r∈Γ
∣cr ∣

⎛
⎝

fr(xr) −
1

m j1 ⋅ ⋅ ⋅m j l

∑
q∈F r

1

f r
q (xr)

⎞
⎠

≥ 1
m j0

∑
r∈Γ
∣cr ∣

⎛
⎝

1 − 1
m j l

⋅ 1
m j1 ⋅ ⋅ ⋅m j l−1

∑
q∈F r

1

f r
q (xr)

⎞
⎠

≥ 1
m j0

∑
r∈Γ
∣cr ∣ (1 − 1

m1
) = m1 − 1

m1m j0

∑
r∈Γ
∣cr ∣,

where we have used the fact that 1
m j1 ⋅ ⋅ ⋅ m j l−1

∑q∈F r
1

f r
q ∈ W , and this completes the

proof for the first case.
(ii) lim supr→∞w( fr) = ∞
In this case, there exists an infinite subset Ω1 ⊂ N such that w( fr) for
r ∈ Ω1/{min(Ω1)} is very fast-growing in the sense of Definition 3.1. Then, let
λr be the node in D that corresponds to m( fr) for each r ∈ Ω1. We may then pass to
a further infinite subset Ω2 ⊂ Ω1 so that d(λr , λ) ≤ 1

2 ⋅ 2
−max supp(xr−1) for some λ ∈D

and for each r ∈ Ω2/{min(Ω2)}. Now, let Ω = Ω2 and consider the subsequence
(xr)r∈Ω . Let Γ ⊂ Ω be a subset such that the block vectors (xr)r∈Γ are Sn j0

-admissible
and let fmin(Γ) < . . . < fmax(Γ) be the corresponding norming functionals. Note that
there is some κ ∈ N so that fr ∈ Wκ for each r ∈ Γ. Note also that, by construction,
these norming functionals are Sn j0

-admissible and are very fast-growing in the sense
of Definition 3.1. Moreover, there is the estimate

d(λr , λ) ≤ 2−max supp(xr−1) ≤ 2−max supp( fr−1)
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for each r ∈ Γ/{min(Γ)} so that these functionals are (n j0 , λ)-packed. Then, we have
that 1

m j0
∑r∈Γ fr ∈ Wκ+1 ⊂ W so that

∥∑
r∈Γ

cr xr∥ = ∥∑
r∈Γ
∣cr ∣xr∥ ≥

1
m j0

∑
r∈Γ

fr
⎛
⎝∑p∈Γ

∣cp ∣xp
⎞
⎠

= 1
m j0

∑
r∈Γ
∣cr ∣ fr(xr) =

1
m j0

∑
r∈Γ
∣cr ∣ ≥

m1 − 1
m1m j0

∑
r∈Γ
∣cr ∣,

and this completes the proof of the theorem. ∎

4 Auxiliary Banach spaces and c0-type estimate

So far, we have proved that all spreading models admitted by normalized weakly null
sequences in XD are uniformly equivalent to the unit vector basis of �1. The remaining
goal is to define in each subspace of XD a normalized collection (xλ)λ∈D satisfying
the �∞-estimate (1.1), and this will require some effort. As a first step, we define an
auxiliary norming set Waux,δ inducing a norm on c00 and an auxiliary Banach space
Xaux,δ
D

. We then prove estimates for the norm of linear combinations of “simple”
vectors, specifically weighted (n, ε) basic special convex combinations, in the auxiliary
space. These will be relevant later when a tool called the basic inequality will yield
high-precision estimates of linear combinations of special sequences of vectors, called
rapidly increasing sequences, in XD, in terms of sequences of basis vectors in Xaux,δ

D
.

We derive in this section a c0-type estimate for the action of auxiliary functionals
on weighted (n, ε)-basic scc vectors. The idea is that the functional evaluates to
something small if its weight is in some sense a mismatch to the (n, ε)-basic scc vector
weight. Let us first define the auxiliary functionals and auxiliary Banach spaces.

We will define an auxiliary Banach space for each δ > 0. First, fix δ > 0
and let Waux,δ

0 = {±e∗i }∞i=1 ⊂ c00 as before. Then, also as before, define w(±e∗i ) =
m(±e∗i ) = ∞ and define the set of auxiliary weighted functionals

Waux,δ
1 = Waux,δ

0 ∪ { 1
m j1 ⋅ ⋅ ⋅m j l

d
∑
k=1

e∗ik
∣ e∗i1

<. . .<e∗id
are

Sn j1 + ⋅ ⋅ ⋅ +n jl
∗A3-admissible} ,

where w( f ) = m j1 ⋅ ⋅ ⋅m j l , m( f ) = max1≤z≤l m jz , and w⃗( f ) = (m j1 , . . . , m j�), for
f ∈ Waux,δ

1 /Waux,δ
0 . We next define the following notion of proximity with respect to

D for functionals in Waux,δ
1 .

Definition 4.1 The functionals f1 < . . . < fd in Waux,δ
1 are said to be (n, λ)δ-packed

for some λ ∈D if the following conditions are satisfied:

(1) f1 < . . . < fd are Sn ∗A3-admissible,
(2) w( f i) ≥ 2max supp( f i−2) for 3 ≤ i ≤ d,
(3) d(m( f i), λ) ≤ δ for f i ∉ Waux,δ

0 and for 2 ≤ i ≤ d.

