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Abstract
The severe ice losses observed for European glaciers in recent years have increased the interest
in monitoring short-term glacier changes. Here, we present a method for constraining modelled
glacier mass balance at the sub-seasonal scale and apply it to ten selected glaciers in the Swiss
Alps over the period 2015–23. The method relies on observations of the snow-covered area frac-
tion (SCAF) retrieved from Sentinel-2 imagery and long-term mean glacier mass balances. The
additional information provided by the SCAF observations is shown to improve winter mass bal-
ance estimates by 22% on average over the study sites and by up to 70% in individual cases. Our
approach exhibits good performance, with a mean absolute deviation (MAD) to the observed
seasonal mass balances of 0.28mw.e. and anMAD to the observed SCAFs of 6%.The results high-
light the importance of accurately constraining winter accumulation when aiming to reproduce
the evolution of glacier mass balance over the melt season and to better separate accumulation
and ablation components. Since our method relies on remotely sensed observations and avoids
the need for in situ measurements, we conclude that it holds potential for regional-scale glacier
monitoring.

1. Introduction

Glaciers in the European Alps are melting about twice as fast as the worldwide average (Zemp
and others, 2019; Hugonnet and others, 2021). In the two extreme years 2022 and 2023, Swiss
glaciers lost about 10% of their total ice volume (GLAMOS, 2023). Such drastic loss increases
the interest in monitoring short-term glacier changes too, especially when considering the sig-
nificance that glacial runoff has in mitigating the impacts of drought during such hot and dry
summers (Zappa and Kan, 2007; Van Tiel and others, 2021; Pelto and others, 2022, Ultee and
others, 2022, Cremona and others, 2023). Numerous studies investigated long-term glacier evo-
lution at the regional scale (Marzeion and others, 2012, Gabbi and others, 2014, Compagno and
others, 2021, Schuster and others, 2023), and operational monitoring set-ups to detect glacier
changes at the daily to weekly scale are advancing (Fausto and others, 2021, Cremona and oth-
ers, 2023, Voordendag and others, 2023). The glacio-meteorological processes underlying these
events are well understood too (Greuell and B ̈ohm, 1998, Greuell and Smeets, 2001, Sauter and
Galos, 2016, Mott and others, 2020, Goger and others, 2022, Voordendag and others, 2024),
but comprehensive quantitative analyses remain limited. In this context, Landmann and others
(2021) developed CRAMPON (for ‘Cryospheric Monitoring and Prediction Online’), an oper-
ational glacier mass-balance model for calculating regional mass balance at the daily scale by
relying on the infrastructure provided by the Open Global Glacier Model OGGM (Maussion
and others, 2019). The application of CRAMPON has the potential to systematically quantify
glacier melt, i.e. one of the major runoff contributors during hot and dry periods, and thus to
enable the implementation of optimizedwater-allocation strategies (Anghileri and others, 2018,
Landmann and others, 2021).

One of themain challenges when aiming at such type ofmodelling is the lack of observations
formodel calibration (Hock and others, 2017).TheGlacierMonitoring Switzerland (GLAMOS)
program, for example, currently monitors the seasonal mass balance of about 20 out of the 1400
glaciers in Switzerland (Huss and others, 2015). This means that for most glaciers, the only
available information to constrain model parameters is the long-term geodetic mass balance
(Bauder and others, 2007, Fischer and others, 2015, Huss and others, 2021). Several studies
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used such glacier-specific geodetic mass balances to calibrate
glaciological models (Huss and others, 2008a, Zekollari and oth-
ers, 2019, Rounce and others, 2023, Schuster and others, 2023).
However, this type of calibration is subject to parameter equifi-
nality, meaning that different parameter combinations can result
in the same ice volume change (Finger and others, 2011, Gabbi
and others, 2014). Indeed, solely relying on geodetic mass balances
is insufficient for separating the components of mass change—i.e.
accumulation and melt. The equifinality problem becomes partic-
ularly important when aiming to model glacier changes at the sub-
seasonal to daily time scale, and therefore, additional observations
are required.

In recent decades, remote sensing has achieved significant
advances in this respect, providing a wealth of new observations
of the mountain cryosphere (e.g. Taylor and others, 2021). In the
context of glacier monitoring, observations of the glacier surface
are particularly valuable as direct correlations have been observed
between glacier mass balance and surface characteristics such as
surface albedo, snowline altitude or snow-covered area fraction
(SCAF) (Brun and others, 2015, Paul and others, 2016, Davaze and
others, 2018, Naegeli and others, 2019, Rastner and others, 2019).
Such remotely sensed observations of the glacier surface thus have
considerable potential to constrain glacier mass balance at the sub-
seasonal time scale (Dyurgerov and others, 1994, Pelto and others,
2013) and indeed, a number of studies combined SCAF observa-
tions and modelling to improve mass balance monitoring (Hock
and others, 2007, Hulth and others, 2013, Huss and others, 2013).
More recently, Barandun and others (2018) used transient snow-
line observations from satellite imagery and terrestrial automated
cameras to constrain a glacier mass-balance model. In an applica-
tion to Central Asia, the approach also demonstrated its efficacy in
evaluating glacier mass balance at a regional scale (Barandun and
others, 2021), even though the focus was on annual and not on
sub-seasonal mass balance.

