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We report on Lagrangian statistics of turbulent Rayleigh–Bénard convection under very
different conditions. For this, we conducted particle tracking experiments in a H =
1.1-m-high cylinder of aspect ratio Γ = 1 filled with air (Pr = 0.7), as well as in two
rectangular cells of heights H = 0.02 m (Γ = 16) and H = 0.04 m (Γ = 8) filled with
water (Pr = 7.0), covering Rayleigh numbers in the range 106 ≤ Ra ≤ 1.6 × 109. Using
the Shake-The-Box algorithm, we have tracked up to 500 000 neutrally buoyant particles
over several hundred free-fall times for each set of control parameters. We find the
Reynolds number to scale at small Ra (large Pr) as Re ∝ Ra0.6. Further, the averaged
horizontal particle displacement is found to be universal and exhibits a ballistic regime at
small times and a diffusive regime at larger times, for sufficiently large Γ . The diffusive
regime occurs for time lags larger than τco, which is the time scale related to the decay
of the velocity autocorrelation. Compensated as τcoPr−0.3, this time scale is universal
and rather independent of Ra and Γ . We have also investigated the Lagrangian velocity
structure function S2

i (τ ), which is dominated by viscous effects for times smaller than the
Kolmogorov time τη and hence S2

i ∝ τ 2. For larger times we find a novel scaling for the
different components with exponents smaller than what is expected in the inertial range
of homogeneous isotropic turbulence without buoyancy. Studying particle-pair dispersion,
we find a Batchelor scaling (∝ t2) on small time scales, diffusive scaling (∝ t) on large
time scales and Richardson-like scaling (∝ t3) for intermediate time scales.
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1. Introduction

Most of the large-scale turbulent flow systems in nature and many industrial flows are
driven by temperature-induced buoyancy. Examples include the Earth’s outer core, its
atmosphere or the flow in the convection zone of the Sun and other stars. Despite being
highly turbulent, these flows often exhibit coherent structures on large scales, due to
intrinsic mechanisms, geometric confinement and the interaction of both.

Since such flows involve large spatial scales and intense turbulence, and hence are
difficult to investigate, researchers often study the fundamental physics of thermal
convection in idealised model systems, with a reduced number of control parameters. One
of the best investigated model systems is Rayleigh–Bénard convection (RBC), where a
horizontal fluid layer of height H is heated from below and cooled from above (Bénard
1900; Rayleigh 1916; Kadanoff 2001; Ahlers, Grossmann & Lohse 2009; Lohse & Xia
2010). Most investigations study the RBC system under Oberbeck–Boussinesq conditions,
where the temperature difference between the bottom and top boundary is small enough
so that relevant fluid properties are constant everywhere in the domain (Oberbeck 1879;
Boussinesq 1903; Spiegel & Veronis 1960). Solely the mass density is assumed to depend
linearly on the temperature which is accounted for in the buoyancy term in the momentum
equation. In this case, the system is governed by two dimensionless control parameters.
The first parameter is the Rayleigh number

Ra = gα�TH3

νκ
, (1.1)

which is the ratio between the driving (buoyancy) and the damping mechanisms (diffusion
of heat and momentum). The second control parameter is the Prandtl number

Pr = ν

κ
, (1.2)

which is the ratio of the two damping mechanisms. Here, �T = Tb − Tt denotes the
temperature difference between the bottom and top plates, g the gravitational acceleration,
α the thermal isobaric expansion coefficient, ν the kinematic viscosity and κ is the
thermal diffusivity of the fluid. All fluid properties are evaluated at the mean temperature
Tm = (Tt + Tb)/2.

For small Ra the flow is laminar and in horizontally extended systems exhibits
periodic patterns in horizontal direction with a wavelength λ ≈ 2H (Bodenschatz, Pesch
& Ahlers 2000). With increasing Ra the flow becomes first chaotic and finally turbulent
(Krishnamurti 1973; Ahlers et al. 2009). In turbulent RBC, coherent flow patterns do
exist and become visible upon time averaging, so that fast fluctuations on smaller scales
average out (Hartlep, Tilgner & Busse 2003; Bailon-Cuba, Emran & Schumacher 2010).
The wavelength of the coherent structures was found to increase with Ra asymptotically
towards λ→ 6H (Pandey, Scheel & Schumacher 2018; Stevens et al. 2018). The exact
size as well as the properties of these coherent structures is influenced by the aspect ratio
between the width D of the convection domain and its height

Γ = D/H. (1.3)

For Γ � 32 confinement effects cause λ to decrease (Pandey et al. 2018; Stevens et al.
2018). At Γ = 1, a case that many investigations have focused on in the past (Ahlers et al.
2009), the largest flow structure is a single large-scale convection roll (LSC), in which
warm fluid rises along one side and cool fluid sinks at the opposite side, and which spans
through the entire convection container.
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On Lagrangian properties of RBC

The Nusselt number Nu = qH/(χ�T), as a measure of the non-dimensional heat flux,
is one of the most important global response parameters that is affected by the number
and morphology of the coherent turbulent structures (Wang et al. 2020). Here, q denotes
the vertical heat flux and χ the heat conductivity of the fluid. Another global response
parameter is the Reynolds number

Re = UH
ν

, (1.4)

with U =
√

〈u2 + v2 + w2〉 being the root mean square velocity, averaged over the entire
volume as well as over time. In the past, researchers have developed models describing the
relation between control and response parameters, i.e. Nu(Ra, Pr, Γ ) and Re(Ra, Pr, Γ )

(Malkus 1954; Kraichnan 1962; Grossmann & Lohse 2000, 2001; Stevens et al. 2013;
Shishkina et al. 2017). Because the global heat flux can rather easily be measured,
experiments have so far predominantly focused on measurements of Nu (e.g. Chavanne
et al. 1997; Niemela et al. 2000; Weiss & Ahlers 2011; He et al. 2012). Investigation of
the Reynolds number or the velocity field in turn are much more challenging and therefore
have mostly been conducted in direct numerical simulation (DNS) (Schumacher 2009;
Kooij et al. 2018) or only rather sparsely using localised (Puits, Resagk & Thess 2009;
He et al. 2015) or indirect measurement (Brown & Ahlers 2007; Funfschilling, Brown &
Ahlers 2008).

While planar measurements of two velocity components along cross-sectional slices
have been achieved already two decades ago by using particle image velocimetry (e.g.
Sun, Xia & Tong 2005; Wedi et al. 2022), the improvement of cameras, computational
power and computational algorithms allow us nowadays to measure all three velocity
components in complete sample volumes with high spatial resolution by using Lagrangian
particle tracking (Schanz, Gesemann & Schröder 2016; Schröder & Schanz 2023). In this
context, high-density particle tracking has recently been employed in RBC by Paolillo
et al. (2021) to study the LSC in a cylindrical RBC cell of aspect ratio Γ = 1/2. For this,
they interpolated the velocity from each particle onto a regular grid, and investigated the
dynamics of the LSC in terms of proper orthogonal modes.

In this paper we study Lagrangian particle tracks in densely seeded RBC containers of
aspect ratios ranging from Γ = 1 to Γ = 16. Not only do we want to access the global
Reynolds number but we further want to investigate how the large-scale Eulerian flow
structures are reflected in Lagrangian statistical properties. While flows are most often
observed and described in the Eulerian view, i.e. from a stationary viewpoint, there are
good reasons to study flows from the Lagrangian perspective, i.e. at positions that are
advected with the flow. The Lagrangian view is not only beneficial if one is interested in
the dispersion of tracer particles (e.g. in the context of pollutants or nutrients) but with the
emergence of modern particle tracking techniques, flow properties are directly accessible.
Ideally, in a spatially confined statistically steady turbulent flow, following a single particle
over sufficiently long time would allow us to determine all relevant statistical properties.
For this reason, Lagrangian particle tracking with low seeding density has been used for
over two decades to measure Lagrangian statistics in homogeneous isotropic turbulence
(Porta et al. 2001; Bourgoin et al. 2006).

However, since RBC is a model system for turbulent convection, we also want to
understand how buoyancy affects these statistics. A theoretical framework for turbulent
flows as laid out by Kolmogorov (Pope 2000) assumes isotropy and homogeneity,
which are not given here. Therefore, no theoretical predictions for Lagrangian statistical
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properties exist so far. Nevertheless, some concepts from homogeneous isotropic
turbulence (HIT) are applicable to thermal convection as well.

For example, similar to HIT, in RBC the large eddies (given by size of the coherent
superstructures) break and transfer kinetic energy towards smaller eddies, which dissipate
into heat at an average rate ε on length scales similar to the Kolmogorov length ηk. Since
the energy is provided as potential energy caused by the temperature difference between
the bottom and the top plate, one can analytically calculate this dissipation rate as (Ahlers
et al. 2009)

ε = ν3

H4 (Nu − 1)RaPr−2 (1.5)

and subsequently the Kolmogorov length scale as

ηk =
(

ν3

ε

)1/4

= HPr1/2(Nu − 1)−1/4Ra−1/4. (1.6)

One significant difference to HIT is, however, that ε is inhomogeneously distributed. Due
to the enhanced shear, the dissipation rate is significantly larger in thin boundary layers at
the top and the bottom than in the bulk.

Lagrangian properties of RBC have also been studied in the past both in DNS by
Schumacher (2009), Emran & Schumacher (2010), Schütz & Bodenschatz (2016) and in
experiments by Ni, Huang & Xia (2012), Ni & Xia (2013) and Liot et al. (2019). While
these studies have provided valuable information, they were bound by constraints that
have just been lifted by modern experimental techniques. For example, Liot et al. (2019)
studied particle dispersion over long times, which demanded long tracks. Therefore, they
were bound to low seeding densities by their tracking algorithm and could not study
sufficiently well the dependency of particle separation on the initial separation distance.
On the other hand, Ni & Xia (2013) have studied in detail particle-pair dispersion for small
initial separation but had only limited data on the regime where Richardson dispersion
(Richardson 1926) was expected.

While small-scale Eulerian properties of turbulent thermal convection are only poorly
understood, this is even more true for the Lagrangian properties (Lohse & Xia 2010). The
lack of any theoretical framework is also due to a lack of experimental or numerical data
available. In experiments like the one we have recently reported about (Bosbach et al.
2021; Godbersen et al. 2021; Weiss et al. 2023), we could track particles for up to 2000
free-fall times with a particle density of approximately 0.14/η3

k . From these experiments,
we now have a unique data set which, if properly analysed, can enhance our understanding
of Lagrangian statistical properties in thermal turbulence and support the development of
statistical models to describe such flows. In the following, we provide a very thorough
analysis of Lagrangian particle statistics in RBC for three different aspect ratios (Γ ∈
{1, 8, 16}), two different Prandtl numbers (Pr ∈ {0.7, 7}) and Rayleigh numbers from Ra =
1.1 × 106 up to 1.53 × 109.