This definition is the base case for the following inductive definition.
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Definition 4.2 The functionals f1 < . . . < fd in Waux,δ
1 are said to be

(n j1 , . . . , n j l , λ)δ-packed for some λ ∈D if the following conditions hold:

(1) w( f i) ≥ 2max supp( f i−2) for 3 ≤ i ≤ d,
(2) There exists a partition F1 < . . . < FM of {1, . . . , d} such that the set { fmin(Fk)}M

k=1
is Sn j l

-admissible and such that the functionals ( f i)i∈Fk are Sn j1+ ⋅ ⋅ ⋅ +n j l−1
∗A3-

admissible for 1 ≤ k ≤ M,
(3) There exists a node λ1 ∈D such that ( f i)i∈F1 is (n j1 , . . . , n j l−1 , λ1)δ-packed,
(4) d(m( f i), λ) ≤ δ for f i ∈ (⋃M

k=2 Fk) /Waux,δ
0 .

It is worth noting that a subset of (n j1 , . . . , n j l , λ)δ-packed functionals in Waux,δ
1

is still (n j1 , . . . , n j l , λ)δ-packed, and we now define the next set of auxiliary weighted
functionals

Waux,δ
2 = Waux,δ

1 ∪ { 1
m j1 ⋅ ⋅ ⋅m j l

d
∑
i=1

f i ∣ f1<. . .< fd are in Waux,δ
1 and are

(n j1 , . . . ,n j l ,λ)δ -packed for some λ∈D}

with w( f ) = m j1 ⋅ ⋅ ⋅m j l , m( f ) = max1≤z≤l m jz , and w⃗( f ) = (m j1 , . . . , m j�). Now,
once we have defined the sets Waux,δ

0 , Waux,δ
1 , . . . , Waux,δ

k , we replace Waux,δ
1 in

Definitions 4.1 and 4.2 with Waux,δ
k and, we write that

Waux,δ
k+1 = Waux,δ

k ∪ { 1
m j1 ⋅ ⋅ ⋅m j l

d
∑
i=1

f i ∣
f1<. . .< fd are in Waux,δ

k and are
(n j1 , . . . ,n j l ,λ)δ -packed for some λ∈D}

for each k ∈ N. We then define our norming set Waux,δ = ⋃∞k=0 Waux,δ
k , and we let the

Banach space Xaux,δ
D

be the completion of c00 with respect to the norm that is given
by ∥x∥Waux,δ = sup{ f (x) ∣ f ∈ Waux,δ} for x ∈ c00. We will need the following lemma
before we can prove the main result of this section.

Lemma 4.1 Let f = 1
m j1 ⋅ ⋅ ⋅ m j l

∑d
i=1 f i ∈ Waux,δ . Then, {i ∣ f i ∉ Waux,δ

0 } = E0 ∪ E1 ∪
. . . ∪ E l , where card(E0) ≤ 1 and, for each 1 ≤ z ≤ l , ( f i)i∈Ez is Sn j1+ ⋅ ⋅ ⋅ +n jz

∗A3-
admissible and maxi∈Ez dT(m( f i), λz) ≤ δ for some λz ∈D.

Proof We proceed by induction on the length l of the tuple (m j1 , . . . , m j l ). If l = 1,
then f = 1

m j1
∑d

i=1 f i ∈ Waux,δ
k for some k ≥ 1, and we put

E0 = {1}/{i ∣ f i ∈ Waux,δ
0 }

E1 = {2, . . . , d}/{i ∣ f i ∈ Waux,δ
0 }

and note that, if k = 1, then E0 = E1 = ∅ so that the result holds vacuously. Assume then
that k > 1 and note that f1 < . . . < fd are in Waux,δ

k−1 and are (n j1 , λ)δ-packed for some
λ ∈D. It therefore follows by definition that ( f i)i∈E1 are Sn j1

∗A3-admissible and that
maxi∈E1 d(m( f i), λ) ≤ δ.

Assume now that the result holds for functionals of the form f =
1

m j1 ⋅ ⋅ ⋅ m j l
∑d

i=1 f i ∈ Waux,δ and let g = 1
m j1 ⋅ ⋅ ⋅ m j l m j l+1

∑d
i=1 g i ∈ Waux,δ . As above, the

result holds vacuously if g ∈ Waux,δ
1 , so assume that g ∈ Waux,δ

k for some k > 1. In this
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case, we have that g1 < . . . < gd are in Waux,δ
k−1 and are (n j1 , . . . , n j l , n j l+1 , λ)δ-packed

for some λ ∈D. It follows that there is a partition F1 < . . . < FM of {1, . . . , d} as in
Definition 4.2. Note that in particular that (g i)i∈F1 are (n j1 , . . . , n j l , λ1)δ-packed
for some λ1 ∈D so that the functional g̃ = 1

m j1 ⋅ ⋅ ⋅ m j l
∑i∈F1 g i ∈ Waux,δ . Then, by

the inductive hypothesis, there are sets E0 ∪ E1 ∪ . . . ∪ E l ⊂ F1 so that the required
claim holds for g̃. Now, let E l+1 = (⋃M

r=2 Fr) /{i ∣ g i ∈ Waux,δ
0 }, and it follows that the

required claim holds for g itself so that the proof is complete. ∎

We now derive the aforementioned c0-type estimate for auxiliary weighted func-
tionals whose weights in some sense mismatch the weights of weighted (n, ε)-basic scc
vectors. First, we make a remark about the relation between the weight of a functional
and the admissibility of its components.

