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The role of fluid–structure coupling in the
generation of an attractive squeeze-film force
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Developed in this study is a theoretical description of squeeze-film lubrication systems
that involve the flexural oscillation of a thin plate near a parallel wall. Such systems
were discovered in recent experiments to produce load-bearing attractive forces that
are a thousandfold stronger than those generated by rigid oscillators, which typically
favour repulsion. Analyses of squeeze-film gas flow driven by a presumed plate
deformation reproduce the observed magnification of attractive load capacity, but exhibit
serious discrepancies with crucial aspects of the experimental measurements – most
importantly, the precise distribution of air pressure along the film. The discrepancies are
resolved in this study by accounting for the presence of two-way-coupled fluid–structure
interactions whereby the undulations of the plate, modelled here with use of the classical
Kirchhoff–Love equation, are affected non-negligibly by the evolving pressure, described
by a modified Reynolds lubrication equation that accounts for compressibility. The
resulting problem of elastohydrodynamic lubrication is solved with use of perturbation
methods that exploit the limit of small oscillation amplitudes. The analysis ultimately
provides an explicit expression specifying the attractive load capacity of a squeeze-film
system as a function of relevant operating parameters – including, in particular, the
amplitude and frequency of the localized excitation force exerted on the plate. The
rudimentary theory derived here may be readily generalized to guide the analysis
and development of a wide variety of emerging engineering systems that exploit the
vibration-induced squeeze-film effect – such as wall-climbing soft robots and contactless
grippers.
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Figure 1. (a) Cartoon and free-body diagram of a load-bearing SFL system enabled by the flexural oscillation
of a thin, locally excited disk and (b) a formal schematic of the axisymmetric system geometry used in the
problem definition § 2.

1. Introduction

Colasante (2015) communicates an interesting experiment involving a flexible plate that
is oscillated along its normal axis by an actuator affixed to its centre. When the plate
is brought close to a non-adhesive parallel surface, it becomes subject to an attractive
force that allows the exertion of a steady pulling load on the vibrating device, as depicted
in figure 1(a). For example, when oscillating near a smooth concrete surface a square
aluminium plate (with a thickness of 1 mm and a side length of 61 cm) at a frequency of
15 Hz, Colasante (2023) measures a load capacity of nearly 200 kgf (kilograms force) with
a power consumption of ≈200 W (watts). The device exhibits remarkably low resistance
to lateral motion (Colasante 2016), suggesting the presence of a lubricating layer of air that
separates the undulating plate from the opposite surface.

In 2021, Weston-Dawkes et al. (2021) exploited this phenomenon (having arrived at
it independently) in the design of a load-carrying robotic device capable of travelling
underneath horizontal surfaces and up vertical walls with use of a standard wheel base
and a thin, oscillating plastic disk. The device produced an attractive force exceeding
0.6 kgf using less than 0.3 W of power (Precision Microdrives 2021), thereby achieving an
impressive operating efficiency of over 2 kgf W−1. Subsequently, Jia et al. (2023) designed
a robot that travelled and rotated controllably beneath a horizontal surface without the use
of wheels. Instead, multiple vibration actuators were employed to excite travelling-wave
deformations of the plate, the resulting streaming of air within the air layer providing
propulsive/rotary shear stresses on the plate (Ramanarayanan & Sánchez 2023).

The phenomenon described above is commonly referred to as ‘squeeze-film levitation’
(SFL) (Shi et al. 2019), a method of gaseous lubrication discovered seemingly in
the mid 1950s by which the required overpressure inside a wall-bounded gas layer is
effectively provided by relative perpendicular oscillation of the walls (Taylor & Saffman
1957). In contrast to aerodynamic and aerostatic lubrication, which directly provide
quasi-steady overpressures due to relative translational motion of non-parallel walls or
external pumping of air, respectively, the oscillating pressure inside a squeeze film
exhibits a cycle-averaged value that differs from the ambient value due to the nonlinear
effects of gaseous compressibility and convective fluid acceleration (Melikhov et al.
2016; Ramanarayanan, Coenen & Sánchez 2022). The resulting pressure difference across
the oscillating plate generates a time-averaged normal force that provides a steady
load-bearing capacity.

Typical SFL systems involve highly stiff oscillators that are driven by bulky
piezoelectric transducers at ultrasonic frequencies, and produce large repulsive forces
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Figure 2. Approximate reproduction of selected experimental measurements by Weston-Dawkes et al. (2021):
(a) variation of the applied pulling load with the mean central separation distance and (b) time-averaged radial
distribution of the gauge pressure in the air layer 〈p〉(r) − pa (blue) along with the accompanying time-averaged
deformation of the oscillating disk in relation to its mean central position 〈w〉(r) (red) (see figure 1 for notation).

that render them suitable for conventional bearing lubrication. For example, Zhao
(2010) measured a steady repulsive force of ≈11.7 kgf, with an operating efficiency of
≈0.24 kgf W−1, by oscillating a cylindrical oscillator of diameter 5 cm at a frequency
of 20 000 Hz. Prior to the experiments by Colasante (2015), attractive forces had been
found to occur only under a limited range of operating conditions – relatively low
frequencies or oscillators with small surface area, the corresponding load capacities
being thousands of times weaker. For example, a maximal attractive force of just
≈0.5 gf (grams-force) was measured by Sadayuki (2002) using a cylindrical oscillator
of diameter 7 cm and frequency 200 Hz. Correspondingly, throughout history, levitation
and transportation/rotation systems enabled by repulsive forces have garnered considerable
theoretical attention (Zhao 2010; Feng, Liu & Cheng 2015; Chen et al. 2016; Davis, Gabai
& Bucher 2018; Guo & Gao 2018; Shi et al. 2019), while fewer studies have addressed
the emergence of the much weaker attractive forces (Yoshimoto, Shou & Somaya 2013;
Andrade et al. 2020; Ramanarayanan et al. 2022).

A recent theoretical study (Ramanarayanan & Sánchez 2022) posited that the
impressive magnification of attractive load capacity and energy efficiency observed in
the recent experiments by Colasante (2015) and Weston-Dawkes et al. (2021), which
may conceivably expand the range of practical applications of SFL, can be attributed to
the pronounced dynamic bending experienced by the highly flexible oscillators utilized.
Through a rigorous analysis of the fluid-flow dynamics in the air layer and its immediate
periphery, the authors proved that the attractive force provided by resonant flexural
oscillation of a thin circular plate may be thousands of times greater than that provided
by rigid-body oscillation under otherwise identical conditions – specifically, the same
central displacement amplitude. However, the theoretical predictions of Ramanarayanan &
Sánchez (2022) and the detailed experimental measurements provided by Weston-Dawkes
et al. (2021) exhibit fundamental disagreements regarding crucial aspects of the underlying
physics. For instance, while the experimental data show a gradual rise of the force to
a maximal value as the cycle-averaged separation distance between the centre of the
oscillating plate and the opposite wall is increased to a value of ≈1–3 mm, as exemplified
in figure 2(a), the theory predicts a rapid growth of comparable magnitude as the
distance is increased to values of order 50 μm. Furthermore, measurements show that the
time-averaged gauge pressure in the air layer features a localized region of negative values
at its centre, as exemplified in figure 2(b), while the theoretically predicted distribution
varies gradually and always features a positive central value.
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We argue in this paper that these fundamental differences may be attributed to the
presence of two-way-coupled fluid–structure interactions in practical systems, whereby the
dynamics of the flexible oscillator is affected non-negligibly by the overpressure generated
in the air layer due to its motion. The effects of two-way coupling are demonstrably
negligible in the case of the highly stiff oscillators used in earlier studies to generate
repulsive forces (Li, Liu & Ding 2014). They are, however, palpable in the experiments of
Weston-Dawkes et al. (2021), as evidenced by the observed cycle-averaged deformation
of the thin plastic oscillator, exemplified in figure 2(b), which correlates closely with
the associated distribution of the time-averaged overpressure pictured in the same panel.
Fluid–structure coupling has been explored before in repulsive SFL configurations where
a rigid body is levitated above an oscillating plate/piston. The influence of film pressure
on the Newtonian dynamics of the levitated body has been studied in the case of
rigid oscillators (Brunetière, Blouin & Kastane 2018) and those undergoing prescribed
standing-wave deformations (Ilssar, Bucher & Flashner 2017). Ilssar & Bucher (2017)
additionally explored effects of coupling on the displacement amplitude of a rigid
oscillator. Zhang, Xu & Jiang (2004) and Pandey & Pratap (2007) elucidated the damping
effect of viscous flow in the air layer on the resonant dynamic bending of a compliant
plate. To the best of our knowledge, a theoretical investigation is yet to be conducted into
the effects of two-way coupling on the time-averaged repulsive/attractive load capacity of
an SFL system equipped with a flexible oscillator, that being the objective of the present
study.

We formulate below in § 2 a reduced mathematical description of the compressible gas
flow in a squeeze-film system driven by the flexural oscillation of a compliant plate, by
application of the nonlinear theory of elastohydrodynamic lubrication (Sim & Kim 2008;
Greenwood 2020; Wu et al. 2020; Poulain et al. 2022; Rallabandi 2024). The equations
governing the fluid–structure dynamics are coupled with a statement of Newton’s second
law involving the sinusoidal excitation force exerted by the vibration actuator, and the
resulting system of equations is solved approximately under the asymptotic limit of small
oscillations. The leading-order analysis, presented in § 3, leads to an explicit expression
relating the known forcing amplitude of excitation and the consequent displacement
amplitude of material points on the oscillating plate. The nonlinear problem that emerges
at the following asymptotic order is solved in § 4 to provide a concise analytical
expression for the operating efficiency of a flexural SFL system: the ratio of the generated
time-averaged force to the supplied excitation amplitude. Simplified forms of these
expressions are derived in § 5 to describe centrally forced systems, as a singular limiting
case of the general problem. Results of the asymptotic theory are verified in § 6 by
comparison with finite-difference computations, and shown in §§ 6 and 7 to provide
improved agreement with salient aspects of recently obtained experimental data. Finally,
recommendations are provided in § 8 for further theoretical research that may inspire and
inform future innovations that exploit this emerging technology.

