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Abstract
We compute ku∗ (K(Zp, 2

))
and ku∗

(
K
(
Zp, 2

))
, the connective KU-cohomology and connective KU-homology

groups of the mod-p Eilenberg–MacLane space K
(
Zp, 2

)
, using the Adams spectral sequence. We obtain a striking

interaction between h0-extensions and exotic extensions. The mod-p connective KU-cohomology groups, computed
elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups.

1. Introduction

Algebraic topologists try to turn homotopy theory questions into algebraic ones. We do this by assigning
algebraic objects to topological spaces. There are many standard topological spaces that occur all the
time and several algebraic theories that are in standard use. Eilenberg–MacLane spaces are important
building blocks in homotopy theory, and any new information about them is potentially useful. This
paper focuses on the second mod p Eilenberg–MacLane space, K2 = K

(
Zp, 2

)
. We use Zp to denote Z/p,

the integers mod p. The algebraic tool we use is complex K-theory. It has long been known that KU∗(K2)
is trivial [2]. Although interesting, this gives limited information. But if we move to the connective
version of complex K-theory, ku∗(−), we suddenly obtain an overwhelming amount of new information
about K2.

Because KU∗(K2) is trivial, we know that the homotopy maps [K2, BU] and [K2, U] are trivial.
Consider the connective Omega spectrum for BU, buk with bu0 = Z × BU. We have kun(X) � [X, bun]
and bun is (n − 1)-connected for n> 0.

Let v ∈ ku−2 be the Bott periodicity element. It gives maps bun+2 −→ bun. In this paper, we give a
complete computation of ku∗(K2). Our result shows that there are many nontrivial elements in most[
K2, bun

]
, but mapping any such element a finite number of times with v results in the trivial map.

To simplify our discussion, let Kn = K(Zp, n) and K(Zp) be the stable Eilenberg–MacLane spectrum.
There are a couple of interesting directions in which this research could go. First, ku∗(K1) is well

known and has no v-torsion, so the suspension map ku∗(K2) −→ ku∗(K1) is trivial (ku∗(K2) is all
v-torsion). On the other hand, it is easy to compute the stable result ku∗ (K(Zp

))
. Every element here is

killed by multiplication with a single v, so the suspension image must lie in the trivial part of ku∗(K2), a
part to which we pay little attention. However, it is easy to see that only one element is in the image and
it is in degree 2p + 2. Our computation of ku∗(K2) is just the first step in interpolating between ku∗(K1)
and ku∗ (K(Zp

))
. The results and the suspension maps would be most interesting.

With such results, one could go after ko∗(Kn) and ko∗(Kn) using the exact sequences that come from
the usual maps:

· · · −→ bon+1 −→ bon −→ bun −→ bon+2 −→ · · · .
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In [14] and [6], the authors use very partial results to give new information about non-immersions of
spin manifolds. More complete results would allow us to go much further on this problem.

Our computation of ku∗(K2) is done with the Adams spectral sequence (ASS), but we have a second
tool to use as well. We already know the mod p connective complex K-theory of K2 from [8]. Many (per-
haps most) ASS computations result only in an associated graded object because solving the extension
problems for the multiplication by p can be very difficult. However, using the long exact sequence for
ku∗(−) and its mod p version, we are able to solve all of these extension problems giving an unusually
complete answer.

In general, the more algebraic invariants we have for standard spaces in homotopy theory, the better
off we are.

In [14] and [6], the authors initiated a partial computation of the connective KU-homology groups,
ku∗(K(Z2, 2)), of the mod-2 Eilenberg–MacLane space K(Z2, 2) in separate studies of Stiefel–Whitney
classes of manifolds. We eventually turned to the associated cohomology groups, ku∗(K(Z2, 2)), and
were able to give a complete determination, via the ASS. This generalized nicely to the odd primes, and
then we found a duality result ([5]) relating these homology and cohomology groups which enabled us
to determine the homology groups ku∗

(
K
(
Zp, 2

))
.

Notation 1.1. We need to establish some notation. Whenever we have ku, we mean it to be localized
at the prime p. Adjustments must be made for odd primes because we don’t work directly with ku, but
with an Adams’ summand. It is well known that BU splits at an odd prime. This splitting lifts buk. The
original source for BU is [1, Corollary 8, p. 91]. A stable version is proven in [9, Proposition 2.7]. We’ll
skip Adams’ notation. In the literature, the stable cohomology summand is often denoted by �. In a
context where BP〈n〉 is around for all n, the summand is naturally called BP〈1〉. We want something
that reflects the obvious connection to ku∗(−), and so we adopt for our notation kup∗(−) for the stable
summand. This gives an Omega spectrum,

{
bup∗
}

with kupn(X) � [X, bup
n

]
. With this notation, Adams’

original theorem says

BU � bup
2
× bup

4
× · · · × bup

2p−2
.

There is a corresponding stable splitting:

bu � bup ×�2bup ×�4bup × · · · ×�2p−4bup

Consequently, if we compute kup∗(X), we also know ku∗(X). Note that for p = 2, there is no spliting. At
p = 2, ku localized is kup. Because we are working with a p-local space, K2, it is not really necessary to
localize ku as well. But for us to work with just the one summand, it is. Again, we repeat ku and kup are
always localized at a prime p.

We begin with a description of the kup∗-module kup∗(K2). Note that kup∗ =Z(p)[v] with |v| =
−2(p − 1). We find that depiction via ASS charts is the most insightful way to envision the groups.
There is a very nice interplay between extensions (multiplication by p) seen in Ext (h0-extensions) and
exotic extensions. We depict the ASS with cohomological (co)degrees increasing from right to left. We
write |x| = d if x ∈ kupd(K2) or the associated E2-term.

In kup∗(K2), there is a trivial submodule whose Poincaré series when p = 2 is described at the end of
Section 2. It plays no role and will be ignored from now on. As a kup∗-module, kup∗(K2) is generated
by certain products of elements of E0

2:

y0, yi = y pi

0 , with |yi| = 2pi, (1.2)

zj for j ≥ 0 with |zj| = 2
(
pj+1 + 1

)
, (1.3)

and

q with |q| = 9 if p = 2 and |q| = 4p − 1 if p is odd. (1.4)
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We give two descriptions of our answer. In Theorem 1.16, we give the E∞-term of the ASS and then
describe the exotic extensions from multiplication by p. Our preferred description is to incorporate them
together. That is done in Theorems 1.8 and 1.15.

Let TPi[v] := Zp[v]/(vi), the truncated polynomial algebra. The even-graded part kupev(K2) is formed
from shifted copies of kup∗-modules Ak and Bk, which can be defined inductively as follows.

Definition 1.5. Let k0 = 1 if p is odd, and k0 = 2 if p = 2. Let Bk0−1 = 0. Let A0 = 〈z0〉 for all p.
Inductively

Bk is built from zp−1
k−1Bk−1, TPpk−k[v]zk, and yp−1

k−1Bk−1, if k ≥ k0

and

Ak is built from zp−1
k−1Bk−1, TPpk [v]zk, and yp−1

k−1Ak−1, if k ≥ 1

with extensions determined by:

pzk = vzp
k−1 for k ≥ 2, and pyp−1

k−1zk−1 = vpk−1(p−1)zk. (1.6)

When we write something like zB, we mean that all elements of B are multiplied by the element z.
Saying “is built from” means that these are successive quotients in a filtration as a kup∗-module. The
extension formulas are only asserted up to multiplication by a unit in Zp and can both occur on an
element. For example, in Figure 1, we have, in grading 116 when p = 2, 2y3z3z4 = vy3z2

2z4 + v8z2
4.

Figure 1 should enable the reader to envision Ak and Bk for p = 2 and k ≤ 5, and, by extrapolating,
for all k. Elements connected by dashed lines are in A5 but not in B5. The long red1 lines, sometimes
slightly curved, are the exotic extensions. The portion in gradings ≤ 102, not including the top v-tower
or the extensions to it, is y4A4 (or y4B4 if the dashed part is omitted). The portion in gradings ≥ 106, not
including the v-tower on z5 or the h0-extensions from it, is z4B4. The reader is encouraged to understand
how the case k = 5 of Definition 1.5 is embodied in Figure 1. We have depicted z4B4 and y4B4 in green.

The portion in the lower right corner of Figure 1 in grading ≤ 84 and height ≤ 7 is y3y4A3, and
y2y3y4A2 is in gradings ≤ 74. In Figure 2, we present a schematic of A3 and B3 at the odd primes. Again
the dashed portion is in A3, but not B3, and the triangle in the lower right portion is yp−1

1 yp−1
2 A1.

A generating set as a Zp[v]-module for Bk is{
zj

k−1∏
i=j

{
zp−1

i , yp−1
i

}
: k0 ≤ j ≤ k

}
, (1.7)

while Ak has additional generators: {
z1y1 · · · yk−1 p = 2

z0y
p−1
0 · · · yp−1

k−1 all p.

The notation here means a product over all choices of one of the two elements in each factor. For example,

2∏
i=1

{
zp−1

i , yp−1
i

}= {zp−1
1 zp−1

2 , zp−1
1 yp−1

2 , yp−1
1 zp−1

2 , yp−1
1 yp−1

2

}
.

An empty product is defined to equal 1.
The following theorem explains how the portion of kup∗(K2) in even gradings is a direct sum of

shifted versions of Ak and Bk.

1 Colors are present in online versions, but not in the print version.
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Figure 1. B5 and A5 when p = 2.

Theorem 1.8. Let Mp[S] denote the set of monomials in the elements of a set S raised to powers < p.
Let

Mk = (Mp[zk, yk] − {zp−1
k , yp−1

k

}) · Mp

[
zi, yi : i> k

]
, (1.9)

where Mp[zk, yk] − {zp−1
k , yp−1

k

}= {zi
ky

j
k : 0 ≤ i, j ≤ p − 1 and {i, j} �= {0, p − 1}}, which is a set with

p2 − 2 elements. Let MA
k be the set of monomials in Mk with no z-factors, and MB

k =Mk −MA
k . Then,

kupev(K2) =
⊕
k≥1

⎛⎝⊕
M∈MA

k

M · Ak ⊕
⊕

M∈MB
k

M · Bk

⎞⎠
plus a trivial kup∗-module.
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Figure 2. Schematic of A3 and B3 for odd p.

Note that the monomial 1 is in MA
k , so Ak appears by itself, but Bk does not. For example, if p = 2, copies

of Bk appear multiplied by each monomial of the form:

zεk
k yδkk zεk+1

k+1 yδk+1
k+1 · · · such that εk = δk and

∑
εi ≥ 1.
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Figure 3. S5,8 if p = 2.

Now we describe the portion of kup∗(K2) in odd gradings. Let P[S] denote the polynomial algebra
on a set S, and TPi[S] = P[S]/(si : s ∈ S), the truncated polynomial algebra. Let�j = TPp[zi : i ≥ j]. Note
that if p = 2, �j is an exterior algebra. For i ≤ j, let

zi,j = zi

(
zi · · · zj−1

)p−1
. (1.12)

If j = i, then zi,j = zi.

Definition 1.13. For � > k ≥ 1, let Sk,� = TPk+1[v]〈zk0,�, . . . , z�−k−1+k0,�〉 with pzi,� = vzi−1,� and pzk0,� = 0.

For example, S5,8 with p = 2 is depicted in Figure 3.
The following result describes the portion of kup∗(K2) in odd gradings. The exponent of p in an

integer i is denoted simply by ν(i); the prime p is implicit. The element q here has grading 9 or 4p − 1,
as mentioned earlier.

Theorem 1.15. There is an isomorphism of kup∗-modules:

kupodd(K2) ≈
⊕
i≥1

⊕
�≥ν(i)+2

qyi−1
1 Sν(i)+1,� ⊗ TPp−1[z�] ⊗��+1.

The nonvisual, formulaic form of our result is as follows.

Theorem 1.16. The kup∗-module kup∗(K2) is isomorphic to a trivial kup∗-module plus a module whose
associated graded is

P[y1]y p−1
0 z0 ⊕

⊕
t≥1

TPpt [v] ⊗ P[yt]zt (1.17)

⊕
⊕
t≥k0

TPpt−t[v] ⊗ P[yt]zt�t (1.18)

⊕
⊕
i≥1

⊕
�≥0

TPν(i)+2[v]qyi−1
1 zk0+�,�+ν(i)+2��+ν(i)+2. (1.19)

Multiplication by p in (1.17) and (1.18) is determined by (1.6) and in (1.19) as in Definition 1.13.

