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Weak Factorizations of the Hardy Space
H1(Rn) in Terms of Multilinear Riesz
Transforms

Ji Li and Brett D. Wick

Abstract. _is paper provides a constructive proof of the weak factorization of the classical Hardy
space H1(Rn) in terms of multilinear Riesz transforms. As a direct application, we obtain a new
proof of the characterization of BMO(Rn) (the dual ofH1(Rn)) via commutators of the multilinear
Riesz transforms.

1 Introduction and Statement of Main Results

_e real-variable Hardy space theory on n-dimensional Euclidean space Rn (n ≥ 1)
plays an important role in harmonic analysis and has been systematically developed.
_ere aremany equivalent ways to deûne theHardy space, but for the purposes of this
paper we will use the atomic decomposition. Namely, the space H1(Rn) is the set of
functions of the form f = ∑∞

j=1λ ja j with {λ j} ∈ ℓ1 and a j an atom, meaning that it is
supported on a ball B, has mean value zero ∫B a(x)dx = 0, and has a size condition
∥a∥L∞(Rn) ≤ ∣B∣−1. One norms this space of functions by

∥ f ∥H1(Rn) ∶= inf{
∞

∑
j=1

∣λ j ∣ ∶ {λ j} ∈ ℓ1 , f =
∞

∑
j=1

λ ja j , a j an atom}

with the inûmum taken over all possible representations of f via its atomic decom-
position.
An important result about the Hardy space is the weak factorization obtained by

Coifman, Rochberg, and Weiss [2]. _is factorization proves that all H1(Rn) func-
tions can be written in terms of bilinear forms associated with the Riesz transforms,
with the basic building blocks being

Π j( f , g) = f R j g + gR j f ,

with R j the j-th Riesz transform

R j f (x) = p.v. cn ∫
Rn
f (y)

x j − y j

∣x − y∣n+1 dy.
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_is result follows as a corollary of the characterization of the function space
BMO(Rn) in terms of the boundedness of the commutators [b, R j]( f ) = bR j f −
R j(b f ).

_emain goal of this paper is to provide a constructive proof of the weak factoriza-
tion of the classical Hardy spaceH1(Rn) in terms of multilinear Riesz transforms. As
a direct corollary, we obtain a full characterization of BMO(Rn) (the dual ofH1(Rn))
via commutators of the multilinear Riesz transforms. Recall that BMO(Rn) is the set
of functions for which

∥b∥BMO(Rn) ∶= sup
Q

1
∣Q∣

∫
Q
∣b(y) −AvgQ(b)∣dy < ∞.

Our strategy and approachwill be tomodify the direct constructive proof ofUchiyama
in [12] for the weak factorization of the Hardy spaces.

We now recall the deûnition of multilinear Calderón–Zygmund operators (see, for
example, the standard statements in [5, pp. 127–129]). Let K(y0 , y1 , . . . , ym), y i ∈ Rn ,
i = 0, 1, . . . ,m, be a locally integrable function deûned away from the diagonal {y0 =
y1 = ⋅ ⋅ ⋅ = ym}. _en K is said to be an m-linear Calderón–Zygmund kernel if there
exist positive constants A and η such that

∣K(y0 , y1 , . . . , ym)∣ ≤
A

( ∑
m
k , l=0 ∣yk − y l ∣)

mn

and

∣K(y0 , y1 , . . . , y j , . . . , ym) − K(y0 , y1 , . . . , y′j , . . . , ym)∣ ≤

A∣y j − y′j ∣η

( ∑
m
k , l=0 ∣yk − y l ∣)

mn+η

(1.1)

for all 0 ≤ j ≤ m and ∣y j − y′j ∣ ≤ 1
2 max0≤k≤m ∣y j − yk ∣.

Suppose T is an m-linear operator mapping from S(Rn) × ⋅ ⋅ ⋅ × S(Rn) to S′(Rn),
where we denote by S(Rn) the spaces of all Schwartz functions onRn and by S′(Rn)

its dual space, i.e., the set of all tempered distributions onRn . We further assume that
T is associated with them-linear Calderón–Zygmund kernel K deûned as above, i.e.,

T( f1 , . . . , fm)(x) ∶= ∫
Rmn

K(x , y1 , . . . , ym)
m
∏
j=1
f j(y j) dy1 ⋅ ⋅ ⋅ dym ,

whenever f1 , . . . , fm ∈ S(Rn) with compact support and x /∈ ∩m
j=1 supp( f j).

If
T ∶ Lp1(Rn

) × ⋅ ⋅ ⋅ × Lpm(Rn
) Ð→ Lp

(Rn
)

for some 1 < p1 , . . . , pm < ∞ and p with p−1 = ∑
m
j=1 p−1

j , then we say T is an m-linear
Calderón–Zygmund operator. According to [5, _eorem 3], T can be extended to a
bounded operator from Lp1(Rn)×⋅ ⋅ ⋅×Lpm(Rn) to Lp(Rn) for all 1 < p1 , . . . , pm < ∞

and p with p−1 = ∑
m
j=1 p−1

j . See also the boundedness of T when some p j = 1 or when
all p j = ∞ in [5, _eorem 3].