2. Problem definition

2.1. Modelling approach
Represented in figures 1(a) and 1(b) are simplified schematics of the mechanical
configuration involved in recent experiments where strong attractive forces were generated
with an SFL system (Colasante 2016; Weston-Dawkes et al. 2021; Omodia, Das &
Mahadevan 2022). A flexible disk of radius a and uniform thickness td is located near
a parallel wall. Glued coaxially to the opposite surface of the disk is a rigid, circular
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cylinder of radius rc < a, to which a vibration actuator is affixed. The actuator exerts
on the cylinder an oscillatory axial force that varies sinusoidally in time with frequency
ω/(2π) (where ω denotes the associated angular frequency), causing the disk to undergo
dynamic bending. The nonlinear dynamics of the oscillatory airflow excited in the air layer
separating the disk and the wall (Ramanarayanan et al. 2022), the ‘squeeze film’, gives
rise to a cycle-averaged pressure field in the film that provides a steady force attracting
the disk toward the wall. This attractive force is able to support an applied pulling load of
magnitude F�, steadied at the point of application by a vibration damper.

Application of Newton’s second law for the rigid central assembly on which the load is
exerted and the central portion of the disk to which it is affixed (see the inset in figure 1(a)
for clarification) provides

F� + Fm cos(ωt + φ) + 2π

∫ rc

0
( p − pa)r dr + 2πrcVc = (πr2

cρdtd + mc)
∂2hc

∂t2
, (2.1)

where t and r denote, respectively, the time and the radial distance from the axis of
symmetry, Fm denotes the amplitude of the sinusoidal excitation force, p(r, t) − pa
denotes the distributed gauge pressure acting on the disk surface (with pa denoting the
ambient pressure), Vc represents the axial structural stress resultant within the disk at the
critical radius rc, mc quantifies the collective mass of the cylinder and other structures
involved in the transfer of the vibrational force to the disk, ρd denotes the uniform density
of the disk and hc(t) represents the time-varying distance between the wall and the central
portion of the disk. The phase shift φ included in the argument of the excitation force
is introduced to facilitate the analysis, and will be discussed later. In writing (2.1), the
gravitational acceleration is assumed to be negligibly small in comparison with that
induced by the high-frequency excitation, and the weight of the central assembly is
assumed to be small relative to the steady pulling load, both assumptions being consistent
with the operating conditions used by Weston-Dawkes et al. (2021).

Experimental data suggest that the central separation distance hc fluctuates periodically
about a constant mean value ho if the imposed load F� is steady. The mean distance ho
grows as the load is quasi-statically increased, until a critical value is reached beyond
which the attractive force becomes insufficient and the disk detaches abruptly from the
wall, as depicted in figure 2(a) (Weston-Dawkes et al. 2021). It is of great interest to
devise a solution of (2.1) that allows prediction of the ‘load capacity’ of an SFL system,
the maximal pulling force max[F�(ho)] that can be supported without failure. In practical
systems, known quantities are typically limited to the structural properties of the disk, the
thermodynamic properties of the operating fluid and the amplitude Fm and frequency of
the excitation force (Burroughs 2021). Solution thus requires determining simultaneously
the oscillating position hc(t) of the central assembly and the reactive aerodynamic and
structural forces affecting its motion. The nonlinear fluid–structure dynamics involved
complicates the solution, in that the periodic cylinder motion may exhibit multiple
harmonics in addition to the excitation frequency ω.

As shown in the following derivation, the problem simplifies in the case of small
axial displacements of the disk relative to the mean separation distance ho, allowing
approximate solution of (2.1) with use of classical perturbation methods. Under the limit
of small relative amplitudes, the cylinder may be assumed in the first approximation to
oscillate sinusoidally along its axis with a given amplitude b � ho – as indicated in
figure 1(b) – and an angular frequency equal to that of the excitation force, so that

hc = ho + b cos(ωt). (2.2)
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Secondary frequencies arising from weak nonlinear dynamics will enter as asymptotic
corrections to hc/ho of order (b/ho)

2 � 1 and smaller, to be discussed later. As indicated
in (2.1), the cylinder displacement (2.2) is expected to exhibit a phase lag φ with respect to
the excitation force, which is affected non-negligibly by the dissipative effects of viscous
stresses in the squeeze film and material friction within the disk (Bettini 2016). In general,
the evolving width h(r, t) of the film may be expressed with use of the function

w(r, t) = h − ho, (2.3)

which denotes the position of the disk surface bounding the air film. Since the central
portion of the disk is glued to the cylinder, it follows from (2.2) that, in the first
approximation,

w = b cos(ωt) for 0 ≤ r ≤ rc. (2.4)

In pursuit of determining simultaneously the central oscillation amplitude b and the
reactive forces modulating its value, we introduce below a reduced theoretical description
of the relevant fluid–structure dynamics, which couples the Reynolds equation governing
the variation of air pressure p in the squeeze film with the Kirchhoff–Love equation
governing the dynamic displacement w of the flexible annular portion of the disk rc ≤
r ≤ a. We show that, when b/ho � 1, the coupled equations can be solved with use of
(2.4) as the driving kinematic boundary condition to provide analytical expressions for the
reactive forces in terms of b. Substituting these expressions in (2.1) allows straightforward
computation of the value of b with relative errors of order b/ho � 1. Solving the nonlinear
system of equations that emerges at the following order in the asymptotic description for
b/ho � 1 allows analytical determination of the levitation force F� with the same level of
accuracy.

The asymptotic formulation will be shown below to provide promising agreement with
experimental measurements of the pull-off curve F�(ho), the time-averaged overpressure
in the squeeze film 〈p〉(r) − pa and the accompanying steady deformation of the disk
〈w〉(r) (see figures 1(b) and 2 for clarification). Here, the angled brackets are used to
denote the cycle-averaging operator

〈∗〉 = ω

2π

∫ t+2π/ω

t
∗ dt. (2.5)

2.2. Description of the squeeze-film gas dynamics
In modelling the gas flow, it will be assumed that the squeeze film is slender, i.e. ho � λ,
with the characteristic flexural wavelength λ of the disk being comparable to its radius a.
Additionally, the viscous time scale h2

o/(μa/ρa), where μa and ρa denote respectively the
ambient dynamic viscosity and density of the gas, is taken to be much smaller than the
oscillation period 2π/ω, so that the momentum balance is dominated by viscous forces
and the energy balance by transverse heat conduction (since the Prandtl number of air is
of order unity (Rohsenow, Hartnett & Cho 1998, p. 2.4)). In this approximation, the gas
temperature across the film equals that of the solid boundaries, which is assumed here to
equal the ambient gas temperature. In the associated limit of isothermal lubrication theory,
the gas flow is determined, with relative errors of order (ho/a)2 �1 and h2

oω/(μa/ρa)�1,
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by the familiar equations (Langlois 1962; Ramanarayanan et al. 2022)

∂ρ

∂t
+ 1

r
∂(ρru)

∂r
+ ∂(ρv)

∂y
= 0,

∂p
∂r

= μa
∂2u
∂y2 ,

∂p
∂y

= 0 and
p
ρ

= pa

ρa
, (2.6a–d)

where y is the normal distance to the wall, u and v denote respectively the radial and
axial components of the flow velocity and ρ and p denote respectively the variable gas
density and pressure, the subscript ‘a’ denoting ambient values found in the unperturbed
surroundings.

The flow velocity in the film must satisfy the no-slip condition u = 0 on both bounding
surfaces y = 0 and y = h as well as the corresponding no-penetration conditions given
by v = 0 at y = 0 and v = ∂w/∂t at y = h. Note that the condition u( y = h) = 0
ignores negligibly small radial displacements of material points on the disk, of the
order of (b/ho)

2(ho/a)2a � a. The associated gas pressure must satisfy the conditions
of regularity at the central axis of the film and relaxation at its edge

∂p/∂r = 0 at r = 0 and p = pa at r = a, (2.7a,b)

respectively, the latter of which neglects variations of pressure existing beyond the edge,
which are negligibly small in the lubrication limit, as explained in Appendix A.

The problem defined above affords straightforward reduction to the single equation

∂

∂t
[(ho + w)p] − 1

12μar
∂

∂r

[
(ho + w)3pr

∂p
∂r

]
= 0, (2.8)

the relevant Reynolds lubrication equation for compressible flow (Harrison 1913; Langlois
1962; Ramanarayanan et al. 2022), which relates the disk deformation w(r, t) = h − ho
with the coupled film pressure p(r, t), the latter independent of y, as follows from (2.6c).
The evolving pressure is to be determined by integration of (2.8) subject to the boundary
conditions (2.7). Solution requires knowledge of the disk position w, whose value for 0 ≤
r ≤ rc is determined in the first approximation by the presumed cylinder motion, as stated
in (2.4), while its unknown value in the annular region rc < r ≤ a must be obtained from
an analysis of the disk structural dynamics, as described below.