In this study, we investigate the potential of using SCAF obser-
vations from satellite imagery to constrain the temporal variability
of modelled glacier mass balance at the sub-seasonal to daily time
scale for ten selected glaciers in the Swiss Alps. The SCAFs are
derived from Sentinel-2 observations over the period 2015–23 and
are combined with long-term observations of glacier mass bal-
ance during model calibration. More specifically, we minimize
the difference between modelled and observed SCAFs through-
out the melt season while reproducing the measured long-term
mean annual mass balance. The study then evaluates the bene-
fit of using such a calibration strategy by benchmarking it against
observed seasonal mass balances. Finally, we highlight and discuss
the application potential of the approach on glaciers without in
situ observations and emphasize its potential for providing more
accurate estimates of glacier mass balance at the regional scale.

2. Study sites and data

The study sites comprise ten glaciers in the Swiss Alps (Fig. 1,
Table 1). These glaciers are located in different climatological
regions and range from 2 to 80 km2 in size. The glaciers are cov-
ered by the Sentinel-2 tiles R065-T32TSM, R065-T32TNS and
R108-T32TLS (at 10m resolution) from which up to nine SCAF
observations are derived per melt season (June–September), yield-
ing a total of 20–47 observations during the period 2015–23
(see Section 3.2 for derivation). The selected glaciers are also
included in the long-termmass-balancemonitoring programme of
GLAMOS, providing seasonal glacier-wide mass balance inferred

from a network of in situ point observations (Huss and others,
2015, GLAMOS, 2023).The glacier-widemass balances serve to (i)
derive mean annual mass balance over the period 2015–23, used
during model calibration, and (ii) evaluate the present approach at
the seasonal scale.

The meteorological inputs used to model glacier mass balance
are the verified grid products (e.g. the analysis product incorporat-
ing information from station measurements) at a resolution of ca.
2 km of dailymean 2m temperature (T), precipitation sum (P) and
daily mean incoming shortwave radiation (G) (MeteoSwiss, 2018,
2021a, 2021b).

The glacier geometry is described by the glacier outlines from
the Swiss Glacier Inventory 2016 (SGI2016 Linsbauer and others,
2021) and the underlying SwissALTI3D digital elevation model
(DEM) (Swisstopo, 2020). The glacier geometry is assumed to
remain constant over the study period 2015–23.

3. Methods

3.1. Glacier surface classification

To determine the temporal evolution of the SCAF for the ten tar-
get glaciers, we first derive glacier surface classes from selected
Sentinel-2 multi-spectral scenes over the melt seasons 2015–23.
Only Sentinel-2 scenes affected by less than 15% cloud cover
according to the associated metadata are considered for the clas-
sification. Clouds from the Sentinel-2 scenes are masked using
the s2cloudless python module (Sentinel Hub, 2024). Based on
Sentinel-2 multi-spectral L1C data, spectral surface reflectance is
calculated by combining the radiative transfer model 6S (Vermote
and others, 1997) driven by atmospheric parameters from the
Copernicus Atmosphere Monitoring Service (CAMS) with the
approach of Sandmeier and Itten (1997). A series of thresholds
is applied to the resulting spectral surface reflectances to classify
snow, clean glacier ice and snow free debris cover on glaciated areas
(Schwaizer and others, 2023). On selected dates, based on a thor-
ough visual check of different spectral band combinations, consid-
ering only scenes acquired between late July and early September,
an additional class including firn, old snow and bright glacier ice
is added. Clouds over glaciated areas and non-glaciated areas are
masked.

3.2. Snow-covered area fraction

Starting from the glacier surface classification product, the SCAF
observations are computed in three steps (Fig. 2). In the first step,
the glacier surface classification products are cropped with the
outline of every glacier (Fig. 2, step 1). In the second step, a reclas-
sification is performed to make the observations and the modelled
surface types comparable. In particular, the classes ‘cloud’, ‘debris’
and ‘firn/old snow/bright ice’ are reclassified into either ‘snow’ or
‘ice’ (Fig. 2, step 2). To perform the reclassification, we divide the
DEM of the glacier into elevation bands of 20 m and for each band,
the predominant class among ‘ice’ and ‘snow’ is determined. If the
predominant class of the band is ‘ice’, the cells that belong to the
classes ‘cloud’, ‘debris’ or ‘firn/old snow/bright ice’ in that band
are assigned to the class ‘ice’. On the contrary, if the predominant
class of the band is ‘snow’, cells that belong to the classes ‘cloud’,
‘debris’ or ‘firn/old snow/bright ice’ in that band are assigned to
the class ‘snow’. In elevation bands without any cell of the classes
‘ice’ or ‘snow’, all grid cells are categorized based on the predom-
inant class of the closest neighbouring bands that contain ice or
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Figure 1. Study sites. (a) Overview of the study region. Glaciers are shown in violet, the ten selected study sites being highlighted in dark violet and outlines refer to the Swiss
Glacier Inventory 2016 (Linsbauer and others, 2021) whereas Swiss boundaries are provided by Swisstopo (2024). The extent of the Sentinel-2 tiles R108-T32TLS, R065-T32TMS
and R065-T32TNS are shown in red, yellow and blue, respectively. Panels (b–d) show close-ups of the four regions containing the study sites.