Our initial interest in this project was kup∗(K2) ([14,6]), but we first achieved success in computing
kup∗(K2). In [5, Example 3.4], the following result was proved.

Theorem 1.20. There is an isomorphism of kup∗-modules kup∗(K2) ≈ (kup∗+2pK2

)∨.

Here, M∨ = Hom (M, Z/p∞), the Pontryagin dual, localized at p. A homotopy chart for kup∗(K2) could be
thought of as a shifted version of the homotopy chart of kup∗(K2) viewed upside-down and backward.
For example, the element of kup108(K2)∨ dual to the element v4y3z3z4 in Figure 1 corresponds to the
generator of a Z4 in kup104(K2) on which v4 acts nontrivially. This element can be seen in Figure 4.

https://doi.org/10.1017/S0017089523000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000423


194 Donald M. Davis and W. Stephen Wilson

Figure 4. Portion of kup∗(K2) corresponding to B5 and A5.

A remarkable property, for which one explanation is given in Section 7, is that Bk is self-dual as a
kup∗-module. One way of stating this is to let B̃k denote Bk with its indices negated. Then there is an
isomorphism of kup∗-modules:

�2(pk+1+pk+(k+1)p−k+1)B̃k ≈ B∨
k . (1.21)

For example, with p = 2, the second smallest generator Y of �208B̃5 is in grading 208 − 134 = 74 and
has 2Y �= 0 and v4Y �= 0 (see Figure 1). The second generator Z of B∨

5 is dual to the class in position
(74, 4) in Figure 1 and also satisfies 2Z �= 0 and v4Z �= 0. The isomorphism (1.21) can be proved by
induction on k using Definition 1.5.

A complete description of the kup∗-module kup∗(K2) is immediate from Theorems 1.8, 1.15, and
1.20. However, one might like a complete description of its ASS. We can write formulas for the E2-term
and differentials but will not do so here. In Theorem 1.23, we give a complete description of the E∞-term
of the ASS of kup∗(K2) with exotic extensions included, in terms of the charts described in Section 1.

In [5], a comparison was made of a chart for A3 and its kup∗ analog. Here, we present in Figure 4 the
kup∗ analog of Figure 1. This presents the portion of the ASS of kup∗(K2) dual to A5 with p = 2 under the
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isomorphism of Theorem 1.20. The ASS chart dual to B5 is obtained from this by removing the classes
connected by dashed lines and lowering the remaining tower so that the bottom is in filtration 0. The
resulting chart is isomorphic to the B5 part of Figure 1.

We observe that in even gradings of the ASS for kup∗(K2), h0-extensions exactly correspond to exotic
extensions in the ASS of kup∗+2p(K2), and vice versa. As a typical example of the duality, the summands
of kup82(K2), kup82(K2)∨, and kup78(K2) in Figures 1 and 4 are all isomorphic to Z8 ⊕Z2. But for the
kup∗-module structure, it is kup82(K2)∨ and kup78(K2) that correspond to, since in both, the element that
is divisible by 4, in position (82, 0) and (78, 7), resp., is also divisible by v7 for A5 and by v4 for B5.

Theorem 1.23. The E∞-term of the ASS of kup∗(K2) with exotic extensions included contains exactly
the following.

• There is a trivial kup∗-module, which when p = 2 has generators corresponding to those
enumerated at the end of Section 2 with gradings decreased by 4, and similarly when p is
odd.

• For every Sk,� occurring in a summand of Theorem 1.15, there is a chart of the same form as
Figure 3 with v-towers of height k + 1 on generators in gradings 2p�+1 + 2(p − 1)(i − k0 − 1)
for 1 ≤ i ≤ �− k. One must add to this the grading of the other factors accompanying Sk,� in
Theorem 1.15.

• For each occurrence of Bk in Theorem 1.8, there is a summand

�2(pk+1+pk+kp−k+1)B̃k

with gradings increased by those of other factors accompanying Bk in 1.1. Here, B̃k is as defined
prior to (1.21).

• For each summand ye
kAk in Theorem 1.8, there is a variant of �2(pk+1+pk+kp−k+1)B̃k with gradings

increased by 2epk. In this variant, the initial v-towers are pushed up by k filtrations and sur-
rounded with a triangle of classes of the sort appearing in the lower left corner of Figure 4.
See Remark 1.22.

Proof. Theorem 1.20 and our results for kup∗(K2) give the kup∗-module structure of kup∗(K2), but that
is not the same as the ASS picture. Expanding on work done in [6] and [14] and using methods such as
those in Section 2, we were able to write the E2-term of the ASS for kup∗(K2) and had conjectured the
differentials (but not the extensions) prior to embarking on our kup-cohomology project. We were unable
to prove the differentials, probably because we had not taken sufficient advantage of the exact sequence
with k(1)∗(K2). Now that we know the 2-orders and v-heights of generators (by grading, at least, if not
by name), it is straightforward to see that the differentials must be as we expected. The isomorphism
(1.21) plays an important role here; the left-hand side gives the ASS form of the right-hand side.

Remark 1.24. Regarding the unusual portion of the ASS chart for part of kup∗(K2) in the lower left of
Figure 4, this is obtained from [6, Figure 4.2] with d6-differentials on all odd-graded towers. For Ak, it
will be a triangle going up to filtration k, with all but the first two dots on the top row being part of Bk.

The structure of the rest of the paper is as follows. In Section 2, we compute the E2-term of the ASS
for kup∗(K2). In Section 3, we determine the differentials in this ASS. In order to do so, we need to
compare with k(1)∗(K2), where k(1) is a summand of the spectrum for mod-p connective KU-theory,
using the exact sequence:

→ k(1)∗−1(K2) → kup∗(K2)
p−→ kup∗(K2) → k(1)∗(K2) → kup∗+1(K2)

p−→ . (1.25)

In Section 3, we restate results about k(1)∗(K2) from [8]. At the end of Section 3, we show how the
descriptions of kup∗(K2) in Theorems 1.8 and 1.15 are obtained once we know the differentials and
extensions. This exact sequence is also used in determining the exotic extensions of (1.6), which is done
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Figure 5. A depiction of P[v] ⊗ W5.

in Section 4. In Section 5, we propose complete formulas for the exact sequence (1.25), and then in
Section 6, we show that our proposed formulas account for all elements of k(1)∗(K2) exactly once.

The main point of Section 6 is to prove that there are no additional exotic extensions in kup∗(K2).
An exotic extension p · A = B implies that A is not in the image from k(1)∗−1(K2) and B does not map
nontrivially to k(1)∗(K2), so once we have shown that all elements are accounted for, there can be no more
extensions. Many of our formulas in Section 5 are forced by naturality. However, many others occur in
regular families, but with surprising filtration jumps. We could probably prove that the homomorphisms
must be as we claim, by showing that there are no other possibilities, but we prefer to forgo doing that. In
the optional Section 7, we discuss in more detail how the charts are obtained and provide an explanation
for the duality result (1.21).

2. The E2-term of the ASS for kup∗(K2)

We will need some notation. By H∗K2, we understand H∗ (K(Zp, 2
)

; Zp

)
. Let E denote an exterior

algebra, P a polynomial algebra, and TPn[x] = P[x]/(xn) the truncated polynomial algebra. In all cases
these will be over Zp, the integers mod p. Let E denote the augmentation ideal of an exterior algebra,
and E1 = E[Q0, Q1], where Qi are the Milnor primitives. Because Q2

i = 0 we have homology groups,
H∗( − ; Qi), defined for E1-modules. We let 〈y1, y2, . . .〉 denote the Zp-span of classes yi.

The ASS for kup∗(K2) has Es,t
2 = Exts,t

A (H∗(bup), H∗K2), where A is the mod p Steenrod algebra and
H∗(bup) ≈A/A(Q0, Q1). Using a standard change of rings theorem [10], this is Exts,t

E1
(Zp, H∗K2). This

converges to kup−(t−s)(K2). We depict this with Es,t
2 in position (t − s, s) as usual but label the axis with

codegrees, the negative of the homotopical degree, so the left side of the chart will have positive gradings
and refer to cohomological grading. In an attempt to avoid confusion, we rewrite this as G−(t−s),s

2 . With
this notation, the differentials are dr : Ga,b

r −→ Ga+1,b+r
r , multiplication by the element v ∈ kup−2(p−1) (also

considered in G−2(p−1),1
r ) is v : Ga,b

r −→ Ga−2(p−1),b+1
r , and multiplication by the element representing p ∈

kup0,
(
h0 ∈ G0,1

r

)
, is h0 : Ga,b

r −→ Ga,b+1
r .

In the paragraph preceding Remark 2.17, we will define elements zj ∈ G
2(pj+1+1),0

2 for j ≥ 0 and
elements:

zi,j ∈ G2(pj+1+1+(p−1)(j−i)),0
2

as in (1.12) satisfying the properties in Definition 1.13.

Definition 2.1. For j ≥ k0, we define Wj = 〈zj,j, zj−1,j, . . . , zk0,j〉.

We also have yi ∈ G2pi ,0
2 for i ≥ 0, and

q ∈ G9,0
2 if p = 2, and in G4p−1,0

2 if p is odd. (2.2)

Cf. (1.3), (1.2), and (2.2). One last definition, let �j+1 = TPp[zi : i ≥ j + 1].
A picture of P[v] ⊗ W5 as a P[v, h0]-module with p = 2 appears in Figure 5.
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The remainder of this section is devoted to the proof of the following result.

Theorem 2.4. The E2 term of the Adams spectral sequence for the kup∗(K2) is isomorphic as a P[h0, v]-
module to

P[v, y1] ⊗ E[q] ⊗
(⊕

j≥k0

(
Wj ⊗ TPp−1[zj] ⊗�j+1

))

⊕(P[h0, v, y1] ⊗ E
[
vk0 q
])⊕(P[y1] ⊗

⎧⎨⎩
〈
y p−1

0 z0

〉
p odd〈

y0z0, z1, h0y0z0 = vz1

〉
p = 2.

)
plus a trivial P[h0, v]-module.

Some of the algebra structure of this E2 will be useful later. For example, the product structure among
the zj’s will be clear, and also the formula

(v2q)2 = v4z2, (2.5)
holds when p = 2 since, as we shall see, in H∗(K2), x2

9 − Q0x17 ∈ im (Q1).
We will give a detailed proof when p = 2 and then sketch the minor changes for odd p. There are two

parts to proving this theorem. First, we must give a complete description of the E1-module structure of
H∗K2. Second, we have to compute Ext∗,∗

E1
(Z2, −) of this. We begin the first part.

Serre ([11]) showed that H∗K2 is a polynomial algebra on classes u2j+1 in degree 2j + 1 for j ≥ 0
defined by u2 = ι2 and u2j+1+1 = Sq2j

u2j+1 for j ≥ 0. We easily have
Q0(u2) = u3, Q0(u3) = 0, Q0(u2j+1) = u2

2j−1+1 for j ≥ 2,

and
Q1(u2) = u5, Q1(u3) = u2

3, Q1(u5) = 0, Q1(u2j+1) = u4
2j−2+1 for j ≥ 3.

Let x5 = u5 + u2u3 and write H∗K2 as an associated graded object:

P
[
u2

2

]⊗ E[x5] ⊗ (E[u2] ⊗ P[u3]
)⊗j≥2

(
E[u2j+1+1] ⊗ P

[(
u2j+1

)2])
From this, we can read off

Lemma 2.6.
H∗ (H

∗K2; Q0)= P
[
u2

2

]⊗ E[x5]

Letting x9 = u9 + u3
3 and x17 = u17 + u2u3

5, we rewrite again as:
P
[
u2

2

]⊗ TP4[x9] ⊗ TP4[x17] ⊗j>4 E
[
(u2j+1)

2
]

⊗(E[u2] ⊗ P[u5]
)⊗ (E[u3] ⊗ P

[
u2

3

])⊗j>4

(
E[u2j+1] ⊗ P

[
(u2j−2+1)

4
])

.

Again we read off

Lemma 2.7.
H∗(H

∗K2; Q1) = P
[
u2

2

]⊗ TP4[x9] ⊗ TP4[x17] ⊗j>4 E
[
(u2j+1)

2
]

An associated graded version of this is

Lemma 2.8.
H∗ (H

∗K2; Q1)= P
[
u2

2

]⊗ E[x9] ⊗ E[x17] ⊗j>2 E
[
(u2j+1)

2
]

The bulk of the work here is finding a nice splitting of H∗K2 as an E1-module.
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Figure 6. An E1-module N.

Figure 7. The E1-module L3.