2.3. Description of the disk structural dynamics
In analysing the oscillations of the deformable portion of the disk extending for rc ≤ r ≤ a,
it will be assumed that the disk is made of a homogeneous, isotropic material, and
that its axial deflections, comparable in magnitude to the central amplitude b, are much
smaller than its uniform thickness td, which in turn is much smaller than its radius
a, i.e. b � td � a. The excitation frequency is assumed to be sufficiently low for the
characteristic flexural wavelength λ of the disk to be comparable to the disk radius
a, consistent with the slender-flow assumption drawn in § 2.2. Under these conditions
the disk can be assumed to undergo pure bending (Timoshenko & Woinowsky-Krieger
1959, pp. 47–49), whence its dynamic deformations, influenced non-negligibly by the
squeeze-film overpressure p(r, t) − pa, can be described with use of the Kirchhoff–Love
equation (Kelly 2013; Ducceschi 2014)

D∇̄4w + ρdtd
∂2w
∂t2

= p − pa, where D = Edt3d
12(1 − ν2

d)
, (2.9a,b)

involving the axisymmetric Laplacian operator ∇̄2 = [∂2/∂r2 + (1/r)∂/∂r] and the
flexural rigidity D of the disk, the latter defined in terms of the disk Young’s modulus
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Ed, mass density ρd and Poisson’s ratio νd. Correspondingly, the axial stress resultant Vc
affecting the dynamics of the central assembly (2.1) can be expressed as (Yang 2005)

Vc = −D[∂(∇̄2w)/∂r]r=rc . (2.10)

Note that the displacement of the neutral plane of the disk has been substituted in (2.9a)
and (2.10) with that of its film-adjacent surface w (2.3), introducing negligible relative
errors of order (b/ho)(tdho/a2) � 1. Also, in-plane stresses induced due to fluid shear
acting on this surface (Timoshenko & Woinowsky-Krieger 1959, pp. 378–380) are smaller
than the expected overpressure by a factor of order (b/ho)(ho/a)2 � 1 (Watanabe & Hara
1997; Tulchinsky & Gat 2016) and, hence, neglected when writing (2.9a).

Equation (2.9a) must be integrated for rc ≤ r ≤ a with the four boundary conditions⎧⎪⎪⎨
⎪⎪⎩

w − b cos(ωt) = ∂w
∂r

= 0 at r = rc(
∂2

∂r2 + νd

r
∂

∂r

)
w = ∂

∂r
(∇̄2w) = 0 at r = a

, (2.11)

which state that the annular portion of the disk is clamped at its inner edge r = rc, where
it follows the driving motion of the cylinder (2.4), and that neither bending moments nor
axisymmetric axial stresses are supported at its free outer edge r = a (see Timoshenko &
Woinowsky-Krieger 1959, pp. 83–84 and Yang 2005, pp. 840–841).

2.4. Dimensionless formulation and governing parameters
It is useful to reformulate the fluid–structure problem defined in §§ 2.2 and 2.3 in terms
of appropriate dimensionless variables, beginning with the temporal and spatial variables
τ = ωt and ξ = r/a. The disk displacement is scaled with the central amplitude b to give
W(ξ, τ ) = w/b. We may then use (2.3) to write h/ho = 1 + εW, where

ε = b/ho (2.12)

defines the relative central oscillation amplitude. It follows from (2.4) that, in the
first approximation, W = cos τ for ξ ≤ ξc, where ξc = rc/a defines the dimensionless
clamping radius. The characteristic scale of film overpressure, deduced readily from
(2.6a,b) (see Appendix A), is used to define the variable P = 12( p − pa)/(εσpa), where

σ = 12μaωa2

pah2
o

, (2.13)

the classical dimensionless ‘squeeze number’ (Langlois 1962), quantifies the degree of
gaseous compressibility in the film induced by viscous retardation of radial airflow.

The Reynolds lubrication equation (2.8) can now be written in the dimensionless form

σ
∂

∂τ
[(1 + εW)P] − 1

ξ

∂

∂ξ

[
(1 + εW)3

(
1 + εσ

12
P
)

ξ
∂P
∂ξ

]
+ 12

∂W
∂τ

= 0, (2.14)

while the Kirchhoff–Love equation (2.9a) takes the form

∇4W + K4 ∂2W
∂τ 2 = C6P, (2.15)
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Two-way fluid–structure coupling in squeeze-film levitation

where ∇2 = [∂2/∂ξ2 + (1/ξ)∂/∂ξ ]. As seen from (2.15), consideration of the disk
dynamics introduces two additional dimensionless parameters defined by

K4 = a4ω2 12ρd(1 − ν2
d)

Edt2d
and C6 = a6 12μaω(1 − ν2

d)

Ed(tdho)3 , (2.16a,b)

where K represents the well-known elastic wavenumber characterizing the bending of
an isolated disk, i.e. one for which C = 0 (Warren 1930; Yang 2005; Ramanarayanan &
Sánchez 2022). In the proceeding analysis, the ratio of the scale of film overpressure to
that of disk inertia, C6/K4, is found to be an important quantity that characterizes the
‘degree’ of flow–structure coupling. Interestingly, in the extreme case of strong coupling
C6/K4 	 1, the parameter K is found to disappear from the formulation and is replaced
by C as the relevant flexural wavenumber.

As follows from (2.7), (2.14) must be integrated with the boundary conditions

∂P/∂ξ = 0 at ξ = 0 and P = 0 at ξ = 1, (2.17)

while, based on (2.11), (2.15) must be integrated with⎧⎪⎨
⎪⎩

W − cos τ = ∂W/∂ξ = 0 at ξ = ξc(
∂2

∂ξ2 + νd

ξ

∂

∂ξ

)
W = ∂

∂ξ
(∇2W) = 0 at ξ = 1

. (2.18)

The problem defined above is to be addressed below for order-unity values of the
distinguished dimensionless parameters σ , K and C, in order to develop a unifying
theoretical description that reconciles the remarkable recent discoveries with the
well-understood physics of conventional SFL systems which, together, span a wide
parametric range (see, for example, Salbu 1964; Hatanaka et al. 1999; Sadayuki 2002;
Zhao 2010; Yoshimoto et al. 2013; Colasante 2015; Weston-Dawkes et al. 2021). Analytical
progress will be made using classical asymptotic methods that exploit the limit of small
relative amplitudes ε = b/ho � 1, as similar historical approaches have afforded clear
insights regarding the simplified physics of SFL configurations that feature extreme values
of σ , K and/or C (Taylor & Saffman 1957; Langlois 1962; Ramanarayanan et al. 2022).

3. Leading-order dynamics for small relative amplitudes

We begin by expressing the dimensionless disk displacement and film overpressure as
regular perturbation expansions of the forms W = W0 + εW1 + · · · and P = P0 + εP1 +
· · · , respectively. Substituting these expansions into the governing equations (2.14) and
(2.15) and their boundary conditions (2.17) and (2.18), and collecting terms of order unity
gives

∂

∂τ
(σP0 + 12W0) − ∇2P0 = 0

{
ξ = 0 : ∂P0/∂ξ = 0
ξ = 1 : P0 = 0 , (3.1)

and

∇4W0 + K4 ∂2W0

∂τ 2 = C6P0

⎧⎪⎨
⎪⎩

ξ = ξc : W0 − cos τ = ∂W0/∂ξ = 0

ξ = 1 :
(

∂2

∂ξ2 + νd

ξ

∂

∂ξ

)
W0 = ∂

∂ξ
(∇2W0) = 0

. (3.2)

Since the motion of the central portion of the disk is prescribed at leading order by the
uniform sinusoidal function W0 = cos τ , as per (2.4), in seeking time-periodic solutions
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S. Ramanarayanan and A.L. Sánchez

of this linear problem it is convenient to introduce a piecewise-defined ansatz of the form

P0 = Re{Π̄(ξ) eiτ } and W0 = Re{eiτ } for 0 ≤ ξ ≤ ξc

P0 = Re{Π(ξ) eiτ } and W0 = Re{Ω(ξ) eiτ } for ξc ≤ ξ ≤ 1

}
, (3.3)

where the complex spatial functions Π̄ , Π , and Ω are to be determined below.
In the central portion of the film 0 ≤ ξ ≤ ξc, (3.1) reduces to Π̄ ′′ + Π̄ ′/ξ − σ iΠ̄ = 12 i,

where a prime superscript denotes the derivative of a spatial function, i.e. f ′(ξ) = df /dξ .
Integration with the regularity condition Π̄ ′(0) = 0 gives the reduced pressure

Π̄ = (12 i/ς2)[1 + ĀJ0(ςξ)], with ς = (1 − i)
√

σ/2, (3.4)

where J0 represents the Bessel function of the first kind of zeroth order, and the coefficient
Ā is to be determined by patching the function Π̄ (Bender & Orszag 1999, pp. 335–336)
with the reduced pressure Π existing in the surrounding annular region ξc ≤ ξ ≤ 1.