Table 1. Glacier area, elevation range and number of SCAF observations per year used during calibration (range and average), for the considered glaciers. Glacier
area and elevation range refer to the Swiss Glacier Inventory 2016 (Linsbauer and others, 2021)

SCAF observations per year

Code Glacier Area (km2) Elevation range (ma.s.l) Range Average

BAS Ghiacciaio del Basodino 1.64 2588–3181 0–6 4
ADL Adlergletscher 2.10 2980–4175 1–5 3
TFL Glacier de Tsanfleuron 2.44 2504–2964 2-8 6
SLV Silvrettagletscher 2.67 2469–3103 0–6 4
GRS Griesgletscher 4.60 2426–3332 0–7 4
CLA Claridenfirn 4.71 2464–3256 1–5 3
PLM Glacier de La Plaine Morte 7.32 2477–2957 3–9 5
FIN Findelgletscher 13.87 2554–3914 1–7 3
RHO Rhonegletscher 14.64 2209–3621 1–9 4
ALE Grosser Aletschgletscher 78.49 1605–4120 2–8 5

snow.On average over the ten sites, the percentage of cells that were
reclassified is 7%. Furthermore, to minimize uncertainties of the
reclassification, we exclude any observation with less than 80% of
the glacier area belonging to the classes ‘ice’ or ‘snow’. In the third
step, we calculate the SCAF by summing the area of all cells of the
class ‘snow’ and dividing it by the total glacier area (Fig. 2, step 3).

3.3. Mass-balance modelling

To model glacier surface mass balance, we use CRAMPON,
an operational mass-balance model for calculating glacier-
specific snow accumulation and snow/ice melt at the daily scale
(Landmann and others, 2021). The model relies on the infrastruc-
ture provided by the Open Global Glacier Model (Maussion and

https://doi.org/10.1017/jog.2025.1 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.1


4 Aaron Cremona et al.

Figure 2. Deriving the observed snow-covered area fraction (SCAF). Step 1: The glacier facies product is cropped with the glacier outline. Step 2: Cells that do not belong
to the class ‘snow’ or ‘ice’ (white areas within the glacier outline in this panel) are reclassified into one of the two classes. Step 3: The SCAF is calculated by dividing the
snow-covered area by total glacier area.

others, 2019), which discretizes a given glacier into elevation bands
with a horizontal distance along the flowline of 20m, resulting in a
vertical resolution of about 2–20m. At every elevation band, accu-
mulation is modelled according to concepts proposed in Huss and
others (2008b):

csfc(z) = cprec ⋅ P ⋅ [1 + (z − zref) ⋅ 𝜕P
𝜕z ] , (1)

where csfc(z) is the snow accumulation (m w.e. d−1) at elevation
z, cprec is the precipitation correction factor, P is the sum of solid
precipitation at the reference elevation zref and 𝜕P

𝜕z
is the solid

precipitation lapse rate.
CRAMPON includes four melt models (Landmann and oth-

ers, 2021); however, the Braithwaite (Braithwaite, 1995) and the
Oerlemans (Oerlemans, 2001) model revealed to be less reliable in
reproducing the course of the SCAF over the melt season, which
caused convergence issues for the calibration approach. For this
study, we thus only use the two melt models by Hock (1999) and
Pellicciotti and others (2005). The Hock model computes melt as:

asfc(z) = (MF + asnow/ice ⋅ Ipot(z)) ⋅ max(T(z) − Tmelt, 0), (2)

where MF is the temperature melt factor (mw.e.K−1 d−1),
asnow/ice are two radiation factors for snow and ice
(mw.e.m2 d−1 W−1 K−1) and Ipot(z) is the potential clear-
sky direct solar radiation (Wm−2). We assume Tmelt = 0∘C and a
ratio asnow/aice of 0.75 (Hock, 1999, Farinotti and others, 2012).
The Pellicciotti model computes melt as:

asfc(z) = { TF ⋅ T(z) + SRF ⋅ (1 − 𝛼(z)) ⋅ G(z) ifT(z) > Tmelt
0 ifT(z) ≤ Tmelt,

(3)
where TF is the temperature factor (mw.e.K−1 d−1), SRF is
the shortwave radiation factor (m3 d−1 W−1), 𝛼(z) is the albedo
(Wm−2) parametrized following Brock and others (2000) and
G(z) is the incoming shortwave radiation (Wm−2). Note that for
this model, Tmelt = 1∘C (Pellicciotti and others, 2005). The out-
comes from the two melt models are combined by taking the mean
between the two.More detailed information about the CRAMPON
model set-up is provided by Landmann and others (2021).