Let N be the E1-submodule with single nonzero elements in gradings 5, 7, 8, 9, and 10 with generators
x5 = u5 + u2u3, x7 = u2u5, and x9 = u9 + u3

3, satisfying Q0x7 = Q1x5 and Q0x9 = Q1x7 = x10. It has a Q0-
homology class x5 and a Q1-homology class x9. This class x9 is called q in Theorem 2.4 and in all other
sections. A picture of N is in Figure 6. In pictures such as this, straight lines indicate Q0 = Sq1 and
curved lines Q1.

The E1-submodule P
[
u2

2

]⊕ P
[
u2

2

]⊗ N carries the Q0-homology of H∗K2, while the remaining Q1-
homology is, written in our usual way as an associated graded version,

P
[
u2

2

]⊗ E[x9] ⊗ E
[
x17, u2

2j+1, j> 2
]

. (2.10)

We will exhibit a Q0-free E1-submodule R whose Q1-homology is exactly the above E. Moreover,
N ⊗ R contains an E1-split summand S which maps isomorphically to 〈x9〉 ⊗ R.

It is premature to state this because we haven’t defined R and S yet, but for the record:

Proposition 2.11. As an E1 module, H̃∗K2 is isomorphic to T ⊕ F where F is free over E1 and T is

P
[
u2

2

]⊗ (〈u2
2〉 ⊕ N ⊕ R ⊕ S

)
A start on R and S. For this to make sense, we need to find R and S. The module R is a direct sum
of shifted versions of modules Lk, k ≥ 0, which have generators g2i, 0 ≤ i ≤ k, with Q1g2i = Q0g2i+2 for
0 ≤ i< k, Q0g0 �= 0, and Q1g2k = 0. For example, L3 is depicted in Figure 7.

A splitting map, 〈x9〉 ⊗ Lk −→ N ⊗ Lk, for the epimorphism N ⊗ Lk → 〈x9〉 ⊗ Lk is defined by:

x9g2i �→ x9 ⊗ g2i + x7 ⊗ g2i+2 + x5 ⊗ g2i+4 for 0 ≤ i ≤ k − 2,

x9g2k−2 �→ x9 ⊗ g2k−2 + x7 ⊗ g2k, and x9 ⊗ g2k �→ x9 ⊗ g2k.

The E1-module Mj. Let

x2j+1 = u2j+1 +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u2u3
5 j = 4

u2u3u2
5u2

9 j = 5

u3u2
5u2

9u2
17 j = 6

0 j> 6

and w2j−1 =

⎧⎪⎪⎨⎪⎪⎩
u2u3u2

5 j = 4

u3u2
5u2

9 j = 5

0 j> 5.

Then Q0x2j+1 = u2
2j−1+1 + Q1w2j−1, so Q0x2j+1 and u2

2j−1+1 represent the same Q1-homology class. Define
E1-modules Mj inductively by M3 = 0, and for j ≥ 4 there is a short exact sequence of E1-modules:

0 → u2
2j−2+1Mj−1 → Mj → M′

j → 0, (2.13)

where M′
j = 〈x2j+1, Q0x2j+1〉 and Q1x2j+1 = u2

2j−2+1Q0x2j−1+1. The above definitions of the x2j+1 are necessary
to get this formula to work right.
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Figure 8. The first computation of ExtE1 (Z2, N).

There is an isomorphism of E1-modules Mj ≈�2j+1Lj−4 given by:

�2j+1g2i �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x2j+1 i = 0

u2
2j−2+1x2j−1+1 i = 1

u2
2j−2+1u2

2j−3+1x2j−2+1 i = 2

u2
2j−2+1u2

2j−3+1 · · · u2
2j−i−1+1x2j−i+1 2< i ≤ j − 4

(2.14)

And we have

H∗(Mj; Q1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈
u2

9, u17

〉
j = 4〈

u2
17, u2

9u17

〉
j = 5〈

u2
33, u2

17u2
9u17

〉
j = 6〈

u2
2j−1+1, u2

2j−2+1 · · · u2
9x17

〉
j> 6

(2.15)

The E1-module R. Let

R =
⊕
j≥4

Mj ⊗ E
[
u2

2j+1, u2
2j+1+1, . . .

]
. (2.16)

Then H∗(R; Q1) = E
[
x17, u2

9, u2
17, . . .

]
, since monomials in E without x17 appear from a first term (of the

two in (2.15)) in H∗(Mj ⊗ E; Q1), where j is minimal such that u2
2j−1+1 appears in the monomial, while

those with x17, and also containing a product u2
9 · · · u2

2j−2+1 of maximal length, occur as a second term in
H∗(Mj ⊗ E; Q1).

Proof of Proposition 2.11. We have the E1-submodule T given in Proposition 2.11. Because this
contains all of the Q0 and Q1 homology, what remains must be free over E1 by [13].

Proof of Theorem 2.4. We compute ExtE1 (Z2, T) with T as in Proposition 2.11. We will not be con-
cerned with the free E1-module F, but later we will give the Poincaré series for it. Each copy of E1 in F
gives a Z2 in G∗,0 that corresponds to Q0Q1.

That

Ext∗,∗
E1

(
Z2, P

[
u2

2

])= P[v, h0, y1]

with y1 ∈ G4,0
2 should be clear, given our labeling conventions. We normally work with the reduced

cohomologies, so the y0
1 generator above would be ignored. The y1 notation is particularly useful when

we consider all primes p. It is y p1

0 where y0 ∈ G2,0
2 . So, |y1| = 2p.

We compute ExtE1 (Z2, N) in two ways using two different filtrations of N. From this, we see that the
generator of the towers can be thought of either as v2x9 or h2

0x5.
Using Figure 6 as our guide, our first filtration is 〈x5, x8〉, 〈x7, x10〉, and 〈x9〉. The Ext on x9 ∈ G9,0 is just

P[v, h0]. For the other two, we get h0-towers on x10 ∈ G10,0 and x8 ∈ G8,0. The extensions in N show these
two h0-towers are connected by multiplication by v. In addition, a d1 is forced on us by the extensions.
Figure 8 describes this completely.

https://doi.org/10.1017/S0017089523000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000423


200 Donald M. Davis and W. Stephen Wilson

Figure 9. The second computation of ExtE1 (Z2, N).

Again referring to Figure 6, our second filtration is 〈x9, x10〉, 〈x7, x8〉, and 〈x5〉. Now our Ext groups
are P[v, h0] on x5 ∈ G5,0 and P[v] on x8 ∈ G8,0 and x10 ∈ G10,0. Again, the d1 is forced by the extensions in
N. Figure 9 describes the result.

This concludes the computation of Ext for P
[
u2

2

]⊗ (〈u2
2〉 ⊕ N) of Proposition 2.11. The result is the

second line of Theorem 2.4.
We need to compute Ext for P

[
u2

2

]⊗ (R ⊕ S) and show it is the same as the top line in Theorem 2.4.
Since S ≈ 〈x9〉 ⊗ R, all we need to do is P

[
u2

2

]⊗ R and ignore the E[x9]. Similarly, we can ignore the
P
[
u2

2

]
and the P[y1] because for every power of u2

2 we will have a copy of the answer indexed by powers
of y1. All we have left now is R, but R is just many copies of the various Mj and the indexing for the
number of copies is given by the �j+1.

All that remains is to show that ExtE1 (Z2, Mj) ≈ P[v] ⊗ Wj−2 with Wj−2 as in Definition 2.1.2
Recall that Mj =�2j+1Lj−4. We can filter Lj−4 into pairs of elements g2i, Q0g2i, for 0 ≤ i ≤ j − 4. Then
ExtE1 (Z2, Mj) has a P[v] on each element �2j+1Q0g2i which we denote by zj−i−2,j−2 ∈ G2j+2+2i,0. The ele-
ment zj−2,j−2 is often called zj−2. There is no d1, but undoing the filtration does solve the extension problem
and gives us h0zk,j−2 = vzk−1,j−2. This completes our computation and thus our proof.

Remark 2.19. To illustrate the last computation in the proof, consider the generators of the v-towers
for ExtE1 (Z2, M7). They are z5, z2

4, z2
3z4, and z2

2z3z4, which is what we have called z5,5, z4,5, z3,5, and z2,5, as
pictured in Figure 5. For future reference, we note that (with ∼ meaning homologous)

zj = Q0x2j+2+1 ∼ u2
2j+1+1 = Q0u2j+2+1 = Q0Qj+2ι2 = Qj+2Q0ι2. (2.20)

We now describe briefly the changes required when p is odd. We have

H∗(K2) = P[y0] ⊗ P[g1, g2, . . . ] ⊗ E[u0, u1, . . . ],

with |y0| = 2, |gj| = 2(pj + 1), |ui| = 2pi + 1, Q0y0 = u0, Q0ui = gi, Q1y0 = u1, Q1u0 = g1, and Q1ui = gp
i−1,

i ≥ 2. Let y1 = yp
0. Then, similarly to the case p = 2,

H∗(H∗K2, Q0) = P[y1] ⊗ E
[
y p−1

0 u0

]
.

Let N = 〈y p−1
0 u0, q = y p−1

0 u1, Q0q = Q1

(
y p−1

0 u0

)〉
. Then, P[y1] ⊕ P[y1] ⊗ N carries the Q0-homology and

part of the Q1-homology. Similarly to (2.10), the rest of the Q1-homology is

P[y1] ⊗ E[q] ⊗ E[w1] ⊗ TPp[g2, g3, . . . ],

where w1 = u2 + u0gp−1
1 . There are E1-submodules Mj for j ≥ 2, defined inductively by M2 = 〈w1, g2 =

Q0w1〉, M′
j = 〈uj, gj = Q0uj〉 for j ≥ 3, and for j ≥ 3, there exists a short exact sequence of E1-modules:

0 → gp−1
j−1 Mj−1 → Mj → M′

j → 0,

with Q1uj = gp
j−1. There is an isomorphism of E1-modules Mj ≈�2pj+1Lj−2, where Lj is similar to Figure 7,

but with ith generator (i ≥ 0) in grading 2(p − 1)i rather than 2i.

2 The reason for this awkward shift is that the gradings for zj which give the elegant statements in Definition 1.5 and elsewhere are
not particularly convenient in developing the E2 statement.
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Figure 10. Computation of ExtE1 (Zp, N).

Let

R =
⊕
j≥2

Mj ⊗ TPp−1[gj] ⊗ TPp[gj+1, . . . ].

Then H∗(R; Q1) = E[w1] ⊗ TPp[g2, g3, . . . ], and so, similarly to Proposition 2.11, up to free
E1-modules:

H∗K2 ≈ P[y1] ⊗ (〈y1〉 ⊕ N ⊕ R ⊕ qR). (2.21)

Similarly to Figure 9, ExtE1 (Zp, N) can be read off from Figure 10. This gives the third summand and
vq part of the second summand in Theorem 2.4, while the 〈y1〉 part of (2.21) gives the non-vq part of
the second summand. For the first summand in Theorem 2.4, we replace gj by zj−1 and then note that
ExtE1 (Zp, Mj) ≈ P[v] ⊗ Wj−1, similar to Figure 5. For example, M3 has v-towers on g3 and gp

2, which are
renamed z2 = z2,2 and zp

1 = z1,2, the generators of the v-towers of W2. This completes our sketch of proof
of Theorem 2.4 when p is odd.

We explain here the reason for the k0 in Definition 1.5. In Theorem 2.4, y p−1
0 z0 and z1 are in the part

that is not multiplied by higher z’s when p = 2, but when p is odd, they form the module M2, whose Ext is
P[v] ⊗ W1, which is multiplied by higher z’s. Since Bk’s are multiplied by higher z’s, but Ak’s are not, this
explains why z1 is in B1 when p is odd, but not when p = 2. The reason for the split in Theorem 2.4 is the
difference in the submodules N. Its second class is y p−1

0 Q1y0 in each. Applying Q1 yields y p−2
0 (Q1y0)2.

This is 0 when p is odd, but not when p = 2. The reason that the portion of Ext corresponding to N
is not multiplied by higher z’s is that it gives part of the Q0-homology, and this is not multiplied by
higher z’s.

We close this section with enumeration of the unimportant Z2-classes in kup∗(K2) when p = 2.