Remark 4.2 Let j ∈ N and f ∈ W such that m( f ) < m j and w( f ) < m4
j . Then,

if w⃗( f ) = (m j1 , . . . , m j�), n j1 + ⋅ ⋅ ⋅ + n j� < n j . Indeed, m l
1 ≤ w( f ) < m4

j , and thus,
l < 4 log(m j)/ log(100). By condition (2) on page 8,

n j1 + ⋅ ⋅ ⋅ + n j l ≤ ln j−1 < n j−14
log(m j)
log(100) ≤ n j .

Proposition 4.3 Let N ∈ N ∪ {0} and choose (t i)2N

i=1 such that d(mt i , mt i′
) ≥ 2−N for

each i ≠ i′. Then, choose ε i ∈ (0, 1
3m t i 2N ) and define a (nt i , ε i)-basic scc by

x i = mt i ∑
r∈Fi

c i
r e ir

for each 1 ≤ i ≤ 2N . It follows that ∣ f (∑i∈Ω a i x i)∣ ≤ (1 + 4√
w( f )

)maxi∈Ω ∣a i ∣ for every

subset Ω ⊂ {1, . . . , 2N}, for every choice (a i)i∈Ω of scalars, and for every auxiliary
weighted functional f = 1

m j1 ⋅ ⋅ ⋅ m j l
∑d

q=1 fq ∈ Waux,δ where δ < 2−(N+1).

Proof Let Ω ⊂ {1, . . . , 2N} be given. We will proceed by induction on the
level k norming sets Waux,δ

k , and the inductive hypothesis will include that
∣ f (∑i∈A f (Ω) a i x i)∣ < 4γ√

w( f )
if f ∉ Waux,δ

0 , where γ = maxi∈Ω ∣a i ∣ and where
A f (Ω) ∶= {i ∈ Ω ∣ mt i ≠ m( f )}. The base case is the level k = 1 norming set, and we
first let f ∈ Waux,δ

0 so that

∣ f (∑
i∈Ω

a i x i)∣ =
"""""""""""
e∗i0

⎛
⎝∑i∈Ω

a i mt i ∑
r∈Fi

c i
r er
⎞
⎠

"""""""""""
≤ max

i∈Ω
ε i mt i ∣a i ∣ < max

i∈Ω
∣a i ∣

for some i0 ∈ N. It therefore remains to check functionals of the form

f = 1
m j1 ⋅ ⋅ ⋅m j l

d
∑
q=1

e∗iq
∈ Waux,δ

1 /Waux,δ
0 ,
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and we write A f (Ω) = {i ∈ Ω ∣ mt i ≠ m( f )} = A1 ∪ A2 ∪ A3, where

A1 = {i ∈ Ω ∣ mt i < m( f )}
A2 = {i ∈ Ω ∣ m( f ) < mt i and n j1 + ⋅ ⋅ ⋅ + n j l < nt i}
A3 = {i ∈ Ω ∣ m( f ) < mt i and n j1 + ⋅ ⋅ ⋅ + n j l ≥ nt i}

so that Ω/A f (Ω) is at most a singleton {i0} with mt i0
= m( f ). Then, we have that

∣ f (∑
i∈Ω

a i x i)∣ ≤
3
∑
p=1

""""""""""""
f
⎛
⎝∑i∈Ap

a i x i
⎞
⎠

""""""""""""
+ ∣ f (a i0 x i0)∣ ≤

3
∑
p=1

""""""""""""
f
⎛
⎝∑i∈Ap

a i x i
⎞
⎠

""""""""""""
+max

i∈Ω
∣a i ∣

because ∣ f (x i0)∣ ≤
m t i0
w( f ) ≤ 1. Now, recall that γ = maxi∈Ω ∣a i ∣ and note that, for A1, there

is the estimate
�����������

f
⎛
⎝∑i∈A1

a i x i
⎞
⎠

�����������
≤ ∑

i∈A1

∣ f (a i x i)∣ ≤
γ

w( f ) ∑i∈A1

mt i

≤ γ
w( f )card(A1)mtmax(A1)

≤ γ
w( f ) tmax(A1)mtmax(A1)

≤ γ
w( f )(ind(m( f )) − 1)mind(m( f ))−1 ≤

γmind(m( f ))

w( f )√mind(m( f ))
≤ γ√

w( f )
,

where we have used the first condition on the sequence (m j) and the fact that
t i < ind(m( f )) ∶= max1≤z≤l jz for each i ∈ A1. Next, for A2, note that

"""""""""""
f
⎛
⎝∑i∈A2

a i x i
⎞
⎠

"""""""""""
≤ γ

w( f ) ∑i∈A2

mt i

"""""""""""

d
∑
q=1

e∗iq

⎛
⎝∑r∈Fi

c i
r er
⎞
⎠

"""""""""""
≤ γ

w( f ) ∑i∈A2

3mt i ε i ≤
γ

w( f ) ∑i∈A2

1
2N ≤ γ

w( f ) ≤
γ√

w( f )
,

where we have used the observation that immediately precedes Proposition 2.1 and
the fact that e∗i1

