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The purpose of our paper entitled Hierarchical Diagnostic Classification Models: A Family
of Models for Estimating and Testing Attribute Hierarchies (Templin & Bradshaw, 2014) was
two-fold: to create a psychometric model and framework that would enable attribute hierarchies
to be parameterized as dependent binary latent traits, and to formulate an empirically driven
hypothesis test for the purpose of falsifying proposed attribute hierarchies. The methodological
contributions of this paper were motivated by a curious result in the analysis of a real data set
using the log-linear cognitive diagnosis model, or LCDM (Henson, Templin, & Willse, 2009).
In the analysis of the Examination for Certification of Proficiency in English (ECPE; Templin
& Hoffman, 2013), results indicated that few, if any, examinees were classified into four of the
possible eight attribute profiles that are hypothesized in the LCDM for a test of three binary
latent attributes. Further, when considering the four profiles lacking examinees, it appeared that
some attributes must be mastered before others, suggesting what is commonly called an attribute
hierarchy (e.g., Leighton, Gierl, & Hunka, 2004). Although the data analysis alerted us to the
notion that such a data structure might be present, we lacked the methodological tools to falsify
the presence of such an attribute hierarchy. As such, we developed the Hierarchical Diagnostic
Classification Model, or HDCM, in an attempt to fill the need for such tools.

We note that the driving force behind the HDCM is one of seeking a simpler, or more parsi-
monious, solution when model data misfit is either evident from LCDM results or implied by the
hypothesized theories underlying the assessed constructs. As a consequence of the ECPE data
results, we worked to develop a more broadly defined set of models that would allow for empir-
ical evaluation of hypothesized attribute hierarchies. We felt our work was timely, as a number
of methods, both new and old, are now using implied attribute hierarchies to assess examinees
in many large scale analyses—from so-called intelligent tutoring systems (e.g., Cen, Koedinger,
& Junker, 2006) to large scale state assessment systems for alternative assessments using in-
structionally imbedded items (e.g. the Dynamic Learning Maps Alternate Assessment System
Consortium Grant, 2010–2015). Moreover, such large scale analyses are based on tremendously
large data sets, many of which simply cannot fit with the types of (mainly unidimensional) mod-
els often used in current large scale testing situations. Furthermore, newly developed standards in
education have incorporated ideas of learning progressions which indirectly imply the existence
of hierarchically structured attributes (e.g., Progressions for the Common Core State Standards
in Mathematics, Common Core State Standards Writing Team, 2012). In short, the current and
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future needs for educational assessments are faced with inadequate psychometric and statistical
methodology to make valid inferences about such complex multidimensional theories of learning
and knowledge acquisition.

Once we developed the HDCM, we tested for the attribute hierarchy suggested by the LCDM
analysis of the ECPE data. The analysis was meant to be an illustration of the HDCM as an ex-
tension of the LCDM. We concluded for this data set that a model with an attribute hierarchy
was a better fitting model in comparison to the LCDM, although not across all tested models.
We encourage readers to avoid making conclusions about the HDCM as a methodological tool
based on idiosyncrasies of this specific analysis, and, instead, to focus on the results of the sim-
ulation study that provided strong evidence for the HDCM as a viable method for estimating an
examinee’s attribute pattern among a reduced set of attribute patterns imposed by the attribute
hierarchy structure.

Overall, we view the commentary by von Davier and Haberman (2014) as having two signif-
icant and overlapping themes related to our paper and an additional theme on conjunctive models
that, while not applying to our paper, we would like to address. First, and most significantly, does
any data conform to multidimensional psychometric models, including those that are equipped to
feature ordered categorical latent variables? The authors present their skepticism, stating “On a
regular basis, in our experience, either less complex models or alternative specifications of mod-
els fit data as well or even better. . .” (see Introduction section). We view this issue as perhaps
the most critical contemporary issue in our part of the psychometrics community and seek to
broaden the discussion into two parts: (1) whether or not such multidimensional data has existed
in the past or can exist, and (2) whether or not our current psychometric methods are sensitive
enough to capture the multidimensional information in such data. In many respects, part (1) is
analogous to the discussions in the early 20th century between Spearman and Thurston as to
whether multiple factor analysis was necessary. Improving upon part (2) was the motivation for
the development of the HDCM. Second, we seek to address the comments regarding conjunctive
models. Third, and last, we will address the authors’ beliefs regarding naming conventions of
psychometric models.