More on the E1-free part when p = 2. If we compute the ExtE1 (Z2, F) for the E1 free part of H∗K2, we
just get a Z2 corresponding to the top element for each copy of E1. If we find the Poincaré series (PS) for
the free part, all we have to do to get the PS for these elements is to multiply by x4

(1+x)(1+x3)
. The Poincaré

series for free part is obtained by subtracting the PS for the non-free part of Proposition 2.11 from that
of H∗K2. This is∏

k≥0

1

(1 − x2k+1)
− 1

(1 − x4)

(
1 + x5 + x7 + x8 + x9 + x10

)
− 1

(1 − x2)(1 − x4)

(⊕
j≥4

(
x2j+1(1 + x9)(1 + x)

(
1 − x2j−6

)∏
k≥j

(
1 + x2k+1+2

)))

The first term is the PS for H∗K2. The second is the PS for P
[
u2

2

]⊗ (〈1〉 ⊕ N). The last term is more
complicated but does the S and R terms. The (1 − x4) in the denominator is for the P

[
u2

2

]
. The x9 is the

shift that takes R to S. The (1 + x) is because they are Q0 free. The x2j+1
(
1 − x2j−6

)
/(1 − x2) is for the

odd part of Mj and the remainder is for �.
This is easy to put into a computer and calculate. For example, the number of free generators in

degree 79 is 245.
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3. Differentials in the ASS of kup∗(K2)

The main theorem of this section determines the differentials in the ASS for kup∗(K2).

Theorem 3.1. The differentials in the spectral sequence whose E2-term was given in Theorem 2.1 are
as follows. All v-towers are involved, either as source or target, in exactly one of these. Here, M refers
to any monomial (possibly = 1) in the specified algebra. Recall that �j = TPp[zi : i ≥ j], which is an
exterior algebra if p = 2. Also, recall yt = ypt−1

1 . We give reference numbers to the differentials when p is
odd, but references to these also apply to the corresponding differential when p = 2, as the proofs are
extremely similar.

First with p = 2.

dν(i)+2

(
yi

1

) = hν(i)
0 v2qyi−1

1 , i ≥ 1;

dν(i)+2

(
yi

1zjM
) = vν(i)+2qyi−1

1 zj−ν(i),jM,

j ≥ ν(i) + 2, M ∈�j;

d2t−t

(
ht−2

0 v2qy2t−1−1
1 M

)
= v2t

ztM,

t ≥ 2, M ∈ P[yt];

d2t−t

(
qy2t−1−1

1 zj−(t−2),jM
)

= v2t−tztzjM,

j ≥ t ≥ 2, M ∈ P[yt] ⊗�j+1.

Now with p odd.

dν(i)+2

(
yi

1

)= hν(i)+1
0 vqyi−1

1 , i ≥ 1; (3.2)

dν(i)+2

(
yi

1zjM
)= vν(i)+2qyi−1

1 zj−ν(i)−1,jM,

j ≥ ν(i) + 2, M ∈�j; (3.3)

dpt−t

(
ht−1

0 vqypt−1−1
1 M

)
= vpt

ztM,

t ≥ 1, M ∈ P[yt]; (3.4)

dpt−t

(
qypt−1−1

1 zj−(t−1),jM
)

= vpt−tztzjM,

j ≥ t ≥ 1, M ∈ P[yt] ⊗ TPp−1[zj] ⊗�j+1. (3.5)

The proof occupies the rest of this section, except that at the end of the section we explain briefly
how this leads to our description of kup∗(K2) in Section 1, except for the exotic extensions.

By [12, Theorem A], QjQ0ι2 is in the image from BP∗(K2) and hence must be a permanent cycle in
our ASS. Thus by (2.20), zj is a permanent cycle, and so (3.3) follows from (3.2), and (3.5) follows from
(3.4), using pzi,� = vzi−1,�, as noted in 1.13.

The differentials (3.2) follow from the result of [3] that H2pi+1
(
K2;Z

)≈Z/pν(i)+2 ⊕⊕Zp. See also
[4, Proposition 1.3.5] when p = 2. The ASS converging to H∗(K2; Z

)
has E2 = ExtA0

(
Z2, H∗K2

)
, where

A0 = 〈1, Q0〉. We depict this E2 similarly to our ASS for kup∗(K2). It has an h0-tower for each element
of H∗(H∗K2, Q0), which was described in Lemma 2.6. These come in pairs in grading 2pi and 2pi + 1
corresponding to yi

1 and yi−1
1 y p−1

0 u0. In order to get the Z/pν(i)+2, there must be a dν(i)+2-differential, as
pictured on the right-hand side of Figure 11.
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Figure 11. kup∗(K2) → H∗(K2; Z
)
.

Similarly to Figures 8 and 9, we have, for p = 2 and i ≥ 1, an h0-tower in the ASS for kup∗(K2)
arising from G4i+1,2, called either h2

0yi−1
1 x5 or v2yi−1

1 q. There is also an h0-tower arising from yi
1 ∈ G4i,0. The

classes y1 and x5 correspond to cohomology classes u2
2 and u5 + u2u3. Under the morphism kup∗(K2) →

H∗(K2; Z
)
, these towers map across, as suggested in Figure 11. We deduce the dν(i)+2-differential claimed

in (3.2), promulgated by the action of v. Note that x9 = q.
The situation when p is odd is extremely similar, using Figure 10. The difference is that the h0-tower

in 2pi + 1 in the kup∗ ASS starts in filtration 1 rather than 2. Its generator can be called vyi−1
1 q.

In Figure 12, we depict many of the differentials asserted in Theorem 3.1 in grading ≤ 36 when p = 2.
Regarding the third (final) summand in Theorem 2.4, which is P[y1] ⊗ A1 when p = 2, we have included
y1A1, y3

1A1, and y5
1A1. Not included are the portions involving (3.2) and (3.3) when i is odd, as this portion

self-annihilates. What is shown is (3.2) for i = 2, 4, and 6, (3.4) for (t, k) = (1, 0), (1, 1), (1, 2), and (2, 0),
and (3.5) with t = 1, k = 0, and j = 4.

In order to establish the remaining differentials, we will need the following description of k(1)∗(K2),
which is proved in [8]. We shift by 1 the subscripts of the classes zj and wj used there. The formulas for
r(j) and r′(j) are as in [8]. We recapitulate some of their properties. Those stated here but not there are
easily proved by induction.

Proposition 3.8. [8] For j ≥ 0, zj is the reduction of the class in kup∗(K2) and satisfies |zj| = 2
(
pj+1 + 1

)
.

The classes wj satisfy |w1| = 2p2 + 1, |w2| = 2p3 − 2p2 + 6p − 3, and wj+2 = yp−1
j wjz

p−1
j+1 . The integers r(j)

and r′(j) satisfy the following properties:

r(0) = 1, r(1) = p, r(j + 2) = r(j) + pj+1(p − 1) + 1;

r′(0) = p − 1, r′(1) = p2 − p, (3.9)

r′(j + 2) = r′(j) + pj+2(p − 1) − 1, (3.10)

r(j) − r′(j − 1) = j, (3.11)

r(j) + r′(j) = pj+1, (3.12)

r(j + 2) + r′(j) = pj+2 + 1, (3.13)

(p − 1)(r(j − 1) + j − 1)< pj, (3.14)

pj+1 − pj ≤ r′(j)< pj+1 − pj−1. (3.15)
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Figure 12. Some differentials with p = 2.
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Theorem 3.16. [8] For any p, k(1)∗(K2) is a trivial k(1)∗-module plus⊕
j>0

TPr(j)[v] ⊗ P
[
yj+1

]⊗ TPp−1

[
yj

]⊗ E
[
wj

]⊗ E
[
wj+1

]⊗�j+1

⊕
⊕
j≥1

TPr′(j−1)[v] ⊗ P[yj] ⊗ E
[
wj

]⊗ TPp[zj] ⊗�j+1

⊕ P[y1] ⊗
(

E
[
y p−1

0 z0

]⊕{E[z1] p = 2

0 p odd

)
⊕
⊕
j≥1

P[y1] ⊗ E[q] ⊗ E
[
zp

j

]⊗�j+1.

The last line was not discussed in [8]; it is from free E[Q1] summands which are not part of free E1

summands and plays a very important role.
Now we continue the proof of Theorem 3.1. We have already proved (3.2) and (3.3). As already

noted, the zj’s are infinite cycles by [12], and so the differentials in (3.5) are implied as soon as the
corresponding differential in (3.4) is proved.

As a warmup, we consider the cases t = 2 and 3 of (3.4) when p = 2. We make extensive use of the
exact sequence (1.25). Referring to Figure 12 is useful.

In even gradings ≤ 14, k(1)∗(K2) = 0 in positive filtration, by Theorem 3.16. Thus, the map
kup∗(K2) → k(1)∗(K2) implies that in the ASS for kup∗(K2), vsz2 must be hit by a differential or divisible
by 2 for s ≥ 2. In grading < 8, there is nothing that can divide it, and the only odd-grading v-tower in
that range is on v2y1q. Thus, d2

(
v2y1q

)= v4z2, the case t = 2, M = 1 of (3.4). Since d2

(
y2k

1

)= 0 by (3.2),
the case t = 2 of (3.4) follows for any M by the derivation property. An analogous argument does not
work at the odd primes.

Similarly vsz3 must be hit or divisible for s ≥ 4, and examination of options in Figure 12 shows that we
must have d5

(
h0v2y3

1q
)= v8z3, preceded by extensions. Since d5

(
y8

1

)= h3
0v2y7

1q, we deduce the case t = 3,
M ∈ P

[
y8

1

]
of (3.4) using the derivation property (2.5) and h0z2 = 0. We do not have a priori knowledge

that y4
1z3 is a permanent cycle in the ASS of kup∗(K2). However, if it supported a nonzero differential,

then the tower of v-height 4 on y4
1z3 in the ASS of k(1)∗(K2) would have to map to vtC for 0 ≤ t ≤ 3 for

some C in positive filtration in grading 51 in the ASS of kup∗(K2). Then, v4C must be dr(B) with r ≥ 5
and B in filtration 0 in grading 42. (B cannot have higher filtration since everything is v-towers, and v3C
cannot be hit.) But the only possible B is y6

1z2, and we already know that v4y6
1z2 ∈ im (d4). (Ordinarily

this would not preclude the possibility of B supporting a differential, but it does since everything is v-
towers.) Thus, y4

1z3 is a permanent cycle, and consideration of its image in k(1)∗(K2) implies that vsy4
1z3

is hit by a differential for some s ≥ 4. The only element in odd grading < 42 not yet accounted for is
h0v2y7

1q in grading 33, and so this must be the source of the differential. This is the case t = 3, M = y4
1 of

(3.4). The validity for all M = y8i+4
1 (and t = 3) now follows similarly to what we did for M = y8i

1 at the
beginning of this paragraph.

Now we switch our attention to the odd primes. The situation when p = 2 is extremely similar. We
want to prove the following version of (3.4):

dpt−t

(
ht−1

0 vqy(i+1)pt−1−1
1

)
= vpt

yipt−1

1 zt. (3.17)

Now we work toward proving this. We illustrate with p = 5, but it should be clear how it generalizes
to an arbitrary prime. One new thing is the Divisibility Criterion as invoked in [8]. Each mod (p − 1)
value of i can be considered separately. We will consider (3.17) with p = 5 and i = 4�; other congruences
follow similarly. We index the differential (3.17) by (�, t). We write T (for vertical tower) for the class
ht−1

0 vqy(4�+1)5t−1−1
1 , and M (for Monomial) is y4�5t−1

1 zt. We will often afflict T and M with the parameters
(�, t). We write |T| for 1

2
(|T| + 1). The 1

2
avoids extraneous factors of 2 that always cancel out. The +1

is so that this indicates the grading (times 1
2
) of the class that it hits. |M| denotes 1

2
times the grading

of M, and M′ equals 1
2

times the grading of vhM, where h is the v-height of M in k(1)∗(K2). We wish to
show that the differentials must be as claimed.
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Figure 13. The role of M3.

There are three types of constraints on the differentials involving these classes. Constraint C1 is that
if T → M (by which we mean that a certain T class supports a differential hitting viM for some i and a
certain monomial M), then |T| ≤ M′. (This says that the v-tower on M cannot be hit while its image in
k(1)∗(K2) is nonzero.)

Constraint C2 says that if T(5�+ 1, t − 1) → M1 and T(�, t) → M2, then |M2|> |M1|. Since |T(5�+
1, t − 1)| = |T(�, t)|, this says that as you move up an h0 tower,3 differentials must get longer (unless they
are hitting into an h0 tower, which is not the case here.)