< . . . < e∗id
are Sn j1+ ⋅ ⋅ ⋅ +n j l

∗A3-admissible with n j1 + ⋅ ⋅ ⋅ + n j l < nt i

for each i ∈ A2. Lastly, for A3, note that
"""""""""""

f
⎛
⎝∑i∈A3

a i x i
⎞
⎠

"""""""""""
≤ γ

w( f ) ∑i∈A3

mt i ≤
γ

w( f ) ∣A3∣mtmax(A3)

≤
γm2

tmax(A3)

w( f ) ≤
γ
√

w( f )
w( f ) = γ√

w( f )

because m2
t i
≤
√

w( f ) for each i ∈ A3, by Remark 4.2. It now follows by putting these
pieces together that

∣ f (∑
i∈Ω

a i x i)∣ ≤ γ + 3γ√
w( f )

for each f ∈ Waux,δ
1 , and, in particular, we have that ∣ f (∑i∈A f (Ω) a i x i)∣ < 4γ√

w( f )
, as

is required as part of the inductive hypothesis.
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Assume now that the statement of Proposition 4.3 holds for every functional
f ∈ Waux,δ

k , let Ω ⊂ {1, . . . , 2N} be given, and let

f = 1
m j1 ⋅ ⋅ ⋅m j l

d
∑
q=1

fq ∈ Waux,δ
k+1 /Waux,δ

k ,

where fq ∈ Waux,δ
k for each 1 ≤ q ≤ d. Define the sets B = {q ∣ fq ∈ Waux,δ

0 } and
C = {3, . . . , d}/B. We may then write f = ∑4

α=1 gα , where

g1 =
1

w( f ) f1 , g2 =
1

w( f ) f2 , g3 =
1

w( f ) ∑q∈B
fq , and g4 =

1
w( f ) ∑q∈C

fq ,

and it follows that

∣ f (∑
i∈Ω

a i x i)∣ ≤
""""""""""""

f
⎛
⎝ ∑

i∈A f (Ω)
a i x i

⎞
⎠

""""""""""""
+ ∣ f (a i0 x i0)∣ ≤ max

i∈Ω
∣a i ∣ +

""""""""""""
f
⎛
⎝ ∑

i∈A f (Ω)
a i x i

⎞
⎠

""""""""""""
,

where, as before, A f (Ω) = {i ∈ Ω ∣ mt i ≠ m( f )} so that Ω/A f (Ω) is at most a single-
ton {i0} with mt i0

= m( f ), in which case, ∣ f (x i0)∣ ≤
m t i0
w( f ) ≤ 1. Let γ = maxi∈Ω ∣a i ∣ as

before, and it now remains to estimate
������������

f
⎛
⎝ ∑i∈A f (Ω)

a i x i
⎞
⎠

������������
≤

4
∑
α=1

������������
gα
⎛
⎝ ∑i∈A f (Ω)

a i x i
⎞
⎠

������������

≤ 1
w( f )

������������
f1
⎛
⎝ ∑i∈A f (Ω)

a i x i
⎞
⎠

������������
+ 1

w( f )

������������
f2
⎛
⎝ ∑i∈A f (Ω)

a i x i
⎞
⎠

������������

+ 1
w( f )

������������
∑
q∈B

fq
⎛
⎝ ∑i∈A f (Ω)

a i x i
⎞
⎠

������������
+ 1

w( f )

������������
∑
q∈C

fq
⎛
⎝ ∑i∈A f (Ω)

a i x i
⎞
⎠

������������
,

where, after applying the inductive hypothesis to the g1 and g2 terms and using the
same argument as is used in the base case for the g3 term, this quantity is bounded
above by

γ
w( f )

⎛
⎝

1 + 3√
w( f1)

⎞
⎠
+ γ

w( f )
⎛
⎝

1 + 3√
w( f2)

⎞
⎠
+ 3γ√

w( f )
+ 1

w( f )

������������
∑
q∈C

fq
⎛
⎝ ∑i∈A f (Ω)

a i x i
⎞
⎠

������������

≤
13
5 γ

w( f ) +
3γ√
w( f )

+ 1
w( f )

������������
∑
q∈C

fq
⎛
⎝ ∑i∈A f (Ω)

a i x i
⎞
⎠

������������

≤
(3 + 13

50 )γ√
w( f )

+ 1
w( f )

������������
∑
q∈C

fq
⎛
⎝ ∑i∈A f (Ω)

a i x i
⎞
⎠

������������

because m1 ≥ 100. Now, note that there are sets E0 ∪ E1 ∪ . . . ∪ E l from Lemma 4.1
such that {q ∣ fq ∈ C} = E0 ∪ E1 ∪ . . . ∪ E l and such that, for each 1 ≤ z ≤ l , we have
that ( fq)q∈Ez is Sn j1+ ⋅ ⋅ ⋅ +n jz

∗A3-admissible and maxq∈Ez d(m( fq), λz) ≤ δ for some
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16 H. Gaebler, P. Motakis, and B. Sarı

λz ∈D. Next, let Γz = {i ∈ A f (Ω) ∣ mt i = m( fq) for some q ∈ Ez} for each 1 ≤ z ≤ l
and note that if i1 , i2 ∈ Γz , then we have that