1. On the Possible Existence of Multidimensional Data

von Davier and Haberman (2014) rely on results from our ECPE data analysis to question
the added “analytic value” of the HDCM as a method (see last sentence of Introduction section).
Their commentary does not attend to the simulation components of the paper that should be used
to guide empirical claims about the model as a method. For example, von Davier and Haberman
(2014) suggest that one should start with the simplest model, instead of using the top-down
approach we suggested. Our suggestion was backed by our simulation results which, for example,
showed that when the estimating measurement model was the simplest possible DCM (i.e., the
DINA model), attribute hierarchies generated from the LCDM could not be identified because
the conjunctive assumptions about attributes masked the attribute hierarchy. Our results indicated
that one should start with the more general LCDM and then compare it to a given HDCM to
statistically test the presence of an attribute hierarchy. Second, in the simulation study, we showed
that if simulated data followed a linear attribute hierarchy, the HDCM always yielded better
model-data fit when compared to a set of unidimensional models, including located latent class
models (LLCMs) with varying numbers of classes and the 2-PL IRT model. This result was not
surprising to us, but it was conducted to refute the claim in the paper’s reviews suggesting the
opposite would occur. This result also provides evidence to refute the claim that there is not a
place for the new HDCM methodology as well as the claim that a model specifying a linear
attribute hierarchy obstructs a more appropriate unidimensional model.
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The ECPE analysis in our paper, like most real data analyses used for DCMs to this point,
required use of data that originally were calibrated using a unidimensional model. As such, the re-
sult that a unidimensional model had the best model-data fit is unsurprising. Although the ECPE
data did not fit with the HDCM, this result does not imply that the HDCM as a method is not of
value. It simply implies that the underlying construct of the ECPE is unidimensional. Moreover,
although we were not aware of the process of constructing the ECPE, common test construc-
tion processes often omit non-conforming or non-fitting items—such is recommended practice
to make limited modifications to improve the fit of the data to the unidimensional model. The
process of omitting such items thereby enforces a subjective reality of unidimensionality onto
the test data and more broadly the construct, whether or not it is true. We view this as a poten-
tial breakdown of methodological tools that happens all too often in large scale psychometric
assessment. Psychometric assessment should not be different from any other statistical method
in that it should be held to the notion that constructs should be viewed as hypotheses that are to
be empirically falsified. That said, we expect in the future, as more tests are designed from the
ground-up to diagnose attributes with dependencies, that we will see real data analyses that do
fit the HDCM better than a unidimensional model; however, for our case, the development of the
methodology preceded the ground-up application.

Even though we feel the idiosyncratic ECPE results are independent of the methodological
contributions of the HDCM, we appreciate that the real data analysis inspired comments which
provided a forum for discussions. In the following sections, we hope to clarify the nature of the
ECPE analyses and illuminate the value of modeling attribute hierarchies—even linear attribute
hierarchies—in a DCM framework in order to further motivate ideation for and exploration of
subsequent research in this area.

2. The Distinction of Guttman Scales and Linear Attribute Hierarchies

We primarily focus our discussion on linear attribute hierarchies in this section. Although
von Davier and Haberman (2014) refer sometimes to attribute hierarchies generally, most of
their claims are pronouncing disagreements under the specific hierarchy condition referred to as
a linear attribute hierarchy (Leighton & Gierl, 2004). A linear attribute hierarchy is one where
attributes are mastered in a specific, sequential order. For example, consider a test that measures
three binary attributes, α1, α2, and α3, such that Attribute 1 must be mastered before Attribute 2
and Attribute 2 must be mastered before Attribute 3. For this test, there exist only four possible
patterns of attribute mastery: [000], [100], [110], and [111]. Suppose the possible patterns of a
linear attribute hierarchy are elements of a set denoted J(p), where p denotes the permutation of
attributes corresponding to the hierarchy in a set of attributes A|A| = {1,2, . . . ,A}, where |A| is
the cardinality of a set A. Then for our three attribute example, the attribute set is denoted by
A3 = {1,2,3} and the linear attribute hierarchy patterns are elements of J(123).