We also recall the j-th transpose T∗ j of T , deûned via

⟨T∗ j
( f1 , . . . , fm), h⟩ = ⟨T( f1 , . . . , f j−1 , h, f j+1 , . . . , fm), f j⟩(1.2)
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for all f1 , . . . , fm , h ∈ S(Rn) (see [5, pp. 127–128]). It is easy to see that the kernel K∗ j

of T∗ j is related to the kernel K of T via

K∗ j
(x , y1 , . . . , y j−1 , y j , y j+1 , . . . , ym) = K(y j , y1 , . . . , y j−1 , x , y j+1 , . . . , ym).(1.3)

We now introduce a property of the multilinear operator T . We say that T is mn-
homogeneous if T satisûes

∣T(χB1 , . . . , χBm)(x)∣ ≥
C

Mmn ∀x ∈ B0(x0 , r)

for m pairwise disjoint balls B0 = B0(x0 , r), . . . , Bm = Bm(xm , r) satisfying the con-
dition that ∣y0 − y l ∣ ≈ Mr for all y0 ∈ B0 and y l ∈ B l , l = 1, 2, . . . ,m, where r > 0 and
M > 10.
Another, stronger, version of mn-homogeneity is as follows:

K(x0 , . . . , xm) ≥
C

Mmn or K(x0 , . . . , xm) ≤ −
C

Mmn

for x i ∈ B i , i = 0, . . . ,m, where B0 ∶= B0(x0 , r), . . . , Bm ∶= Bm(xm , r) are m + 1
pairwise disjoint balls satisfying the condition that ∣y0 − y l ∣ ≈ Mr for all y0 ∈ B0 and
y l ∈ B l , l = 1, 2, . . . ,m, where r > 0 and M > 10. It is easy to see that this stronger
version implies the version above.

In analogy with the linear case, we deûne the l-th partial multilinear commutators
of the m-linear Calderón–Zygmund operator T as follows.

Deûnition 1.1 Suppose T is an m-linear Calderón–Zygmund operator as deûned
above. For l = 1, 2, . . . ,m, we set

[b, T]l( f1 , . . . , fm)(x) ∶= T( f1 , . . . , b f l , . . . , fm)(x) − bT( f1 , . . . , fm)(x).

_is is simply measuring the commutation properties in each linear coordinate
separately.
Dual to the multilinear commutator, in both language and via a formal computa-

tion, we deûne the multilinear “multiplication” operators Π l :

Deûnition 1.2 Suppose T is an m-linear Calderón–Zygmund operator as deûned
above. For l = 1, 2, . . . ,m, associate with T the operator

(1.4) Π l(g , h1 , . . . , hm)(x) ∶=

h l(x)T∗l
(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x) − g(x)T(h1 , . . . , hm)(x),

where T∗l is the l-th partial adjoint of T deûned as in (1.3).

Our main result is then the following factorization result for H1(Rn) in terms of
the multilinear operators Π l . Again, this is in direct analogy with the result in the
linear case obtained by Coifman, Rochberg, and Weiss in [2].

_eorem 1.3 Suppose 1 ≤ l ≤ m, 1 < p1 , . . . , pm < ∞, and 1 ≤ p < ∞ with
1
p1
+ ⋅ ⋅ ⋅ +

1
pm

=
1
p
,
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and suppose that T is an m-linear Calderón–Zygmund operator that is mn-homoge-
neous. _en for every function f ∈ H1(Rn), there exist sequences {λk

s } ∈ ℓ1 and
functions gk

s , hk
s ,1 , . . . , hk

s ,m ∈ L∞c (Rn), the space of bounded functions with compact
support, such that

f =
∞

∑
k=1

∞

∑
s=1

λk
s Π l(gk

s , hk
s ,1 , . . . , hk

s ,m)(1.5)

in the sense of H1(Rn). Moreover, we have that

∥ f ∥H1(Rn) ≈ inf{
∞

∑
k=1

∞

∑
s=1

∣λk
s ∣∥gk

s ∥Lp′(Rn)∥h
k
s ,1∥Lp1 (Rn) ⋅ ⋅ ⋅ ∥hk

s ,m∥Lpm (Rn)} ,

where the inûmum above is taken over all possible representations of f that satisfy (1.5).

We then obtain the following characterization of BMO(Rn) in terms of the com-
mutators with themultilinear Riesz transforms, again in analogywith themain results
in [2]. We point out that the necessity of the BMOconditionwas obtained in [1], while
the suõciency was obtained in [7, 10, 11]. A contribution of this work is to provide a
new proof of these results.

_eorem 1.4 Let 1 ≤ l ≤ m. Suppose that T is an m-linear Calderón–Zygmund op-
erator. If b is in BMO(Rn), then the commutator [b, T]l( f1 , . . . , fm)(x) is a bounded
map from Lp1(Rn)×⋅ ⋅ ⋅×Lpm(Rn) to Lp(Rn) for all 1 < p1 , . . . , pm < ∞ and 1 ≤ p < ∞,
with

1
p1
+ ⋅ ⋅ ⋅ +

1
pm

=
1
p

and with the operator norm

∥[b, T]l ∶ Lp1(Rn
) × ⋅ ⋅ ⋅ × Lpm(Rn

) Ð→ Lp
(Rn

)∥ ≤ C∥b∥BMO(Rn) .