2−N ≤ d(mt i1
, mt i2

)
= d(m( fq1), m( fq2)) ≤ d(m( fq1), λz) + d(λz , m( fq2)) ≤ 2δ

for the corresponding q1 , q2 ∈ Ez , and this cannot happen. It follows that Γz is at most
a singleton, say iz , for each 1 ≤ z ≤ l so that

""""""""""""
∑
q∈C

fq
⎛
⎝ ∑

i∈A f (Ω)
a i x i

⎞
⎠

""""""""""""
≤

l
∑
z=0

∑
q∈Ez

""""""""""""
fq
⎛
⎝ ∑

i∈A f (Ω)/{iz}
a i x i

⎞
⎠

""""""""""""
+

l
∑
z=0

∑
q∈Ez

∣ fq(a iz x iz)∣

≤
l
∑
z=0

∑
q∈Ez

4γ√
w( fq)

+ γ
l
∑
z=0

∑
q∈Ez

mt iz

w( fq)

≤ (l + 1)γ +
l
∑
z=0

∑
q∈Ez

4γ√
w( fq)

≤ (l + 5)γ,

where again, we have used the inductive hypothesis, and, by putting all of these pieces
together, there is the estimate

∣ f (∑
i∈Ω

a i x i)∣ ≤ γ +
(3 + 13

50 )γ
√

w( f )
+ (l + 5)γ

w( f )

≤ γ +
(3 + 13

50 )γ
√

w( f )
+ (l + 5)γ

10l
√

w( f )
≤ γ +

(3 + 13
50 +

3
5 )γ

√
w( f )

≤ γ + 4γ√
w( f )

,

where, in particular, ∣ f (∑i∈A f (Ω) a i x i)∣ ≤ 4γ√
w( f )

so that the proof is complete. ∎

5 Rapidly increasing sequences and basic inequality

Rapidly increasing sequences (RISs) and the basic inequality are standard concepts
used in most Banach spaces constructions using saturated norms, such as XD. The
main utility of such sequences is that they can be found in every infinite-dimensional
subspace of XD, and, via the basic inequality, the norm of their linear combinations
is bounded above by the same linear combinations of basis vectors in the auxiliary
space Xaux,δ

D
. RISs first appeared in [26], and the basic inequality has its roots in [1].

These tools will be essential in Section 6 when we construct, in an arbitrary infinite-
dimensional block subspace of XD, a tree of normalized vectors that witness the failure
of the Lebesgue property.

We begin with a short technical lemma, and we recall that supp(0) = ∅ and that
∅ < A and A < ∅ for every subset A ⊂ N.

Lemma 5.1 Fix δ > 0 and assume that f1 < . . . < fd ∈ W with 2−max supp( f1) ≤ δ
2 are

(n j1 , . . . , n j l , λ)-packed for some λ ∈D. Next, suppose that there exist sets of functionals
F1 , . . . ,Fd such that, for each 1 ≤ q ≤ d, Fq = {gq

1 , gq
2 , gq

3 }with gq
r ∈ {0} ∪Waux,δ , and

(1) ∪3
r=1supp(gq

r ) ⊂ supp( fq) and supp(gq
1 ) < supp(gq

2 ) < supp(gq
3 ),

(2) there is at most one gq
r̃ ∈ Fq such that gq

r̃ is not a unit vector,
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Separation of �1 spreading models and the Lebesgue property 17

(3) there is at most one gq
r ∈ Fq whose support precedes the support of gq

r̃ , and
(4) for gq

r̃ ∈ Fq that is not a unit vector, w⃗(gq
r̃ ) = w⃗( fq).

Then, the functionals (gq
r )3,d

r=1,q=1 are (n j1 , . . . , n j l , λ)δ-packed.

Proof We proceed by induction on the length l of the tuple (m j1 , . . . , m j l ). Let l = 1
and assume that f1 < . . . < fd ∈ W with 2−max supp( f1) ≤ δ are (n j1 , λ)-packed for some
λ ∈D. Then, (gq

r )3,d
r=1,q=1 ⊂ Waux,δ

k for some k ∈ N are Sn j1
∗A3-admissible, and we

have that

w(gq
r̃ ) = w( fq) ≥ 2max supp( fq−1) ≥ 2max supp(φ)

for each gq
r̃ ∈ Fq with at least two preceding nonzero functionals, where φ is the

nonzero functional that is two before gq
r̃ . It follows that (gq

r )3,d
r=1,q=1 are skipped very

fast-growing in the sense of Definition 4.1. Moreover, we have that

d(m(gq
r̃ ), λ) = d(m( fq), λ) ≤ 2−max supp( fq−1) ≤ 2−max supp( f1) ≤ δ

2
< δ

for 2 ≤ q ≤ d so that (gq
r )d ,3

q=1,r=1 are (n j1 , λ)δ-packed.
Assume now that the result holds for tuples of length l and let f1 < . . . < fd ∈ W

be (n j1 , . . . , n j l , n j l+1 , λ)-packed for some λ ∈D. Let F1 , . . . ,Fd be sets of at most
three auxiliary weighted functionals as in the statement of the lemma and let
F1 < . . . < FM be a partition of {1, . . . , d} as in Definition 3.2. Note that ( fq)q∈F1 are
(n j1 , . . . , n j l , λ1)-packed for some λ1 ∈D. It therefore follows from the inductive
hypothesis that (gq

r )3
r=1,q∈F1

are (n j1 , . . . , n j ; , λ1)δ-packed. Moreover, for each gq
r̃ with

q ∈ Fp for p > 1, we have that

d(m(gq
r̃ ), λ) = d(m( fq), λ) ≤ d(m( fq), λp) + d(λp , λ)

≤ 2 ⋅ 2−max supp( fmax(Fp−1)) ≤ 2 ⋅ 2−max supp( f1) ≤ δ,

and because (gq
r )d ,3

q=1,r=1 are skipped very fast-growing in the sense of Definition 4.2
by the same reasoning that is used in the base case, it follows that these functionals
are (n j1 , . . . , n j l , n j l+1 , λ)δ-packed so that the proof is complete. ∎

We now recall from [5] the notion of a rapidly increasing sequence (RIS).