In the annular region, we use (3.2) and (3.3) to write Π = C−6(∇4 − K4)Ω , substitution
of which in (3.1) yields the relevant ‘thin-film’ equation (Poulain et al. 2022)

∇6Ω − σ i∇4Ω − K4∇2Ω + i(σK4 − 12C6)Ω = 0. (3.5)

The general solution to (3.5) can be written in the form

Ω =
3∑

n=1

[AnJ0(γnξ) + BnY0(γnξ)], (3.6)

whence the reduced pressure Π assumes the form

Π = 1
C6

3∑
n=1

(γ 4
n − K4)[AnJ0(γnξ) + BnY0(γnξ)], (3.7)

both involving the Bessel function of the second kind of zeroth order Y0, the unknown
coefficients An and Bn (where n = 1 : 3) and the constants γ1, γ2 and γ3, defined by

γ 2
n = − i

3
[σ + e2 iπ(n−1)/3Q1/3 + (σ 2 − 3K4) e2 iπ(1−n)/3Q−1/3], for n = 1 : 3, (3.8)

where

Q = σ 3 + 9σK4 − 162C6 − 3[3 K4(σ 2 + K4)2 + 36C6(81C6 − 9σK4 − σ 3)]1/2. (3.9)

The leading-order solution thus involves seven coefficients, Ā, A1, A2, A3, B1, B2 and
B3, to be determined by application of the five reduced boundary conditions{

Ω − 1 = Ω ′ = 0 at ξ = ξc

Π = Ω ′′ + νdΩ
′ = Ω ′′′ + Ω ′′ − Ω ′ = 0 at ξ = 1

, (3.10)

deduced from (3.1) and (3.2), and the two additional conditions Π̄ = Π and Π̄ ′ = Π ′
at ξ = ξc, which enforce continuity of the pressure and its gradient, respectively, at the
interfacial clamp radius. The last condition guarantees continuity of the radial flow speed
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Two-way fluid–structure coupling in squeeze-film levitation

u ∝ ∂p/∂r, evident from the radial momentum balance (2.6b), and involves the reduced
pressure gradients in the central and annular regions

Π̄ ′ = −12 i
ς

ĀJ1(ςξ) and Π ′ = 1
C6

3∑
n=1

γn(K4 − γ 4
n )[AnJ1(γnξ) + BnY1(γnξ)],

(3.11a,b)

respectively. Application of these seven conditions with use of (3.6) and (3.7) provides[
Ā A1 B1 A2 B2 A3 B3

] = [
1 0 12 iC6/ς2 0 0 0 0

]
M−1, (3.12)

where M−1 represents the inverse of the square matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
12C6J0(ςξc)

iς2
12 iC6J1(ςξc)

ς
0 0 0

J0(γ1ξc) γ1J1(γ1ξc) ΦJ(γ1, ξc) ΨJ(γ1, ξc) ΦJ(γ1, 1) ΘJ(γ1, 1) γ 3
1 J1(γ1)

Y0(γ1ξc) γ1Y1(γ1ξc) ΦY (γ1, ξc) ΨY (γ1, ξc) ΦY (γ1, 1) ΘY (γ1, 1) γ 3
1 Y1(γ1)

J0(γ2ξc) γ2J1(γ2ξc) ΦJ(γ2, ξc) ΨJ(γ2, ξc) ΦJ(γ2, 1) ΘJ(γ2, 1) γ 3
2 J1(γ2)

Y0(γ2ξc) γ2Y1(γ2ξc) ΦY (γ2, ξc) ΨY (γ2, ξc) ΦY (γ2, 1) ΘY (γ2, 1) γ 3
2 Y1(γ2)

J0(γ3ξc) γ3J1(γ3ξc) ΦJ(γ3, ξc) ΨJ(γ3, ξc) ΦJ(γ3, 1) ΘJ(γ3, 1) γ 3
3 J1(γ3)

Y0(γ3ξc) γ3Y1(γ3ξc) ΦY (γ3, ξc) ΨY (γ3, ξc) ΦY (γ3, 1) ΘY (γ3, 1) γ 3
3 Y1(γ3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.13)
expressed here in terms of the auxiliary functions

ΦB(γn, ξ) = (γ 4
n − K4)B0(γnξ)

ΨB(γn, ξ) = γn(K4 − γ 4
n )B1(γnξ)

ΘB(γn, ξ) = γ 2
n

[
B0(γnξ) − 1 − νd

γnξ
B1(γnξ)

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.14)

where Bm represents a Bessel function of the first/second kind (Jm or Ym) of mth order.

3.1. Solving for the presumed displacement amplitude b
The reactive aerodynamic and structural forces affecting the oscillation of the central
assembly can now be expressed, with errors of order ε � 1, in the dimensionless forms∫ rc

0
( p − pa)r dr

εpaa2 = −Re{Fc eiτ }, where Fc = ξc

[
ξc

2
+ Ā

ς
J1(ςξc)

]
, (3.15)

and, based on (2.10),

rcVc

Db/a2 = −Re{Vc eiτ }, where Vc = ξc

3∑
n=1

γ 3
n [AnJ1(γnξc) + BnY1(γnξc)], (3.16)

respectively. Substituting into the governing equation of motion (2.1) the presumed central
displacement (2.4), the central pressure force (3.15) and the structural impedance (3.16)
reveals a linear relationship between the unknown displacement amplitude b and the
(generally) known excitation amplitude Fm, given by

b
Fm

= |X |−1, where X = 2π

(
a2

ho
paFc + D

a2 Vc

)
− ω2(mc + πr2

cρdtd) (3.17)

and an absolute value denotes the modulus of a complex quantity. The associated phase
difference φ is given simply by φ = arg(X ). Note that this estimate for the value of b,
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S. Ramanarayanan and A.L. Sánchez

accurate with relative errors of order ε = b/ho � 1, does not require knowledge of the
load F� which enters in (2.1) as an asymptotic correction of order ε.

4. Time-averaged behaviour at first order

The disk displacement at leading order, W0, and the associated film overpressure, P0, both
vary sinusoidally with time and thus exhibit a zero time average, i.e. 〈W0〉 = 〈P0〉 = 0,
the angled brackets denoting the cycle-averaging operator (2.5). Determining the steady
pressure distribution and the steady disk deformation thus requires solving the problem
that emerges at the following asymptotic order. Collecting terms of order ε in the expanded
forms of (2.14) and (2.15) and their boundary conditions (2.17) and (2.18), and computing
the cycle average thereof, provides the system of equations

∂

∂ξ

[
ξ

(
3
〈
W0

∂P0

∂ξ

〉
+ σ

24
∂〈P2

0〉
∂ξ

+ ∂〈P1〉
∂ξ

)]
= 0

{
ξ = 0 : ∂〈P1〉/∂ξ = 0
ξ = 1 : 〈P1〉 = 0

(4.1)

and

∇4〈W1〉 = C6〈P1〉

⎧⎪⎨
⎪⎩

ξ = ξc : 〈W1〉 = d〈W1〉/dξ = 0

ξ = 1 :
(

d2

dξ2 + νd

ξ

d
dξ

)
〈W1〉 = d

dξ

(∇2〈W1〉
) = 0

, (4.2)

where the steady overpressure 〈P1〉 at the film edge ξ = 1 is negligibly small in the
lubrication limit considered here, as explained in Appendix A, and the value of 〈W1〉
vanishes at the clamp radius ξ = ξc since the driving cylinder oscillates about a constant
mean position, as described below (2.1). In this connection, note from (4.1) and (4.2) that
any secondary frequencies exhibited by W1(ξ, τ ) due to nonlinear first-order interactions
are irrelevant when solving for the time-averaged quantities of present interest.

4.1. Time-averaged squeeze-film overpressure and disk deformation
The steady pressure distribution 〈P1〉(ξ), independent of the steady disk deformation
〈W1〉(ξ) under the present perturbative formulation, can be determined by straightforward
integration of (4.1) to give

〈P1〉(ξ) = 3
∫ 1

ξ

〈
W0

∂P0

∂ξ

〉
(x) dx − σ

24
〈P2

0〉, (4.3)

where x serves as a dummy integration variable. Substitution of the expressions given in
(3.3) provides

〈P1〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

Re

{
3

[
Π̄(ξc) − Π̄(ξ) +

∫ 1

ξc

Π ′∗(x)Ω(x)dx

]
− σ

24
Π̄Π̄∗

}
0 ≤ ξ ≤ ξc

1
2

Re

{
3
∫ 1

ξ

Π ′∗(x)Ω(x)dx − σ

24
ΠΠ∗

}
ξc ≤ ξ ≤ 1

,

(4.4)

having made use of the identity 〈Re{Geiτ }Re{Heiτ }〉 = Re{G∗H}/2, where G and H are
complex spatial functions and an asterisk denotes a complex conjugate.
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Two-way fluid–structure coupling in squeeze-film levitation

Integration of (4.2) provides the accompanying time-averaged deformation of the disk

〈W1〉 = C6
(
I1(ξc) ln

(
ξc

ξ

)
+ 1

64

∫ ξ

ξc

x4[4 ln(x) − 5]〈P1〉′(x) dx

− ln(ξ)

16

∫ ξ

ξc

x4〈P1〉′(x) dx +
∣∣∣∣
ξ

ξc

I2(ξ)

+ ξc
2[1 + 2 ln(ξ/ξc)] − ξ2

2[ξc
2 − 1 + 2/(1 − νd)]

[
I1(ξc) + 1

16

∫ 1

ξc

x4〈P1〉′(x) dx

])
(4.5)

expressed here in terms of the radial pressure gradient

〈P1〉′ = d〈P1〉
dξ

=

⎧⎪⎨
⎪⎩

−1
2

Re
{
Π̄ ′∗

(
3 + σ

12
Π̄

)}
0 ≤ ξ ≤ ξc

−1
2

Re
{
Π ′∗

(
3Ω + σ

12
Π

)}
ξc ≤ ξ ≤ 1

, (4.6)

and the auxiliary integral functions

I1(ξ) = ξ2

4

[
ξ2

4
〈P1〉 + ln(ξ)

∫ 1

ξ

x2〈P1〉′(x) dx −
∫ 1

ξ

x2 ln(x)〈P1〉′(x) dx

]

I2(ξ) = ξ2

16

[
ξ2

4
〈P1〉 + [2 ln(ξ) − 1]

∫ 1

ξ

x2〈P1〉′(x) dx − 2
∫ 1

ξ

x2 ln(x)〈P1〉′(x) dx

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(4.7)

4.2. An analytical expression for the levitation force
Consistent with the simplified description of gas dynamics presented in § 2.2, the steady,
attractive squeeze-film levitation force can be expressed as F� = −2π

∫ a
0 〈p − pa〉 rdr,

which follows from a cycle-averaged statement of Newton’s second law for the periodically
oscillating system cartooned in figure 1(a), comprising both the central assembly and the
annular portion of the disk. (This definition for F� may be obtained also by integrating
the Kirchhoff–Love equation (2.9a) across the annular portion of the disk rc ≤ r ≤ a,
substituting the resulting expression for the stress resultant Vc (2.10) into the equation of
motion (2.1) and taking the time average thereof.)