The paper is structured as follows. In the next section, we describe the experimental
set-ups and give a brief overview of the particle tracking algorithm. In § 3.1 we compare
the vertical velocity profiles for different measurements as well as the Reynolds number
as a function of Pr and Ra. We then discuss the vertical distribution of the energy
dissipation rates in § 3.2 and analyse the velocity autocorrelation for the vertical and
horizontal component in § 3.3. In § 3.4 we analyse single particle displacements, while
the Lagrangian velocity-structure function and particle-pair dispersion are presented and
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On Lagrangian properties of RBC

Dataset H (mm) Γ Fluid Tm (C◦) �T (K) Pr Ra tf (s) uf (m s−1)

SQR16_1 20.0 16 water 20.0 10.0 7.0 1.1 × 106 1.02 0.021
SQR16_2 20.0 16 water 20.0 15.20 7.0 1.7 × 106 0.81 0.025
SQR16_3 20.0 16 water 20.0 20.0 7.0 2.3 × 106 0.70 0.028
SQR8_1 40.0 8 water 20.0 1.8 7.0 1.7 × 106 3.27 0.012
SQR8_2 40.0 8 water 19.9 10.1 7.0 9.1 × 106 1.40 0.029
CYL1_1 1100 1 air 22.0 4.0 0.7 5.3 × 108 2.89 0.38
CYL1_2 1100 1 air 22.6 7.4 0.7 9.6 × 108 2.12 0.52
CYL1_3 1100 1 air 22.1 11.8 0.7 1.53 × 109 1.66 0.663

Table 1. Overview of the experiments conducted.

UV- LED

(a) (b)

Camera

Long-pass filterCooling

water

Plane

mirror

Heating

plate
D = 320 mm

WaterH

g
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Cameras

Convection
cell

LED array

1
.1

 m
Figure 1. (a) Sketch of the experimental set-up for the rectangular cell (SQR8 and SQR16). (b) Overview of

the experimental set-up for the cylindrical cell with Γ = 1 (CYL1).

discussed in § 3.5 and in § 3.6, respectively. We close the paper with a discussion and a
summary.

2. Experimental set-up

The data presented in the following were acquired in two different experimental set-ups.
One with a large aspect ratio and a square horizontal cross-section, which in the following
will be abbreviated SQR, and another apparatus with a cylindrical cell of aspect ratio
Γ = 1, abbreviated as CYL. An overview of the datasets discussed in this paper is given
in table 1

2.1. The square, large aspect ratio cell – SQR
The SQR, which is described in detail in Weiss et al. (2023) and sketched in figure 1(a),
consists of a rectangular convection cell with a square horizontal cross-section of side
length D = 320 mm. The sidewalls are made out of transparent Plexiglas and also act
as spacers which determine the cell height. It can easily be exchanged and therefore
the apparatus allows experiments with different H without much additional effort. Here,
we present results from experiments using sidewalls of height H = 20 and H = 40 mm
resulting in Γ = 16 and Γ = 8.

The fluid is confined from below by a bottom plate with a thickness of 30 mm, made
out of aluminium and electrically heated at its bottom with a carbon fibre fabric. A
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15-cm-thick polypropylene foam underneath the plate prevented heat loss to the bottom.
The top plate was a 0.5-mm-thick borosilicate glass which was cooled on its top with
temperature-controlled water, whose temperature was regulated by a chiller to within
±10 mK. The working fluid and the cooling water were connected with a thin capillary that
allowed pressure equilibration between both chambers without affecting the flow inside the
convection cell.

The entire cell was levelled to within 0.2◦ with respect to gravity. The temperature
of the bottom (Tb) was measured via four evenly distributed thermistors (Pt1000) that
were embedded in blind holes drilled from underneath up to roughly 1 mm below the
bottom plate’s upper surface. The top plate temperature was deduced from temperature
measurements inside the cooling liquid. For this we placed four thermistors from above
into the cooling water such that two thermistors measured the temperature of the inflow
while the other two measured the temperature of the outflow of the water inside the cooling
chamber (short vertical green lines in figure 1a). The mass flux of cooling fluid was
sufficiently large to avoid temperature gradients across the top plate. The temperature drop
across the top plate due to its finite thermal conductivity was taken into account.

The working fluid was distilled water with sodium chloride added (0.25 per cent in
mass) in order to match its density to that of the seeding particles. As seeding particles,
we used ∼ 50 − μm-large fluorescent polyethylene microspheres (UVPMS-BO-1.00 by
Cospheric LLC). Illumination was done from the side via two pulsed ultraviolet (UV) light
emitting diode (LED) arrays (LED Flashlight 300 by LaVision). The UV light was also
reflected back by plane mirrors at the opposite sidewalls in order to achieve illumination
of the particles from all sides. The particles absorbed the UV light and emitted visible
light at wavelengths longer than 580 nm. Therefore, scattered UV light from the sides
or the bottom plate was filtered out by a long-pass filter (Perspex ‘orange’, 550 nm,
3 mm thick) placed above the top plate. Images of the particles were captured from
six different angles in the range 7◦ to 28◦ with a total aperture of approximately 55◦
using scientific complementary metal-oxide semiconductor (sCMOS) cameras (Imager
sCMOS by LaVision, 2560 × 2160 pixels). Since the flow velocity is not very fast, images
were taken with up to 19 Hz, which is 19 times faster than the typical free-fall time
tf = √

H/(αg�T) of around 1 s (see table 1).

2.2. The cylindrical cell with small aspect ratio – CYL
The set-up of the small aspect ratio cell is shown in figure 1(b) and has previously been
described in more detail in Bosbach et al. (2021, 2022). Convection takes place in a
cylindrical container of diameter and height D = H = 1.1 m, resulting in an aspect ratio
Γ = 1. By using air at atmospheric pressure as working fluid, Rayleigh numbers up to
Ra = 109 were reached at Pr = 0.7 by applying moderate temperature differences of up to
�T = 12 K.

A sandwich of an aluminium plate with a thickness of 15 mm, heated electrically from
below by a network of carbon and glass fibre mats, in turn thermally insulated by a layer of
6-cm-thick Styrofoam, was used as heating plate. To allow for LED illumination from the
top, a transparent cooling plate was designed and built, which consisted of an acrylic glass
sandwich that was perfused homogeneously with water through two dedicated water inlets
and outlets. A thermal bath was used for temperature control and circulation of the cooling
fluid. The sidewall consisted of two bended sheets of acrylic glass with a thickness of
2 mm in order to allow for high-quality particle imaging. The inner surfaces of the heating
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plate and the rear part of the sidewall were covered with a self-adhesive, matt-black foil to
minimise optical reflections and stray light.

As tracer particles, we used neutrally buoyant helium-filled soap bubbles (HFSB) with
a mean diameter of 370 μm, which were injected prior to the experiment through a
temporary aperture in the sidewall. Herewith, an in-house bubble fluid solution, optimised
for an enhanced lifetime of the HFSB to up to 330 s was used. After seeding the flow
under variation of the nozzle direction, the system was given time for the flow perturbation
induced by the HFSB nozzle to decay. As a result, 560 000 bubbles remained in the sample
at the beginning of the measurement, however, their number slowly decreased over the
measurement time of 30 min.

Illumination of the tracer particles in the sample volume was ensured by installation
of an array of 849 pulsed high-power LEDs (white and green colour) approximately 1 m
above the transparent cooling plate. Particle images were captured from different angles
by an array of six sCMOS cameras (PCO edge 5.5, 2560 × 2160 pixels), mounted on a
circle with 3 m diameter covering a total aperture of 69◦. The cameras were combined
with f = 35 mm lenses with the apertures closed to F/9.5 and F/11 in order to ensure an
appropriate depth-of field.

The temperatures of the heating and cooling plate as well as the surrounding were
measured by 1/3 DIN B Pt1000 resistance temperature detectors placed at three positions
in the heating plate, at the inflow and outflow of the cooling plate and at two positions
outside of the sample in the proximity of the sidewall, 5 cm apart from the surface. The
latter were used to monitor the outside temperature and hence to match the laboratory
temperature to the mean sample temperature. The whole apparatus was levelled relative to
gravity better than 0.15◦. The maximal deviations of Ra observed during the measurements
were kept below 1.7 %. However, slight variations had to be accepted as the thermal load of
the high-power LED arrays on the bottom plate could not be compensated for completely
by adaptation of the ohmic heating power. As a result the bottom plate temperature has
slightly increased during an experiment by approximately 0.15 K. At the same time, the
deviations of the mean sample temperature from the ambient temperature did not exceed
0.23 ◦C.

2.3. Particle tracking
Prior to each experiment, the optical system was calibrated using suitable calibration grids
(three-dimensional (3-D) for SQR, two-dimensional (2-D) for CYL) that were placed at
different vertical positions and then imaged by all cameras. From these images, initial
calibration functions were determined for each camera to map the world coordinate system
onto the 2-D camera chips. These calibrations were refined using volume self-calibration
(Wieneke 2008) and the particle image shape was determined by calibrating the optical
transfer function (Schanz et al. 2013a). The tracks of the tracer particles were calculated
from the camera images using the Shake–The–Box algorithm (Schanz et al. 2013b, 2016).
This method allows tracking particles at high particle image densities by combining
advanced iterative particle reconstruction (IPR) (Wieneke 2012; Jahn, Schanz & Schroöder
2021) with a highly efficient predictor–corrector scheme. The IPR applies iterative
triangulation to determine 3-D positions of particles within a single time step. For this, the
positions of particle image peaks in each camera snapshot are determined and 3-D particle
clouds in laboratory space are calculated from the 2-D peak positions via triangulation.
The exact particle position is further refined by a gradient-descend method that minimises
the difference between the projection of the calculated particle position onto a virtual
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camera and the recorded local particle image. This is done for the projections to all cameras
simultaneously, a process that we call ‘shaking the particles’. The intermediate particle
cloud is then back-projected and subtracted from the original camera image, yielding a
residual image. The process of peak detection, triangulation and position optimisation is
applied iteratively on the resulting residual images.

For the first four time steps, IPRs are used to calculate short trajectories of connected
3-D points that meet a certain criterion of maximum acceleration. The found tracks
are used to presolve the next time step by temporal extrapolation of the trajectory
and a subsequent application of the position optimisation (‘shaking’) to correct the
errors introduced by acceleration or noise. This process is performed for each particle
independently in the temporal domain, without the need to rely on information about
neighbouring particles. It has been shown that in well-controlled experimental conditions,
as is the case here, the position of over 99 % of the tracked particles can be successfully
predicted and corrected (Schanz, Jahn & Schröder 2022).

After the position correction process, residual images are created by subtracting the
back-projection of the cloud of predicted particles from the original images. The IPR is
now applied to these residual images that are void of the images of the already-tracked
particles and therefore pose an easier reconstruction problem. New tracks are continuously
identified within the reconstructed particle clouds of the last four time steps, leading to a
convergence of the tracking system to a state where basically only newly entering particles
need to be identified. As in our experiments the particles cannot leave the fully illuminated
volume, long tracks over thousands of images can be extracted. We note that particle
densities can be so high that two or more particle images overlap in one or more cameras.
These particles can be tracked nevertheless because they are clearly distinguished in other
cameras from different viewing angles and their position is already roughly known from
the prediction. As a result, images with a high particle image density could be evaluated (in
case of CYL up to 0.18 particles per pixel), yielding dense fields of individual Lagrangian
tracks, free of any modulation by windowing effects.