Constraint C3 says that if T2 → M1, then there exists M3 such that |M1| ≥ |M3| ≥ M′
1 and either

M′
3 ≤ |T2|

or

T3 → M3 has already been proved, and |T3| ≤ |T2|.
The reason for C3 is that there must be extensions into the M1-tower from grading M′

1 to |T2| + 4. The
nonzero classes on the v-tower (on M3) supporting the extensions must go to at least |T2| + 4, and it has
nonzero classes at least to M′

3 + 4, and if T3 → M3 was already proved, it has nonzero classes to |T3| + 4.
Note that we are saying that the v-tower on M1 maps to 0 in k(1)∗(K2) once we get to grading M′

1 (and
hence in gradings ≤ M′

1 it is either hit by differentials or is divisible by p). There might be classes of
higher filtration in k(1)∗(K2) to which it could map, but, if so, we can modify the generator of the M1

tower by the class on the tower sitting above it. Also note that it is possible that extensions from the tower
M3 don’t start from the generator, if there are h0-extensions on the tower for awhile. See Figure 13. There
is an exception to the C3 requirement for T(�, 1) → M(�, 1). Here, the extension into v4y4�

1 z1 is obtained
from the special class y4�

1 y4
0z0.

With the above conventions, we have |T| = 5t(4�+ 1) + 1, |M| = 5t(4�+ 5) + 1, and M′ = |M| −
4r′(t − 1), where 4r′(t − 1) has the values 16, 80, 412, and 2076 for t = 1, 2, 3, and 4. Increasing from
t to t + 2 increases this by 42 · 5t+1 − 4. We consider the cases in order of increasing |M| and, for equal
values of |M|, increasing �. We tabulate a representative sample in Table 1. We omit listing values of
�≡ 3, 4 mod 5 because they behave similarly to �≡ 2.

Before presenting a general argument, we illustrate with an example, starting with M1 = M(1, 3).
We will see that it builds a chart which is y100

1 times Figure 2. In Table 1, we have |M1| = 1126. Its v-
tower is truncated at height p3 = 125 by a differential on T(1, 3), with |T(1, 3)| = 626, using our grading
conventions. Playing the role of M3 is M(6, 2) with |M3| = 726. We have M′

1 = 714. It is v3M3 which
supports the extension in “grading” 714. Note that for 0 ≤ i ≤ 2, h0viM3 �= 0, and so p · viM3 is not a
v-multiple of M1. (In Figure 2, the class yp−1

2 z2 corresponds to M3.) From Table 1, we see that M′
3 = 646,

which means that in “grading” ≤ 646, the v-tower on M3 is either hit by a differential or divisible by p.
Table 1 says it is hit by a differential in 626. In “gradings” from 646 to 630, it is divisible by p. It has its
own, distinct, M3 class, namely M(31, 1). In Figure 2, this latter class corresponds to yp−1

1 yp−1
2 z1.

Now we start the proof. We begin with a lemma.

Lemma 3.19. For M = M(�′, t′) with |M(5�+ 1, t − 1)|< |M|< |M(�, t)|, we have t′ < t, |T(�, t)|<
|T(�′, t′)|, and |M(5�+ 1, t − 1)|<M′.

3 Note that h0T(5�+ 1, t − 1) = T(�, t).
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Table 1. Cases in order.

� t |T| |M| M′ � t |T| |M| M′

0 1 6 26 10 36 1 726 746 730
1 1 26 46 30 37 1 746 766 750
2 1 46 66 50 7 2 726 826 746
0 2 26 126 46 40 1 806 826 810
5 1 106 126 110 41 1 826 846 830
6 1 126 146 130 42 1 846 866 850
7 1 146 166 150 8 2 826 926 846
1 2 126 226 146 45 1 906 926 910
10 1 206 226 210 46 1 926 946 930
11 1 226 246 230 47 1 946 966 950
12 1 246 266 250 9 2 926 1026 946
2 2 226 326 246 50 1 1006 1026 1010
15 1 306 326 310 51 1 1026 1046 1030
16 1 326 346 330 52 1 1046 1066 1050
17 1 346 366 350 1 3 626 1126 714
3 2 326 426 346 10 2 1026 1126 1046
20 1 406 426 410 55 1 1106 1126 1110
21 1 426 446 430 56 1 1126 1146 1130
22 1 446 466 450 57 1 1146 1166 1150
4 2 426 526 446 11 2 1126 1226 1146
25 1 506 526 510 60 1 1206 1226 1210
26 1 526 546 530 61 1 1226 1246 1230
27 1 546 566 550 62 1 1246 1266 1250

0 3 126 626 214
...

5 2 526 626 546 154 1 3086 3106 3090
30 1 606 626 610 0 4 626 3126 1050
31 1 626 646 630 5 3 2626 3126 2714
32 1 646 666 650 30 2 3026 3126 3046
6 2 626 726 646 155 1 3106 3126 3110
35 1 706 726 710 156 1 3126 3146 3130

Proof. The given inequalities quickly force t′ < t. The inequality |T(�, t)|< |T(�′, t′)| follows imme-
diately. Finally, the given inequalities prevent M′ ≤ |M(5�+ 1, t − 1)|.

To prove the differentials, we use induction on our ordering of the M’s. If the differentials are not as
posed, consider the smallest |M| such that T(�, t) → M with M �= M(�, t).

We cannot have |M|> |M(�, t)|, because |M(�, t)| would contradict the minimality of |M|. We cannot
have |M| ≤ |M(5�+ 1, t − 1)| by constraint C2.

If |M(5�+ 1, t − 1)|< |M|< |M(�, t)|, by constraint C3 and the lemma, we must have M3 with
|M(5�+ 1, t − 1)|<M′ ≤ |M3|< |M|. Because |M3|< |M|, we know T3 → M3 by induction. From the
lemma, we get |T(�, t)|< |T3|, but that contradicts constraint C3.

We must have T(�, t) → M(�, t), and M(5�+ 1, t − 1) is eligible for our M3. This completes most of
the proof of (3.17) and hence of Theorem 3.1.

Underlying the above analysis has been an assumption that the M-classes are always hit by T-classes.
We show now that it could not have occurred that an M-class supported a differential. Assume that
M = yipt−1

1 zt is the M-class of lowest grading which supports a differential. We now revert to letting |x|
denote the actual grading of a class x, not divided by 2.
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Figure 14. An unwanted possibility.

In k(1)∗(K2), M supports a v-tower of v-height r′(t − 1) by 3.2. We will show at the end of the proof
that there is a number	≤ t such that viM maps nontrivially to kup∗+1(K2) if and only if i ≤ r′(t − 1) −	.
(Usually	= 1.) The image of M in kup|M|+1(K2) is a class C of positive filtration such that vr′(t−1)−	C �= 0
and vr′(t−1)−	+1C = 0 ∈ kup∗(K2), so there must be a differential in the ASS of kup∗(K2) from a filtration-0
class hitting a class of filtration ≥ r′(t − 1) −	+ 2 in grading |M| + 1 − 2(p − 1)(r′(t − 1) −	+ 1).
(The reason that the differential must start from filtration 0 is that in even gradings, E2 consists entirely
of v-towers starting in filtration 0.) This differential cannot come from another such M because of our
lowest-grading assumption. It cannot come from a product of one or more z’s times one of these M’s
because z’s are infinite cycles. We must rule out the possibility that this differential is one of type (3.3).
They are distinguished by having the smallest z-subscript at least 2 greater than the p-exponent of the
exponent of y1.

The differential to C has subscript ≥ r′(t − 1) −	+ 2, and so the class in (3.3) would be y�p
r′ (t−1)−	

1 Z
for some positive integer �, where Z is a product of zj’s with j ≥ r′(t − 1) −	+ 2, and each j appears
at most p − 1 times, except that the smallest j might appear p times. Equating this grading with |M| −
2(p − 1)(r′(t − 1) −	+ 1) and canceling a common factor 2 from all terms yield

�pr′(t−1)−	+1 +
∑

j

(
pj+1 + 1

)= ipt + pt+1 + 1 − (p − 1)(r′(t − 1) −	+ 1). (3.20)

Using (3.12) and (3.14) and 	≤ t, the right-hand side of (3.20) equals pt(i + 1) + (p − 1)(r(t − 1) +
	− 1) + 1 ≡ (p − 1)(r(t − 1) +	− 1) + 1 mod pt, with (p − 1)(r(t − 1) +	− 1) + 1 ≤ pt (strict if
t> 2). Since r′(t − 1) −	> t, this implies that the

∑
j

on the left-hand side of (3.20) must contain

at least (p − 1)(r(t − 1) +	− 1) + 1 summands. We obtain∑
pj ≥ p · pr′(t−1)−	+2 + (p − 1)

(
pr′(t−1)−	+3 + · · · + pr′(t−1)+r(t−1)

)
= pr′(t−1)+r(t−1)+1 = ppt+1,

so
∑

pj+1 ≥ ppt+2, and hence pt(i + 1)> ppt+2. Thus i ≥ ppt−t+2 > ppt−2t.
Since dpt−t+1

(
yppt−t−1

1

)
is defined,

dr

(
yppt−t−1

1

)
= 0 for r ≤ pt − t, (3.21)

and by the lowest-grading assumption, dpt−t

(
ht−1

0 vqy

(
i−ppt−2t+1

)
pt−1−1

1

)
= vpt

y(i−ppt−2t)pt−1

1 zt and y(i−ppt−2t)pt−1

1 zt

is a permanent cycle. Since

yipt−1

1 zt = y

(
i−ppt−2t

)
pt−1

1 zt · yppt−t−1

1 ,

we deduce that yipt−1

1 zt survives to Ept−t and (3.17), using the derivation property of differentials.
Now we consider the need for 	 in the above argument. The worry is that maybe part of the v-tower

on M in k(1)∗(K2) might be in the image from kup∗(K2), due to a filtration jump from a lower tower, as
sketched in Figure 14, so that only a smaller part of the M-tower in k(1)∗(K2) maps to kup∗+1(K2).

https://doi.org/10.1017/S0017089523000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000423


Glasgow Mathematical Journal 209

The monomials Mε = yiε
tε

ztε (ε= 1, 2) have |Mε| = 2(ptε (iε + p) + 1) and are truncated in k(1)∗(K2)
in grading M′

ε
= |Mε| − 2(p − 1)r′(tε − 1). In kup∗(K2), M2 is truncated in grading |T2| = |vpt2 M2| =

2(pt2 (i2 + 1) + 1). In Figure 14, elements c are in grading M′
2, and c′ is in grading M′

1 + 2(p − 1). The
necessary condition for nontrivial image in k(1)∗(K2) (and hence 	> 1) is

|T2| + 2(p − 1) ≤ M′
1 + 2(p − 1) ≤ M′

2. (3.23)

If this occurs, then we might have 	 as large as
M′

2 − M′
1

2(p − 1)
+ 1. We now show in Lemma 3.24 that if

(3.23) holds, then
(
M′

2 − M′
1

)
/(2(p − 1))< t, establishing the claim made earlier about 	≤ t.

We restrict to p = 5, i = 4� for simplicity, and so that the reader can refer to Table 1 as an aid. The
argument easily generalizes to any prime and any congruence. We divide everything by 2 as was done
above and also subtract off the +1 which occurs in formulas for |M| and |T|, so the numbers will be 1
smaller than those in the table.

Lemma 3.24. If t1 > t2 and

5t2 (4�2 + 1) + 4 ≤ 5t1 (4�1 + 5) − 4r′(t1 − 1) + 4 ≤ 5t2 (4�2 + 5) − 4r′(t2 − 1),

then
1

4

(
5t2 (4�2 + 5) − 4r′(t2 − 1) − (5t1 (4�1 + 5) − 4r′(t1 − 1))

)
< t1 − 1.

Proof. If there is a counterexample to this, then there is one with �1 = 0, since �2 could be decreased
by 5t1−t2�1, so it suffices to use �1 = 0. Let Q(k) = (52k − 1)/24 (called q(k) in [8, Lemma 5.3]). Then,
using [8, Lemma 5.5] for t = 2k + δ with δ = 1 or 2,

5t+1 − 4r′(t − 1) = 52k+δ + 16 · 5δQ(k) + 4k + 4 · 5δ−1.

Since 16 · 5δQ(k) + 4k + 4 · 5δ−1 < 3 · 52k+δ, the hypothesis of the lemma says that 5t1+1 − 4r′(t1 − 1)
mod 4 · 5t2 lies in the mod-(4 · 5t2 ) interval [5t2 , 5t2+1 − 4r′(t2 − 1) − 4].