Based on the scalings introduced in § 2.4, the force F� can be normalized with the
supplied excitation amplitude Fm and the resulting relative oscillation amplitude ε = b/ho
to provide a dimensionless expression for the operating efficiency of the system

F�

εFm
= πμaωa4

h3
o

〈FL〉
|X | , where 〈FL〉 = 12F�

ε2σpaπa2 = −2
∫ 1

0
〈P1〉ξ dξ (4.8a,b)

and the complex constant X is defined in (3.17). Integration by parts in (4.8b) yields
〈FL〉 = ∫ 1

0 ξ2〈P1〉′ dξ , wherein substitution of the steady pressure gradient (4.6) provides

〈FL〉 = −1
2

Re
{

12
σ

Ā∗
(

2ξc

ς∗ [2J1(ς
∗ξc) − ς∗ξcJ0(ς

∗ξc)] − ς∗ĀIJJ(ξc; ς, ς∗)
)

+
3∑

n=1

3∑
m=1

γ ∗
n (K4 − γ ∗

n
4)

C6

[
3 + σ(γ 4

m − K4)

12C6

]∣∣∣∣∣
1

ξc

IL(ξ)

⎫⎬
⎭ , (4.9)
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involving the auxiliary function

IL(ξ) = AmA∗
nIJJ(ξ ; γm, γ ∗

n ) + AmB∗
nIJY(ξ ; γm, γ ∗

n )

+ BmA∗
nIYJ(ξ ; γm, γ ∗

n ) + BmB∗
nIYY(ξ ; γm, γ ∗

n ), (4.10)

and the four operators IJJ, IJY , IYJ and IYY , defined collectively by

IFG(ξ ;βF, βG) = 2βGξ [βGF0(βFξ)G1(βGξ) − βFF1(βFξ)G0(βGξ)]/(β2
F − β2

G)2

+ ξ2[βGF0(βFξ)G0(βGξ) + βFF1(βFξ)G1(βGξ)]/(β2
F − β2

G),

(4.11)

where each Fm and Gm represents a Bessel function of the first or second kind (Jm or Ym)
of mth order (Rosenheinrich 2019, p. 301).

5. Simplified expressions describing centrally forced systems: ξc → 0

Of particular interest in understanding the flow–structure physics of SFL systems is the
problem of a disk that is subject to a concentrated load at its centre, experiencing internal
structural stresses that grow unboundedly (∝ r−1) near its axis r = 0. Warren (1930)
approached this singular problem by analysing the undamped oscillation of an annular disk
and considering the limit of a vanishing inner radius. Following this strategy, the general
formulation developed in §§ 2–4 is exploited below to derive simplified expressions,
independent of ξc, that describe the performance of a centrally forced system.

In the corresponding limit ξc → 0, the regularity condition ∂P/∂ξ = 0 for the pressure
in the air layer may be applied directly at the clamp radius ξ = ξc. The constant coefficients
that determine at leading order the annular pressure distribution P0 (3.7) and disk flexure
W0 (3.6) can be expressed as limξc→0[A1 B1 A2 B2 A3 B3] = [1 0 0 0 0 0]M−1

0 , in terms of
the reduced matrix M0 = [U1U2 U3]T, where

Un =
[

1 0 0 ΦJ(γn, 1) ΘJ(γn, 1) γ 3
n J1(γn)

2 ln(γn)/π 1 γ 4
n ΦY(γn, 1) ΘY(γn, 1) γ 3

n Y1(γn)

]
for n = 1 : 3. (5.1)

Assuming a massless central assembly (mc = 0), the complex constant X defined in (3.17)
reduces here to limξc→0 X = −4(D/a2)(B1γ

2
1 + B2γ

2
2 + B3γ

2
3 ), whence the amplitude of

the reactive forces affecting the central dynamics (2.1) can be expressed as

lim
ξc→0

|Vc| = lim
ξc→0

Fm

2πDb/a2 = 2
π

∣∣∣∣∣
3∑

n=1

Bnγ
2
n

∣∣∣∣∣ . (5.2)

The time-averaged overpressure 〈P1〉(ξ) that emerges as a first-order correction is
described by the second branch of the piecewise-defined equation (4.4), while the general
expression (4.5) describing the resulting disk deformation 〈W1〉(ξ) simplifies here to give

lim
ξc→0

〈W1〉 = C6
(

1
64

∫ ξ

0
x4[4 ln(x) − 5]〈P1〉′(x) dx − ln(ξ)

16

∫ ξ

0
x4〈P1〉′(x) dx

+ I2(ξ) − ξ2(1 − νd)

32(1 + νd)

∫ 1

0
x4〈P1〉′(x) dx

)
, (5.3)
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Two-way fluid–structure coupling in squeeze-film levitation

both valid only for 0 < ξ ≤ 1. The levitation force (4.9) correspondingly reduces to

lim
ξc→0

〈FL〉 = −1
2

Re

{ 3∑
n=1

3∑
m=1

γ ∗
n (K4 − γ ∗

n
4)

C6

[
3 + σ(γ 4

m − K4)

12C6

]
[IL(1) − Ic]

}
, (5.4)

where

Ic = 4/π

γ 2
m − γ ∗

n
2

[
γ ∗

n (BmA∗
n − AmB∗

n)

γ 2
m − γ ∗

n
2 + BmB∗

n

πγ ∗
n

(
1 − 2 ln(γm/γ ∗

n )

(γm/γ ∗
n )2 − 1

)]
. (5.5)

Combining (5.4) with (5.2) yields a reduced expression for the levitation efficiency

lim
ξc→0

F�

εFm
= C6

2
limξc→0〈FL〉
limξc→0 |Vc| . (5.6)

6. Effects of two-way coupling on the flow–structure dynamics

The fluid–structure problem addressed above is governed by five principal dimensionless
parameters as detailed in § 2.4: the perturbation parameter ε = b/ho � 1, which compares
the oscillation amplitude of the disk centre with its mean separation distance from the
wall, the relative clamp radius ξc = rc/a beyond which the disk is allowed to bend (see
figure 1b), the squeeze number σ , which quantifies the strength of viscous forces retarding
airflow in the film and giving rise to compressibility, the elastic wavenumber K, which
correlates inversely with the flexural wavelength of the disk anticipated based on its
structural properties, and a coupling parameter C, which measures the influence of pressure
variations in the squeeze film on the disk deformations. Of greatest interest here are the
final parameters σ, K and C which govern the fundamental fluid–structure dynamics, to
be investigated below by focusing mainly on centrally excited configurations, i.e. those
involving infinitesimally small values of ξc (see § 5). In the dimensionless computations
presented below, the Poisson’s ratio of the disk νd is assigned a value of 0.3, characteristic
approximately of most plastic and metallic materials of relevance here (The Engineering
ToolBox 2008; Sonelastic n.d.).

6.1. System dynamics under one-way coupling
The general formulation derived above simplifies in the limit C → 0 to describe
one-way-coupled systems, as detailed in Appendix B. It is worth reviewing here the
widely studied behaviour of such systems – those for which the oscillations of the disk
are unaffected by the squeeze-film overpressure and, hence, the flow–structure physics
is governed purely by the parameters σ and K. An increase in σ ∝ ωa2/h2

o, realized
commonly by reducing the separation distance ho, is known to result in a magnification
of the typically repulsive squeeze-film force F� < 0 in a manner proportional to the
inverse square of ho (Taylor & Saffman 1957; Zhao 2010). This magnification is found
to occur regardless of the flexibility of the oscillator (Li et al. 2014), the latter quantified
by the elastic wavenumber K. A transition to attractive forces F� > 0 is found to occur
for systems with sufficiently low frequency ω (Sadayuki 2002) and/or oscillator size a
(Yoshimoto et al. 2013; Andrade et al. 2020). For these systems, attraction emerges only
beyond a critical separation distance ho, i.e. below a critical value of σ .

The range of operating conditions ω and a for which attraction can be found, as
well as the resulting attractive load capacity, are found to depend strongly on the
waveform exhibited by the oscillating disk (Ramanarayanan & Sánchez 2022). In the
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Figure 3. Behaviour of an SFL system operating with an elastic wavenumber of K = 6.2 and a squeeze
number of σ = 20. The flexural disk oscillations that occur under (a) a state of one-way coupling (C = 0) are
juxtaposed with those that occur for states of (b) moderate two-way coupling (C = 3) and (c) strong two-way
coupling (C > 5). Shown below in (d–f ) are the associated radial distributions of time-averaged pressure and
disk displacement. Dots and circles in (d–f ) represent numerical solutions computed for ε = 0.1.

case of rigid-body oscillation, i.e. K = 0, repulsive forces exist for nearly all values
of σ (Zhao 2010). Attractive forces can be produced under a very limited range of
operating conditions, characterization of which requires modelling the effects of fluid
inertia that are neglected in the lubrication approximation drawn in the present study,
but the corresponding load capacities are several thousandfold smaller and, thus, of
limited practical utility (Yoshimoto et al. 2013; Andrade et al. 2020). (Analysis of
such conditions requires considering separately the contributions of fluid compressibility
and inertia with use of the relevant acoustic wavenumber Ka = aω/

√
pa/ρa and the

Womersley number α = [h2
oω/(μa/ρa)]1/2, which compare with the oscillation period the

time scales of lateral pressure equilibration and transverse viscous diffusion, respectively.
These two parameters enter implicitly in the present lubrication limit α2 � 1 through
the single squeeze number σ = 12K2

a/α2 (Melikhov et al. 2016; Ramanarayanan et al.
2022).) In contrast, for critical values of K that correspond to the natural frequencies
of the disk (see Appendix B), the disk performs resonant standing-wave oscillations,
such as those depicted in figure 3(a), and produces powerful attractive forces for a
substantial range of values of σ (Ramanarayanan & Sánchez 2022). Note that excitation
of the disk at a non-natural frequency may result in different flexural waveforms that,
instead, only magnify the repulsive squeeze-film force. This is often seen in practical
systems where the disk is affixed to a Piezoelectric transducer of much greater mass
(Da Silva 1980; Li et al. 2014), yielding a mechanical assembly whose optimal, resonant
frequencies presumably differ substantially from the native resonant frequencies of
the disk.