To model the evolution of the snow cover, we assume the ini-
tial snow depth at the start of the study period to be zero over the
entire glacier. Consequently, the snow water equivalent (SWE) is
updated for each elevation band depending on the climatic mass
balance, i.e. the modelled daily accumulation and melt. To extract
the modelled SCAF at each time step, we sum the area of the eleva-
tion bands in themodel with a SWE larger than zerowith respect to
the beginning of each hydrological year and divide it by the glacier
area.

3.4. Model calibration

To tackle parameter equifinality during calibration, we combine
the information provided by the SCAF observations with observed
long-term mean mass balance according to GLAMOS. For every
glacier, themeanmass balance over the period 2015–23 is available
from annual in situ observations at a network of sites extrapo-
lated to the entire surface (Huss and others, 2015,GLAMOS, 2023).
This is used to constrain the melt parameters (cf. Eqns 2 and 3),
whereas the SCAF observations over the same period are used to
constrain the precipitation correction factor cprec (Eqn 1). This is
achieved in three steps using a brute force approach to select the
optimal parameter set within a pre-defined parameter space for
cprec (Fig. 3).

In the first step, the precipitation correction factor cprec is varied
in the interval 0.5 – 5.0 at equally spaced steps of 0.1, and for each
of the values, the parameters of the melt models are tuned to agree
with the average observed mass balance over 2015–23. This pro-
vides a total of 45 parameter sets per model. In the second step,
the root-mean-square error (RMSE) between the modelled and
observed SCAF is calculated for every parameter set. To avoid spu-
rious results caused by potential outliers (for example, very high
SCAF after a summer-snowfall event or unreliable SCAFs due to
misclassification of shadows and clouds), the RMSE is only calcu-
lated accounting for SCAF observations that are contained within
a given interval. This interval is defined by the course of the SCAF
throughout the summer season that would be expected to occur
after a very snow-rich and a very dry winter. More specifically, we
set the upper bound of the interval for realistic SCAF values to
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Figure 3. Model calibration on average mass balance and SCAF observations. Step 1): For each of the two melt models j = [1, 2], cprec,i is varied within the interval 0.5–5.0 in
steps of 0.1, and the melt parameters are calibrated to match the long-term mean mass balance. Step 2): The models are run with every value of cprec,i, and for every model
run, the root-mean-square error (RMSE) between the average SCAF and the observed SCAF is calculated. Step 3): The cprec,i with the lowest RMSE is selected as the optimal
precipitation correction factor (cprec,opt).

be the course of the SCAF that is modelled for a winter balance
of 2.1m w.e., i.e. the average of the maximum winter balance val-
ues observed for each of the ten glaciers during 2015–23. Similarly,
we set the lower bound of the interval to be the course of the
SCAF modelled for a winter balance of 0.8m w.e., i.e. the aver-
age of the observed minimum winter balances. Although these
values are arbitrary to some degree, we found them useful to
exclude spurious SCAF observations with strong leverage on the
computed RMSE. This substantially reduces the biasing effect of
individual SCAF observations on the selected cprec value. In the
third step, the cprec,i with the lowest RMSE is selected as the
optimal precipitation correction factor cprec,opt. Together with the
corresponding melt parameters, this defines the optimal model
parameter set.

To evaluate the benefit of our approach, we also calibrate the
models with a second strategy that serves as a benchmark. In this
strategy, the models are calibrated using observed mean mass bal-
ance but no snow-cover information. In this case, the precipitation
correction factor is set to cprec=1.6, i.e. the median value obtained
for the ten glaciers and the period 2015–23 when calibrating the
model with seasonal mass-balance observations as described in
Landmann and others (2021). This scenario acts as the reference,
pretending that SCAF observations were not available but rough
constraints on snow accumulation based on mean observed values
are given.

By deriving the mean absolute deviation (MAD) between the
modelled and the observed seasonal glacier-specific mass balance
from GLAMOS (2023) for each of the two calibration strategies,
we evaluate the benefit of constraining glacier mass balance with
sub-seasonal SCAF observations.