Conversely, for b ∈ ∪q>1Lq
loc(R

n), if T is mn-homogeneous, and [b, T]l is bounded
from Lp1(Rn)× ⋅ ⋅ ⋅ × Lpm(Rn) to Lp(Rn) for some 1 < p1 , . . . , pm < ∞ and 1 ≤ p < ∞,
with

1
p1
+ ⋅ ⋅ ⋅ +

1
pm

=
1
p
,

then b is in BMO(Rn) and

∥b∥BMO(Rn) ≤ C∥[b, T]l ∶ Lp1(Rn
) × ⋅ ⋅ ⋅ × Lpm(Rn

) → Lp
(Rn

)∥ .

As a speciûc example of an operator T that is an m-linear Calderón–Zygmund
operator and is mn-homogeneous, we now recall the multilinear Riesz transforms;
see, for example, [5, p. 162].

Deûnition 1.5 Suppose f1 , . . . , fm arem functions onRn . For j = 1, 2, . . . ,m, deûne

R⃗ j( f1 , . . . , fm)(x) ∶= ∫
Rmn

K⃗ j(x , y1 , . . . , ym)
m
∏
s=1
fs(ys) dy1 ⋅ ⋅ ⋅ dym ,
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where the kernel K⃗ j(x , y1 , . . . , ym) is given as

K⃗ j(x , y1 , . . . , ym) ∶=
x − y j

∣(x − y1 , . . . , x − ym)∣mn+1 .

To be more speciûc,
R⃗ j = (R(1)j , . . . , R(n)j ),

where for each i = 1, 2, . . . , n, R(i)j is the multilinear operator with the kernel

K(i)j (x , y1 , . . . , ym) ∶=
x i − y i

j

∣(x − y1 , . . . , x − ym)∣mn+1 .

Here x = (x 1 , . . . , xm) and y j = (y1
j , . . . , ym

j ).

According to [5, Corollary 2], R⃗ j is an m-linear Calderón–Zygmund operator for
j = 1, 2, . . . ,m. Moreover, we have that

∣R⃗ j(χB1 , . . . , χBm)(x)∣ = ∣∫
B1
⋅ ⋅ ⋅ ∫

Bm

x − y j

∣(x − y1 , . . . , x − ym)∣mn+1 dy1 ⋅ ⋅ ⋅ dym ∣ ≥
C

Mmn

for m + 1 pairwise disjoint balls B0 = B0(x0 , r), . . . , Bm = Bm(xm , r) satisfying the
condition ∣y0 − y l ∣ ≈ Mr for all y0 ∈ B0 and y l ∈ B l , l = 1, 2, . . . ,m, where r > 0, and
M > 10. _us, R⃗ j is mn-homogeneous.

Remark 1.6 We remark that the necessity in _eorem 1.4 was obtained by Chaòee
in [1]. His proof uses a technique applied by Janson [6], which is diòerent than the one
used here. One advantage of the approach taken in this paper is that it provides for a
constructive algorithm to produce the weak factorization of H1(Rn). As mentioned
in [1] it would be interesting to show the equivalence between BMO(Rn) and the
commutators when p < 1. Both the methods used there and in this paper hinge upon
duality, which will not be a viable strategy when p < 1. We also again point out that
the suõciency can be found in the works [7, 10, 11] under varying conditions on p.

2 Weak Factorization of the Hardy Space H1(Rn)
In this section we turn to proving _eorem 1.3. We collect some facts that will be
useful in proving the main result.

To begin with, we recall a technical lemma about certain H1(Rn) functions.

Lemma 2.1 Suppose f is a function deûned on Rn satisfying ∫Rn f (x) dx = 0 and
∣ f (x)∣ ≤ χB(x0 ,1)(x) + χB(y0 ,1)(x), where ∣x0 − y0∣ ∶= M > 10. _en we have

∥ f ∥H1(Rn) ≤ Cn logM .

We can obtain this lemmausing themaximal function characterization ofH1(Rn),
as well as the atomic decomposition characterization of H1(Rn). For details of the
proof, we refer the reader to similar versions of this lemma in [3, Lemma 3.1], where
we use the atomic decomposition as the main tool, and in [8, Lemma 4.3], where we
use the maximal function characterization of H1(Rn).
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Suppose 1 ≤ l ≤ m. Ideally, given an H1(Rn)-atom a, we would like to ûnd func-
tions g ∈ Lp′(Rn), h1 ∈ Lp1(Rn), . . . , hm ∈ Lpm(Rn) such that Π l(g , h1 , . . . , hm) = a
pointwise. While this cannot be accomplished in general, the theorem below shows
that it is “almost” true.

_eorem 2.2 Suppose 1 ≤ l ≤ m. Suppose that T is an m-linear Calderón–Zygmund
operator that is mn-homogeneous. For every H1(Rn)-atom a(x) and for all ε > 0 and
for all 1 < p1 , . . . , pm < ∞ and 1 ≤ p < ∞, with

1
p1
+ ⋅ ⋅ ⋅ +

1
pm

=
1
p
,

there exist g , h1 , . . . , hm ∈ L∞c (Rn) and a large positive number M = M(ε) such that
∥ a −Π l(g , h1 , . . . , hm)∥H1(Rn)

< ε

and ∥g∥Lp′(Rn)∥h1∥Lp1 (Rn) ⋅ ⋅ ⋅ ∥hm∥Lpm (Rn) ≤ CMmn , where C is an absolute positive
constant.