Let t1 = 2k1 + δ1 and t2 = 2k2 + δ2. The condition is restated as:

52k1+δ1 + 16 · 5δ1 Q(k1) + 4k1 + 4 · 5δ1−1 (3.25)

lies in the mod-(4 · 5t2 ) interval:

[5t2 , 5t2 + 16 · 5δ2 Q(k2) + 4k2 + 4 · 5δ2−1 − 4]. (3.26)

Let δ2 = 1. The reduction mod 4 · 5t2 of (3.25) is

5t2 + 16 · 5δ1 Q(k2) + 4k1 + 4 · 5δ1−1. (3.27)

Let δ1 = 2. Then, 5t2 + 16 · 5δ1 Q(k2)> 4 · 5t2 and equals 52k2+2 − (2000Q(k2 − 1) + 100), so (3.27) will
first be in the interval (3.26) when 4k1 + 20 = 2000Q(k2 − 1) + 100, hence k1 = 500Q(k2 − 1) + 20, so
t1 = 1000Q(k2 − 1) + 42. The left-hand side of the conclusion of the lemma is 1

8

(
M′

2 − M′
1

)
with M′

1 and
M′

2 as in (3.23). For k1 = 500Q(k2 − 1) + 20, the value of M′
1 is at the left end of the interval (3.26), and

so 1
8

(
M′

2 − M′
1

)
equals 1

4
times the length plus 4 of (3.26), which is

20Q(k2) + k2 + 1 = 500Q(k2 − 1) + k2 + 21 = 1

2
t1 + k2.

Since k2 � t1, this is less than t1 − 1, as claimed. If k1 is increased from the value 500Q(k2 − 1) + 20, the
value of t1 increases, while M′

2 − M′
1 decreases, since M′

1 is moving through the interval, so the inequality
asserted in the lemma is satisfied more strongly.

Now, with δ2 = 1 continuing, let δ1 = 1. Since k1 > k2, (3.27) lies outside the interval (3.26) until
80Q(k2) + 4k1 + 4 = 4 · 5t2 , so

k1 = 52k2+1 − 20Q(k2) − 1 = 100Q(k2) + 4

https://doi.org/10.1017/S0017089523000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000423


210 Donald M. Davis and W. Stephen Wilson

and t1 = 200Q(k2) + 9. Again 1
8

(
M′

2 − M′
1

)= 20Q(k2) + k2 + 1 ≈ 1
10

t2 + k2, so the conclusion of the
lemma is satisfied more strongly.

A similar analysis works when δ2 = 2. In this case, 1
8

(
M′

2 − M′
1

)≈ 1
2
t1 + k2 if δ1 = 1, and 1

8

(
M′

2 −
M′

1

)≈ 1
10

t1 + k2 if δ1 = 2.

We close this section by explaining how Theorems 2.4 and 3.1 lead to the descriptions of kup∗(K2)
given in Theorems 1.8 and 1.15, modulo exotic extensions. We begin with the portion in even gradings
and restrict our attention to odd p. All elements in the P[h0, v, y1] part of Theorem 2.4 support differ-
entials of type (3.2). Note that y pk−1

0 = y p−1
0 ypk−1−1

1 =∏k−1
j=0 yp−1

j . The first is easiest to write, the second
occurs in Theorem 2.4, and the third in 1.5 and Figure 2. From 1.5, y pk−1

0 z0 is in Ak for k ≥ 1, the bottom
right element in Figure 2. Then,

P[y1]y p−1
0 z0 =

⊕
MA

k · y pk−1
0 z0 ⊂

⊕
MA

k Ak. (3.28)

The first part occurs in Theorem 2.4 and the last part in Theorem 1.8.
Now we consider P[y1] ⊗⊕j≥1 Wj ⊗ TPp−1[zj] ⊗�j+1 in Theorem 2.4. The

⊕
part is all monomials

z�M with �≥ 1 and M ∈��. From Theorem 3.1, yi
1z�M supports a differential (3.3) if �≥ ν(i) + 2, while

those with ν(i) ≥ �− 1 are hit by differentials (3.4) and (3.5), yielding v-towers with heights as given
in 1.5. These are all monomials in

⊕
�≥1 P[y�, y�+1, . . . ]z���. From 1.5 or (1.7), the generators of the

v-towers in Bk are all

zj

k−1∏
i=j

{
zp−1

i , yp−1
i

}
, 1 ≤ j ≤ k.

Let (z�M)i be the ye
i z

e′
i factors of M. Then, MkBk consists of all monomials z�M such that (z�M)i equals

yp−1
i or zp−1

i for �≤ i< k, but not for i = k, and so every monomial z�M is in a unique MkBk. From
Theorem 3.1, z�M has v-height p� if and only if M contains no z-factors, which explains the split into
MA

k and MB
k in Theorem 1.8.

Now we address the odd gradings. The P[h0, v, y1]vq part of Theorem 2.4 is totally removed either
as sources (3.4) or targets (3.2) of differentials. See grading 17 in Figure 12 for a nice illustration. The
qyi−1

1 Sν(i)+1,� part of Theorem 1.15 is formed from TPν(i)+2[v]qyi−1
1 W� in 2.1 using (3.3). The generators of

Sν(i)+1,� are z1,�, . . . , z�−ν(i)−1,�, but to see the differential from (3.3), one should write zt,� = zt,t+ν(i)+1Z�
t+ν(i)+1,

where

Zj
i = (zi · · · zj−1)

p−1 for j> i, with Zi
i = 1. (3.29)

The remaining generators of qyi−1
1 W�, namely qyi−1

1 zj,� with �− ν(i) ≤ j ≤ �, support differentials (3.5).
There can be no unexpected exotic extensions among these summands for the reason noted at the end
of Section 1. The ker (p) elements in the S summands play a very important role in the exact sequence.

4. Exotic extensions

In this section, we prove the following expansion of (1.6).

Theorem 4.1. If i ≥ 0 and k ≥ k0,

pyi
ky

p−1
k−1zk−1 = vpk−1(p−1)yi

kzk

with an additional term vyi
ky

p−1
k−1zp

k−2 if k ≥ k0 + 2.

The additional term is seen in Ext and will be ignored in the rest of this section. We have included
the factor yi

k, which is not automatic since yi
k is not a permanent cycle. Since, for example, yk+1 = yp

k , we
need not consider yi for i> k. It is automatic that this formula can be multiplied by zj’s, since they do
survive the spectral sequence.
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Figure 15. Conditions for extension.

The extension is deduced from the exact sequence:

kup∗(K2)
·p−→ kup∗(K2) −→ k(1)∗(K2)

and the fact that vr′(k−1)yi
kzk = 0 in k(1)∗(K2) with r′(k − 1) ≥ pk(p − 1). Thus, vr′(k−1)yi

kzk must be divisible
by p in kup∗(K2), and, as we will show, the v-tower on yi

ky
p−1
k−1zk−1 provides the only classes that can do the

dividing. Once we know the division formula toward the end of the v-tower, we can deduce that it holds
earlier in the tower, as well. For example, r′(2) = p3 − p2 + p − 2, which is the height in the top v-tower
in Figure 2 where the extensions into it do not also involve an h0-extension. We deduce the extensions
from the earlier part of the v-tower on yp−1

2 z2 by naturality.
We illustrate in Figure 15, using the notation of the preceding section. Thus, Ti is the class satisfying

dr(Ti) = vrMi, Here, the portion of the top tower to the right of M′
1 must be divisible by p. The tower

providing the extension must have M′
1 ≤ |M2|< |M1| and |T2| ≤ |T1|.

As we did for the differentials in the previous section, we will perform the argument for p = 5. It
will be clear that it generalizes to an arbitrary odd prime, and with minor modification to p = 2. Also,
we use i = 4� in Theorem 1.15. If instead we used i = 4�+ d for 1 ≤ d ≤ 3, it will just add the same
amount to the quantities |M|, |T|, and M′ involved in the argument. We can use Table 1 to envision
the analysis, with the t there replaced by k. For a monomial M(�, k) = y4�

k zk, we have, after dividing
by 2, |M| = 5k(4�+ 5) + 1, |T| = 5k(4�+ 1) + 1, and 5k(4�+ 1.16) + 1<M′ ≤ 5k(4�+ 1.8) + 1, using
(3.15). With M1 and M2 as in Figure 15, we will show that M2(5�+ 1, k − 1) is the unique monomial sat-
isfying the inequalities stated just before Figure 15 for M1(�, k). Note that M(5�+ 1, k − 1) = y4�

k y4
k−1zk−1.

We omit the +1 in all the formulas.
The inequalities are satisfied by M2(5�+ 1, k − 1) since

5k(4�+ 1.8) ≤ 5k−1(4(5�+ 1) + 5)< 5k(4�+ 5) and 5k−1(4(5�+ 1) + 1) ≤ 5k(5�+ 1).

If k2 ≥ k, then the first inequality, after dividing by 5k, becomes

4�+ 1.8 ≤ 5k2−k(4�2 + 5)< 4�+ 5,

which cannot be satisfied since the middle term is ≡ 1 mod 4. If k2 < k − 1, then

M′
1 − |T1|> 5k · .16 ≥ 4 · 5k2 = |M2| − |T2|,

which is inconsistent with two of the inequalities. Let k2 = k − 1. If �2 < 5�+ 1, then

|M2| = 5k−1(4�2 + 5) ≤ 5k−1(4 · 5�+ 5)< 5k(4�+ 1.16)<M′
1,

contradicting one of the inequalities. If k2 = k − 1 and �2 > 5�+ 1, then

|T2| ≥ 5k−1(4(5�+ 2) + 1)> 5k(4�+ 1) = |T1|,
contradicting one of the inequalities.

We deduce that M2 = y4�
k y4

k−1zk−1, as claimed. We should perhaps have noted that the extensions could
not have come from classes with more than one zj-factor, because these are zj times a class on which the
extensions have already been determined.
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5. Proposed formulas for the exact sequence (1.25)

In this section, we propose what we conjecture must be the correct complete formulas for the exact
sequence (1.25). Some homomorphisms are forced by naturality, but many others involve significant
filtration jumps. However, they all occur in several families with nice properties. The 10-term exact
sequence (5.2) shows how the Sk,� portions and the exotic extensions yield compatibility of the differing
v-tower heights in kup∗(K2) and k(1)∗(K2). In Section 6, we show that all elements of k(1)∗(K2) are
accounted for exactly once in these homomorphisms, which implies that there can be no more exotic
extensions. This does not require us to prove that our homomorphism formulas are actually correct, as
discussed at the end of Section 1. We will focus on the case when p is odd. We could incorporate all
primes together at the expense of involving the parameter k0, but things are complicated enough without
that. In an earlier version of this paper ([7]), a thorough analysis when p = 2 was performed.

We propose that (1.25) can be split into exact sequences of length 4 and 10 (not including 0’s at the
end). There are subgroups of k(1)∗(K2) called G1

k and G2
k for k ≥ 1 and Gi

k,� for 3 ≤ i ≤ 6 and 1 ≤ k< �
such that there are exact sequences:

0 → G1
k → Ak

p−→ Ak → G2
k → 0 (5.1)

for k ≥ 1, and, for 1 ≤ k< �,

0 → G3
k,� → ykBkZ

�

k

p−→ ykBkZ
�

k → G4
k,� → ypk−1−1

1 qSk,�

p−→ ypk−1−1
1 qSk,� → G5

k,� → Bkz�
p−→ Bkz� → G6

k,� → 0, (5.2)

with Z�
k as defined in (3.29). The sequence (5.1) can be tensored with TPp−1[yk] ⊗ P[yk+1], while

(5.2) can be tensored with TPp−1[yk] ⊗ P[yk+1] ⊗ TPp−1[z�] ⊗��+1. If p is odd, there are also exact
sequences:

0 → G7
k,e → Bkz

e
k

p−→ Bkz
e
k → G8

k,e → 0 (5.3)

for k ≥ 1 and 1 ≤ e ≤ p − 2. This can be tensored with P[yk] ⊗�k+1.
One can verify that the totality of Ak and Bk groups in these exact sequences agrees with that in

Theorem 1.8. We will study these exact sequences by breaking them up into short exact sequences and
isomorphisms involving kernels and cokernels of ·p.