Definition 5.1 Let C ≥ 1, let I ⊂ N be an interval, and let ( j i)i∈I be a strictly increasing
sequence of positive integers. Then, a block sequence (x i)i∈I is said to be a (C , ( j i)i∈I)-
RIS if the following three statements hold:

(1) ∥x i∥ ≤ C for each i ∈ N.
(2) max supp(x i−1) <

√m j i for each i ∈ I/{min(I)}.
(3) ∣ f (x i)∣ ≤ C

w( f ) for each i ∈ I and for every f ∈ W with w( f ) < m j i .

We recall the steps of a standard argument that shows that there exists a RIS in
every block subspace of XD. For some of the details, we refer to specific parts of [5].
The proposition below is proved word-for-word as [5, Proposition 6.3], and it requires
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18 H. Gaebler, P. Motakis, and B. Sarı

only two things: Theorem 3.2 (in place of [5, Proposition 4.1]) and that, for every C > 1,
m−1

j Cn j →∞. The latter is true because, by condition (2) on page 8,

log(Cn j

m j
) > 4 log(C)

log(100)n j−1 log(m j) − log(m j) = log(m j)(
4 log(C)n j−1

log(100) − 1) .

Proposition 5.2 Let Y be a block subspace of XD. Then, for every n ∈ N, ε > 0,
and δ > 0, there exists a (n, ε) special convex combination x = ∑m

i=1 c i x i such that
∥x∥ > 1/(1 + δ) and x1 , . . . , xm are block vectors in Y of norm at most one.

The next proposition is also proved verbatim as [5, Proposition 6.4], and it uses
Remark 4.2.

Proposition 5.3 Let j ∈ N, ε > 0, and x = ∑m
i=1 c i x i be an (n j , ε)-special convex

combination such that ∥x i∥ ≤ 1, 1 ≤ i ≤ m. Then, for every f ∈ W such that w( f ) < m j ,

∣ f (x)∣ ≤ 1 + 2w( f )ε
w( f ) .

The desired conclusion follows immediately from Proposition 5.2 and
Proposition 5.3.

Corollary 5.4 For every C > 1 and in every block subspace Y of XD, there exists a
(C , ( j i)i∈N)-RIS (x i), with ∥x i∥ ≥ 1, for i ∈ N.

We now prove the basic inequality that transfers the action of a weighted functional
f ∈ W to the action of auxiliary weighted functionals on appropriate unit vectors.

Proposition 5.5 Let (x i)i∈I be a (C , ( j i)i∈I)-RIS with 2−min supp(xmin(I)) ≤ δ. Then, for
every functional f = 1

m j1 ⋅ ⋅ ⋅ m j l
∑d

q=1 fq ∈ W, there exist functionals h ∈ {0} ∪Waux,δ
0

and g ∈ Waux,δ with w⃗(g) = w⃗( f ) such that

∣ f (∑
i∈I

a i x i)∣ ≤ C (1 + 1
√m jmin(I)

) ∣(h + g)(∑
i∈I

a i et i)∣

for every choice (a i)i∈I of scalars where t i = max supp(x i) for each i ∈ I.

Proof We proceed by induction on the level k norming sets Wk , and the base case is
the level k = 0 set W0 = {±e∗i ∣ i ∈ N}. Indeed, if f = e∗i0

∈ W0, then

∣e∗i0
(∑

i∈I
a i x i)∣ ≤ ∣a i1 e∗i0

(x i1)∣ ≤ C∣a i1 ∣ = C∣e∗t i1
(at i1

et i1
)∣,

where i0 ∈ supp(x i1) so that the desired estimate holds with h = {0} and with g = e∗t i1
.

Note that, as part of the inductive hypothesis, we have that supp(h), supp(g) ⊂ {t i}i∈I
and that either h = 0 or h ∈ Waux,δ

0 , supp(h) < min supp(g).
Assume now that the desired estimate holds for functionals in the level k norming

set Wk and consider the functional

f = 1
m j1 ⋅ ⋅ ⋅m j l

d
∑
q=1

fq ∈ Wk+1/Wk ,
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which is to say that f1 < . . . < fd are in Wk and are (n j1 , . . . , n j l , λ)-packed for some
λ ∈D. We omit if necessary the functionals fq that are below the support of xmin(I).
It then follows that