In order to derive field values like the dissipation rate, we apply the data assimilation
technique FlowFit (Gesemann et al. 2016; Godbersen et al. 2024). This method
interpolates the discrete information of velocity and acceleration at the particle location
onto a 3-D grid of cubic B-splines, while physically constraining the solution via
the continuity of mass and the momentum equation. As the number of B-splines is
chosen around one order of magnitude higher than the number of particles, the physical
regularisation is able to enhance the resolution beyond the sampling by the particles, while
avoiding any modulation. The result is a spatially continuous and differentiable function
of 3-D velocity for every time step.

Examples of short tracks are shown in figure 2 for SQR16_1 (figure 2a) and CYL1_3
(figure 2b). The colour-code in these images represent the vertical velocity. The difference
in the large-scale flow organisation between these two cases with aspect ratios Γ = 16
(figure 2a) and Γ = 1 (figure 2b) is clearly visible. The flow in the large aspect ratio cell
(figure 2a) exhibits large lateral coherent structures, of positive vertical velocity, due to
the warm fluid rising from the bottom. In between these areas the cold fluid sinks to the
bottom, with negative velocities marked by blue tracks. We have analysed these Eulerian
flow structures in our previous work (Weiss et al. 2023). There we found for Ra = 1.1 ×
106, Pr = 7.0 and Γ = 16 that its periodicity has a wavelength of approximately λ ≈
3H, hence the width of a single roll is approximately 1.5 H. In the vertical direction, the
structures cover the entire height.
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(b)

(a)

0.30.20.1–0.1–0.2–0.3 0

wz/uf
0.40.2–0.2–0.4 0

wz/uf

Figure 2. Visualisation of particle tracks measured in different convection cells. Panel (a) shows tracks
of dataset SQR16_1. For better visualisation particle tracks were cut at a midheight to better highlight
the horizontal large-scale flow structures. Panel (b) shows tracks of dataset CYL1_3. Image adapted from
Godbersen et al. (2021). The colours in both images represent vertical velocities.

The flow organisation in the Γ = 1 cylinder (figure 2b) is very different. There, it forms
one LSC, which extends through the entire cylinder. Warm fluid rises on the right (positive
velocities, red) and sinks on the left (negative velocities, blue). In first order, the width and
the height of the LSC is close to H = D, however, its shape can be elliptical with its long
axis diagonally aligned with the cylinder axis. Then, smaller corner rolls occur in the
opposite corners.

3. Results

3.1. Vertical velocity profiles and Reynolds number measurement
First, we want to look at vertical velocity profiles. For this, we sort the data based
on their z-coordinate into one of 200 equally spaced bins, and calculate conditional
averages for each bin. We do this for at least 10 000 time steps within the duration of
the measurement of more than 1000 free-fall times. Results for Γ = 16 and three different
Ra (datasets SQR16_1, SQR16_2, SQR16_3) are shown in figure 3. Since there is no
significant mean flow, we consider the squared velocities and because, further, the two
horizontal components (u and v) are statistically similar, we add them together. We show in
figure 3(a) the square horizontal velocity normalised by the square of the free-fall velocity
uf = √

Hαg�T . Profiles for different Ra look similar. They exhibit two maxima close to
the top and the bottom plate and a minimum at midheight (z = 0.5H). This is expected
for RBC of sufficiently large aspect ratios (say 1 � Γ ), where the flow organises into
convection rolls of sizes similar to the cell height. Therefore, fluid parcels are mainly
transported vertically from the bottom to the top and are deflected there in horizontal
direction. As a result of the larger horizontal velocities close to the top and bottom plates,
shear boundary layers develop with large vertical gradients.

Figure 3(b) shows similar plots for the vertical velocity component w2/u2
f . The vertical

velocity reaches its maximum at z = 0.5H, decreases towards the top and bottom plate
and hits the vertical boundaries with a zero gradient. Again, such profiles are typical
for RBC flows in containers of sufficiently large aspect ratio and are explained by the
largest convection structures that extend from the bottom to the top. We note in this context

999 A90-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

67
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.677


S. Weiss and others

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

0.2

0.4

0.6

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1.0

(×10−3) (×10−3)

(×10−3)(×10−3)
(u

2
 +

 v
2
)/

u2 f

w
2
/
u2 f

Ra: 1.1 × 106

1.7 × 106

2.3 ×106

(u
2
 +

 v
2
)/

u f2
.4

 ×
 (
v
/
H

)0
.4

w
2
/
u f2

.4
 ×

 (
v
/
H

)0
.4

z/H
0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

z/H

(b)(a)

(c) (d )

Figure 3. Comparison of the vertical velocity profile of three different Rayleigh numbers, given in the legends
in panel (b), for Γ = 16. Shown are (a,c) the horizontal kinetic energy and (b,d) the vertical kinetic energy.
Panels (a,b) show data normalised by u2

f , corresponding to Re ∝ Ra0.5. Panels (c,d) show data normalised by
u2.4

f , corresponding to Re ∝ Ra0.6.

that the velocity profiles in slender containers show multiple minima and maxima since
multiple convection rolls can occur on top of each other (Zwirner, Tilgner & Shishkina
2020).

When normalised by u2
f , all curves for different Ra are rather close to each other, despite

their squared velocities in physical units differing by a factor of two between the largest and
the smallest Ra. However, also normalised, the velocities are slightly larger for larger Ra.
Furthermore, the maxima of (u2 + v2)/u2

f are shifted towards the top and bottom walls,
resulting in smaller boundary layers with steeper averaged velocity gradients. This effect is
rather small in the Ra range considered here, but nevertheless clearly visible in figure 3(a).

While normalising the data by uf seems like an obvious choice at first glance, since this
is the velocity scale which is often used to derive the dimensionless Oberbeck–Boussinesq
equations from the momentum and energy equation, there is a priori no theory predicting
that the typical velocity actually scales with uf . From (1.1) and the definition of uf , we see
that the Rayleigh number can be written as

Ra =
u2

f H2

νκ
, (3.1)
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and therefore a scaling U ∝ uf would imply Re ∝ Ra0.5. In fact, while the
Grossmann–Lohse (GL) model theoretically predicts various scaling exponents β for
Re ∝ Raβ , ranging from β = 2/5 to 2/3 (depending on Pr and Ra, (Grossmann &
Lohse 2000, 2001; Stevens et al. 2013)), experimentally usually exponents β ≤ 0.5 have
been observed (Sun & Xia 2005; He et al. 2015). Evaluating β from the GL model for
Ra = 106 and Pr = 7 results in β = 0.47. We note, however, that the GL model is based
on coefficients that are fitted to existing data. At the time of publication of Stevens et al.
(2013), no data for small Ra < 108 at Pr > 1 were available and therefore the GL model
is less reliable for this parameter range.

In an attempt to find a better collapse of the data for different Ra, we varied the exponent
γ that was used to normalise the data in figure 3(a,b), i.e. uγ

f , and tried to minimise the
difference between the velocity profiles of the largest (Ra = 2.4 × 106) and the smallest
Rayleigh number (Ra = 1.1 × 106). The smallest difference, and hence the best collapse
is achieved with γ = 2.4. Therefore, we normalise the squared velocity by u2.4

f and show
the result in figure 3(c,d). Note that we also have to multiply by (ν/H)0.4 in order to have
non-dimensional values. The data normalised in this way show a much better collapse
for all three Ra, in particular for the vertical velocity component. We want to stress that
a perfect collapse is not expected since the velocity profiles of course do depend on Ra.
Solely for the averaged velocity U are scaling relations with Ra and Pr predicted. Anyhow,
the fact that a normalisation by u2.4

f brings data for different Ra close to each other strongly
suggests a relation Re ∝ Ra0.6 with an exponent that is somehow larger than what has
been found by other experimental studies (Sun & Xia 2005; He et al. 2015). However,
these studies were conducted at slightly larger Ra. There are DNS results by Shishkina
et al. (2017) available, who have calculated Re for a large variety of Ra and Pr, also
for parameters similar to ours. They find that for Pr = 5 and similarly Pr = 10 (magenta
and cyan squares in figure 2d of Shishkina et al. (2017)) the exponent β decreases from
β = 2/3 at Ra = 105 to β < 1/2 at Ra = 109. Visual inspection of figure 2(d) in Shishkina
et al. (2017) shows β ≈ 0.6 at Ra = 106, which is in good agreement with our observation
here.

Figure 4 compares vertical velocity profiles for three datasets with very different Γ ,
Ra and Pr. Because Ra and Pr vary significantly, the exponent β is not expected to be
constant, but will rather change between 0.45 � β � 0.6 in the Ra range investigated
according to Stevens et al. (2013) and Shishkina et al. (2017). Therefore, we assume
β = 0.5 and normalise our data by u2

f . By doing so we have accounted only for the
Ra-dependency, but have not yet taken into consideration that also Pr varies by a factor
of 10 between the different datasets. In order to also account for the different Pr, we look
again in the paper by Shishkina et al. (2017), and find a scaling relation of something
close to Re ∝ Pr−0.8 for the parameter ranges of our datasets (the exponent in fact changes
slightly with Ra). With this we write

U = Reν
H

∝ ν

H
Ra0.5Pr−0.8 = uf

(ν

κ

)1/2
Pr−0.8 = uf Pr−0.3. (3.2)

Therefore, we normalise the squared velocities in figure 4 by u2
f Pr−0.6. With this scaling

the magnitude of the squared velocities are rather similar, despite having different Ra by
up to three orders of magnitude. As has been found already above, with increasing Ra the
maxima of (u2 + v2)/u2

f move close to the top and bottom plate, hence reducing the size
of the kinetic boundary layers there. Furthermore, the minimum seems to become flatter
with increasing Ra, and less deep compared with the maxima close to the top and bottom.
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Figure 4. Comparison of the vertical velocity profile for three different aspect ratios and Ra. Shown are (a)
the horizontal and (b) the vertical kinetic energy normalised by u2

f Pr−0.6. The different lines correspond to
the different data sets as labelled in table 1: solid blue, Γ = 16, Ra = 1.1 × 106, Pr = 7.0; dashed red, Γ = 8,
Ra = 9.1 × 106, Pr = 7.0; solid yellow, Γ = 1, Ra = 1.5 × 109, Pr = 0.7.

Similarly, also the maxima of w2/u2
f become broader and the slope close to the top and

bottom boundaries becomes steeper.
Even though all relevant control parameters (e.g. Ra, Pr, Γ ) are different for the three

datasets, we note that certain aspects of the profiles can be explained by the influence of
Ra and Pr alone. For instance we know that the thickness of the kinetic boundary layers
at the top and bottom scales similar to a Prandtl–Blasius boundary layer (see e.g. Ching
et al. 2019), i.e. they become thinner with increasing Ra and decreasing Pr, according to

δ

H
∝ Re−1/2 ∝ Ra−1/4Pr0.4. (3.3)

This explains the very thin boundary layers for Ra = 1.6 × 109 (dataset CYL1_3). Also,
with increasing turbulence intensity the velocity profile at midheight is expected to become
flatter and the minimum in the horizontal velocity (figure 4) to become higher, relative to
the maxima because the turbulence intensity increases in the bulk.

The influence of Γ on the vertical profiles is expected to be small at least for Γ = 16 and
Γ = 8. In fact for sufficiently large Γ , the influence of the sidewall becomes negligible.
This is certainly the case for 16 � Γ , as it has been shown in DNS that the Eulerian
integral length scale saturates around these aspect ratios (Stevens et al. 2018). However,
when considering only averaged horizontal or vertical velocities, their value already
saturates close to Γ ≈ 4 or so (Stevens et al. 2018).