Let KA
k = ker (·p|Ak), KB

k = ker (·p|Bk), CA
k = coker (·p|Ak), and CB

k = coker (·p|Bk). There are impor-
tant elements gk ∈ KA

k and KB
k defined (up to unit coefficients) by g1 = z1, g2 = vp−2z2, and, for k ≥ 1,

gk+2 = vr′(k)−1zk+2 + gky
p−1
k zp−1

k+1. (5.4)

To see that this is in ker (·p), we use (1.6) to see that p · vr′(k)−1zk+2 = vr′(k)zp
k+1, and that the vr′(k−2)−1zk

term in gk yields vr′(k−2)−1vpk(p−1)zk+1z
p−1
k+1 in p · gky

p−1
k zp−1

k+1. Using (3.10), these terms cancel. Other terms
in p · gky

p−1
k zp−1

k+1 yield 0 since gk ∈ ker (·p).
The v-towers in KA

k are generated by:

gk and gjz
p−1
j

k−1∏
i=j+1

{
zp−1

i , yp−1
i

}
, 1 ≤ j ≤ k − 1. (5.5)

For example, using Figure 2 when k = 3, these are g3 = vp2−p−1z3 + yp−1
1 z1z

p−1
2 , g2z

p−1
2 = vp−2zp

2, g1zp−1
1 zp−1

2 ,
and g1zp−1

1 yp−1
2 . The v-heights are pk − (r′(k − 2) − 1) for gk, and pj − j − (r′(j − 2) − 1) for the others,

since they are determined by v-heights of zj in Bk. The map G1
k → KA

k sends wk to gk and

wjP �→ gjP for P = zp−1
j

k−1∏
i=j+1

{
zp−1

i , yp−1
i

}
, (5.6)

with wj as in 3.8 and 3.16. The v-height of wj is r(j) if it is not accompanied by zj, and r′(j − 1) if it is.
By (3.13) and ((3.12) and (3.11)), the v-heights agree, so (5.6) is an isomorphism on v-towers.
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For L = KA
k or KB

k or CA
k or CB

k , we say that a Zp in L is a class of v-height 1 in L which is not part of a
larger v-tower in L. There is one Zp in KA

3 , as can be seen in Figure 2. This is the element vp−2yp−1
1 z1z

p−1
2 .

Note that for i< p − 1, viyp−1
1 z1z

p−1
2 + vi+p2−p−1z3 is part of a v-tower in KA

3 , which continues with the
elements viz3 for i> p2 − 3, but viyp−1

1 z1z
p−1
2 itself is in KA

3 only for i = p − 2. Using 1.5, we find that the
Zp’s in KA

k are

vpt−t−1(yt · · · yj−1)
p−1ztz

p−1
j

k−1∏
i=j+1

{
zp−1

i , yp−1
i

}
for 1 ≤ t< j< k. (5.7)

For example, the elements vp−2(y1y2)p−1z1 and vp2−3yp−1
2 z2 in Figure 2 yield elements in KA

4 after being
multiplied by zp−1

3 . The basic formula for the homomorphism from part of k(1)∗(K2) to Zp’s in various
KA

k and KB
k , possibly tensored with other classes as in Theorem 1.8, is(

q(y1 · · · yt)
p−1zj−t,j �→ vpt−t−1yp−1

t ztzj

)⊗ P
[
yj

]⊗ TPp−1[zj] ⊗�j+1 for j> t ≥ 1. (5.8)

The domain elements are in the second half of the third line of Theorem 3.16. The ones that are in G1
k

in the isomorphism G1
k → KA

k can be extracted using (5.7).
The isomorphism G3

k,� → ykKB
k Z�

k in (5.2) is given using formulas analogous to (5.6) and (5.8). There
are several minor differences. One is that the v-tower on ykgkZ�

k is truncated due to vpk−kzk = 0 in Bk (as
opposed to vpk

zk = 0 in Ak). This is compatible with the fact that the v-height of wkzk in k(1)∗(K2) is k
less than that of wk, using Theorem 3.16 and (3.11). The other is that KB

k has additional Zp’s:

vpt−t−1(yt · · · yk−1)p−1zt for 1 ≤ t ≤ k − 1, (5.9)

as seen in Figure 2 when k = 3, but these are always multiplied by higher z’s, and so (5.8) applies.
The isomorphisms CA

k → G2
k and CB

k z� → G6
k,� are defined simply by sending an element to one with

the same name. Moreover, CA
k = CB

k except for (y0 · · · yk−1)p−1z0 ∈ CA
k − CB

k . When k = 3, we see that the
Zp’s in CB

k are {zp
1z

p−1
2 , zp

2, yp−1
2 zp

1} in Figure 2.4 For future reference,

Z
′
ps in CB

k are

{
zp

t

k−1∏
i=t+1

{
zp−1

i , yp−1
i

}
: 1 ≤ t< k

}
. (5.10)

The corresponding elements in k(1)∗(K2) are from the third line of 3.2.
The v-towers in CA

k = CB
k are generated by:

zk and yp−1
t zt

k−1∏
i=t+1

{
zp−1

i , yp−1
i

}
, 1 ≤ t< k. (5.11)

We will show that the v-height of zk in CB
k is r′(k − 1), which equals its v-height in k(1)∗(K2). It follows

from 1.5 that the v-height of yp−1
t zt

∏k−1
i=t+1

{
zp−1

i , yp−1
i

}
equals r′(t − 1), establishing the isomorphisms out

of CA
k and CB

k z�. In Figure 2, the v-height of z3 equalling p3 − p2 + p − 2 = r′(2) is apparent.
The proof of the claim about v-heights is by induction. By (3.10), r′(k − 1) − r′(k − 3) = pk−1(p −

1) − 1. Let D = (|zk| − |yp−1
k−1zk−1|

)
/(2(p − 1)) = pk−1(p − 1). This is the filtration on the zk-tower above

the element yp−1
k−1zk−1. We show that vi−1+Dzk is divisible by p if and only if vizk−2 is divisible by p. Thus,

the difference of the v-heights in cokernels equals the difference of the corresponding r′ values. From
Theorem 4.1, we have

pvi−1yp−1
k−1zk−1 = vi−1+Dzk + viyp−1

k−1zp
k−2.

The claim follows, since viyp−1
k−1zp

k−2 is divisible by p if and only if vizk−2 is, by 1.5.
The analysis of (5.3) is extremely similar.
Now Sk,� becomes involved. Let SK

k,� = ker (·p|Sk,�) and SC
k,� = coker (·p|Sk,�). Then, SK

k,� consists of
TPk+1[v]〈z1,�〉 plus Zp’s on vkzi,� for 2 ≤ i ≤ �− k, while SC

k,� has TPk+1[v]〈z�−k,�〉 plus Zp’s on zi,� for

4 The class yp−1
2 zp−1

1 should really be called yp−1
2 zp−1

1 + vp2(p−1)−1z3 so that v times it is divisible by p, hence 0 in CB
k , but we will

ignore this fine-tuning.
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Figure 16. Towers in exact sequence.

1 ≤ i< �− k. Next, we consider the short exact sequence:

0 → ykC
B
k Z�

k

φ−→ G4
k,�

ψ−→ ypk−1−1
1 qSK

k,� → 0. (5.12)

The map φ sends everything except the v-tower on ykzkZ�
k to classes with the same name, and the heights

of these v-towers agree, as seen above. The class ykzkZ�
k = ykzk,� maps to a Zp with the same name in

k(1)∗(K2). We have ψ
(
wkwk+1Z�

k+1

)= qypk−1−1
1 z1,�. Then vk+1wkwk+1Z�

k+1 ∈ ker (ψ), and we have

φ
(
vykzk,�

)= vk+1wkwk+1Z�

k+1.

We illustrate this in the schematic Figure 16, in which X, ◦, and • map to elements with the same symbol.
The expressions at the end of the v-towers are their v-heights. In particular, vr′(k−1)ykzk,� = 0 in ykCB

k Z�
k .

The v-heights agree by (3.11), and the gradings match by an induction proof. The Zp’s in ypk−1−1
1 qSK

k,� are
hit by ψ(ykzi+k−1,�) = ypk−1−1

1 qvkzi,�, 2 ≤ i ≤ �− k, another interesting filtration jump.
Finally, we consider the short exact sequence:

0 → ypk−1−1
1 qSC

k,�

φ′−→ G5
k,�

ψ ′−→ KB
k z� → 0. (5.14)

Similarly to (5.5), the generators of v-towers in KB
k are gk and, for 1 ≤ j< k, elements of the form

gjz
p−1
j

∏k−1
j+1

{
zp−1

i , yp−1
i

}
. The morphismψ ′ is determined by wj �→ gj. The v-heights of the corresponding

elements in k(1)∗(K2) and KB
k both equal r′(j − 1) for j< k. However, the v-height of wkz� is r(k), which

is k greater than r′(k − 1). We have φ ′
(

vypk−1−1
1 qz�−k,�

)
= vr′(k−1)wkz�. The class ypk−1−1

1 qz�−k,� at the base
of the v-tower maps to a Zp with the same name. The picture is quite similar to Figure 16 with k + 1 and
r′(k − 1) interchanged.

The Zp classes ypk−1−1
1 qzi,� for 1 ≤ i< �− k are mapped by φ ′ to classes with the same name in G5

k,� ⊂
k(1)∗(K2). The Zp’s in KB

k z� are of the same form as in (5.7) and are hit by analogs of (5.8).

6. All accounted for

In this section, we show that all elements of k(1)∗(K2) are involved in exactly one of the homomorphisms
involving some G-group described in the preceding section. As discussed earlier, this implies that there
can be no exotic extensions in kup∗(K2) other than those in (1.6), because an additional extension would
decrease the number of elements in ker (·p|kup∗(K2)) and coker (·p|kup∗(K2)), and these must correspond
to elements of k(1)∗(K2). It also provides an excellent check on our analysis.
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Let p be odd, Gi
k and Gi

k,� as in (5.1) and (5.2), and

Gi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⊕
k≥1

Gi
k ⊗ TPp−1[yk] ⊗ P[yk+1] 1 ≤ i ≤ 2⊕

1≤k<�

Gi
k,� ⊗ TPp−1[yk] ⊗ P[yk+1] ⊗ TPp−1[z�] ⊗��+1 3 ≤ i ≤ 6

⊕
k≥1

p−2⊕
e=1

Gi
k,e ⊗ P[yk] ⊗�k+1 7 ≤ i ≤ 8.

Theorem 6.1. G1 ⊕ · · · ⊕ G8 equals k(1)∗(K2), as described in Theorem 3.16.

As throughout the paper, Zp’s coming from E1-free submodules of H∗(K2) are ignored here. The remain-
der of this section is devoted to the proof of Theorem 6.1. There are four parts of Theorem 3.16. We
deal with them one at a time.

Case 1. P[y1]y p−1
0 z0. In (3.28), it is shown that these classes form a subset of

⊕MA
k Ak, and they map

to classes with the same name in G2.

Case 2.
⊕

j>0 TPr(j)[v] ⊗ P[yj+1] ⊗ TPp−1

[
yj

]⊗ E
[
wj

]⊗ E
[
wj+1

]⊗�j+1. The generators of v-towers of
height r(j) occur in G1, G4, and G5. From (5.6), only wj is in G1

j . So G1 has TPp−1

[
yj

]⊗ P[yj+1]wj.
From Figure 16, G4

j,� has wjwj+1Z�
j+1. Note that

⊕
�

Z�
j+1TPp−1[z�] ⊗��+1 =�j+1, since the �-component

gives the monomials whose smallest non-(p − 1)-power is a power of z�, so G4 contains P[yj+1] ⊗
TPp−1

[
yj

]
wjwj+1 ⊗�j+1. From the analysis following (5.14), G5

j,� has only wjz� of v-height r(j), so G5

will have P[yj+1] ⊗ TPp−1

[
yj

]
wj ⊗�j+1. Thus, G1 ⊕ G5 contains the part without wj+1, while G4 contains

the part with wj+1.

Case 3.
⊕

j≥1 TPr′(j−1)[v] ⊗ P[yj] ⊗ E
[
wj

]⊗ TPp[zj] ⊗�j+1. The generators of v-towers of height r′(j −
1) occur in each Gi as follows.

G1: wjz
p−1
j

⊕
k≥j+1

TPp−1[yk] ⊗ P[yk+1] ⊗
k−1⊕

i=j+1

{
zp−1

i , yp−1
i

}
. This can be deduced from (5.6).

G2: From (5.11),

zjTPp−1

[
yj

]⊗ P[yj+1] ⊕ yp−1
j zj

⊕
k≥j+1

TPp−1[yk] ⊗ P[yk+1] ⊗
k−1∏

i=j+1

{
zp−1

i , yp−1
i

}
.

G3: We use (5.5) and (5.6) and adapt some arguments used in Case 2 to obtain

wjz
p−1
j

(
TPp

[
yj

]⊗ P[yj+1] ⊗�j+1 ⊕
⊕
k≥j+1

TPp[yk]P[yk+1]zp−1
k �k+1

k−1∏
i=j+1

{
zp−1

i , yp−1
i

})
.

G4: We use (5.11) and (5.12) to obtain

yp−1
j zj

⊕
k≥j+1

TPp[yk] ⊗ P[yk+1]zp−1
k �k+1

k−1∏
i=j+1

{
zp−1

i , yp−1
i

}
.