Motion of a centrally excited disk at its second resonant mode, i.e. K ≈ 6.2, is visualized
in figure 3(a) for a value of the squeeze number σ = 20 that gives rise to an attractive force.
As seen from the blue curve in figure 3(d), the distribution of steady pressure generated
along the gas layer features two local minima whose radial locations correspond closely
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with those of the two nodal circles in the standing flexural wave, r/a ≈ 0.4 and 0.8. In
the absence of aerodynamic forcing, the disk oscillates sinusoidally about an undeformed
mean position, as indicated by the red line in figure 3(d). While this one-way-coupled
description has been shown (Ramanarayanan & Sánchez 2022) to successfully reproduce
the magnification of attractive load capacity found in flexural SFL systems (Colasante
2015; Weston-Dawkes et al. 2021), the predicted distribution of the causal time-averaged
overpressure exhibits glaring disagreement with that measured in experiments, the latter
exemplified in figure 2(b). Furthermore, setting C = 0 precludes characterization of
the accompanying time-averaged deformation of the disk, a sample measurement of
which is also reproduced in figure 2(b). Accounting for two-way fluid–structure coupling
by considering non-zero values of C yields greatly improved agreement with these
observations, as described below.

6.2. System dynamics under two-way coupling
As seen from figures 3(b) and 3(e), increasing the value of the coupling parameter to C = 3
yields but minor deviation from the one-way-coupled dynamics depicted in figures 3(a)
and 3(d). The two nodal points are slightly disturbed and give way to localized regions
of minimal amplitude, symptomatic of a damped oscillator (Geist & McLaughlin 1994).
The corresponding steady pressure distribution 〈P1〉(ξ) is visibly skewed but maintains
a similar fundamental shape, and the disk oscillates about an approximately linearly
deformed mean shape 〈W1〉(ξ). Much more pronounced changes are observed when the
strength of the aerodynamic forcing is further increased by setting C = 5.25, for which
value the disk exhibits travelling-wave-type oscillations whose amplitude is suppressed
severely beyond r/a ≈ 0.3, as shown in figure 3(c). As seen from figure 3( f ), the steady
gauge pressure then assumes a negative value at the central axis r = 0 and the steady disk
deformation varies non-monotonically with radial distance, both in qualitative congruence
with the experimental measurements reproduced in figure 2(b) (Weston-Dawkes et al.
2021). The disappearance of the first nodal region indicates that the collection of sand
on the disk at r/a ≈ 0.3 observed by Weston-Dawkes et al. (2021) may not constitute
a Chladni pattern, as the authors suggest, and owes instead to gravity-driven transport
toward the valley formed by the mean disk deformation. Interestingly, in the limit of strong
coupling C 	 1, considered separately in Appendix B, the flexural wavenumber of the
disk is found to scale with C, in place of the elastic wavenumber K that applies for C ∼ 1,
and the steady gauge pressure is seen to relax sharply from a negative value at the centre
of the film toward zero across a small region r/a � 5/C. For strongly coupled systems,
reducing the degree of coupling C ∝ 1/

√
ho thus widens this central region, as observed

by Weston-Dawkes et al. (2021) during the pull-off process.
For each of the operating conditions depicted in figure 3, the analytical predictions of

the time-averaged pressure distribution and disk deformation are confirmed with use of a
finite-difference solution of the governing equations (2.14) and (2.15), results of which
are visualized in the form of dots and circles in figures 3(d–f ). As can be seen, for
the moderately small relative amplitude ε = 0.1 used in the integration, the numerical
solutions display satisfactory agreement with the asymptotic results. The governing
equations were discretized with use of second-order central-space finite-difference
approximations and marched in time asynchronously, the Reynolds equation with a
forward-Euler scheme and the Kirchhoff–Love equation with use of a second-order
central-difference scheme (Michael 1963; Moin 2010). The system was initialized with
ambient pressure throughout the film p(r) = pa, a uniform disk displacement w(r) = b
and zero disk velocity ∂w/∂t = 0. Accurate characterization of the disk motion for
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Figure 4. Variation with the elastic wavenumber K of the dimensionless amplitude of the forces modulating
the oscillation of a centrally excited disk, as defined in (5.2). Curves are shown for two distinct values of
the squeeze number σ – (a) σ = 1 and (b) σ = 500 – and compared for states of one-way coupling (C = 0),
moderate two-way coupling (C = 3) and strong two-way coupling (C > 5).

C /= 0 required a sufficiently fine spatial discretization �ξ = �r/a and, in turn, stable
convergence to periodicity of the film pressure required a sufficiently small time step
�τ = ω�t. For instance, the solution for C = 3 represented in figure 3(e) was obtained
using �ξ = 0.01 and �τ = 6.3 × 10−4. The restriction on the time step for numerical
stability generally loosened when increasing the degree of damping; for instance, the
solution for C = 5.25 represented in figure 3( f ) was obtained using �τ = 8.4 × 10−4.
Note finally that the precise time-averaged shape of the deforming disk 〈W〉 continued
to fluctuate noticeably even after the associated levitation force had converged with a
convergence ratio of less than 0.5 %.

7. The attractive load capacity

Based on the results outlined above, it is of great interest to explore the influence of
two-way fluid–structure coupling on the attractive load capacity max(F�) of a flexural
squeeze-film system. The asymptotic formulation developed in this study allows analytical
determination of the levitation force F� in the dimensionless form F�/(εFm), a measure
of system efficiency that takes into account the amplitude Fm of the supplied excitation
force. In principle, the efficiency will be affected both by structural bending forces
within the disk and by the evolving overpressure in the squeeze film (see § 2.1). While
it is well known that operating near a resonant frequency maximizes the efficiency for
one-way-coupled systems (C = 0) due to a weakening of structural impedance and a
consequent magnification of the displacement amplitude of points on the disk (Li et al.
2014), it is worth exploring here the influence of the additional aerodynamic force that
emerges when C > 0. Results are given below in §§ 7.1 and 7.2 for a centrally excited disk
(ξc → 0), computed using the limiting expressions derived in § 5, and provided in § 7.3 is
a sample calculation describing a practical system for which 0 < ξc < 1.

7.1. Reactive forces that modulate disk oscillation
Exemplified in figures 4(a) and 4(b) is the variation with the governing parameters of
the dimensionless amplitude |Vc| of the oscillatory reactive forces affecting a centrally
excited disk, which is evaluated using (5.2). The black dot-dashed curve in each panel,
corresponding to a state of one-way coupling C = 0, exhibits zeros for critical values of the
wavenumber K ≈ 3.0, 6.2, 9.4, . . . , which represent the resonant modes of the flexurally
oscillating disk (Warren 1930). As shown in figure 4(a), increasing the strength C of the
aerodynamic forcing tends to uniformize |Vc| for a range of wavenumbers K, thereby
eliminating the first few resonant modes. The affected range of K and the number of
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Figure 5. (a) Variation with the squeeze number σ and coupling parameter C of the levitation efficiency (4.8a)
for a selected value of the elastic wavenumber K. (b) Variation with K of the local maximum in efficiency
observed for C ∼ 1, juxtaposed with the universal value approached for C 	 1. Vertical lines in (b) represent
resonant wavenumbers of the undamped disk.

suppressed modes grow as C is increased. For sufficiently large values of K that satisfy
K4 ∼ C6, the variation of |Vc| gradually returns, in accordance with a restored three-term
balance in the Kirchhoff–Love equation (2.15). Noting that K4/C6 ∝ ω, this result agrees
well with the observed decrease of the damping ratio of flexural squeeze-film bearings
for increasing near-resonant operating frequencies ω (Pandey & Pratap 2007). It must
be emphasized here that, although |Vc| exhibits local minima of decreasing value as K
grows, it never vanishes if C > 0 – the dissipative effect of viscous aerodynamic damping
precludes idealistic resonance. The curves in figure 4(b) reveal that an increase in the
squeeze number σ mitigates modal suppression. The reappearing minima of |Vc| are
displaced along the K-axis, with greater displacement occurring for larger values of C,
i.e. the shift of the optimal near-resonant frequency ω ∝ K2 increases with the degree of
damping, as anticipated for a harmonic oscillator (Zhang et al. 2004; Bettini 2016).

7.2. Parametric dependences of the operating efficiency
Plotted in figure 5(a) is the variation with the squeeze number σ and the coupling
parameter C of the levitative efficiency provided by a centrally excited disk that is
oscillating near its first natural frequency, i.e. K = 3. The efficiency is computed in
the normalized form F�/(εFm), with use of (5.6). In practical systems, the value of
the elastic wavenumber K is determined by the structural properties of the oscillator
and the selected operating frequency, while those of σ ∝ 1/h2

o and C ∝ 1/
√

ho vary
strongly with the evolving separation distance ho during the pull-off process (see § 2.1 for
clarification). Thus, figure 5(a) may be interpreted qualitatively to represent the variation
of the normalized efficiency with the inverse of the separation distance.