Since we have velocity data for the entire fluid volume, we can also calculate
volume-averaged Re and see how it depends on Ra and Pr. While the number of different
data points and the Pr and Ra range they cover is not sufficient for a thorough exploration,
we still can test whether they agree with DNS studies by Shishkina et al. (2017). For this,
we plot in figure 5(a) the Pr-normalised Reynolds number (RePr0.8) as a function of Ra for
our data (solid) and compare them with results from DNS that were acquired in cylindrical
RBC cells with Γ = 1. We see that in this presentation the data for very different Pr, i.e.
Pr = 0.7 (blue circles) and Pr = 7.0 (orange squares and triangles), rather decently fall
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Figure 5. Reynolds number as a function of Ra. (a) Reynolds number normalised by Pr−0.8 shows a power
law trend as a function of Ra on a log–log plot. The black line is 0.16Ra1/2. (b) The same data normalised also
by Ra1/2 on a semi-logarithmic plot. Solid symbols mark data from this experiments; open symbols mark DNS
results from Shishkina et al. (2017). Different colours mark different Pr and different symbols mark different Γ

according to the legend. All DNS results were calculated in cylindrical cells with Γ = 1. Control parameters
for each data point are given in the legend. The error bars mark the uncertainty in the measurement of the
temperature difference due to the thermal boundary layer on top of the top plate of s�T = 0.2 K.

onto a power law curve ∝ Ra1/2 (black line). Figure 5(b) shows the same data but now
also normalised by Ra1/2 and plotted along a linearly scaled y-axis. Let us first consider
the experimental data, i.e. the solid symbols. Plotted in this way, the data are rather close to
each other over more than three orders of magnitude in Ra. While being close, they are not
identical and differ by up to 30 %. This is not surprising since there is not a single scaling
relation between Re, Pr and Ra that holds for the entire Pr and Ra range covered here.
We see that both the orange squares for Γ = 16 as well as the orange triangles for Γ = 8,
increase with increasing Ra, since for them Re depends on Ra with a larger exponent than
0.5, while the blue bullets are somehow lower, because in this case the exponent is smaller.

We also note that one orange triangle (Γ = 8) at Ra = 1.6 × 106 is significantly smaller
than the orange square (Γ = 16) at the same Ra. We believe that this discrepancy is due
to measurement uncertainties of �T , which become important here, since this data point
was taken at �T = 1.85 K and the uncertainty of the measurement of �T and hence Ra,
becomes large. While we can measure the temperature of the bottom plate rather precisely,
the temperature at the top plate is estimated from measurements of the cooling water.

999 A90-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

67
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.677


S. Weiss and others

We do correct the measurements by taking the temperature drop across the top plate into
consideration, but we do not correct for thermal boundary layers that occur atop the top
plate in the cooling water. Therefore, it is possible that we have overestimated �T and
Ra. Assuming an uncertainty of s�T = 0.2 K, we have plotted error bars in the y direction
to the data points. In most cases the error bars are small compared with the symbol size,
but the error bar for this particular point reaches up to the orange square (Γ = 16) at the
same Ra.

We have also plotted in figure 5 with open symbols results from DNS for different Pr.
They overall agree fairly well with our data in the following manner. After normalising
the data by Ra1/2 (in figure 5b) the experimental data for Pr = 7.0 (orange squares and
orange triangles) as well as the DNS data for Pr = 5 (green open circles) and Pr = 10
(brown open circles), both increase with increasing Ra. However, their absolute values are
significantly smaller than our experimental points, which we attribute to the much smaller
aspect ratio of Γ = 1. Shear forces at the sidewalls are expected to slow down the flow in
particular at large Pr and small Ra. We further see that this discrepancy is much smaller
for Pr = 0.7 (blue open circles and blue bullets). Here, both DNS and experiment were
conducted in Γ = 1 cylinders and albeit the DNS data are only available until Ra = 107,
their Ra trend is rather flat and an extrapolation to Ra = 109 seems to agree well with our
measured data.

3.2. Energy dissipation rate
In 3-D HIT the kinetic energy dissipation rate ε describes the transfer of energy from
large to small scales. It is probably the most relevant quantity there as it determines many
relevant statistical flow properties in the inertial range. Although ε is not a Lagrangian
property (we calculated it from the FlowFit-generated Eulerian field) and as such does
not really fit the scope of this paper, we will nevertheless discuss it quickly here since
we need its global average to estimate Kolmogorov length and time scales. Furthermore,
calculating ε is useful to test the quality of our data.

We have mentioned already above (1.5) that ε can be calculated from Ra, Pr, Nu and ν.
Our experiments were designed for high-precision velocity measurements and not for heat
flux measurements. Even though we did measure the heating power of the bottom plate,
there is a parasitic heat flux through the sidewalls which were not insulated. As a result,
we could measure Nu only with an uncertainty of approximately 7 % (for SQR) and 10 %
(for CYL). Therefore, we estimated for the CYL1 set-up, Nu from Ra, and Pr, based on the
GL theory (Stevens et al. 2013). In this parameter range GL is quite accurate and agrees
well with experiments and DNS.

For the rectangular cell filled with water (SQR16 and SQR8) the particle concentrations
are high enough to resolve even the smallest scales in the flow. Therefore, we used FlowFit
(Gesemann et al. 2016) to calculate the Eulerian velocity field and the velocity gradient
tensor Sij = 1

2 (∂iuj + ∂jui). This allowed us to calculate directly the energy dissipation rate

ε = 2ν〈SijSji〉. (3.4)

For the readers’ convenience, we show in figure 6 vertical profiles of the horizontally
and temporally averaged kinetic dissipation rates from two different datasets, in which
Ra differs by a factor of eight. In these profiles one again sees clearly the boundary layers
at the top and bottom with high shear rates and hence high rates of energy dissipation,
whereas in the bulk the dissipation is much smaller. We also see very clearly that with
increasing Ra the boundary layers become thinner. As a result, even though the shear rate
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Figure 6. Normalised kinetic energy dissipation as a function of the vertical coordinate for the datasets
SQR16_1 (blue bullets, Ra = 1.1 × 106, Γ = 16) and SQR8_2 (red squares, Ra = 9.1 × 106, Γ = 8). Note
that the energy dissipation is normalised by their mean values in order to better compare the different datasets.

Dataset ν (m2 s−1) ε (W kg−1) (eq. 1.5) ε (W kg−1) (eq. 3.4) ηk (m) τη (s)

SQR16_1 1.0 × 10−6 0.83 × 10−6 0.90 × 10−6 1.0 × 10−3 1.06
SQR16_2 1.0 × 10−6 1.43 × 10−6 1.49 × 10−6 0.91 × 10−3 0.82
SQR16_3 1.0 × 10−6 2.1 × 10−6 2.2 × 10−6 0.82 × 10−3 0.68
SQR8_1 1.0 × 10−6 0.095 × 10−6 0.12 × 10−6 1.7 × 10−3 2.9
SQR8_2 1.0 × 10−6 0.85 × 10−6 0.92 × 10−6 1.0 × 10−3 1.05
CYL1_1 1.6 × 10−5 1.4 × 10−4 — 2.2 × 10−3 0.33
CYL1_2 1.6 × 10−5 3.1 × 10−4 — 1.9 × 10−3 0.22
CYL1_3 1.6 × 10−5 5.7 × 10−4 — 1.6 × 10−3 0.16

Table 2. Energy dissipation rates and Kolmogorov microscales for the datasets. Values in blue were used for
calculating ηk and τη.

and hence the energy dissipation rate inside the boundary layers increases with Ra, their
relative contribution to the total dissipation rate decreases. Most of the energy dissipation
takes place in the bulk in large Ra convection.

In table 2 we provide values for ε, the Kolmogorov length ηk, the Kolmogorov time τη,
as well as the kinematic viscosity. For SQR we provide ε based on (1.5) and (3.4). For the
former Nu was measured based on the heat input into the bottom plate.

3.3. Velocity autocorrelation
Due to their chaotic nature, turbulent flows are only correlated over finite times and
lengths, and hence typical correlation length and times are characteristic features of a given
flow and reflect its degree of turbulence. In order to characterise our flow, we calculate the
normalised autocorrelation function of the velocity of a given particle as

Cuu = 〈u(t)u(t + τ)〉t,p

〈u2〉t,p
, (3.5)
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Figure 7. Averaged velocity autocorrelation of the two horizontal components (a,b) and the vertical
component (c,d) for three different aspect ratios and Ra; datasets SQR16_1, SQR8_2, CYL1_3, see legend
in (a). The coloured lines in (b,d) are parabolic fits of (3.6) to the data for very small τ . The fit parameters τTA
are provided in the legends. The black lines in (c) are fits of (3.6) to the data. The fit parameter are provided in
the legend.

with u representing one of the velocity components and the average is taken over all
available tracks of sufficient length (at least 100 time steps). Results are shown in figure 7
for three datasets of different Γ, Ra and Pr (see legend). Note again that time is scaled
with the corresponding free-fall time of each dataset and therefore the decay occurs over
the same magnitude of times. While we do not show corresponding data, we would like
to stress that there are qualitative differences for the autocorrelation function of the two
horizontal components u and v. The system is not fully symmetric because the large-scale
turbulent super structures show a preferential alignment for Γ = 8 and 16 and also the LSC
for the Γ = 1 case has a mean orientation. For example, large-scale structures elongated in
the x direction would lead to fluctuations mostly visible in Cvv but not so much in Cuu. This
dominant orientation did not average out within our measurement duration. Therefore,
we show in figure 7(a,b) the mean autocorrelation of the two horizontal components,
i.e. (Cuu(τ ) + Cvv(τ ))/2 and in figure 7(c,d) the autocorrelation of the vertical component
(Cww).

Let us first look at the (Cuu + Cvv)/2 as shown in figure 7(a). All three curves decay
initially rather fast, as is expected for turbulent flows. However, in contrast to isotropic
turbulence, they also reach negative values and after reaching a minimum (Cuu + Cvv)/2
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increase again. In particular for data from the cylinder (Γ = 1, yellow triangles) three
oscillation cycles are clearly visible before (Cuu + Cww)/2 asymptotically reaches zero.
These oscillations are less pronounced, but still clearly visible in the data for Γ = 16
(blue bullets) and Γ = 8 (red squares). They are caused by the quasiperiodic motion of
the particles within the coherent structures, which transports the particles from the bottom
to the top where they are deflected in the horizontal direction before they sink back to the
bottom.

Because in the Γ = 1 cylinder the flow is organised into one LSC, the tracer particles are
following quasiperiodic trajectories which fully decorrelate only after times significantly
longer than one such turnover time. Particles which are transported along one sidewall
from the bottom to the top can only move along the top plate towards the opposite side
where they sink back to the bottom.

The horizontal periodicity of this motion is significantly weaker for particles in the
square cells of Γ = 16 and 8. There, particles also move up and down quasiperiodically,
causing long correlations for the vertical velocity Cww. However, particles that were
transported from the bottom to the top are not so much confined by the sidewalls and
therefore can in principle move in any horizontal direction. Only the existence of large
turbulent roll-like superstructures can force the particles to move along elliptical paths
causing a weak quasiperiodicity in (Cuu + Cvv)/2, but only for a rather short time
comparable to an eddy-turnover time of the largest scales. Note in this regard that the
first minimum in (Cuu + Cvv)/2 is deeper for Γ = 16 than for Γ = 8. This is because the
large lateral convection structures in Γ = 16 are more coherent than for Γ = 8.