G5: We use (5.14) and
⊕

�>k z�TPp−1[z�] ⊗��+1 ≈�k+1 to obtain

wjz
p−1
j

⊕
k≥j+1

TPp−1[yk] ⊗ P[yk+1] ⊗�k+1 ⊗
k−1∏

i=j+1

{
zp−1

i , yp−1
i

}
.
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G6: We combine the analysis for G2 and the observation used for G5 to obtain
zjTPp−1

[
yj

]⊗ P[yj+1] ⊗�j+1

⊕ yp−1
j zj

⊕
k≥j+1

TPp−1[yk] ⊗ P[yk+1] ⊗�k+1 ⊗
k−1∏

i=j+1

{
zp−1

i , yp−1
i

}
G7: Similarly to G3, we have

p−2⊕
e=1

(
wjz

e
j ⊗ P

[
yj

]⊗�j+1 ⊕ wjz
p−1
j

⊕
k≥j+1

ze
k ⊗ P[yk] ⊗�k+1 ⊗

k−1∏
i=j+1

{
zp−1

i , yp−1
i

})
.

G8: Using (5.11), we get
p−2⊕
e=1

(
ze

j ⊗ P
[
yj

]⊗�j+1 ⊕ yp−1
j zj

⊕
k≥j+1

ze
k ⊗ P[yk] ⊗�k+1 ⊗

k−1∏
i=j+1

{
zp−1

i , yp−1
i

})
.

We begin by analyzing the portion including the factor wj. We will show that
G1 ⊕ G3 ⊕ G5 ⊕ G7 = P

[
yj

]
wj ⊗ TPp[zj] ⊗�j+1.

Here, and in the remainder of our analysis of Case 3, Gi refers just to the relevant portion of Gi, here the
part with TPr′(j−1)[v]wj. The first part of G7 gives all terms with ze

j for 1 ≤ e ≤ p − 2. The remaining part
has factors wjz

p−1
j , which we will omit writing. Combining G1 and G5 removes the bar in G5. The first

part of G3 gives the part with positive exponent of yj, which we now omit.
Let E� = P[y�] ⊗��, thought of as monomials in yi and zi for i ≥ � with exponents ≤ p − 1. The

remaining parts of the Gi’s under consideration combine to⊕
k≥j+1

(
TPp−1[yk] ⊕ ykz

p−1
k TPp−1[yk] ⊕

p−2⊕
e=1

ze
kTPp[yk]

)
⊗ Ek+1 ⊗

k−1∏
i=j+1

{
zp−1

i , yp−1
i

}
. (6.2)

We wish to show this equals Ej+1. The portion in parentheses is all monomials in TPp[yk, zk] except yp−1
k

and zp−1
k . For a monomial M in Ej+1, let Mi denote its ys

i z
t
i factor. The k-summand in (6.2) is all monomials

M in Ej+1 for which k is the smallest i such that Mi is neither yp−1
i nor zp−1

i . Thus, the sum over all k yields
all of Ej+1, as claimed.

A very similar argument shows that the G2 ⊕ G4 ⊕ G6 ⊕ G8 part for Case 3 equals the portion which
includes just the 1 in E[wj], that is, P

[
yj

]⊗ TPp[zj] ⊗�j+1.

Case 4.
⊕

j≥1 P[y1] ⊗ E[q] ⊗ E
[
zp

j

]⊗�j+1. We first consider the part without the q, and fix j and omit
writing the zp

j . The desired answer is P[y1] ⊗�j+1. These come from the Zp’s in G2 ⊕ G4 ⊕ G6 ⊕ G8.
Similarly to Case 3, G2 and G6 combine to give⊕

k≥j+1

TPp−1[yk] ⊗ P[yk+1] ⊗�k+1 ⊗
j−1∏

i=k+1

{
zp−1

i , yp−1
i

}
.

This, together with the portion of G4 from im (φ) in (5.12) obtained using (5.10), and the Zp’s in G8

obtained using (5.10) give exactly (6.2), which we showed equals P[yj+1] ⊗�j+1.5 The element X in
Figure 16 with k replaced by j yields, from G4,

yjTPp−1

[
yj

]⊗ P[yj+1] ⊗
⊕
�>j

Z�

j+1TPp−1[z�] ⊗��+1

= yjTPp−1

[
yj

]⊗ P[yj+1] ⊗�j+1,

5 Here, the classes in (6.2) are Zp’s and are multiplied by zp
j , whereas in Case 3 they were multiplied by wjz

p−1
j and were generators

of v-towers of height r′(j − 1).
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which combines with the portion just obtained to yield P
[
yj

]⊗�j+1.
The last line of the G4

k,� discussion in Section 5 describes Zp’s in G4 mapped by ψ in (5.12). Those
with a zp

j factor yield
j−1⊕
k=1

ykTPp−1[yk]P[yk+1]
⊕
�>j

Z�

j+1TPp−1[z�]��+1

=
j−1⊕
k=1

(P[yk] − P[yk+1]) ⊗�j+1

= (P[y1] − P
[
yj

]
) ⊗�j+1.

Combining this with the result of the preceding paragraph yields the desired P[y1] ⊗�j+1.

We finish this section by showing that the Zp’s including a factor q are obtained exactly once. We
omit writing the q. The classes which we must obtain are P[y1]

⊕
j≥1 zp

j�j+1. There are eight ways these
appear in Gi-sets.

1. In G1, using (5.7) and (5.8), for 1 ≤ i< j< k,

ypj−1−1
1 zi,jz

p−2
j

k−1∏
s=j+1

{
zp−1

s , yp−1
s

}⊗ TPp−1[yk] ⊗ P[yk+1].

2. In G3, using (5.9) and (5.8), for 1 ≤ i< k< �,

ypk−1−1
1 ykzi,kz

p−2
k Z�

k+1 ⊗ TPp−1[yk] ⊗ P[yk+1] ⊗ TPp−1[z�] ⊗��+1.

3. In G3, using (5.7) and (5.8), for 1 ≤ i< j< k< �,

ypj−1−1
1 ykzi,jz

p−2
j

k−1∏
s=j+1

{
zp−1

s , yp−1
s

}
Z�

k ⊗ TPp−1[yk] ⊗ P[yk+1] ⊗ TPp−1[z�] ⊗��+1.

4. From im (φ ′) in (5.14), for 1 ≤ k< � and 1 ≤ i ≤ �− k,

ypk−1−1
1 zi,� ⊗ TPp−1[yk] ⊗ P[yk+1] ⊗ TPp−1[z�] ⊗��+1.

5. From ψ ′ in (5.14), using (5.9) and (5.8), for k< � and �− k< i< �,

ypk−1−1
1 zi,� ⊗ TPp−1[yk] ⊗ P[yk+1] ⊗ TPp−1[z�] ⊗��+1.

6. From ψ ′ in (5.14), using (5.7) and (5.8), for i< j< k< �,

ypj−1−1
1 zi,jz

p−2
j

k−1∏
s=j+1

{
zp−1

s , yp−1
s

} · z� ⊗ TPp−1[yk] ⊗ P[yk+1] ⊗ TPp−1[z�] ⊗��+1.

7. From (5.3), using (5.9) and (5.8), for i< k and 1 ≤ e ≤ p − 2,

ypk−1−1
1 zi,kz

e−1
k P[yk] ⊗�k+1.

8. From (5.3), using (5.7) and (5.8), for i< j< k and 1 ≤ e ≤ p − 2,

ypj−1−1
1 zi,jz

p−2
j

k−1∏
s=j+1

{
zp−1

s , yp−1
s

} · ze
kP[yk] ⊗�k+1.

First combine (1)+(6) to put a ⊗�k+1 at the end of (1), and then, similarly to the simplification of
(6.2), combine with (3)+(8) to get ⊕

i<j

ypj−1−1
1 P[yj+1]zi,jz

p−2
j �j+1. (6.3)
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Figure 17. The E1-module M3.

Figure 18. The E1-module M3,4.

We combine and relabel (4)+(5) to give⊕
i<j

ypj−1−1
1 TPp−1

[
yj

]
P[yj+1]zi,j+1�j+1 (6.4)

together with ⊕
i≥j≥1

ypj−1−1
1 TPp−1

[
yj

]
P[yj+1]z

p
i�i+1. (6.5)

Let Y(s) = yps−1
1 TPp−1[ys+1]P[ys+2] = 〈yi

1:ν(i + 1) = s〉. Then (6.5) is⊕
i>s≥0

Y(s)zp
i�i+1. (6.6)

We simplify and relabel (2) to ⊕
i<j

ypj−1−1
1 yjTPp−1

[
yj

]
P[yj+1]zi,jz

p−2
j �j+1. (6.7)

(6.3), (6.7), and (7) combine to give⊕
i<j

ypj−1−1
1 P

[
yj

]
zi,jTPp−1[zj]�j+1 =

⊕
i≤j−1≤t

Y(t)zi,jTPp−1[zj]�j+1.

For any t ≥ i, the coefficient of Y(t)zp
i in (6.4) plus this is

Zt+2
i+1�t+2 ⊕

t+1⊕
j=i+1

Zj
i+1TPp−1[zj]�j+1 =�i+1,

as the second part has all monomials not divisible by Zt+2
i+1 . Combining this with (6.6) yields the desired

result, ⊕
s≥0

Y(s)
⊕
i≥1

zp
i�i+1.

7. An explanation of self-duality of Bk

In this optional section, we discuss some observations about the ASS of kup∗(K2) and kup∗(K2) which,
among other things, provide an explanation of the self-dual nature of the Bk summands which occur in
both kup∗(K2) and kup∗(K2). We restrict to p = 2.

We first observe that, for k ≥ 1, there is an E1-submodule, Mk, of H∗(K2) such that ExtE1 (Z2, Mk)
(resp. ExtE1 (Mk, Z2)) is closed under the differentials in the ASS converging to kup∗(K2) (resp.
kup∗(K2)), yielding the chart Ak (resp. the kup-homology analog of Ak discussed in Theorem 1.23).
For example, with Mj as in (2.13) and N as in Figure 6, M3 is as depicted in Figure 17.
The two ASSs for M3 will yield the charts for A3 and its homology analog pictured in [5].
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Figure 19. Two ASSs for M2,3.
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The situation for Bk is slightly more complicated. There is no E1-submodule of H∗(K2) which, by
itself, can give a chart Bkz�. Some of the differentials that truncate v-towers in Bkz� come from classes
that are part of a summand that includes y2k−1−1

1 qSk,�. We find that, for 2 ≤ k< �, there is an E1-submodule
Mk,� of H∗K2 such that ExtE1 (Z2, Mk,�) is closed under the differentials in the ASS converging to
kup∗(K2) and yields the chart:

Bkz� ⊕ y2k−1−1
1 qSk,� ⊕ ykBkZ

�

k .

Note that these three subsets of kup∗(K2) appeared together in the 10-term exact sequence (5.2).
This Mk,� is symmetric, that is, there is an integer D such that �DM∗

k,� and Mk,� are isomorphic E1-
modules, where M∗

k,� is obtained from Mk,� by negating gradings and dualizing Q0 and Q1. This implies
that the v-towers in ExtE1 (Z2, Mk,�) and ExtE1 (Mk,�, Z2) correspond nicely. Moreover, the differentials
in the two ASSs correspond to obtaining isomorphic charts, although the gradings in one decrease from
left to right, while in the other they increase.

We illustrate with an example, M3,4, and then discuss the implication for self-duality of Bk. In
Figure 18, we depict M3,4.

In Figure 19, we depict the ASS chart for both ExtE1 (Z2, M3,4) and ExtE1 (M3,4, Z2). They are iso-
morphic except that, from left to right, the gradings start with 102 for the first and 70 for the second. We
label the portions of the chart corresponding to the eight summands of M3,4 just by the M-factor, since
accompanying factors differ for the two versions. For example, the M5 on the left-hand side is z4M5 for
the first spectral sequence and is y7

1x9M5 for the second.
For the kup∗(K2) version, B3z4 is on the left-hand side of Figure 19 and y3B3z3 on the right-hand side,

with y3
1qS3,4 separating them. The duality isomorphism in Theorem 1.20 says that the Pontryagin dual of

B3z4 is isomorphic as a kup∗-module to �4 of the right-hand side of the kup∗(K2) version of Figure 19,
and we see that this is isomorphic to a shifted version of B3 with indices negated. This is the self-duality
statement that the Pontryagin dual of Bk is isomorphic as a kup∗-module to a shifted version of Bk with
indices negated.
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