Proof _e proof here follows the same lines as in [12, _eorem 2]. Let a(x) be an
H1(Rn)-atom, supported in B(x0 , r) ⊂ Rn , satisfying that

∫
Rn
a(x)dx = 0 and ∥a∥L∞(Rn) ≤ r−n .

Fix 1 ≤ l ≤ m and ûx ε > 0. Choose M suõciently large so that
logM
Mη < ε,

where the constant η appearing in the power of M is from the regularity condition
(1.1) of the multilinear Calderón–Zygmund kernel K.

Next, we denote x0 = (x0,1 , . . . , x0,n). Now select y l = (y l ,1 , . . . , y l ,n) ∈ Rn so that
y l , i − x0, i = Mr

√
n . Note that for this y l , we have ∣x0 − y l ∣ = Mr. Similar to the choice of

y l , we choose y1 such that y l and y1 satisfy the same relationship as x0 and y l do, i.e,
y1 = (y1,1 , . . . , y1,n) ∈ Rn with y1, i − y l , i =

Mr
√

n . _en we have ∣y l − y1∣ = Mr. In the
same way as above, we choose y2 , . . . , y l−1, y l+1 , . . . , ym so that we have a collection
of disjoint balls so that we can apply the homogeneity of the kernel K.

We then set

g(x) ∶= χB(y l ,r)(x),
h j(x) ∶= χB(y j ,r)(x), j /= l ,

h l(x) ∶=
a(x)

T∗l(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x0)
,

where T∗l is the l-th transpose of T as deûned in (1.2). It is essentially clear that these
functions are in L∞c (Rn).

More precisely though, we observe that, since T is mn-homogeneous, and so is
T∗l , for the speciûc choice of the functions h1 , . . . , h l−1 , g , h l+1 , . . . , hm as above, we
have that there exists a positive constant C such that

∣T∗l
(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x0)∣ ≥ CM−mn for 1 ≤ l ≤ m.(2.1)
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From the deûnitions of the functions g and h j , we obtain that supp g = B(y l , r) and
supp h j = B(y j , r). Moreover,

∥g∥Lp′(Rn) ≈ r
n
p′ and ∥h j∥Lp j (Rn) ≈ r

n
p j

for j = 1, . . . , l − 1, l + 1, . . . ,m. Also, we have supp h l = B(x0 , r) and

∥h l∥Lpl (Rn) =
1

∣T∗l(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x0)∣
∥a∥Lpl (Rn) ≤ CMmnr−nr

n
pl ,

where the last inequality follows from (2.1). Hence, we obtain that

∥g∥Lp′(Rn)∥h1∥Lp1 (Rn) ⋅ ⋅ ⋅ ∥hm∥Lpm (Rn) ≤ CMmnr−nrn(
1
p′ +

1
p1
+⋅⋅⋅+ 1

pm ) = CMmn .

Next, we have

a(x) −Π l(g , h1 , . . . , hm)(x)

= a(x) − (h lT∗l
(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x) − gT(h1 , . . . , hm)(x))

= a(x)

T∗l
(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x0)
− T∗l

(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x)
T∗l(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x0)

+ g(x)T(h1 , . . . , hm)(x)
=∶W1(x) +W2(x).

By deûnition, it is obvious that W1(x) is supported on B(x0 , r) andW2(x) is sup-
ported on B(y l , r). We ûrst estimateW1. For x ∈ B(x0 , r), we have

∣W1(x)∣

= ∣a(x)∣
∣
T∗l

(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x0)
− T∗l

(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x)
∣

∣T∗l(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x0)∣

≤ C
∥a∥L∞(Rn)

M−mn ∫
∏

m
j=1 B(y j ,r)

∣K(z l , z1 , . . . , z l−1 , x0 , z l+1 , . . . , zm)

− K(z l , z1 , . . . , z l−1 , x , z l+1 , . . . , zm)∣ dz1 ⋅ ⋅ ⋅ dzm

≤ CMmnr−n
∫
∏

m
j=1 B(y j ,r)

∣x0 − x∣η

( ∑
m
i=1, i /=l ∣z l − z i ∣ + ∣z l − x0∣)

mn+η dz1 ⋅ ⋅ ⋅ dzm

≤ CMmnr−nrmn rη

(Mr)mn+η

≤ C 1
Mηrn

,

where in the second inequality we use the regularity condition (1.1) of the multilinear
kernel K. Hence, we obtain that

∣W1(x)∣ ≤ C
1

Mηrn
χB(x0 ,r)(x).
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Next we estimateW2(x). From the deûnition of g(x) and h l(x), we have

∣W2(x)∣
= χB(y l ,r)(x)∣T(h1 , . . . , hm)(x)∣

= χB(y l ,r)(x)
1

∣T∗l(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)(x0)∣

× ∣ ∫
∏

m
j=1, j/=l B(y j ,r)×B(x0 ,r)

(K(z1 , . . . , z l−1 , x0 , z l+1 , . . . , zm)

− K(z1 , . . . , z l−1 , x , z l+1 , . . . , zm)) a(z l) dz1 ⋅ ⋅ ⋅ dzm∣

≤ CχB(y l ,r)(x)M
mn
∫
∏

m
j=1, j/=l B(y j ,r)×B(x0 ,r)

∥a∥L∞(Rn)

×
∣x0 − x∣η

( ∑
m
s=1 ∣x0 − zs ∣)

mn+η dz1 ⋅ ⋅ ⋅ dzm

≤ CχB(y l ,r)(x)M
mnr−n rη ⋅ rmn

(Mr)mn+η

=
C

Mηrn
,

where in the second equality we use the cancellation property of the atom a(y l).
Hence, we have

∣W2(x)∣ ≤
C

Mηrn
χB(y l ,r)(x).