If we want to determine a typical eddy-turnover time Tto, we better look at the vertical
component Cww, where oscillations are stronger and clearly visible. In fact we can
determine Tto as well as a typical time scale over which correlation is lost τco by fitting the
following function to the data:

y(τ ) = exp (−τ/τco) cos ((τ + τ0)2π/Tto). (3.6)

The fitted functions are included as black lines in figure 7(c) and the fitted parameters τco
and Tto are provided in the legend.

We have also allowed a small phase shift τ0 inside the cosine function that was also
used as a fit parameter. While we cannot provide a physical interpretation of τ0, we note
that its positive value means that the first minimum occurs at τ that are smaller than half
the period Tto. One could speculate that this is because most particles move in eddies that
are smaller than the coherent superstructures. However, on longer time scales (τ ) only the
period of the largest time scale (Tto) is visible because all smaller eddies average out.

We see that the red (Γ = 8) and blue (Γ = 16) data are very close to each other, whereas
the yellow (Γ = 1) are different. For a better scaling, a factor Pr−0.3 needs to be included
in τ , which brings in particular the first minimum of the yellow triangles closer to the
minima of the red squares and blue bullets. For comparison we provide Pr-corrected time
scales in table 3. We see that after correcting, the eddy-turnover times TtoPr−0.3 and also
the coherence time τcoPr−0.3 are rather similar for all three investigated datasets despite
their vastly different Ra, by three orders of magnitude. This is again evidence that the
typical velocities in RBC roughly scale as Re ∝ Ra1/2Pr−0.8 (neglecting variations in the
different Ra, and Pr, regimes).

From figure 7 and table 3 we see that τco < Tto for all datasets, whereas both seem to
be universal after being compensated by Pr−0.3. This means that correlation has already
decreased significantly before a particle has made one round, e.g. from the bottom to the
top and back. This can be compared to measurements in HIT, where the largest eddies are
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Dataset Ra TtoPr−0.3 τcoPr−0.3 τTaPr−0.3 (horiz) τTaPr−0.3 (vert) τ0Pr−0.3

SQR16_1 1.1 × 106 17.6 ± 0.1 7.84 ± 0.02 2.64 ± 0.03 1.98 ± 0.03 2.9
SQR8_2 9.1 × 106 16.1 ± 0.1 6.64 ± 0.07 2.34 ± 0.03 2.04 ± 0.03 1.8
CYL1_3 1.57 × 109 19.98 ± 0.02 8.90 ± 0.04 0.80 ± 0.01 0.97 ± 0.01 0.84

Table 3. The Pr-corrected fit parameters from (3.6) and (3.7). Uncertainties are based on the standard error
of the fit parameter.

less coherent than here (Sato & Yamamoto 1987; Pope 2000) and velocity correlation does
not exhibit oscillations, but can be well represented by a pure exponential decay of Cuu(τ ).
The Lagrangian integral time scale is then defined as T0 ≡ ∫ ∞

0 Cuu dτ and it is believed
to be proportional to the Eulerian integral times scale (Corrsin 1963). Although RBC is
neither homogeneous nor isotropic and therefore quantities such a correlation functions or
Lagrangian integral time scales depend on the initial location of the particles considered,
results from spatially averaged statistics as done here are nevertheless very useful and
exhibit some universality, as we will show below. Nevertheless, we provide a spatially
resolved analysis in the Supplemental material.

On a very short time scale, the velocities are still strongly correlated for durations of the
order of an eddy turnover corresponding to flow structures that are so small that viscous
dissipation already plays a role. To shine some light on these processes, we fit a parabolic
function

y(τ ) = 1 −
(

τ

τTa

)2

(3.7)

to the data for very small τ . Herewith, the time scale τTa is the Lagrangian analogue to
the Taylor-microscale in the Eulerian view (Pope 2000). The values for τTa are shown in
the legends of figure 7(b,d) and Pr-corrected values τTaPr−0.3 are provided in table 3.
One would expect that τTaPr−0.3 decreases with increasing turbulence, or in our case with
increasing Ra. While we do observe the smallest τTaPr−0.3 for the largest Ra, (1.57 ×
109), for Ra = 1.1 × 106 and Ra = 9.1 × 106 the results are much less clear. While for
the horizontal component τTaPr−0.3 is indeed longer for the smaller Ra, for the vertical
component they are, within their uncertainties, the same.

3.4. Particle displacement
One fundamental property of turbulent flows is their ability to transport material, such as
for instance solutes or aerosols. To investigate and quantify such transport processes it is
common to look how fast fluid tracers are displaced in time by the turbulent flow. In order
to do this we calculated the average particle displacement for a given time period τ as

Δ2
i (τ ) = 〈(xi(t + τ) − xi(t))2〉t,p, (3.8)

with the average 〈〉 taken over time t and also over many particles (p). Since in RBC the
vertical direction is fundamentally different from the horizontal directions, we consider
each component separately.

Figure 8(a) compares the displacements in all three directions for the dataset SQR16_1.
In this figure, the displacement is expressed in units of the cell height H and the time
was normalised by the free-fall time tf . The curves for Δ2

x and Δ2
y are very similar and

in particular show two distinct regimes. For small τ the data exhibit a ballistic behaviour
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Figure 8. (a) Spatial displacement in the x direction (Δ2
x , blue circles), the y direction (Δ2

y , red squares) and
the z direction (Δ2

z , green diamonds) as a function of time duration for Ra = 1.1 × 106 (SQR16_1). The green
and yellow line mark a quadratic and a linear function. (b) Δ2

x as a function of time for three different Ra, (see
legend) (SQR16_1, SQR16_2, SQR16_3). All data are for Pr = 7.0 and Γ = 16. The vertical black lines mark
τco = 7.8Pr0.3 as calculated from fits to the autocorrelation function (see table 3). The horizontal black lines
marks Δ2

z,∞ = 0.167, i.e. the displacement of a random walker in the confined enclosure (zi ∈ {0, 1}).

with Δ2
x,y ∝ τ 2, while for larger τ they follow a diffusive behaviour with Δ2

x,y ∝ τ . In
general, diffusive displacement occurs when particles move chaotically and uncorrelated
on the considered time scales. Therefore, it is no surprise to see that the transition from
the ballistic to the diffusive regime in our data occurs close to the typical correlation time
τ/tf ≈ τco (black vertical line in figure 8), which we have determined from analysing the
velocity autocorrelation in the previous section.

The vertical displacement Δ2
z (green diamonds in figure 8) also shows a ballistic regime

with the same slope as the other two components, hence the system appears isotropic on
small scales, despite the presence of buoyancy in the z direction. However, Δ2

z does not
show a diffusive regime on longer time scales. In fact, the curve reaches a maximum at
around τ/tf ≈ τco, decreases again and after a few decaying oscillations settles close to
Δ2

z (∞) ≈ 0.17. This behaviour is due to the vertical confinement of the cell and Δ2
z (∞)

can be calculated as the mean square difference between randomly placed particles in the
range from zi,j ∈ {0, 1}, i.e.

Δ2
z (∞) = 1

N(N − 1)

∑
i�=j

(zi − zj)
2 = 0.167. (3.9)

The initial overshoot and the subsequent decaying oscillations can be explained by the
fact that the vertical dimension of the coherent structure is as large as the cell height.
Therefore, a particle that is initially close to the bottom is usually transported first into
the upper half of the cell close to the top plate, and then back to the bottom. The time at
which Δ2

z reaches its maximum is therefore related to the eddy-turnover time Tto. The fact
that a few (damped) oscillations are visible indicates that correlation of the velocity is not
entirely lost after a particle has been stirred around once throughout the entire cell, a fact
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already seen in figure 7. We also see that the time at which the maximum is reached for
Δ2

z is also the time at which the diffusive regime starts for Δ2
x and Δ2

y and where most of
the correlation in horizontal direction is lost, i.e. τ/tf ≈ τco. Quadratic and linear fits to
the data here reveal squared velocities in the ballistic regime of 9.2 × 10−3u2

f as well as a
diffusion constant of 0.05H2/tf .

We also compare in figure 8(b) the displacement for different Ra at the same Pr = 7.0
and Γ = 16. For simplicity we only show Δ2

x . The data plotted in this way all collapse on
the same curves. While this is at a first glance rather surprising since the thermal driving
changes by a factor of two, this observation can easily be explained. If we remember the
findings shown in figure 3, namely that the velocities in the flow scale with the free-fall
velocity uf as Ra is changed, the slope Δ2

i /τ
2 in the ballistic regime is nothing other than

the averaged square velocity. And since Δ2
i is normalised by H2 and τ is normalised by

tf , this coefficient is already normalised by uf = H/tf and therefore should not change
anymore with Ra.

From figure 8(a) we see that the transition to the diffusive regime occurs close to
τ/tf ≈ τco, i.e. when most of the correlation is lost, which is rather independent of Ra (in
dimensionless units). Therefore, also the diffusion constant should be independent of Ra as
long as displacement and time are scaled properly. We acknowledge that this fact is against
our intuition, which suggests that stronger thermal driving should enhance turbulent
diffusion. But the independence on Ra observed here is only the case in dimensionless
units, whereas in physical units the diffusion is indeed enhanced and proportional to Ra.

In figure 9 we compare the displacement also for different Γ, Ra and Pr, namely for the
datasets SQR16_1 (blue, Γ = 16), SQR8_2 (red, Γ = 8) and CYL1_3 (yellow, Γ = 1).
In order to account for the different Pr of these datasets, we multiply the time by Pr−0.3.
The horizontal displacement (Δ2

x + Δ2
y)/H2 (figure 9a) shows a collapse of the data in

the ballistic regime, despite their differences in Ra, Pr and Γ . In the diffusive regime, for
larger τ , only the data for Γ = 8 (red open squares) and Γ = 16 (blue circles) collapse,
whereas the data for Γ = 1 (yellow triangles) flatten and become independent of τ . This
suggests that for sufficiently large Γ , the width of the coherent structures in the flow is
determined by the cell height H and not by its lateral extent HΓ .

The flattening of the Γ = 1 data is due to the finite size of the container, hence very
similar to the vertical component Δ2

z for Γ = 16 (shown in figure 8a). Also here, the
displacement after a very long time, is time-independent and is given by the mean squared
distance of the all particles, i.e.