The outcomes of the two calibration strategies are compared in
more detail for Silvrettagletscher due to its comprehensive long-
term observational network, allowing thorough control of winter
and annual mass-balance distribution. In particular, we compare
the daily cumulative mass balance and the daily cumulative glacier
storage change, i.e. the glacier-specific mass balance multiplied by
the glacier area, resulting from the two calibration strategies over
different time periods. The periods are thereby chosen to be (i)
the hydrological year, (ii) the melt season defined to last from
18 May (the long-term spring maximum date) to 30 September
and (iii) heatwave periods with extreme glacier melt that occurred
in summer 2022. This allows us to evaluate the relevance of the
approach at the seasonal and sub-seasonal scale, as well as during
dry and hot periods of a few days, when extreme glacier melt is
particularly important. The heatwave periods are defined accord-
ing to Cremona and others (2023) and are based on temperature
time series from five meteorological stations distributed across
Switzerland. Following this approach, the first heatwave occurred
between 17 and 21 June 2022, the second between 14 and 26 July
and the third between 31 July and 6 August.

4. Results and discussion

4.1. Performance evaluation

As an example, Fig. 4 illustrates the application of our approach for
Rhonegletscher. The progressive melting of the snow cover during
the melt season of 2018 is depicted in Fig. 4a. Until the first half
of June, the glacier was completely snow-covered, as evidenced by
the scene on 16 June, when the melt-out just started (SCAF = 0.97,
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Figure 4. Constraining sub-seasonal mass balance with SCAF observations on Rhonegletscher. (a) Evolution of the observed snow cover over summer 2018. (b) Comparison
between modelled SCAF (blue lines) and observed SCAF (black points with uncertainty bars, cf. Section 4.3) over the summer seasons of 2018, 2021 and 2022. (c) Comparison
between modelled daily cumulative glacier-specific mass balance (blue lines) and observed seasonal glacier-specific mass balance (red dots with bars representing the
observation uncertainty of ±0.25m w.e. (Huss and others, 2021)). The blue-shaded areas in panels (b) and (c) indicate the model uncertainties, derived as described in
Section 4.3.

Fig. 4a.2). The snow cover gradually depleted after that, causing a
gradual decrease of the SCAF, which reached a value of 0.55 on the
20 August 2018 (Fig. 4a.6). Due to cooler temperatures and occa-
sional snowfalls, the SCAF decrease slowed down in September,
stabilizing at 0.53 by the 9th and 19th of September (Fig. 4a.7–8).
The modelled SCAF and cumulative glacier-specific mass balance
for Rhonegletscher are very consistent with the observations over
the study period.TheMADbetweenmodelled and observed SCAF
over 2015–23 is 4%. The MAD between modelled and observed
seasonal mass balance from GLAMOS (2023) over 2015–23 is
0.32m w.e. for winter and 0.24m w.e. for summer mass bal-
ance. This comparison between model output and observations is
shown for the SCAF (Fig. 4b) and for the mass balance (Fig. 4c)
for three selected years, i.e. 2018 (an average year), 2021 (a year

with favourable glacier mass balance conditions) and 2022 (very
negative mass balance).

A similarly good agreement between modelled and observed
SCAF and glacier-specific mass balance is observed at the other
nine study sites too (Table 2). For the ten study sites combined,
the MAD between modelled and observed SCAF is 6% (Fig. 5),
while the MAD between modelled and observed glacier-specific
mass balance is 0.28m w.e. both for the winter and the annual
mass balance (Fig. 6). Such relatively small deviations alignwith the
findings by Barandun and others (2018) and illustrate the poten-
tial that SCAF observations hold for model calibration when used
in combination with long-term mean mass balances, from in situ
observations or geodetic mass balances from the comparison of
repeated DEMs.
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Table 2. Mean absolute deviation between modelled and observed (i) winter
mass balance, (ii) annual mass balance and (iii) SCAF over the period 2015–23

Glacier

Winter mass
balance
(m w.e.)

Annual mass
balance
(m w.e.)

SCAF
(%)

Ghiacciaio del Basodino 0.35 0.17 7
Adlergletscher 0.12 0.32 4
Glacier de Tsanfleuron 0.15 0.28 9
Silvrettagletscher 0.26 0.19 8
Griesgletscher 0.50 0.20 5
Claridenfirn 0.17 0.20 7
Glacier de La Plaine Morte 0.51 0.42 5
Findelgletscher 0.09 0.28 5
Rhonegletscher 0.32 0.24 4
Grosser Aletschgletscher 0.30 0.51 2

4.2. Relevance for determining seasonal and sub-seasonal
mass balances

To evaluate the benefit of our approach when determining glacier
mass balances at the seasonal and sub-seasonal scale, we calibrate
the models with two strategies. In the first strategy, which serves as
benchmark, we pretend that the SCAF observations are not avail-
able and only calibrate the models against the 2015–23 mean mass
balance. In the second strategy, instead, we follow the approach
presented in Section 3.4, i.e. wemake use of the SCAFobservations.