Combining the estimates ofW1 andW2, we obtain that

∣ a(x) −Π l(g , h1 , . . . , hm)(x)∣ ≤ C
Mηrn

(χB(x0 ,r)(x) + χB(y l ,r)(x)).(2.2)

Next we point out that

∫
Rn

[ a(x) −Π l(g , h1 , . . . , hm)(x)]dx = 0(2.3)

since the atom a(x) has cancellation and the second integral equals 0 just by the def-
initions of Π l .

_en the size estimate (2.2) and the cancellation (2.3), together with Lemma 2.1,
imply that

∥ a(x) −Π l(g , h1 , . . . , hm)(x)∥H1(Rn)
≤ C logM

Mη < Cε.

_is proves the result.

To prove the main _eorem 1.3, we also need the following estimate of the mul-
tilinear operator Π l , which is deûned in Deûnition 1.2. _e reader can compare this
proposition to recent work in [9] where similar estimates are obtained.
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Proposition 2.3 Suppose T is an m-linear Calderón–Zygmund operator. Assume
1 < p1 , . . . , pm < ∞ and 1 ≤ p < ∞ with

1
p
=

1
p1
+ ⋅ ⋅ ⋅ +

1
pm

.

_en for any ûxed g , h1 , . . . , hm ∈ L∞c (Rn), we obtain that Π l(g , h1 , . . . , hm) is in
H1(Rn). Moreover, there exists a positive constant C such that

∥Π l(g , h1 , . . . , hm)∥H1(Rn) ≤ C∥g∥Lp′(Rn)∥h1∥Lp1 (Rn) ⋅ ⋅ ⋅ ∥hm∥Lpm (Rn) .(2.4)

Proof For any ûxed g , h1 , . . . , hm ∈ L∞c (Rn), to show that Π l(g , h1 , . . . , hm)

is in H1(Rn) with the required norm (2.4), we now consider the properties of
Π l(g , h1 , . . . , hm).

To begin with, since g , h1 , . . . , hm are in L∞c (Rn), we have that g ∈ Lp′(Rn) and
h i ∈ Lp i (Rn), i = 1, . . . ,m, for any p1 , . . . , pm ∈ (1,∞), p ∈ [1,∞) with 1

p = 1
p1
+

⋅ ⋅ ⋅ + 1
pm

. _en, from the deûnition of Π l as in (1.4), the boundedness of the m-linear
Calderón–Zygmund operator T and Hölder’s inequality, we have that

Π l(g , h1 , . . . , hm)(x) ∈ L1
(Rn

).

Moreover, note that from the deûnition of Π l as in (1.4), we have

∫
Rn

Π l(g , h1 , . . . , hm)(x) dx = 0.

Next, since g , h1 , . . . , hm are all in L∞c (Rn), from the deûnition of Π l as in (1.4)
and the boundedness of the m-linear Calderón–Zygmund operator T , it is direct to
see that Π l(g , h1 , . . . , hm) is in L2(Rn) with compact support. Hence, we immedi-
ately have that Π l(g , h1 , . . . , hm) is a multiple of an H1(Rn) atom; i.e, we get that
Π l(g , h1 , . . . , hm) is in H1(Rn). _en it suõces to verify that the H1(Rn) norm of
Π l(g , h1 , . . . , hm) satisûes (2.4).

To see this, for b ∈ BMO(Rn), we now consider the inner product

⟨b, Π l(g , h1 , . . . , hm)⟩ ∶= ∫
Rn
b(x)Π l(g , h1 , . . . , hm)(x) dx .(2.5)

We ûrst show that ⟨b, Π l(g , h1 , . . . , hm)⟩ is well deûned.
Without loss of generality we assume that Π l(g , h1 , . . . , hm) is supported in a cube

QΠ . We also note that for b ∈ BMO(Rn), b is in L2
loc(R

n). As a consequence, we get
that

∣∫
Rn
b(x)Π l(g , h1 , . . . , hm)(x)dx∣

= ∣QΠ ∣∣
1

∣QΠ ∣
∫

QΠ
(b(x) − bQΠ)Π l(g , h1 , . . . , hm)(x)dx∣

≤ CQΠ∥b∥BMO(Rn)∥Π l(g , h1 , . . . , hm)∥L2(Rn) < ∞,

where CQΠ is a constant related to the cube QΠ , the equality above follows from the
cancellation condition of Π l(g , h1 , . . . , hm), and the ûrst inequality above follows
from Hölder’s inequality. _is implies that the inner product ⟨b, Π l(g , h1 , . . . , hm)⟩

in (2.5) is well deûned.

https://doi.org/10.4153/CMB-2017-033-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-033-9


580 J. Li and B. D. Wick

We now further claim that for any ûxed g , h1 , . . . , hm ∈ L∞c (Rn),

⟨b, Π l(g , h1 , . . . , hm)⟩ = ⟨[b, T]l(h1 , . . . , hm), g⟩(2.6)

To see this, we ûrst note that since g , h1 , . . . , hm are in L∞c (Rn) and b is in L2
loc(R

n),
we have

⟨b, g T(h1 , . . . , hm)⟩ = ⟨ g , b T(h1 , . . . , hm)⟩ .