A major premise of von Davier and Haberman’s (2014) claims is that linear attribute hi-
erarchies are isomorphic to Guttman scales; we disagree and will illustrate why there is not
a one-to-one mapping. We seek to show that methodological options other than located latent
class models (LLCM; e.g., Lindsay, Clogg, & Grego, 1991) or unidimensional DCMs, which are
isomorphic to Guttman scales, are needed to model linear attribute hierarchies because of the
possible states of empirical data. von Davier and Haberman (2014) showed that a Guttman scale
given by set G = {0,1,2,3} was one-to-one with set J123 = {[000], [100], [110], [111]} by

⎛
⎜⎜⎝

0 → [000]
1 → [100]
2 → [110]
3 → [111]

⎞
⎟⎟⎠
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The implied isomorphic function f : J → G is f (αa) = ∑|A|
i=1 αi,a for αa ∈ J , where J =

{α1,α2, . . . ,αA+1} and αa = [α1a α2a . . . αAa]. Based on this mapping, authors claim “in a
linear hierarchy there is no information gained by knowing which attribute pattern was observed
given that we know how many attributes are mastered (= “1”)” (see latter part of Hierarchies
of Binary Variables section). Although the authors’ reference to knowing which attribute pattern
indicates an acknowledgement that other patterns exist, their claim is not supported by the iso-
morphic structure provided by f due to the existence of linear attribute patterns other than J123.
In fact, there are |A|! permutations of the elements in set A|A|, which correspond to |A|! possible
linear attribute hierarchies for a set of |A| attributes, meaning Jp ∈ H where |H | = |A|!. For
our three attribute case, set J123 is a member of H = {J123, J132, J213, J231, J321, J312}. Thus,
the following Guttman to linear attribute hierarchy mapping accurately depicts the scenario for
linear attribute hierarchies, and the mapping is not one-to-one:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 → [000]

1 →
⎧⎨
⎩

100 if Jp ∈ {J123, J132}
010 if Jp ∈ {J213, J231}
001 if Jp ∈ {J312, J321}

⎫⎬
⎭

2 →
⎧⎨
⎩

110 if Jp ∈ {J123, J213}
101 if Jp ∈ {J132, J312}
011 if Jp ∈ {J231, J321}

⎫⎬
⎭

3 → [111]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This mapping illustrates the attribute-specific information that is lost if a Guttman scale re-
places a linear attribute hierarchy. For example, in this scenario, reporting to an examinee that he
or she has mastered two of the three attributes (using the Guttman scaling) loses a considerable
amount of information in comparison to reporting to an examinee that he or she has mastered
Attributes 1 and 3, but not Attribute 2 (using the HDCM). In an educational setting, knowing
which two attributes have been mastered provides more information to guide the remediation or
additional instruction a student may need. Thus, in direct opposition to von Davier and Haber-
man’s claim that “the pattern of attributes is not informative, telling only how many attributes
have been mastered” (see latter part of Hierarchies of Binary Variables section), the mapping
above provides a straightforward illustration of the informative nature of knowing which linear
attribute hierarchy exists.

The value in attribute hierarchies that depict an ordered, multidimensional space over uni-
dimensional IRT models or ordered latent class models that depict an ordered, unidimensional
space lies in this very non-isomorphic mapping to Guttman scales. Key to conceptualizing the
difference among a linear attribute hierarchy and a single discrete or continuous trait is (a) the
confirmatory nature of the HDCM analysis and (b) the multidimensional nature of the HDCM
analysis.

Confirmatory Nature. Unlike continuous stages of progress or discrete stages of progress
along a single continuum, attribute profiles in a linear attribute hierarchy are distinguished by a
theoretical construct whose nature is hypothesized prior to the analysis. In a LLCM, quantifiable
differences in the classes are not known beyond knowing that the classes have ordinally different
ability levels with respect to answering the items on the test correctly. Beyond ordering, analysts
are left to explore the meaning of and distinctions among the classes, as is typical in exploratory
latent class analysis. This is true, too, for a multicategory, unidimensional DCM that was shown
in Templin and Bradshaw (2014) to be a particular, constrained version of a LLCM.