A comparison of the results obtained with these two cali-
bration strategies is shown in Fig. 7. Over the ten considered
glaciers, integrating the SCAF observations during model calibra-
tion reduces the MAD of the winter mass balance from 0.36m.w.e
to 0.28m.w.e, i.e. by 22%. The MAD of the annual mass bal-
ance, instead, remains virtually unchanged: 0.29m.w.ewhen ignor-
ing and 0.28m.w.e when including the SCAF observations. This
latter result is expected, as both calibration strategies are con-
strained by themean annualmass balance over the period 2015–23.
When considering glaciers individually, the added value of our
approach is even more evident: for Silvrettagletscher, where the

Figure 5. Comparison between modelled and observed SCAF for the ten study sites
(depicted by different colours). The mean absolute deviation (MAD) is 6%. See Table 1
for glacier names.

benefit is most important, the MAD of the winter mass bal-
ance is lowered as much as by 70%, i.e. from 0.92m w.e. to
0.26m w.e. This demonstrates the capacity of SCAF observations
to constrain glacier-specific accumulation more accurately, espe-
cially when site-specific characteristics, such as local topography
or meteorological conditions, strongly affect snowfall amounts, or
the precipitation dataset used is strongly biased.

To evidence the importance of accurately reproducing the win-
ter mass balance and to show the impact it has on computed
summer melt rates, we compare glacier mass balance and stor-
age change for Silvrettagletscher resulting from the two calibration
strategies. Figure 8a shows the 2015–23 average evolution of the
cumulative glacier mass balance over the course of a year for the
two calibration strategies, as well as the difference between them.
At the end of winter, themass balance calibratedwith the presented
approach is about twice as high (i.e. 0.7m w.e. more positive) as
in the benchmark calibration and agrees far better with the in situ
observations from GLAMOS. Figure 8b shows the 2015–23 aver-
age evolution of the cumulative glacier storage change during the
melt season, again discerning the two calibration strategies. At
the end of the melt season, the model calibrated with the SCAF
observations indicates 1.85 ⋅ 106 m3 additional glacier mass change
compared to themodel calibratedwithout SCAFobservations, i.e. a
surplus of 32% relative to the annual meltwater yield. This again
highlights the importance of accurately constraining winter accu-
mulation, also when being interested in mass changes and water
runoff dynamics that happen over the ablation season.

Finally, we compare the glacier storage change occurring during
the 2022 summer heat waves for both calibration approaches (Fig.
8c). In the first, second and third heat wave (i.e. during 17–21 June,
14–26 July and 31 July–6 August), the difference in the cumulative
glacier storage change calculatedwith the two calibration strategies
corresponds to 1.5 ⋅ 105 m3 (34%), 4.8 ⋅ 105 m3 (40%) and 2 ⋅ 105 m3

(38%), respectively. Also these differences indicate the importance
of accurate constraints on winter accumulation, even when dealing
with extreme melt rates over relatively short periods. The find-
ing is of particular relevance when considering that the frequency
of such events is expected to increase in the future (Fischer and
others, 2021), andwhen considering that the glaciermelt contribu-
tions during such periods help in mitigating the effects of potential
droughts (Zappa and Kan, 2007, Pelto and others, 2022, Ultee and
others, 2022, Cremona and others, 2023). We thus suggest that our
calibration strategy could be valuable when aiming at estimating
the water availability in such particularly critical periods.

The advantage of our approach lies in its potential for applica-
tion at the regional scale as the method can separate the compo-
nents of the mass balance, i.e. accumulation and ablation, with-
out the need of laborious in situ seasonal mass-balance observa-
tions. Thus, the method successfully addresses the challenge of
equifinality between accumulation and melt parameters by com-
bining the information content of mass change and SCAF observa-
tions (Fig. 9). For the example of Rhonegletscher, Fig. 9a illustrates
that several combinations of accumulation and melt parameters
may reproduce the observed mean mass balance with the same
goodness-of-fit (GOF), taken here as the normalized absolute
deviation between the observed and modelled mass balance. All
parameter combinations on the diagonal of the explored parame-
ter space (dark green colours in Fig. 9a) are equally valid, i.e. result
in the same GOF. However, when additionally considering the
agreement between observed and modelled SCAF, measured by
the normalized RMSE between observed and modelled quantities,
the RMSE reveals a clear minimum (Fig. 9b–d). This demonstrates
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Figure 6. Comparison between modelled and observed mass balance. The blue line shows the average of the two melt models while the shaded area shows the uncertainty
(cf. Section 4.3). The seasonal mass-balance observations from GLAMOS (2023) are shown by the red points with bars representing the observation uncertainty of ±0.25m.w.e
(Huss and others, 2021). The availability of SCAF observations is provided at the top of each panel (vertical lines). The colour of the lines indicates whether the observation
was used during calibration (green) or discarded according to the filtering criterion described in Section 3.4 (red).

that the equifinality between accumulation and melt parameters
is successfully resolved. Note that a certain degree of equifinality
still remains between the two melt parameters, i.e. the parame-
ters separately accounting for the effects of temperature and solar
radiation (cf. Eqns 2 and 3). With our approach, this equifinality
cannot be resolved, as two parameters are calibrated on one obser-
vation (the mean mass balance). We argue that this equifinality is
much less relevant for modelling sub-seasonal mass balance than
the equifinality between accumulation and melt parameters, espe-
cially because the relation between the two melt parameters is
better bounded by physical constraints.