Note first that the efficiency, which scales with C6 as per (5.6), vanishes in the limit
of one-way coupling C = 0 for all values of σ . On the other hand, when C = 20,
the efficiency is finite and varies weakly with σ ; further computations reveal that this
behaviour is found to occur regardless of the value of K, consistent with the observation
of modal suppression discussed in § 7.1. In fact, as detailed in Appendix B, in the limit
C 	 1, the efficiency is found to converge to a constant value ≈0.6495, independent of
both σ and K.

It is apparent from figure 5(a) that the efficiency varies non-monotonically with both
σ and C, and exhibits a local maximum for a critical combination of the two parameters.
Represented in figure 5(b) is the value of this extremum, max(ε−1F�/Fm), for various
wavenumbers K. The corresponding critical values of σ and C, omitted from the figure for
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Figure 6. Sample calculations for a disk with thickness td = 150 μm made of polyester, for which Ed =
3.65 GPa, ρd = 1.38 g cm−3 and νd = 0.48 (Sasmita et al. 2019; MatWeb n.d.), in a gas where pa = 101325 pa,
μa = 1.81 × 10−5 kg (m s)−1 and ρa = 1.225 kg m−3. (a) Variation with the separation distance ho of the
attractive force F� and the central oscillation amplitude b, and (b) variation with the disk radius a of the
area-normalized load capacity, the latter compared with measurements by Weston-Dawkes et al. (2021).

clarity, increase nearly monotonically with K. For K � 8.3, the local maximum exceeds
the aforementioned universal value approached in the limit C 	 1, the latter indicated in
the figure by a dashed horizontal line. The curvature of the function [max(ε−1F�/Fm)](K)

diminishes as K grows, subsequent peaks which appear for increasing critical values of
K, marked by dots, being less accentuated. This suggests a favourable reduction in the
sensitivity of the load capacity to the precise excitation frequency (Davis et al. 2018) when
operating near higher resonant modes. Note, in connection with the concluding discussion
in § 7.1, that the critical values of K corresponding to subsequent peaks are increasingly
displaced from the respective ideal resonant wavenumbers, the latter represented in the
figure by solid vertical lines.

7.3. Sample calculations for a practical system
While the squeeze number σ and the coupling parameter C are formally independent
parameters governing the fluid–structure dynamics, during the pull-off process they evolve
together as dictated by their respective dependences on the growing separation distance,
i.e. σ ∝ 1/h2

o and C ∝ 1/
√

ho. Practical determination of the load capacity max[F�(ho)]
thus warrants a system-specific calculation, as exemplified below.

Shown in blue in figure 6(a) is the predicted pull-off curve F�(ho) for an SFL
system operating in standard sea-level air under conditions similar to those used in
the recent experiments by Weston-Dawkes et al. (2021). A vibration actuator with
excitation amplitude Fm = 74.5 gf and frequency ω/(2π) = 200 Hz is mounted to a
cylinder of finite radius rc = 10 mm. The assembly, having an effective mass mc = 10 g,
is affixed concentrically to a polyester plastic disk of radius a = 30 mm and thickness
td = 150 μm, giving rise to an operating elastic wavenumber of K ≈ 3.75. As ho is
increased from approximately 15 to 185 μm, the squeeze number and coupling parameter
vary respectively from [σ, C] ≈ [10.77, 12.43] to [0.07, 3.54]. The red curve in the same
figure shows the accompanying variation of the central oscillation amplitude b(ho).

For small separation distances ho ≈ 20 μm, the amplitude b vanishes due to augmented
aerodynamic resistance (C � 10) and the levitation force, which scales with the square
of b as seen from (4.8b), also decays. Note that this is in stark contrast with the
transition to strong repulsion found in systems where effects of two-way coupling on
the oscillator dynamics are negligible (Ramanarayanan & Sánchez 2022), i.e. those with
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heavier oscillators driven by powerful actuators (Hatanaka et al. 1999; Sadayuki 2002;
Andrade et al. 2020). As the disk is pulled away from the wall, the amplitude rises due
to a weakening of aerodynamic resistance and approaches asymptotically a value that is
modulated only by structural bending forces within the oscillator. The force F� also rises
and reaches a maximal value max(F�) ≈ 56 gf at a distance ho ≈ 82 μm, beyond which
it decays gradually. In practical systems, displacing the disk beyond the critical distance
requires the exertion of a pulling force that exceeds the load capacity max(F�) and yields,
instead, an abrupt failure of levitation, as exemplified in figure 2(a). Points on the predicted
pull-off curve for distances ho � 82 μm thus represent states of unstable equilibria that
occur only in experiments involving artificial control of the separation distance (Sadayuki
2002; Yoshimoto et al. 2013; Andrade et al. 2020).

Furthermore, it is found that the predicted load capacity max(F�) varies strongly and
non-monotonically with the disk radius a. As a is increased from an initial value equal to
a = rc = 10 mm, max(F�) is seen to grow and reach a value of approximately 81 gf when
a ≈ 18.5 mm, before declining and approaching oscillatorily a value of approximately
45 gf when a � 50 mm. The fact that the variation of the load capacity subsides when
a is made sufficiently large is consistent with the aforementioned universal behaviour
of the fluid–structure problem in the limit of strong coupling C6 	 K4 ∼ 1. The value
of the area-normalized load capacity max(F�)/(πa2) thus collapses when a is increased
beyond ≈20 mm, as shown in figure 6(b). As seen from the included inset, this prediction
agrees qualitatively with the observations of Weston-Dawkes et al. (2021), who alluded
to the possible benefit of increasing the number of oscillators rather than their size when
upscaling an SFL system.

In principle, use of the asymptotic formulation introduces relative errors that scale with
b/ho, ho/a and h2

o/(μa/ρa/ω), the latter of which is of order unity for this sample SFL
system when ho � 75 μm. Nevertheless, the scale of forces F� seen in figure 6(a) in the
rising portion of the pull-off curve ho � 75 μm compares favourably with that reported in
the experiment (Weston-Dawkes et al. 2021) for small distances of order 100 μm, as seen
from figure 2(a), in stark contrast with the theoretical predictions produced previously
with use of a one-way-coupled flow–structure description (Ramanarayanan & Sánchez
2022). It can be anticipated that accurate description of the observed growth of F� to
larger values ≈500 gf at greater distances ho ≈ 2500 μm, seen in figure 2(a), as well as
the associated area-normalized load capacities max(F�)/(πa2) > 2 seen in the inset of
figure 6(b), requires generalizing the present formulation to account for effects of fluid
inertia that are non-negligible when h2

o ∼ μa/ρa/ω (Ramanarayanan et al. 2022).

8. Conclusions and recommendations for future work

Developed in this paper is a reduced theoretical description of the oscillatory airflow
excited in a slender air layer by the vibration of a compliant bounding surface. This
problem of elastohydrodynamic lubrication is relevant to the study of SFL systems
that are driven by highly flexible oscillators, which were discovered recently to exhibit
attractive load-bearing capacities a thousandfold larger than those driven by stiffer
oscillators. Consideration of two-way-coupled fluid–structure interactions is found to
provide significantly improved agreement with recent experimental data that revealed (i) a
centrally localized distribution of sub-ambient time-averaged pressure within the air layer,
(ii) a non-monotonic time-averaged deformation of the disk, (iii) a gradual evolution of
the attractive squeeze-film force during the pull-off process and (iv) a non-monotonic
variation of the load capacity with oscillator surface area. Summarized below are possible
paths for improving the accuracy and utility of the present formulation.
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Of primary interest is characterizing the apparent minimum load and the corresponding
minimum mean separation distance below which physical contact occurs between the
oscillator and the adjacent surface, inducing (i) adverse frictional resistance to lateral
motion and (ii) increased noise levels due to the transfer of mechanical vibrations (as noted
from personal communication with the authors of Weston-Dawkes et al. 2021; Colasante
2022). (Note that such effects may be tolerable or even desirable in contact-based
applications such as suction cups, whose vibration has been shown to increase their load
capacity (Zhu et al. 2006; Hong et al. 2009; Wang et al. 2010).) Accurate description of
the flow–structure physics under such small separation distances may require rigorous
characterization of intermolecular forces and surface asperities (Hosoi & Mahadevan
2004; Poulain et al. 2022; Rallabandi 2024).

On the other hand, in pursuit of determining accurately the maximum load capacity, the
formulation must be generalized to describe (i) nonlinear effects of fluid inertia in the gas
layer and its periphery that are no longer negligible under the large separation distances
for which the highest attractive forces are measured (Melikhov et al. 2016; Ramanarayanan
& Sánchez 2022; Ramanarayanan et al. 2022), (ii) operational stochasticity for highly
flexural and larger-scale systems (Weston-Dawkes et al. 2021; Colasante 2023) due
possibly in part to hydrodynamic instabilities, (iii) large deformations of the disk that
are comparable to its thickness (Timoshenko & Woinowsky-Krieger 1959; Soedel &
Soedel 1994), (iv) dissipative effects of structural damping that may be important in
describing near-resonant oscillation (Geist & McLaughlin 1994), (v) adverse effects of
surface impurities such as cracks and roughness on the load capacity (Weston-Dawkes
et al. 2021; Colasante 2024) and (vi) hysteresis in the pull-off process due to rapid
application of the load (Weston-Dawkes et al. 2021). Insights gained by pursuing these
avenues of research may also aid the realization and/or improvement of non-axisymmetric
SFL configurations, emerging applications of which include low-friction transportation
and robotic manipulation (Colasante 2015; Weston-Dawkes et al. 2021; Jia et al. 2023).
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Appendix A. Peripheral pressure variations in the lubrication limit