In contrast to LLCMs, when linear attribute hierarchies are specified by the HDCM, mastery
of specific sets of traits defines each class. The HDCM is a confirmatory analysis model because
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the attribute classes, as well as the attribute-item alignment, are defined a priori to the analysis.
In that sense, the HDCM can be used to parameterize, and then falsify, hypothesized attribute
structures. To illustrate this difference, consider an elementary math test which measures four at-
tributes thought to form a linear attribute hierarchy. For example Attributes 1–4 may be addition,
subtraction, multiplication and division. An LLCM may order examinees along five categories
of math ability, but there is no statistical structure on the model to suggest the five categories cor-
respond to profiles that can be described by elements of J1234. Without this statistical structure,
inferences based on the results in this way could not be validated inferentially as they could be
in the HDCM. Given the parameterization of the HDCM, an added benefit is that the a priori
conjecture about the attribute hierarchy can be formulated as a testable hypothesis to provide
empirical evidence for or against the theory behind the hierarchy’s form. Conversely, if addition,
subtraction, multiplication and division did not form a linear hierarchy, the LLCM could offer
no statistical evidence against (or for) this conjecture. In this way, the HDCM can help build
theories about the structure among attributes in ways that LLCMs, or IRT models, cannot.

Multidimensional Nature of HDCM. Attributes in a linear attribute hierarchy necessarily
have a strict ordering dependency; however, this does not mean that the attributes are the same
trait or that the attributes should be modeled as a single dimension. A dependency among two
binary attributes may arise for one of two reasons: (1) neither attribute is ever present without the
other, or (2) one attribute may be present without the other, but the other is never present without
the former. As regards the first reason, the attributes may be the same trait, or they are different
traits but the test never presents a situation where one is present without the other. Either way,
they are not separable as attributes in a linear attribute hierarchy for the testing occasion. The
second reason is the case that applies to attributes in a linear hierarchy, and these attributes are in
fact separable traits. For example consider the attribute hierarchy yielding patterns defined by set
J123. Suppose Attribute 1 is the ability to add, Attribute 2 is the ability to multiply, and Attribute 3
is the ability to solve expressions involving exponents. It is reasonable to expect such a hierarchy
where one will have mastered addition before mastering exponents, which would mean that a
student who has mastered exponents and not addition likely will not exist. Thus, in the HDCM,
the profiles [001] and [011] will not be estimated. However, this does not mean that adding and
solving exponents are the same trait. This example may illuminate why we refute this claim by
von Davier and Haberman (2014, see Within Attribute Hierarchies, Conjunctive Attributes Do
Not Exist section), which relies on a unidimensional framework of thinking:

In addition, under the assumption of attribute hierarchies, items are not allowed or at
least are implausible if they require only the higher-order attribute but not include the
lower-order attribute, for—by definition of the hierarchy—the higher-order attribute
cannot be present without the lower-order attribute.

For example, the item requiring students to solve for x in the equation 43 = x measures the ex-
ponent attribute without measuring the addition attribute. However, if Attribute 1 was simply a
lower stage of mastery of Attribute 3, an item could not measure Attribute 3 without Attribute 1.
Nonetheless, the parameterization of the HDCM accounts for the nesting of the mastery of At-
tribute 1 within 3 in the structural model, even if the item only measures Attribute 3 as specified
by the measurement components of the model.

Although we spent most of this section discussing the merits of linear hierarchies, equally,
if not more, important and realistic cases would be non-linear attribute hierarchies which have
complex nesting structures of preceding and following attributes. Such hierarchies are depicted in
Chapter 4 of Rupp, Templin, and Henson (2010) and have been anticipated in many other context,
both in diagnostic psychometric models (see Leighton, Gierl, & Hunka, 2004; Tatsuoka, 2002,
1983) and in machine learning contexts (see Mislevy, Almond, & Yan, 1999; Pardos, Heffernan,
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Anderson, Heffernan, & Schools, 2010). The structure of the HDCM allows for its use beyond
linear hierarchies, by which we believe the value of the HDCM is not only self-evident but is
actually consistent with the values of parsimony espoused by von Davier and Haberman (2014)
in their commentary.