The potential for regional-scale assessments is confirmed when
comparing the precipitation correction factor obtained with the
present approach with the one resulting from the calibration on
seasonal mass-balance observations (e.g. Huss and others, 2009,
Landmann and others, 2021) over the period 2015–23 (Fig. 10).
The high correlation with an MAD of 0.16 demonstrates that our
approach is able to resolve actual accumulation amounts through
remotely sensed observations, i.e. without the need of direct in
situ observations, therefore suggesting a considerable application

potential in areas where direct measurements are difficult or
unavailable.

4.3. Sensitivity analysis

Uncertainties in the modelled mass balance were quantified
by conducting a sensitivity analysis. This analysis consisted in
re-calibrating the model while randomly varying the SCAF
observations and the observed average mass balance within given
uncertainty ranges. Variations in SCAF observationswere imposed
by assuming a normally distributed uncertainty with a mean of
‘zero’ and a standard deviation of 0.05. This results in SCAF uncer-
tainties potentially exceeding ±0.1, which we consider to be a
conservative estimate when compared to values reported in pre-
vious studies (Huss and others (2013) and Kenzhebaev and others
(2017), for example, estimate SCAF uncertainties of 0.025 and 0.1,
respectively). For the mean mass balance, instead, we assumed
the uncertainty proposed by Huss and others (2021) for decadal
average mass balances, i.e. ±0.1m.w.e y−1. We performed ten sim-
ulations by varying the mean mass balance by +0.1m.w.e y−1 and
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Figure 7. Benefit of the calibration strategy using SCAF
observations. The mean absolute deviation between mod-
elled and observed seasonal mass balance is compared for

both winter (blue) and annual (rose) mass balances. ‘cal.
.
B

no SCAF’ stands for the benchmark calibration strategy in

which no SCAF observations are used while ‘cal.
.
Bwith SCAF’

stands for the calibration strategy presented in Section 3.4.
The boxplots show the mean value (red line) together with
the 25%/75% (boxes) and 2.5%/97.5% (bars) quantiles.

Figure 8. Effect of the calibration strategy on the cumulative mass balance and the cumulative glacier storage change for the example of Silvrettagletscher. Violet colours
refer to the benchmark calibration while orange colours refer to the presented approach relying on SCAF observations. The shading reflects the variability between the two
melt models and the fluctuations in mass balance over 2015–23. (a) Evolution of the 2015–23 average daily cumulative mass balance (top) and difference between the two
calibration strategies (bottom). The observed mass balance from GLAMOS (2023) is shown with red markers. (b) Same as panel ‘(a)’ but for the daily cumulative glacier storage
change over the melt season. (c) Daily cumulative glacier storage change during the three summer heat waves of 2022 (top) and difference between calibration strategies
(bottom).
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Figure 9. Illustration of parameter equifinality for the investigated glaciers. (a) Normalized absolute deviation between modelled and observed mean glacier-wide mass
balance for different parameter sets for Rhonegletscher. (b) Normalized root-mean-square error between modelled and observed SCAF for the parameter sets with similar
performance regarding mean mass balance. The red dot indicates the parameter set with the lowest normalized RMSE, i.e. the optimal parameter set. In panels (a) and (b),
dark green indicates a good fit, whereas dark red indicates a poor fit. GOF stands for goodness-of-fit. (c) Visualization of the RMSE with respect to observed SCAF along the
black transect in panel (b) for Rhonegletscher. (d) RMSE with respect to observed SCAF for the ten study sites, with the optimal parameter set represented by the red dot.

superimposing the random uncertainty on the SCAF, and ten sim-
ulations by varying themeanmass balance by −0.1m.w.e y−1, again
superimposing the uncertainty on the SCAF. This results in a total
of 20 simulations. To evaluate the overallmodel uncertainty, we use
the interval between theminimum andmaximum output resulting
from the mean of the two melt models for all 20 model realiza-
tions, and we account for the spread between the two melt models.
When averaged over the 20 simulations, the ten study glaciers, and
the period 2015–23, the uncertainty in the modelled SCAF over
the melt season reaches a maximum of 0.16 in individual years,
with a mean of 0.03. The average uncertainty of the seasonal mass
balance, instead, is 0.19m.w.e for winter and 0.13m.w.e for sum-
mer. From this assessment, we infer that our approach is generally
more sensitive to variations in themeanmass balance as compared
to variations in the SCAF. This is an important aspect to consider

when applying themethod at the regional scale relying on geodetic
mass balance estimates.