Moreover, from the deûnition of T∗l as in (1.2), we also have

⟨b, h l T∗l
(h1 , . . . , h l−1 , g , h l+1 , . . . , hm)⟩ =

⟨ g , T(h1 , . . . , h l−1 , b ⋅ h l , h l+1 , . . . , hm)⟩ .

Combining the above two equalities and the deûnition of Π l as in (1.4), we have

⟨b, Π l(g , h1 , . . . , hm)⟩

= ⟨b, h l T∗l
(h1 , . . . , h l−1 , g , h l+1 , . . . , hm) − g T(h1 , . . . , hm)⟩

= ⟨ g , T(h1 , . . . , h l−1 , b ⋅ h l , h l+1 , . . . , hm)⟩ − ⟨ g , b T(h1 , . . . , hm)⟩

= ⟨[b, T]l(h1 , . . . , hm), g⟩ ,

which implies (2.6).
Now, from equality (2.6) and the boundedness of the multilinear commutator in

terms of BMO as proved in [7, _eorem 3.18], we obtain that

∣ ⟨b, Π l(g , h1 , . . . , hm)⟩∣ = ∣ ⟨[b, T]l(h1 , . . . , hm), g⟩∣
(2.7)

≤ C∥b∥BMO(Rn)∥g∥Lp′(Rn)∥h1∥Lp1 (Rn) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∥hm∥Lpm (Rn) .

We then verify (2.4). To see this, we point out that from the fundamental fact as in
[4, Exercise 1.4.12 (b)], we have

∥Π l(g , h1 , . . . , hm)∥H1(Rn) ≈ sup
b∶∥b∥BMO(Rn)≤1

∣ ⟨b, Π l(g , h1 , . . . , hm)⟩ ∣ ,

which, together with (2.7), immediately implies that (2.4) holds.
_e proof of Proposition 2.3 is completed.

We can now prove the main _eorem 1.3.

Proof of_eorem 1.3 By Proposition 2.3, we have that

∥Π l(g , h1 , . . . , hm)∥H1(Rn) ≤ C∥g∥Lp′(Rn)∥h1∥Lp1 (Rn) ⋅ ⋅ ⋅ ∥hm∥Lpm (Rn) .

It is immediate that for any representation of f as in (1.5), i.e.,

f =
∞

∑
k=1

∞

∑
s=1

λk
s Π l(gk

s , hk
s ,1 , . . . , hk

s ,m),

we have that ∥ f ∥H1(Rn) is bounded by

C inf {
∞

∑
k=1

∞

∑
s=1

∣λk
s ∣∥h1∥Lp1 (Rn) ⋅ ⋅ ⋅ ∥hm∥Lpm (Rn)∥g∥Lp′(Rn) ∶ f satisûes (1.5)} .
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We turn to showing that the other inequality holds and that it is possible to obtain
such a decomposition for any f ∈ H1(Rn). Utilizing the atomic decomposition, for
any f ∈ H1(Rn) we can ûnd a sequence {λ1

s} ∈ ℓ1 and sequence of H1(Rn)-atoms
{a1

s} so that

f =
∞

∑
s=1

λ1
sa1

s and
∞

∑
s=1

∣λ1
s ∣ ≤ C∥ f ∥H1(Rn) .

We explicitly track the implied absolute constant C appearing from the atomic
decomposition, since it will play a role in the convergence of the algorithm. Fix ε > 0
so that εC < 1. We apply_eorem2.2 to each atom a1

s . So there exist g1
s , h1

s ,1 , . . . , h1
s ,m ∈

L∞c (Rn), satisfying

∥a1
s −Π j, l(g1

s , h1
s ,1 , . . . , h1

s ,m)∥H1(Rn)
< ε

and ∥g1
s∥Lp′(Rn)∥h1

s ,1∥Lp1 (Rn) ⋅ ⋅ ⋅ ∥h1
s ,m∥Lpm (Rn) ≤ C(ε) for every s = 1, 2, . . . , where

C(ε) = CMnm

is a constant depending on ε that we can track from _eorem 2.2. Now note that we
have

f =
∞

∑
s=1

λ1
sa1

s =
∞

∑
s=1

λ1
s Π l(g1

s , h1
s ,1 , . . . , h1

s ,m) +
∞

∑
s=1

λ1
s( a1

s −Π l(g1
s , h1

s ,1 , . . . , h1
s ,m))

=∶ M1 + E1 .

Observe that we have

∥E1∥H1(Rn) ≤
∞

∑
s=1

∣λ1
s ∣∥a1

s −Π l(g1
s , h1

s ,1 , . . . , h1
s ,m)∥H1(Rn) ≤ ε

∞

∑
s=1

∣λ1
s ∣ ≤ εC∥ f ∥H1(Rn) .

We now iterate the construction on the function E1. Since E1 ∈ H1(Rn), we can apply
the atomic decomposition in H1(Rn) to ûnd a sequence {λ2

s} ∈ ℓ1 and a sequence of
H1(Rn)-atoms {a2

s } so that E1 = ∑
∞
s=1 λ2

s a2
s and

∞

∑
s=1

∣λ2
s ∣ ≤ C∥E1∥H1(Rn) ≤ εC2

∥ f ∥H1(Rn) .