The presumed relaxation condition p(r = a) = pa introduced in (2.7a) implicitly neglects
the pressure variations p − pa existing across the small peripheral region of gas flow
that extends for distances of order ho in all directions from the film edge r = a. These
variations, which have been shown to provide a non-negligible contribution to the
levitation force for systems with order-unity Womersley number α = [h2

oω/(μa/ρa)]1/2

(Yoshimoto et al. 2013; Ramanarayanan et al. 2022), can be neglected in the lubrication
limit α2 � 1 considered in this study. For a proof, we begin by noting that the
disk oscillations induce radial airflow of characteristic speed u ∼ uc = (b/ho)ωa in
the film, as follows from the balance of volumetric dilation rates in the continuity
equation (2.6a). A similar analysis of the radial momentum equation (2.6b) then provides
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( p − pa) ∼ (�p)f = (b/ho)(μaωa2)/h2
o for the characteristic value of the pressure

variations along the film. The nature of the flow induced in the small, non-slender
periphery depends on the local Reynolds number Rep = ρaucho/μa = α2/Stp, defined
here in terms of the associated local Strouhal number Stp = h2

o/(ba). On the one hand,
though the flow in the film is dominated by viscous forces since α2 � 1 (and the
Strouhal number in the film, ho/b, is necessarily greater than unity), inertial forces
can dominate in the periphery if Rep 	 1, i.e. Stp � α2. In that case, the associated
pressure drop across the periphery ( p − pa) ∼ (�p)p can be expected to scale with the
dynamic pressure (�p)p = ρau2

c , which is negligibly small compared with the pressure
variations along the film, i.e. (�p)p/(�p)f = α2(b/ho) � 1. On the other hand, in the
opposite limit Rep � 1, the peripheral flow is also dominated by viscous forces, whence
(�p)p = μauc/ho, such that (�p)p/(�p)f = ho/a � 1. Thus, regardless of the value of
Rep, the pressure drop across the periphery can be neglected when analysing the flow in the
film.

The justification outlined above must be reconsidered carefully in the limit of small
relative amplitudes ε = b/ho � 1. As mentioned above, when Rep 	 1, (�p)p/(�p)f ∼
εα2, so that, in the limit α2 � 1 considered here, the peripheral pressure variations can
be neglected when determining both the leading-order film pressure P0 and its first-order
correction P1. On the other hand, in the viscous limit Rep � 1, (�p)p/(�p)f ∼ ho/a � 1,
which can clearly be neglected when determining the leading-order pressure in the film
P0, as done in (3.1). However, deducing the value of P1(ξ = 1, τ ) requires, in principle,
selecting a distinguished limit relating the magnitudes of ho/a � 1 and ε � 1 and
carrying out a formal procedure of asymptotic matching with the peripheral-flow solution
(Ramanarayanan et al. 2022). Fortunately, this may be avoided in the limit α2 � 1 since
we are not interested in determining the time dependence of the first-order film pressure
P1. Note that the peripheral variations of density are relatively small, i.e. (ρ − ρa)/ρa ∼
(�p)p/pa ∼ εσ (ho/a), such that the nonlinear effects of gaseous compressibility on
the peripheral flow are negligible in the first approximation. For Rep � 1, the problem
in either flow region is thus linear at leading order. The time-averaged pressure drop,
obtained by considering higher-order corrections, exhibits characteristic values of order
ε(�p)f and ε(�p)p along the film and across the periphery, respectively, their ratio
remaining therefore of order ho/a � 1. Thus, regardless of the value of Rep, use of the
steady relaxation condition 〈P1〉(ξ = 1) = 0 given in (4.1) introduces asymptotic errors
consistent with those involved in the general formulation outlined in § 2.2.

Appendix B. Solution for extreme values of the coupling parameter C
B.1. The limit of one-way coupling C = 0

The limit of one-way coupling where the disk motion is unaffected by aerodynamic
damping, considered earlier for the case of central forcing ξc = 0 (Ramanarayanan &
Sánchez 2022), is described here for 0 < ξc < 1. When C = 0, the Kirchhoff–Love
equation (2.15) reduces to ∇4W + K4∂2W/∂τ 2 = 0. Straightforward integration with use
of the familiar boundary conditions listed in (2.18) provides W = S(ξ) cos τ , with

S =
⎧⎨
⎩

1 0 ≤ ξ ≤ ξc
J0(Kξ) + C1Y0(Kξ) + C2I0(Kξ) + C3K0(Kξ)

J0(Kξc) + C1Y0(Kξc) + C2I0(Kξc) + C3K0(Kξc)
ξc ≤ ξ ≤ 1

, (B1)
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where Im and Km are the mth-order modified Bessel functions of the first and second kind,
respectively. The constant coefficients C1, C2 and C3 in (B1) are given by

⎡
⎣C1

C2
C3

⎤
⎦ = −

⎡
⎢⎣

Y1(Kξc) −I1(Kξc) K1(Kξc)

Y1(K) I1(K) −K1(K)

Ξ−
Y (K) −Ξ−

I (K) −Ξ+
K (K)

⎤
⎥⎦

−1 ⎡
⎢⎣

J1(Kξc)

J1(K)

Ξ−
J (K)

⎤
⎥⎦ , (B2)

involving the auxiliary operator Ξ±
B (x) = B0(x) ± [(1 − νd)/x]B1(x), where Bm

represents a Bessel/modified Bessel function of order m. Integrating the Reynolds equation
(2.14) with use of the known function W provides the pressure P. Expressions for the
steady pressure distribution 〈P1〉(ξ) and the levitation force 〈FL〉 generated by arbitrary
standing-wave oscillations S(ξ) are provided by Ramanarayanan & Sánchez (2022).

The resonant wavenumbers K of the disk, describing states for which the structural
impedance Vc at the clamp radius ξ = ξc vanishes (Warren 1930), are found by solving

det

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

J1(Kξc) Y1(Kξc) −I1(Kξc) K1(Kξc)

J1(K) Y1(K) I1(K) −K1(K)

Ξ−
J (K) Ξ−

Y (K) −Ξ−
I (K) −Ξ+

K (K)

J1(Kξc) Y1(Kξc) I1(Kξc) −K1(Kξc)

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ = 0. (B3)

For instance, the first four resonant wavenumbers for a centrally forced disk with a
Poisson’s ratio νd = 0.3 are K = 3.0005, 6.2003, 9.3675 and 12.5227. Increasing the
clamp radius to ξc = 0.1 shifts the first mode to K = 3.0702, and for ξc = 0.5, to K =
4.8155. Varying νd within the range of interest, i.e. 0.3 � νd ≤ 0.5 (see § 6), has little
effect.

B.2. The limit of strong coupling C 	 1
Considered here are centrally forced systems (ξc → 0) subject to strong two-way coupling.
In the associated limit ξc

−1 	 C 	 1, the fluid–structure problem is found to be
quasi-steady and independent of ξc, σ ∼ 1, K ∼ 1 and νd. The flexural wavelength of
the disk scales with C−1, as follows from (3.5), and the magnitude of the squeeze-film
overpressure reduces by a factor O(C2), as follows from radial momentum conservation
(2.6b). The overpressure may thus be expressed with use of the rescaled expansion
C2P = P̂(X, τ ) = P̂0 + εP̂1 + · · · , where X = Cξ is the aptly rescaled radial distance.

The distribution of time-averaged overpressure can then be expressed in the simplified
form 〈P̂1〉(X) = (3/2)

∫ ∞
X Re{Ω̂ dΠ̂∗/dX} dX, valid for X > 0, where

Ω̂ =
3∑

n=1

[AnJ0(γ̂nX) + BnY0(γ̂nX)] and Π̂ =
3∑

n=1

γ̂ 4
n [AnJ0(γ̂nX) + BnY0(γ̂nX)]

(B4a,b)

describe the spatial dependence of the leading-order disk deformation W0(X, τ ) =
Re{Ω̂(X) eiτ } and film pressure P̂0(X, τ ) = Re{Π̂(X) eiτ }, respectively. Both expressions
involve the rescaled roots γ̂n = limC	1(γn/C) = (21/3)(31/6) exp[i(nπ/3 − π/12)], for
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0 2 4 6 8 10

0

0.5

1.0

Re{Ω̂(X)}
Im{Ω̂(X)}

0 2 4 6 8 10

–1.0

–0.5

0

〈P̂1〉 = C2〈P1〉

(b)(a)

(C � 1)

(C � 1)

X = Cξ X = Cξ
Figure 7. Universal behaviour in the limit of strong coupling C 	 1: (a) components of the travelling-wave
disk deformations W0 = Re{Ω̂(X) eiτ } that are in phase and out of phase with the central oscillations and
(b) the rescaled time-averaged pressure distribution.

n = 1 : 3, and the coefficients [A1 B1 A2 B2 A3 B3] = [1 0 0 0 0 0]M−1∞ , where

M∞ =
⎡
⎣V 1

V 2
V 3

⎤
⎦ , with V n =

[
1 0 0 γ̂

3/2
n γ̂

5/2
n γ̂

7/2
n

2 ln(γ̂n)/π 1 γ̂ 4
n iγ̂ 3/2

n iγ̂ 5/2
n iγ̂ 7/2

n

]
(B5)

for n = 1 : 3. Represented in figures 7(a) and 7(b) are the leading-order disk deformations
W0 and the steady squeeze-film overpressure 〈P̂1〉, respectively, for ξc

−1 	 C 	 1.
The dimensionless force 〈FL〉 assumes in this limit the simplified form C4〈FL〉 ≈ 4.919

and the dimensionless amplitude |Vc| of structural impedance at the vanishing clamp
radius (X = Cξc → 0) reduces to C−2|Vc| → (2/π)|∑3

n=1 Bnγ̂
2
n | ≈ 3.7867, whence the

operating efficiency (5.6) exhibits a constant value F�/(εFm) ≈ 0.6495.
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