Our approach assumes a constant glacier geometry over the
study period, motivated by the relatively short time span consid-
ered. To investigate the effect of changing glacier area on model
results, we performed two simulations assuming fixed rates of
glacier area reduction. Given that Linsbauer and others (2021)
reported an average area reduction rate of −0.8% per year for Swiss
glaciers and allowing for some variability in this value, we assumed
a reduction rate of either −0.5% or −1% per year. To update the
glacier area every year, the ablation area of each glacier is reduced
by the specified amount. The ablation area is thereby assumed to
be the portion of the glacier below the glacier’s median elevation.
For the two cases, differences in the modelled SCAF compared to
the reference case with constant geometry (averaged over the ten
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Figure 10. Comparison between the precipitation correction factor obtained by the
calibration approach presented in our study and the precipitation correction factor
constrained by seasonal mass-balance observations. The MAD is 0.16.

study sites) correspond to 0.013 and 0.018 on average, respectively,
but may reach up to 0.066 for individual years. On average over the
ten study sites, differences for the seasonal mass balance compared
to the reference case are nearly equivalent for summer and win-
ter balance and correspond to 0.04–0.07m.w.e, for area reduction
rates of −0.5% and −1% per year, respectively.

To investigate the effect of the selected melt models on the
outputs, we performed two additional simulations in which the
approach was first re-run only using the Hock model, and then
only using the Pellicciotti model. On average over the study sites,
differences in the modelled SCAF over the melt season between
the two simulations reach a maximum of up to 0.30 with a mean of
0.07. The average difference of the seasonal mass balance between
the two models, instead, is 0.13m.w.e for winter and 0.14m.w.e
for summer and thus within the range of uncertainty. By averag-
ing the results of the two melt models, we aim to mitigate potential
inconsistencies due to uncertainties of the individual models and
to enhance the overall reliability of our approach.

4.4. Limitations and challenges

While the proposed approach allows for better constraining sea-
sonal mass-balance dynamics of unmeasured glaciers, thus offer-
ing potential for regional mass balance assessments, it also has
some limitations. Between about October and May, for exam-
ple, the glaciers are often completely snow-covered and the
SCAF values hold virtually no information on the mass balance.
Furthermore, glacier size and elevation range can impact the
method’s effectiveness. SCAF observations are most useful when
the SCAF slowly decreases throughout the melt season, as happens
for large glaciers spanning an extensive elevation range. For small
glaciers or for glaciers with limited elevation ranges, instead, the
transition between completely snow-covered conditions to snow-
free conditions is often fast. This presents a challenge for the
approach, as the observed signal is less reliable because few obser-
vations (if any) are present during themelt-out period. In addition,
local effects, such as peculiar spatial patterns in the snow cover

distribution, for example due to wind drifted snow, play a more
significant role on smaller glaciers. Such effects are difficult to cap-
ture with our model set-up describing glaciers in elevation bands
and thus increase the likelihood of inaccurate parameter estimates.
Still, our method showed to be effective for relatively small glaciers
such as Ghiacciaio del Basodino (1.64 km2) and Adlergletscher
(2.10 km2) as well as for glaciers with small elevation ranges such
as Glacier de la Plaine Morte, providing results comparable with
larger glaciers (Table 2, Fig. 5). This is an important consideration
since it indicates that the method can maintain its potential also
in the future, with ongoing climate change causing the glaciers to
become smaller and to extend over more limited elevation ranges.
This notwithstanding,we emphasize the importance of considering
the specific characteristics of individual glaciers when applying our
method, and to keep in mind the method’s limitations, especially
on small glaciers.

5. Conclusions

In this study, we presented a method for constraining glacier mass
balance at the sub-seasonal scale relying on Sentinel-2-derived
SCAF observations and long-term mean mass balance. We show-
cased the potential of the method for ten glaciers in the Swiss Alps
over the period 2015–23. The combination of SCAF observations
with long-termmass balances was proven to be effective in tackling
the problem of parameter equifinality, i.e. in separating the total
glacier balance in its accumulation and ablation components. The
method holds promise for regional-scale applications, as it relies
on remote-sensing products while avoiding the need for in situ
measurements. On average over the ten considered study sites, the
approach provides estimates of winter mass balance that are 22%
more accurate than using an average value of the precipitation cor-
rection factor, while improvements of up to 70% were found in
individual cases. Furthermore, the study evidenced the importance
of constraining winter accumulation for accurately capturing the
evolution of mass balance over the melt season, leading to impor-
tant differences in the cumulative glacier storage change at the
end of the melt season (in our example at Silvrettagletscher, the
difference almost reached 2 millionm3 of water, i.e. 32% of the
glacier storage change produced over the melt season). Such dif-
ferences were shown to be significant also for shorter periods (e.g.
weeks) and for periods of extreme melting (e.g. during heatwaves),
emphasizing the relevance of our approach in the context of short-
term glacier monitoring. We thus suggest that the integration of
remotely sensed SCAF observations into monitoring approaches
has a substantial potential to provide more accurate mass-balance
estimates at the sub-seasonal scale, which can, in turn, be impor-
tant for the optimization of water resources in the Alps, especially
during dry and hot summers.
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