Again, we will apply _eorem 2.2 to each atom a2
s . So there exists g2

s , h2
s ,1 , . . . , h2

s ,m ∈

L∞c (Rn), satisfying

∥ a2
s −Π l(g2

s , h2
s ,1 , . . . , h2

s ,m)∥H1(Rn)
< ε

and ∥g2
s ∥Lp′(Rn)∥h2

s ,1∥Lp1 (Rn) ⋅ ⋅ ⋅ ∥h2
s ,m∥Lpm (Rn) ≤ C(ε) for every s = 1, 2, . . . , where

C(ε) = CMnm .
We then have that

E1 =
∞

∑
s=1

λ2
s a2

s =
∞

∑
s=1

λ2
s Π l(g2

s , h2
s ,1 , . . . , h2

s ,m) +
∞

∑
s=1

λ2
s ( a2

s −Π l(g2
s , h2

s ,1 , . . . , h2
s ,m))

∶= M2 + E2 .
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But, as before, observe that

∥E2∥H1(Rn) ≤
∞

∑
s=1

∣λ2
s ∣∥ a2

s −Π l(g2
s , h2

s ,1 , . . . , h2
s ,m)∥H1(Rn)

≤ ε
∞

∑
s=1

∣λ2
s ∣

≤ (εC)2
∥ f ∥H1(Rn) .

_is implies that for f we have

f =
∞

∑
s=1

λ1
sa1

s =
∞

∑
s=1

λ1
s Π l(g1

s , h1
s ,1 , . . . , h1

s ,m) +
∞

∑
s=1

λ1
s( a1

s −Π l(g1
s , h1

s ,1 , . . . , h1
s ,m))

= M1 + E1 = M1 +M2 + E2

=
2

∑
k=1

∞

∑
s=1

λk
s Π l(gk

s , hk
s ,1 , . . . , hk

s ,m) + E2 .

Repeating this construction for each 1 ≤ k ≤ K produces functions

gk
s , hk

s ,1 , . . . , hk
s ,m ∈ L∞c (Rn

),

∥gk
s ∥Lp′(Rn)∥h

k
s ,1∥Lp1 (Rn) ⋅ ⋅ ⋅ ∥hk

s ,m∥Lpm (Rn) ≤ C(ε)

for all s, sequences {λk
s } ∈ ℓ1 with ∥{λk

s }∥ℓ1 ≤ εk−1Ck∥ f ∥H1(Rn), and a function EK ∈

H1(Rn) with ∥EK∥H1(Rn) ≤ (εC)K∥ f ∥H1(Rn) so that

f =
K

∑
k=1

∞

∑
s=1

λk
s Π l(gk

s , hk
s ,1 , . . . , hk

s ,m) + EK .

Letting K →∞ gives the desired decomposition of

f =
∞

∑
k=1

∞

∑
s=1

λk
s Π l(gk

s , hk
s ,1 , . . . , hk

s ,m).

We also have that
∞

∑
k=1

∞

∑
s=1

∣λk
s ∣ ≤

∞

∑
k=1
ε−1

(εC)k
∥ f ∥H1(Rn) =

C
1 − εC

∥ f ∥H1(Rn) .

Finally, we deal with the proof of _eorem 1.4.

Proof of_eorem 1.4 _e upper bound in this theorem is contained in [7, _eo-
rem 3.18]. It suõces to consider only the lower bound.
From the deûnition ofH1(Rn), given f ∈ H1(Rn), there exists a number sequence

{λ j}
∞
j=1 and atoms {a j}

∞
j=1 such that f = ∑∞

j=1 λ ja j , where the series converges in the
H1(Rn) norm and

∥ f ∥H1(Rn) ≈
∞

∑
j=1

∣λ j ∣.

Hence, we have that fN ∶= ∑
N
j=1 λ ja j tends to f as N → +∞ in the H1(Rn) norm,

which implies that H1(Rn)∩ L∞c (Rn) is dense in H1(Rn), where recall that L∞c (Rn)

is the subspace of L∞(Rn) consisting of functions with compact support in Rn .
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Suppose thatT is anm-linear Calderón–Zygmund operator, andT ismn-homoge-
neous. Consider now a function b ∈ ⋃q>1 L

q
loc(R

n) such that [b, T]l is bounded from
Lp1(Rn)× ⋅ ⋅ ⋅×Lpm(Rn) to Lp(Rn) for some 1 < p1 , . . . , pm < ∞ and 1 ≤ p < ∞, with

1
p1
+ ⋅ ⋅ ⋅ +

1
pm

=
1
p
.

Since b ∈ ⋃q>1 L
q
loc(R

n), without lost of generality, we can assume that b ∈ Lq
loc(R

n)

for some q > 1. We now use q′ to denote the conjugate index of q, i.e.,
1
q
+

1
q′

= 1.

_en for f ∈ H1(Rn) ∩ L∞c (Rn), by using the weak factorization in _eorem 1.3,
we choose a weak factorization of f such that

f (x) =
∞

∑
k=1

∞

∑
s=1

λk
s Π l(gk

s , hk
s ,1 , . . . , hk

s ,m)(x)(2.8)

in the sense of H1(Rn), where {λk
s } ∈ ℓ1 and gk

s , hk
s ,1 , . . . , hk

s ,m ∈ L∞c (Rn), and that
∞

∑
k=1

∞

∑
s=1

∣λk
s ∣∥gk

s ∥Lp′(Rn)

m
∏
j=1

∥hk
s , j∥Lp j (Rn) ≤ C∥ f ∥H1(Rn) .