1
δ
≤ 2min supp(xmin(I)) ≤ 2max supp( f1) �⇒ 2−max supp( f1) ≤ δ,

and we will use this observation later. First, define the quantity i0 by

i0 = max{i ∈ I ∣ m j1 ⋅ ⋅ ⋅m j l ≥ m j i}

if it exists. If there does exist such an i0, then choose i1 ∈ [min(I), i0] so that
∣a i1 ∣ = max{∣a i ∣}i1

i=min(I) and define the functional h = sign(a i1)e∗t i1
∈ Waux,δ

0 . Note
that, if min(I) = i0 = i1, then

"""""""""""
f
⎛
⎝∑i≤i0

a i x i
⎞
⎠

"""""""""""
= ∣ f (a i1 x i1)∣ ≤ C∣a i1 ∣ = Ch(a i1 et i1

),

and, if min(I) < i0, then
"""""""""""

f
⎛
⎝∑i≤i0

a i x i
⎞
⎠

"""""""""""
≤ ∣a i0 f (x i0)∣ + ∑

i<i0

∣a i f (x i)∣ ≤ C∣a i0 ∣ + ∑
i<i0

"""""""""""

a i

w( f )
d
∑
q=1

fq(x i)
"""""""""""

≤ C∣a i1 ∣ +
∣a i1 ∣
m j i0

∑
i<i0

d
∑
q=1

""""""""""""
fq
⎛
⎝ ∑

r∈supp(x i)
br er

⎞
⎠

""""""""""""
≤ C∣a i1 ∣ +

∣a i1 ∣
m j i0

∑
i<i0

∑
r∈supp(x i)

∣br ∣ ≤ C∣a i1 ∣ +
C∣a i1 ∣
m j i0

max supp(x i0−1)

≤ C (1 + 1
√m j i0−1

) ∣a i1 ∣ ≤ C (1 + 1
√m jmin(I)

) h
⎛
⎝∑i≤i0

a i et i

⎞
⎠

.

If, however, there is no such number i0, then the sum ∑i≤i0 a i x i is empty, so we take
h = 0.

Next, let Ĩ = {i ∈ I ∣ i > i0} if such an i0 exists and put Ĩ = I otherwise. We then
define the subsets

A = {i ∈ Ĩ ∣ supp(x i) ∩ supp( fq) ≠ ∅ for at most one q}
Iq = {i ∈ A ∣ supp(x i) ∩ supp( fq) ≠ ∅}
D = {q ∣ Iq ≠ ∅}
B = Ĩ/A

so that the intervals Iq are pairwise disjoint and supp(x i) intersects the support of at
least two fq if i ∈ B. It follows by the inductive hypothesis that, for each q ∈ D, there
exist functionals hq ∈ {0} ∪Waux,δ

0 and gq ∈ Waux,δ with w⃗(gq) = w⃗( fq) so that
""""""""""""

fq
⎛
⎝∑i∈Iq

a i x i
⎞
⎠

""""""""""""
≤ C (1 + 1

√m jmin(I)

)
""""""""""""
(hq + gq)

⎛
⎝∑i∈Iq

a i et i

⎞
⎠

""""""""""""
,
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where supp(hq), supp(gq) ⊂ supp( fq) and we have that either hq = 0 or hq ∈ {et i}i∈Iq

and t i < min supp(gq). Now, replace hq + gq by sign [(hq + gq) (∑i∈Iq
a i et i)]

(hq + gq) if necessary and note that
"""""""""""

f
⎛
⎝∑i∈Ĩ

a i x i
⎞
⎠

"""""""""""
≤ ∑

i∈B
∣ f (x i)∣ +

1
w( f ) ∑q∈D

""""""""""""
fq
⎛
⎝∑i∈Iq

a i x i
⎞
⎠

""""""""""""

≤ C
w( f ) ∑i∈B

∣a i ∣ + C (1 + 1
√m jmin(I)

) 1
w( f ) ∑q∈D

(hq + gq)
⎛
⎝∑i∈Iq

a i et i

⎞
⎠

≤ C (1 + 1
√m jmin(I)

) 1
w( f )

⎡⎢⎢⎢⎢⎣
∑
i∈B

h̃ i + ∑
q∈D

(hq + gq)
⎤⎥⎥⎥⎥⎦

⎛
⎝∑i∈Ĩ

a i et i

⎞
⎠

,

where we have used the third condition from Definition 5.1 and where h̃ i = sign(a i)e∗t i

for each i ∈ B. It therefore follows that

∣ f (∑
i∈I

a i x i)∣ ≤ C (1 + 1
√m jmin(I)

)[(h + g)(∑
i∈I

a i et i)] ,

where either h = 0 or h ∈ {et i}i0
i=min(I) and supp(h) = t i1 < min supp(g). Indeed, we

have that

g = 1
w( f )

⎛
⎝∑i∈B

h̃ i + ∑
q∈D

(hq + gq)
⎞
⎠

so that w⃗( f ) = w⃗(g). It remains to prove that g ∈ Waux,δ . To that end, define for each
i ∈ B the quantity q i = max{1 ≤ q ≤ d ∣ min supp( fq) ≤ max supp(x i) = t i} and note
that the correspondence i ↦ q i is strictly increasing. If q = q i for some i ∈ B, then
write Fq = {hq , gq , h̃ i}. If q ≠ q i for any i ∈ B, then write Fq = {hq , gq}. Note that Fq
may consist only of h̃ i or may be empty if q ∉ D. It therefore follows from Lemma 5.1
(applied to ( fq)q∈D) that g ∈ Waux,δ , and this completes the proof. ∎

6 The failure of the Lebesgue property in subspaces of XD

In this section, we put together the results of the previous two sections in order
to prove that every subspace of XD contains a normalized collection (yλ)λ∈D that
satisfies the estimates (1.1), and thus witnesses the failure of the Lebesgue property.