Δ2
h,∞ ≡ Δ2

x(∞) + Δ2
y(∞) = 1

N(N − 1)

∑
i�=j

[(xi − xj)
2 + ( yi − yj)

2]. (3.10)

We note that the exact values of Δ2
h,∞ do depend on the actual shape of the container and

not just on its aspect ratio. We show in figure 9(a) Δ2
h,∞ as horizontal lines for each of the

set-ups. One sees, that the yellow triangles (CYL1_3) settle for very large τ/tf exactly on
that line for Δ2

h,∞.
We also show horizontal lines marking Δ2

h,∞ for the other two datasets with Γ = 8 (red)
and Γ = 16 (blue). The slope of the data for Γ = 8 also clearly decreases for very large τ

when Δ2 becomes close to Δ2
h,∞ hence, also here the displacement is bound by the size of

the cuboid cell. Particle tracks for the measurements of the largest aspect ratio (Γ = 16,
blue) are not long enough to reach Δ2

h,∞. In fact, from the diffusive behaviour one could
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Figure 9. (a) Horizontal displacement Δ2
x + Δ2

y for different Γ , Ra and Pr, (see legend) as a function of
time duration, which is normalised to account for the different Pr. The yellow, red and blue horizontal dashed
lines are the expected saturation values for the cell with Γ = 1 (Δ2

h,∞ = 0.25), Γ = 8 (Δ2
h,∞ = 21.3), Γ = 16

(Δ2
h,∞ = 85.3). (b) Vertical component Δ2

z for the same data. The horizontal line marks Δ2
z,∞ = 1.667. The

black vertical lines in both plots mark (τ/tf )Pr−0.3 = 8 ≈ τcoPr−0.3.

estimate that Δ2
h,∞ would have been reached at 1700 tf which is longer than the duration

of the experiment.
Figure 9(b) shows a comparison of the vertical displacement Δ2

z of the same three data
sets. The vertical confinement is now visible in all data sets and is dominant at time lags of
around (τ/tf )Pr−0.3 > τcoPr−0.3, as indicated by the black vertical line. For smaller τ/tf ,
all data overlap and follow ∝ τ 2. Please note again that the data shown here were acquired
at very different control parameters. Hence, it seems that their behaviour is universal.
Further, as long as Γ is sufficiently large, the horizontal displacement follows ∝ τ 2 for
τ/tf < τco) and ∝ τ for τ/tf > τco, with τcoPr−0.3 ≈ 8, which is the time scale over which
correlation is mostly lost.

3.5. The Lagrangian velocity structure function
Many predictions about turbulence assume isotropic and homogeneous conditions (i.e.
HIT), which are not met in most real turbulent flows in nature and industry. There,
large-scale mean flows exists, which align the orientation of eddies. Nevertheless,
theoretical predictions might still be applicable on a local level, i.e. for the fluctuations
after a mean flow contribution has been subtracted (Monin & Yaglom 1975).

For example, instead of (3.8) the following equation can be considered for particle
displacement, which removes the contribution of the mean flow:

Δ2
c,i(τ ) = 〈[xi(t + τ) − xi(t) − ui(t)τ ]2〉t,p. (3.11)

Here Δ2
c,i is now not anymore the particle displacement but rather the relative displacement

of the particle compared with a position it would have if the velocity had stayed constant
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at time t. It can be shown (see Supplemental material) that Δ2
c,i can be written as

Δ2
c,i(τ ) = 1

2

∫ τ

0
dt′

∫ τ

0
dt′′[S2(t′) + S2(t′′) − S2(|t′ − t′′|)], (3.12)

with S2
i being the second-order Lagrangian velocity structure function

S2
i (τ ) = 〈[ui(t + τ) − ui(t)]2〉t. (3.13)

S2
i is most often considered in theoretical and experimental studies since mean flow effects

are already accounted for and because theoretical predictions exist for HIT. That is why
here, we present data and discussion for S2

i (τ ), whereas a similar analysis for Δ2
c,i(τ ) is

provided in the Supplemental material.
From Kolmogorov’s similarity hypothesis and assuming simple scaling relations

one can deduce for very turbulent flows three different scaling relations for different
durations τ (Monin & Yaglom 1975),

S2
i (τ ) = a0ε

3/2ν−1/2τ 2 for τ � τη, (3.14)

S2
i (τ ) = C0ετ for τη � τ � T0, (3.15)

S2
i (τ ) = 2〈u2

i 〉 for T0 � τ. (3.16)

Here, ε is the averaged kinetic dissipation rate, a0 and C0 are constants (assumed to
be universal for HIT), τη = √

ν/ε is the Kolmogorov time scale and T0 the Lagrangian
integral time. As can be seen the velocities in turbulence behave similar to the
displacement for a Langevin particle. That is, S2

i behaves ballistically (∝ τ 2) in the viscous
regime (for τ � τη) and diffusively (∝ τ ) in the inertial regime (τη � τ � T0).

We calculate S2
i (τ ) for the datasets SQR16_1 and CYL1_3 and present the results in

figure 10. Let us first have a look at the less turbulent case (SQR16_1) in figure 10(a),
where we compensate the time lag by Pr−0.3 to better compare results for different Pr
(figure 10c). We note that the structure function for the vertical component S2

w is slightly
above the two horizontal components which we believe is due to the faster velocity changes
close to the top and bottom boundaries. Otherwise all three quantities are in principle very
similar. In particular they follow at small time lags τ indeed a power law S2 ∝ τ 2 which
suggests that on these short time scales viscous dissipation is a governing factor.

The slope decreases for larger τ and asymptotically reaches S2
i → 〈u2

i 〉. The transition to
the regime with constant S2

i happens at τ = τcoPr−0.3 ≈ 8, i.e. at the same τ where most
correlation is lost and the displacement in figure 8 turns from a ballistic into a diffusive
regime. While the data show a continuous change in the slope prior to this point, a clear
inertial range with S2

i ∝ τ as in (3.15) is not visible. This might be due to insufficient
separation of scales. Therefore, we show in figure 10(c) data from the much more turbulent
dataset CYL1_3 (Ra = 1.5 × 109, Pr = 0.7, Γ = 1). The transition into the regime with
constant S2

i (τ ) occurs at the same value τcoPr−0.3 ≈ 8. This does not really come as a
surprise since S2

i = 2〈u2〉(1 − Cuu(τ )).
At very small τ/tf (< 0.1) a viscosity-dominated regime with ∝ τ 2 is clearly visible.

In between, for 0.1 < τ/tf < 10 the data show a rather constant slope, which is clearly
smaller than in the regime dominated by viscous effects and even smaller than ∝ τ , which
is expected in the inertial range (3.15). Instead, the slope is something very close to τ 3/4

as indicated by the black solid line in figure 10(c).
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Figure 10. (a,c) Second-order velocity structure function normalised by the free-fall velocity u2
f and plotted

against τ/tf with tf being the free-fall time. The black vertical line mark (τ/tf )Pr−0.3 = 8 ≈ τcoPr−0.3 as
a guide to the eye. The coloured horizontal dashed lines mark 〈u2

i 〉. The other solid lines mark power laws
of various exponents (see corresponding labels). (b,d) The same data but now rescaled by τ−3/4 and plotted
against τ/τη. (a,b) Data set SQR16_1 with Ra = 1.1 × 106, Γ = 16, Pr = 7.0. (c,d) Data set CYL1_3 with
Ra = 1.5 × 109, Γ = 1 and Pr = 0.7. Different colours mark the different components (see legend).

For a better visual investigation, we normalise the data by τ 3/4 and plot in figure 10(b,d)
the normalised velocity structure function as a function of τ/τη, i.e. the time lag
normalised by the Kolmogorov time. With this x axis, we now see that the time scale
below which viscosity is dominant scales indeed with τη. In fact comparing figure 10(c,d)
one sees that roughly at τ/τη ≈ 2 the slope changes from ∝ τ 2 to something close to τ 3/4,
which appears as a plateau in the compensated plot. While such a plateau is visible but
rather short for the less turbulent case (figure 10b), it covers more than a decade in τ for
the more turbulent case (figure 10d) and there, in particular, in the structure function of the
vertical velocity (S2

w). Where S2
w exhibits a plateau in figure 10(d), also a constant slope

is visible in S2
u, which is, however, smaller by approximately 0.1, suggesting a scaling of

S2
u ∝ τ 0.65. The other component S2

v does not exhibit a distinct regime with a constant
scaling.

The reader might now ask, (i) why is S2
w larger than the horizontal components and (ii)

why do the horizontal components S2
u and S2

v scale the same for SQR16_1 (figure 10a,b)
but not for CYL1_3 (figure 10c,d)? Let us first address the first question. Since the flow
here is driven by buoyancy, one would expect velocity differences to be larger close to
the top and bottom plates, leading to a larger vertical component S2

w compared with S2
u

and S2
v for τ/tf < τco. If the turbulence intensity is small as in figure 10(a,b), particles

spend relatively more time close to the top and bottom and hence the buoyancy also
causes S2

w to increase for small τ . For more intense turbulence, most particles are far away
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from the boundaries and are not affected by buoyancy, therefore S2
w is very similar to the

horizontal components. Regarding the second question, the qualitative difference between
the two horizontal components in figure 10(d) is explained by the existence of the LSC
in the investigated cylinder (see figure 2b), which is aligned more towards the x direction,
causing stronger coherence in the x direction. While the LSC changes its orientation in
azimuthal direction, our measurement time is not long enough so that all directions cancel
out (Bosbach et al. 2022), hence also 〈u2〉 > 〈v2〉 As a result, statistical quantities of S2

u
and S2

v differ.
At this point we do not yet have an explanation for the τ 3/4 scaling. However, we

would like to provide the reader with some considerations. For HIT, an expression
for the Lagrangian structure function can be reasoned by simple scale analysis. Since
[S2

L] = m2/s2 and since in the inertial regime of turbulence statistical fluid properties only
depend on the energy dissipation rate ε, the only possible scaling relation is S2

L(τ ) ∝ ετ

(i.e. (3.15)). For turbulent flows driven by buoyancy, it was argued by Bolgiano (1959) and
Obukhov (1959) (see Lohse & Xia 2010) that for sufficiently large length scales buoyancy
plays a role and statistical quantities must depend only on the mean thermal dissipation rate
εθ ≡ 〈κ(∂iT)2〉 and a product of the thermal expansion coefficient α and gravity g. With
this an Eulerian second-order structure function can be written as S2

u(r) ∼ ε
2/5
θ (αg)4/5r6/5.

Naïvely, with similar arguments one could derive a scaling relation for the Lagrangian
second-order structure function, which would lead to

S2
u(τ ) ∝ εθ (αg)2τ 3. (3.17)

Clearly ∝ τ 3 is much steeper than what we observe. Boffetta et al. (2010) have argued
that in buoyancy-driven flows the Lagrangian velocity increments are given by the
superposition of the influence of eddies with time scale τ as well as eddies with eddy
turnover times of the largest eddies in the flow. The authors conclude that ‘[· · · ] a
standard analysis of velocity fluctuations, i.e. Lagrangian structure functions, is unable to
disentangle the Bolgiona–Obukhov scaling in the Lagrangian statistics’. While the authors
suggest to perform an exit-time statistics we think that such analysis would be beyond the
scope of this paper.

3.6. Particle-pair dispersion
In § 3.4, we have discussed the displacement of particles due to the turbulent flow, which is
particularly useful to better understand transport and mixing processes. Another, somehow
similar quantity is the dispersion of particles. Most often, the separation of two particles
is studied (Bourgoin et al. 2006; Schumacher 2009; Emran & Schumacher 2010) as this is
still a rather simple case to analyse and for which theoretical models are available for HIT.

Let us consider two particles at positions ri(t) = (xi(t), yi(t), zi(t)) and rj(t) =
(xj(t), yj(t), zj(t)) separated by R(t) = ri(t) − rj(t). Based on arguments by Batchelor
(1950) for isotropic turbulence, the average change of distance in time, should depend
on the initial separation distance (R0 = R(t = 0)), i.e.