Moreover, since T is an m-linear Calderón–Zygmund operator and gk
s , hk

s ,1 , . . . , hk
s ,m

are in L∞c (Rn), from the deûnition of Π l as in (1.4), we get that

Π l(gk
s , hk

s ,1 , . . . , hk
s ,m) ∈ Lq′

(Rn
).

Since f ∈ H1(Rn) ∩ L∞c (Rn), we see that f is in Lq′(U), where we use the set U to
denote the support of f . Hence,

∫
Rn
b(x) f (x) dx

is well deûned, since b ∈ Lq
loc(R

n) and hence in Lq(U).
We now deûne

b i(x) = b(x)χ{x∈Rn ∶ ∣b(x)∣≤i}(x), i = 1, 2, . . . .

It is clear that b i(x) → b(x) as i →∞ in the sense of Lq(U). And then we have

∫
Rn
b(x) f (x) dx = lim

i→∞∫Rn
b i(x) f (x) dx

Next, for each i = 1, 2, . . . , we have that

∫
Rn
b i(x) f (x) dx = ∫

Rn
b i(x)

∞

∑
k=1

∞

∑
s=1

λk
s Π l(gk

s , hk
s ,1 , . . . , hk

s ,m)(x) dx

=
∞

∑
k=1

∞

∑
s=1

λk
s ∫Rn

b i(x) Π l(gk
s , hk

s ,1 , . . . , hk
s ,m)(x) dx

=
∞

∑
k=1

∞

∑
s=1

λk
s ⟨b i , Π l(gk

s , hk
s ,1 , . . . , hk

s ,m)⟩

since b i is in L∞(U) and hence is in BMO(Rn), (2.8) holds in H1(Rn) and each
Π l(gk

s , hk
s ,1 , . . . , hk

s ,m)(x) is in H1(Rn) as shown in Proposition 2.3.
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As a consequence, we obtain that

∣⟨b, f ⟩∣ ≤ lim
i→∞

∣ ∫
Rn
b i(x) f (x) dx∣(2.9)

≤ lim
i→∞

∞

∑
k=1

∞

∑
s=1

∣λk
s ∣∣⟨b i , Π l(gk

s , hk
s ,1 , . . . , hk

s ,m)⟩∣

=
∞

∑
k=1

∞

∑
s=1

∣λk
s ∣ lim

i→∞
∣⟨b i , Π l(gk

s , hk
s ,1 , . . . , hk

s ,m)⟩∣,

where the equality above holds, since all the terms are non-negative. Next, since
b i(x) → b(x) as i →∞ in the sense of Lq(V) and Π l(gk

s , hk
s ,1 , . . . , hk

s ,m) is in Lq′(V)

with V the support of Π l(gk
s , hk

s ,1 , . . . , hk
s ,m), we have that

lim
i→∞

⟨b i , Π l(gk
s , hk

s ,1 , . . . , hk
s ,m)⟩ = ⟨b, Π l(gk

s , hk
s ,1 , . . . , hk

s ,m)⟩ ,

which implies that

lim
i→∞

∣ ⟨b i , Π l(gk
s , hk

s ,1 , . . . , hk
s ,m)⟩ ∣ = ∣ ⟨b, Π l(gk

s , hk
s ,1 , . . . , hk

s ,m)⟩ ∣

_is, together with (2.9), yields that

∣⟨b, f ⟩∣ ≤
∞

∑
k=1

∞

∑
s=1

∣λk
s ∣ ∣ ⟨b, Π l(gk

s , hk
s ,1 , . . . , hk

s ,m)⟩ ∣ .

Now, from (2.6), we obtain that

∣⟨b, f ⟩∣ ≤
∞

∑
k=1

∞

∑
s=1

∣λk
s ∣ ∣⟨gk

s , [b, T]l(hk
s ,1 , . . . , hk

s ,m)⟩∣,

which is further controlled by
∞

∑
k=1

∞

∑
s=1

∣λk
s ∣∥ [b, T]l(hk

s ,1 , . . . , hk
s ,m)∥ Lp(Rn)

∥gk
s ∥Lp′(Rn)

≤ ∥[b, T]l ∶ Lp1(Rn
) × ⋅ ⋅ ⋅ × Lpm(Rn

)

Ð→ Lp
(Rn

)∥
∞

∑
k=1

∞

∑
s=1

∣λk
s ∣∥gk

s ∥Lp′(Rn)

m
∏
j=1

∥hk
s , j∥Lp j (Rn)

≤ C∥[b, T]l ∶ Lp1(Rn
) × ⋅ ⋅ ⋅ × Lpm(Rn

) Ð→ Lp
(Rn

)∥∥ f ∥H1(Rn) .

By the duality between BMO(Rn) and H1(Rn) and the density argument, we have
that

∥b∥BMO(Rn) ≈ sup
f ∈H1(Rn)∩L∞c (Rn)∶∥ f ∥H1(Rn)≤1

∣∫
Rn
b(x) f (x)dx∣

≤ C∥[b, T]l ∶ Lp1(Rn
) × ⋅ ⋅ ⋅ × Lpm(Rn

) → Lp
(Rn

)∥.
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