3. On the Conjunctive Nature of Attributes in a Hierarchy

Finally, we feel the section of the commentary rhetorically asking if conjunctive attributes
are uniquely defined is tangential to the HDCM as discussed in our paper. The research cited and
discussed focuses on the DINA model, a model that has long been understood to have identifi-
cation problems that are not present in more general diagnostic models (see Chiu, Douglas, &
Li, 2009 and subsequent forthcoming research). In our paper we showed how if attributes with
compensatory behavior followed a linear hierarchy, a DINA model version of the HDCM with
strict assumptions of conjunctive attribute behavior could not uncover the attribute structure. The
contended situation appears to be when attributes with a strictly conjunctive structure follow a
linear hierarchy. The HDCM provides a parameterization that allows for—though it does not
strictly assume—two (or more) attributes in a linear hierarchy to have a conjunctive structure for
a given item, by the main effect terms for nested attribute(s) being estimated at zero. Although
imposing this parameterization on every item would reduce to equivalence with the DINA model
in the measurement portion of the model, the structural model would still reflect the linear at-
tribute hierarchy structure, theoretically rendering conjunctive item-level behavior of the trait
distinct from hierarchical relationships among the traits. This theory breaks down only for test
designs already known to be problematic for the typical DINA model (DeCarlo, 2011), which is
all together a separate, though practically important, issue.

4. On Evidence of Multidimensional Data

The preceding sections have demonstrated that it is philosophically possible for multidimen-
sional methods to exist and to be different from what is implied by the methods described by von
Davier and Haberman (2014). The next question is whether or not such data may in fact exist. In
our experience, we have found that it is possible to develop multidimensional constructs that are
measured well by models with ordered categorical latent traits. As an example, we participated
in a project to develop a multidimensional assessment of middle grades teachers’ knowledge of
rational numbers (Bradshaw, Izsàk, Templin, & Jacobson, 2014). The constructs measured by
the test developed by this project took a number of years to fully be developed with a great deal
of work by scholars in the field of mathematics education. Beyond the conceptual development,
we needed a set of methodological tools that would allow us to measure multidimensional latent
variables using complex item types with limited information—a set up that called for the use of
diagnostic models such as the LCDM and HDCM. The results of the study suggested multidi-
mensional measurement is plausible, but that the analytic tools used to assess the data must be
sensitive to nuances in multidimensionality, especially in data with limited information.

5. On Naming Conventions of Psychometric Models

Although von Davier and Haberman (2014) note that our choice of model names “obscures
the fact that the original intent failed to fit a model with multiple attributes” (see Unidimensional
Diagnostic Classification Models (DCMs) Are a Misnomer section), we note that our use of such
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model names is consistent with not only naming practices in psychometric research, but also with
naming conventions used by the authors in the commentary. In particular, the references to von
Davier (2011, 2013) noted a recasting of the DINA diagnostic model into a “linear GDM” (see
Are Conjunctive Attributes Uniquely Defined section) where GDM refers to General Diagnostic
Model (a term used by von Davier, 2005) which could also be described by a general latent
class model (e.g. Lazarsfeld and Henry, 1968). Our point in highlighting this is simple: Names
of models provide a language-based context that gives the reader an object to remember when
continuing within a given paper. Ultimately, model names get in the way and are not as easily
extendable as is the general mathematical specification of such models. Our choice of model
names was set in the context of our analysis, as were the choices of von Davier (2011, 2013) and
of many other authors well beyond this topic. We feel we were clear about the relationships of
our models to that of previous models existing in the literature and how they were either more
specific or more general and encourage other authors to be as clear in their approach as well.

6. Conclusion

Like von Davier and Haberman (2014), we will conclude with the thoughts of William of
Occam: “Numquam ponenda est pluralitas sine necessitate,” meaning plurality must never be
posited without necessity (cited in Thorburn, 1918). In the time in which William of Occam
was alive, although scholars held a spherical notation of the Earth, the idea that the Earth was flat
was a belief of many common people. To this day, the International Flat Earth Society exists, in
fact (see http://www.theflatearthsociety.org). That said, the notion of the Earth being flat can be
viewed as a simplistic model that is useful for many tasks, from laying concrete for the foundation
of houses to calculating a rough measure of distance between two relatively close points. For
such tasks, the model of a spherical Earth matters little. Once more complex phenomena are to
be studied, such as astronomy or intercontinental travel, however, the model of a flat Earth is no
longer sufficient. Herein lies the crux of our argument. We built our models under the necessity
of multidimensionality (plurality) because unidimensional models, which may be appropriate in
many contexts, are not fully sufficient to measure multifaceted knowledge structures posited by
learning theorists. Consider for a moment if the only tools one had were their eyes: One might
believe the earth was flat. Similarly, we fear that if the only psychometric tools one has are
unidimensional, one might believe cognition, learning, and understanding was unidimensional.
Thus, we view plurality as a necessity in the pursuit of objective reality.
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