〈|R(t) − R0|2〉 = 11
3 C2(εR0)

2/3t2, (3.18)

as long as t < t0 = (R2
0/ε)

1/3 and as long as R0 = |R0| is within the inertial subrange
where viscous dissipation can be neglected (Bourgoin et al. 2006; Ouellette et al. 2006).
The time t0 is usually interpreted as the time at which eddies of size R0 break up, or
alternatively the time scales at which the particles lose the memory of their initial velocity
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difference. In (3.18), ε is the average energy dissipation rate and C2 the universal constant
in the scaling law for the Eulerian second-order velocity structure function with C2 ≈ 2.13
(Sreenivasan 1995).

Equation (3.18) is the only possible scaling law which only includes R0, t and ε but not
the viscosity ν, since in the inertial range viscous effects are assumed to be negligible.
If R0 is smaller than the smallest eddies in the flow (of size η), viscous friction plays an
important role. In this case, particles also disperse ∝ t2, albeit with a stronger dependency
on R0, namely (see Sawford, Yeung & Hackl 2008)

〈|R(t) − R0|2〉 = 1
3

ε

ν
R2

0t2. (3.19)

Over larger time scales (t0 < t < T0) the particle dispersion is expected to follow the
classical Richardson–Obukhov scaling (Richardson 1926; Obukhov 1941)

〈|R(t) − R0|2〉 = gεt3, (3.20)

with g being the Richardson constant. For even larger time scales T0 < t, both particles
are uncorrelated and disperse according to

〈|R(t) − R0|2〉 = 2Δ2 ∝ t. (3.21)

The time scale T0 refers to the eddy turnover time of the largest eddies, which, in our case,
are the turbulent superstructures.

For measurements taken in the large aspect ratio cells we also want to investigate
dispersion in the horizontal direction, in addition to a fully 3-D analysis. Hereto, we define
the horizontal location of two particles as ri,h(t) = (xi(t), yi(t)) and rj,h(t) = (xj(t), yj(t))
and subsequently Rh(t) = ri,h(t) − rj,h(t), Rh0 = Rh(t = 0) and Rh0 = |Rh0|.

Figure 11 shows the particle-pair dispersion as a function of time for dataset SQR16_1
(Γ = 16). For this analysis, only particle pairs were considered that had an initial
separation of R0 ≈ H/40 (Rh0 ≈ H/40), i.e. 0.5 mm in physical space. In the plot, one
can roughly distinguish three different regimes. These are

(i) a regime for small t where dispersion follows ∝ t2, similar to Batchelor scaling given
in (3.18) and (3.19);

(ii) a diffusive regime for large t similar to (3.21);
(iii) an intermediate regime that shows a much faster dispersion, which, for the 3-D data

(red squares), is Richardson-like (∝ t3).

In the Batchelor regime, the blue points for the 2-D data are above the 3-D data
(red squares), suggesting a faster separation in two dimensions compared with three
dimensions. This is at first glance a bit counter-intuitive, but is a result of the fact that also
the initial separation Rh0 that was used to condition the data was calculated based on the
horizontal components (x, y) only. Their 3-D initial separation R0 is in most cases much
larger. For example, also such particle pairs enter the 2-D statistics where one particle
is close to the bottom and the other is close to the top. In this case they might have
almost opposite horizontal velocities and therefore separate rather fast. In the 3-D case two
particles with a small R0 are close to each other initially and move together, experiencing
the same horizontal motion.

For larger times, particles have separated sufficiently far from each other, their motion
is no longer correlated and hence they separate diffusively (∝ t). This happens at distances
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Figure 11. Particle-pair dispersion in two (blue bullets, right-hand y-axis) and three dimensions (red squares,
left-hand y-axis) as a function of time. For this plot only particle pairs were considered with an initial separation
of R0 ≈ H/40 ≈ 0.5ηk (Rh0 ≈ H/40 ≈ 0.5ηk for the 2-D case). The blue vertical lines marks τTa = 4.75 as
calculated from the horizontal autocorrelation function. The red vertical line marks τTa = 4.35, which is the
average of the corresponding fit parameters in figure 7 for the autocorrelation function of the horizontal and
the vertical velocity components. The green vertical line marks the estimated Kolmogorov time τη/tf = 1.04.
For the calculation, we used dataset SQR16_1 (Γ = 16, Ra = 1.1 × 106, Pr = 7.0).

that are larger than the cell height H, where the 3-D and the 2-D distances are nearly the
same. Therefore, the red and the blue points overlap each other in the diffusive regime.

In between these two regimes, there is an intermediate regime where the square particle
distance for the 3-D case increases according to 〈|R(t) − R0|2〉 ∝ t3, i.e. very similar to the
Richardson scaling relation. However, we like to stress that some of the arguments for the
Richardson scaling are not valid here, and we hence do not aim to measure the Richardson
constant g. For example, the smallest and the largest scales are not separated sufficiently,
but even more important, the RBC system is neither isotropic, nor homogeneous. While the
averaged energy dissipation rate can be calculated easily, the energy dissipation is strongly
inhomogeneous, most of the kinetic energy being dissipated in the thin kinetic boundary
layers close to the top and bottom plates as we have seen in § 3.2. We also point out that
the ∝ t3 behaviour is only seen when particles are considered with a sufficiently small
initial separation R0. As will be shown in figure 12, the exponent of t in this superdiffusive
regime decreases monotonically with increasing R0, and the entire superdiffusive regime
disappears for sufficiently large R0.

We want to point out in this regard that also in RBC at Ra close to onset in a large aspect
ratio domain, Richardson scaling has been observed by Schütz & Bodenschatz (2016),
for diffusive particles that are advected by the laminar flow. This is surprising because
Richardson dispersion is assumed to occur in highly turbulent flows only. Intuitively one
can understand this strong enhanced dispersion in this system, by considering a single
roll as a flow with rather constant shear rate. Two diffusive particles now would follow
a diffusive ∝ t on short time scales, but on larger time scales also a term ∝ t3 becomes
apparent as with increasing time, the particles experience an ever-increasing velocity
difference.

For a better understanding of the Richardson-like regime in our data, we want to relate
the curves in figure 11 to the smallest eddies in the flow. For this we first mark with a green
vertical line the Kolmogorov time scale τη/tf = 1.04. This line is located in the t2-regime,
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Figure 12. (a) Particle-pair dispersion as a function of time for different initial separations R0/ηk (see legend)
and for Ra = 1.1 × 106, Pr = 7.0, Γ = 16 (SQR16_1). The green points mark time t0 = (R2

0/ε)
1/3 for each

dataset. The red vertical line marks τTa = 4.35, which is the average of the corresponding fit parameters in
figure 7 for the autocorrelation function of the horizontal and the vertical velocity components. (b) Same as
in (a) but normalised by R1.5

0 . (c) The same data but normalised by R2
0t2ε/ν in accordance with (3.19).

far away from the transition to the t3 regime, and no change in the trend of the data is
observed at this time scale. We therefore believe that the volume-averaged Kolmogorov
time scale does not adequately represent the smallest eddies in the flow relevant for particle
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dispersion. We note again that the meaning of τη in RBC is not equivalent to that in HIT,
since ε is not homogeneously distributed but rather strongly depends on z.

However, we know already from the velocity-autocorrelation function that correlation
exists for times smaller than the Taylor time scale τTa (figure 7), which therefore can
be interpreted as the time scale of the smallest relevant coherent structures. We show
in figure 11 τTa for the horizontal velocities only (blue) as well as an average of the
horizontal and vertical components (red). For the average we have weighted τTa for each of
the velocity components equally. We see that τTa is only slightly smaller than the times at
which the dispersion increases into the Richardson-like regime, suggesting that particles
separate significantly faster after they have separated by distances close to the smallest
eddies in the flow.

Both formulae for the particle dispersion at small times (3.19) and (3.18) show a strong
dependency of the initial particle distance, i.e. |R(t) − R0|2 ∝ Rβ

0 , with either β = 2 when
R0 is in the dissipative or β = 2/3 when R0 is within the inertial range of turbulence. To
investigate this R0 dependency, we plot in figure 12 similar data as in figure 11 but now
for different initial separations R0 (represented by the colour-code in units of ηk). We
see that, indeed, the dispersion strongly depends on R0 whereas in the Batchelor regime
|R(t) − R0|2 increases monotonically with R0, in accordance with (3.18) and (3.19). In
an attempt to find a β so that the normalised dispersion 〈|R − R0|2〉/(Rβ

0 H2−β) collapses
the data for different R0 we find that our data best collapse for β = 1.5 as can be seen
in figure 12(b). The fact that this value is larger than 2/3 and smaller than 2 could be
explained with R0 being close to but smaller than the smallest eddies in the flow. In this
regard, we also have plotted with green points in figure 12(a) the times t0 = (R2

0/ε)
2 at

which the Batchelor regime is supposed to end for a given dataset. Although t0 increases
with R0 (green point move to the right), they are still well below τTa (red vertical line) and
the start of the Richardson-like regime for all cases. This again suggests that the length
scale considered here, in particular R0, is smaller than the inertial range of the flow so
that dispersion at these scales is heavily dominated by viscous effects. We also note, that
a scaling analysis for β = 1.5 would result in

〈|R(t) − R0|2〉 ∝
(

ε7

ν5

)8

R3/2
0 t2. (3.22)

In figure 12(c) we compare our data with (3.19). For this we divide the data by (ε/ν)R2
0t2.

Inside the dissipation regime and for sufficiently small t, the data normalised in this way
should be constant and equal to 1/3, which is the coefficient in (3.19). While the normalised
data are rather constant in time for small t, they still depend on R0 and the relevant scaling
exponent is smaller than 2. However, the black circles (R0 = 0.5ηk) are indeed very close
to 1/3, whereas points with larger R0 are monotonically smaller. This is evidence that
indeed the deviation is because the initial separation is too big for (3.19) to be valid.

We also compare in figure 13 dispersion data conditioned for R0 ≈ H/40 and three
different Ra. Similar to the single particle displacement (figure 8b), also here all three
datasets collapse onto a single curve. The reason for this is twofold. For the diffusive
regime at large t, the data are expected to be the same as twice the displacement 2(Δ2

x +
Δ2

y + Δ2
z )/H2, which as we have seen in figure 8(b) is rather independent of Ra if times are

scaled with tf and distances with H. The overlap in the regime for small t is less obvious
and indeed is most likely not perfect here. As we have seen above, neither (3.18) nor (3.19)
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Figure 13. Comparison of the dispersion for three different Ra (see legend). Data were acquired with Γ = 16
and Pr = 7.0 (SQR16_1, SQR16_2, SQR16_3) and for R0 ≈ H/40.

is valid. Regardless, using (1.5) one can write (3.19) as

〈|R(t) − R0|2〉
H2 = 1

3
(Nu − 1)

Pr
R2

0
H2

t2

t2f
. (3.23)

We have used the same R0 = H/40 for all three Ra and hence the only parameter that
varies is the Nusselt number Nu, which changes solely by a factor 1.2 across the Ra range
shown here. Despite being small, the change in Nu would explain the small differences
visible in the data. Similarly, also if (3.18) would be valid, the differences were equally
small.