Theorem 6.1 Let Y be an infinite-dimensional block subspace of XD. Then, there exists
a normalized collection (yλ)λ∈D in Y that is block with the lexicographical order of
D such that the following holds: for every N ∈ N and (μλ)λ∈{0,1}N in D such that, for
λ ∈ {0, 1}N , μλ ≥ λ and for any scalars (aλ)λ∈{0,1}N ,

max
λ∈{0,1}N

∣aλ ∣ ≤ ∥ ∑
λ∈{0,1}N

aλ yμλ∥ ≤ 3 max
λ∈{0,1}N

∣aλ ∣.

In particular, the Lebesgue property fails in every infinite-dimensional closed subspace
of XD.
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Proof Let Y ⊂ XD and let Z ⊂ Y be a block subspace. Then, fix C > 1 and let (z i)
be an infinite (C , ( j i)i∈N)-RIS in Z with 1 ≤ ∥z i∥ for each i ∈ N, which exists by
Corollary 5.4. By passing to a subsequence, we may assume that the conclusion of
Theorem 3.2 is satisfied. Recall that the nodes of D are in lexicographical order
with respect to M and choose for each weight m j a number ε j ∈ (0, 1

3m j 2N j ), where
N j = ∣ϕ(m j)∣.

Now, let F1 < F2 < . . . be subsets of N so that {min supp(z i) ∣ i ∈ F j} is a maximal
set in Sn j with respect to inclusion for each j ∈ N. It follows from Proposition 2.1 that
there exist coefficients (c j

i )i∈F j so that the vector ∑i∈F j
c j

i e i is an (n j ,
ε j

2 )-basic scc. In
particular, we have that xm j = ∑i∈F j

c j
i z i is an (n j ,

ε j

2 )-scc, and we note also that

∥xm j∥ =
!!!!!!!!!!!!
∑
i∈F j

c j
i z i

!!!!!!!!!!!!
≥ m1 − 1

m1m j
∑
i∈F j

c j
i =

m1 − 1
m1m j

from Theorem 3.2. Let x̃m j = m jx j and define, for λ ∈D, yλ = x̃ϕ−1(m j)/∥x̃ϕ−1(m j)∥ so
that (yλ) is a normalized sequence in Z that is block in the lexicographical order of D.

Now, fix N ∈ N and, for λ ∈ {0, 1}N , let μλ ∈D such that μλ ≥ λ. Because (yλ)λ∈D is
lexicographically block, there are 2N ≤ j1 < ⋅ ⋅ ⋅ < j2N such that ϕ({m j1 , . . . , m j2N }) =
{μλ ∶ λ ∈ {0, 1}N}. In particular, min supp(yμλ) ≥ N , λ ∈ {0, 1}N . Furthermore, for
λ ∈ {0, 1}N , μλ ≥ λ, and thus, for 1 ≤ k ≠ k′ ≤ 2N , d(m jk , m jk′

) ≥ 2−N . Then, it follows
that

!!!!!!!!!!!!
∑

λ∈{0,1}N

yμλ

!!!!!!!!!!!!
= F

⎛
⎝ ∑

λ∈{0,1}N

yμλ

⎞
⎠
= F

⎛
⎝

2N−1
∑
k=0

1
∥x̃m jk

∥m jk ∑
i∈F jk

c jk
i z i

⎞
⎠

(#)

for some norming functional F ∈ W , and, by Proposition 5.5, this quantity is bounded
above by

C
""""""""""""
(h + g)

⎛
⎝

2N−1
∑
k=0

1
∥x̃m jk

∥m jk ∑
i∈F jk

c jk
i eρ(i)

⎞
⎠

""""""""""""
(##),

where h ∈ Waux,δ
0 ∪ {0}, g ∈ Waux,δ with w⃗(g) = w⃗(F ), and where ρ(i) =

max supp(z i) for each i ∈ N. Note that ∑i∈F jk
c jk

i eρ(i) is for each 0 ≤ k ≤ 2N − 1
an (n jk , ε jk)-basic scc by the observation that immediately follows Proposition 2.1,
and note also that

m jk

∥x̃m jk
∥ =

1
∥xm jk

∥ ≤
m1m jk

m1 − 1
.

It therefore follows that (##) is bounded above by

C max
0≤k≤2N−1

m jk ε jk

∥x̃ jk∥
+ C

""""""""""""
g
⎛
⎝

2N−1
∑
k=0

1
∥x̃ jk∥

m jk ∑
i∈F jk

c jk
i eρ(i)

⎞
⎠

""""""""""""
(###),
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and lastly, by Proposition 4.3, we note that (###) is bounded above by

C
m1m jk

m1 − 1
1

3m jk 2N jk
+ C

⎛
⎝

1 + 4√
w(g)

⎞
⎠

max
0≤k≤2N−1

1
∥x̃ jk∥

≤ C 100
99

(1 + (1 + 2
5
)) ≤ 3,

for C > 1 sufficiently close to one. The estimate for arbitrary scalars coefficients follows
from the 1-unconditionality of the basis of XD. ∎
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