All data are plotted in units of H and tf and therefore, the particle velocity and also the
relative particle velocity is very similar in these units. This is the reason for the collapse
of the data in the Batchelor regime. Since we also know that the Taylor time scale τTa
in these units is rather independent of Ra (figure 7 and table 3), the transition from the
Batchelor (∝ t2) to the diffusive (∝ t) regime should also occur at the same times. If the
slope for the Richardson-like regime does not change and the diffusive dispersion for
longer times is also just twice the displacement (see (3.21)), the dispersion data should
be rather independent on Ra, at least for a sufficiently small Ra range.

So far, we have investigated particle dispersion measured in the rectangular RBC cell
filled with water (Pr = 7.0) with Γ = 16. For comparison, we also want to investigate how
particles disperse for much larger Ra. Therefore, we plot in figure 14 particle dispersion
data calculated from dataset CYL1_3 with Ra = 1.53 × 109 and Γ = 1. Again, the
dispersion is shown for different initial particle separations R0 (colour-coded in units of
ηk). At first glance, the plots in figure 14 look qualitatively similar to the plots in figure 12.
A difference that can easily be spotted in figure 14(a) is that the dispersion for larger t is
bounded due to the finite size of the container by the same upper limit Δ2

max = 0.44 as the
single particle displacement shown in figure 9. Similar to the data for Ra = 1.1 × 106, also
here, the green dots in figure 14(a), which mark times t0 = (R2

0/ε)
1/3 are clearly on the left

of the Taylor time TTa (red vertical line), above which correlation between the velocities
is lost due to fluctuations in the turbulent flow. Similar to the data for Ra = 1.1 × 106,
also here the Taylor time TTa roughly coincides with the start of the Richardson-like
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Figure 14. (a) Particle-pair dispersion as a function of time for different initial separations R0/ηk (see legend)
and for Ra = 1.53 × 109, Pr = 0.7, Γ = 1 (CYL1_3). The green points mark time t0 = (R2

0/ε)
1/3 for each

dataset. The red vertical line marks τTa = 0.77, which is the average of the corresponding fit parameters in
figure 7 for the autocorrelation function of the horizontal and the vertical velocity components. (b) Same as
in (a) but normalised by R0|2. (c) The same data but normalised by R2

0t2ε/ν in accordance with (3.19). The
black horizontal line in (a) marks the maximal dispersion due to the finite size container (Δ2

max = 0.44). The
solid black lines in (b) mark power laws ∝ t2, ∝ t3 and ∝ t. The black horizontal line in (c) marks the expected
coefficient according to (3.19).

regime. This fact again hints that R0 is still smaller than the inertial regime and (3.18)
is not expected to hold. Furthermore, data for different R0 seem to collapse rather well
when normalised by R2

0 (in accordance with (3.19)) as shown in figure 14(b), where this
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Figure 15. Normalised particle-pair dispersion as a function of normalised time t/τTa for different aspect
ratios. Shown are conditional data for very small R0 of close to one ηk and for datasets SQR16_1 (Ra =
1.1 × 106, Pr = 7.0, Γ = 16), SQR8_2 (Ra = 9.1 × 106, Pr = 7.0, Γ = 8) and CYL1_3 (Ra = 1.53 × 109,
Pr = 0.7, Γ = 1). The black horizontal line marks 1/3, i.e. the expected coefficient according to (3.19).

normalisation also reveals a clear ∝ t2 regime for small t, a ∝ t3 regime for t > tTa and
even a ∝ t regime for the largest t and the smallest R0.

In figure 14(c) we normalise the particle-pair dispersion by (ε/ν)t2R2
0. According

to (3.19), data for sufficiently small t should follow a constant line with 〈|R(t) −
R0|2〉ν/(εt2R2

0) = 1/3. While our data follow a straight line, they are slightly below 1/3.
However, data with the smallest R0 (black circles) are rather close to 1/3 which suggest
that the discrepancy is because R0 is not sufficiently small compared with the Kolmogorov
length ηk.

We saw in figures 12 and 14 that data for small t and R0 are represented decently
well by (3.19). Further, we have seen that the transition to the Richardson-like regime
roughly starts at t ≈ tTa. This helps to compare the three datasets SQR16_1, SQR8_2 and
CYL1_3, which covers an Ra range of three orders of magnitude. Therefore, we plot in
figure 15 〈|R(t) − R0|2〉ν/(εt2R2

0) as a function of the normalised time t/tTa. Plotted in
this way, all three datasets show qualitatively similar characteristics: (i) they are rather
constant and close to 1/3 for small t; (ii) they increase close to t/tTa ≈ 1 followed by the
Richardson-like regime, before they reach a maximum and decrease thereafter into (iii)
the diffusive regime.

4. Summary and discussion

In this paper we have analysed various statistical properties of Lagrangian particle tracks
in RBC. With these data we hope to enhance our understanding of buoyancy-driven flows
from the Lagrangian view point, close an existing data gap and in this way stimulate
research towards a theoretical description of such quantities. For this, experiments were
conducted in two very different experimental apparatuses. The first was a cylinder
with a height of H = 1.1 m and an aspect ratio Γ = H/D = 1, which was filled with
air at atmospheric pressure (Pr = 0.7) and seeded with long-living, neutrally buoyant
HFSB. The other apparatus was a 0.32-m-wide rectangular cell of square cross-section
with heights of 0.02 m (Γ = 16) and 0.04 m (Γ = 8), filled with water (Pr = 7.0) and
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seeded with 50 − μm-large fluorescent polyethylene microspheres. Due to the different
working fluids and the very different heights of the experiments, we covered a large
range of Rayleigh numbers of three orders of magnitude 106 ≤ Ra ≤ 1.6 × 109. During
a measurement, the particles were imaged by six cameras and their spatial positions at a
given time step were calculated via the Shake-The-Box algorithm. In this way we could
track several hundreds of thousands of particles over approximately 2000 free-fall time
units.

From these data we first calculated vertical profiles of horizontal and vertical velocities
by bin-averaging the Lagrangian data. The horizontal velocity profiles exhibited maxima
close to the top and bottom plate, resulting in shear boundary layers, which shrink with
increasing Ra. The vertical velocity shows a maximum close to one half of the cell height.
By comparing profiles and the corresponding velocities for different Ra and Pr, we found
that our velocities are in good agreement with predictions from DNS by Shishkina et al.
(2017) for large Pr and small Ra. In particular, we find Re ∝ Ra0.6 for Ra ∈ {106, 107} and
Pr = 7.0. Regarding the dependency of Re on Pr, we find that our data follow roughly
Re ∝ Pr−0.8 when considering the range Ra ∈ {106, 2 × 109} as well as Pr ∈ {0.7, 7.0}.
These findings have so far not been found before in experiments but agree well with results
from DNS (Shishkina et al. 2017) and can be explained by a dominating contribution of
the boundary layers to the global-averaged kinetic and thermal dissipation rates (see e.g.
Grossmann & Lohse 2001; Shishkina et al. 2017). Our measurements therefore not only
support these models but further provide data that can be used to update the relevant
coefficients in the GL model in the boundary layer dominated regimes IIu (Stevens et al.
2013).

The Lagrangian autocorrelation function Cuu of the vertical and horizontal velocities
exhibits three different time scales. Close to τ ≈ 0, the autocorrelation has no or only a
very small slope and we have fitted a parabola to the data points for τ � 1 to determine
a Taylor-time scale τTa for our data. We interpret this time as the eddy turnover time of
eddies that are so small that viscosity has a significant impact on their dynamics. For
larger times the autocorrelation decays nearly exponentially with time constant τco and
even reaches negative values, i.e. anticorrelation, which is in particular pronounced for the
autocorrelation of the vertical velocity. After bouncing back, Cuu oscillates with decaying
amplitude and period Tto around zero. These oscillations are caused by the confined motion
of particles between the bottom and the top plate of the RBC cell. The Pr-corrected time
scale τcoPr−0.3 is rather universal for all investigated cases and also marks the largest
relevant scale for the single particle displacement as well as the velocity structure function.

Further, we have investigated the mean displacements Δ2
i (τ ) = 〈(xi(t + τ) − xi(t))2〉 of

the particles. Similar to the chaotic motion of Brownian particles, the tracer particles in
the turbulent convection exhibit a ballistic motion (Δ2

i ∝ τ 2) for small τ . For larger τ a
diffusive motion is observed for the horizontal components with (Δ2

x,y ∝ τ ) for Γ = 8
and Γ = 16. The transition between both regimes occurs at time scales similar to the
time at which correlation is lost, i.e. τco. The vertical components Δz for all Γ as well as
the horizontal components for Γ = 1 do not exhibit a diffusive regime but rather reach
a plateau due to spatial confinement. This indicates that the largest spatial scales in the
flow are the cell height which also roughly corresponds to the largest time scales, i.e. the
Lagrangian integral time. We further found that data in the ballistic regime collapse for
very different Ra, Pr and Γ onto a single curve when the displacement is expressed in
units of H, times in terms of free-fall time units tf , and after proper rescaling by Pr−0.6 in
accordance with Re ∝ Pr−0.8.
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On Lagrangian properties of RBC

As another typical turbulent property, we have analysed the Lagrangian velocity
structure function S2

i (τ ). For small τ < τη viscosity dominates and we observe S2
i ∝ τ 2.

When correlation is lost, i.e. for τ > τco we find S2
i ∝ 〈u2

i 〉 as also expected for isotropic
turbulence at time lags more than the integral time scales. For intermediate τη < τ < τco

we observe a scaling of S2
w ∝ τ 3/4 and S2

u ∝ τ 0.65 which has not been measured before and
which lacks a theoretical explanation.

We also investigated the dispersion of particle pairs 〈|R − R0|2〉. For small initial
separation distances between the particles R0, depending on time, dispersion was
observed to be initially Batchelor-like (∝ t2), followed by a regime with Richardson-like
dispersion (∝ t3) for larger times and a diffusive regime (∝ t) for very large times. Again,
maximal particle separation was bound by the finite size of the convection cell. We further
observed a strong R0 dependency of the dispersion for short times. We found the exponent
β in 〈|R − R0|2〉 ∝ Rβ

0 for small Ra (large Pr) to be smaller than what is expected for the
dissipative regime but larger than what was proposed for the inertial regime (Sawford et al.
2008). We believe that this discrepancy is caused by the initial separation, which is neither
significantly smaller nor significantly larger than the Kolmogorov length ηk.

We also found a regime at intermediate times where the dispersion increases with
roughly ∝ t3, but only for particle pairs with a sufficiently small R0. For larger times,
particles disperse diffusively according to ∝ t. Interestingly, the time at which the
t3-regime starts, roughly corresponds to the Taylor time determined from the velocity
autocorrelation functions. This observation suggests that the smallest eddies in the flow
have turn over times of roughly τTa and that particles separate faster after they have been
separated by the size of the smallest significant eddies. This is true as long as the initial
separation of the tracer particles R0 is on length scales where viscous dissipation plays a
role, i.e. scales smaller than the inertial range. This was the case in our experiments even
for the largest Ra.

Supplemental material. In the supplemental material, we briefly discuss the influence of anisotropy and
inhomogeneity of our system on the Lagrangian auto-correlation function, the displacement, and the velocity
structure function. Supplemental material is available at https://doi.org/10.1017/jfm.2024.677.
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