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A second-order random walk on a graph or network is a random walk where transition probabil-
ities depend not only on the present node but also on the previous one. A notable example is the
non-backtracking random walk, where the walker is not allowed to revisit a node in one step. Second-
order random walks can model physical diffusion phenomena in a more realistic way than traditional
random walks and have been very successfully used in various network mining and machine learn-
ing settings. However, numerous questions are still open for this type of stochastic processes. In this
work, we extend well-known results concerning mean hitting and return times of standard random
walks to the second-order case. In particular, we provide simple formulas that allow us to compute
these numbers by solving suitable systems of linear equations. Moreover, by introducing the ‘pull-
back’ first-order stochastic process of a second-order random walk, we provide second-order versions
of the renowned Kac’s and Random Target Lemmas.
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1 Introduction

Random walks on graphs are a key concept in network theory used to model various dynamics
such as user navigation and epidemic spreading [32], to quantify node centrality [33, 34] or to
reveal communities and core–periphery structures [12, 13, 37, 41]. The standard random walk
on a graph considers a hypothetical walker that starting from node i moves to a new node of the
graph choosing it uniformly at random among the neighbours of i. This defines a memoryless
stochastic process which corresponds to a Markov chain on the nodes. However, the process
described by a standard graph random walk is often localised and may fail to capture the under-
lying physical model as well as to fully exploit the global graph structure. For this reason, there
is a growing interest in recent years towards so-called higher-order stochastic processes whose
evolution may depend on past states, including stochastic processes modelled by transition prob-
ability tensors [7, 15] as well as non-local diffusion mappings [10, 14] and non-backtracking
random walks [16].

The latter is one of the best-known examples of second-order stochastic processes, where node
transitions depend on both the current and the previous state spaces as the process is not allowed
to backtrack, i.e. to immediately revisit the previous space in the next step. Non-backtracking
random walks are often more appropriate than classical random walks to model real-world diffu-
sive phenomena on networks where a message-passing or disease-spreading analogy is relevant.
In particular, non-backtracking walks can avoid unwanted localisation effects on the leading
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eigenvector of the adjacency matrix of a graph [20, 23, 28] and their mixing rate, in many cases,
is faster than the one of classical random walks [1, 9]. Furthermore, many computations with
non-backtracking walks have negligible overheads compared to standard approaches [2, 17].

The non-backtracking paradigm is at the basis of several second-order stochastic processes
appearing in recent graph-theoretic, network mining and machine learning literature. For exam-
ple, the mixing time of a clique-based version of the non-backtracking random walk on regular
graphs is studied in [9]. Similarity measures based on second-order random walks are used in
[44] to measure node proximity and improve classical walk-based link prediction and clustering
algorithms. Eigenvalues and eigenvectors of non-backtracking matrices have been shown to pro-
vide remarkable performances in community detection and in various centrality measurements
[2, 23, 39]. The graph embedding generated by the popular node2vec algorithm [18] is based
on a flexible second-order random walk depending on two parameters: one used to control the
likelihood of backtracking (i.e. immediately revisiting a node in the walk) and the other used to
bias the navigation towards or away from the immediately preceding nodes.

In this work, we are concerned with hitting and return times of second-order random walks
on graphs with possibly countably many vertices. Roughly speaking, a hitting time is the first
time at which a stochastic process reaches a given subset of its state space, while a return time
is the first time the process gets back to a given starting state. Hitting and return times are well
understood for Markov chains, which include as a particular case the stochastic process that
describes a standard random walk on a graph. In this case, the state space is given by the set of
nodes and explicit formulas are available to compute mean hitting and return times by means of
suitable systems linear equations which, for finite and connected graphs, have unique solutions.
Moreover, these quantities have numerous applications to, for example, quantify node distances
and similarities. For this reason, they are an important tool to evaluate network cohesion and
node centrality and are at the basis of popular node classification and link prediction algorithms
[26, 31].

In this paper, we extend several results concerning mean hitting and return times of standard
first-order stochastic processes to the second-order setting. In particular, we show that also mean
hitting times of second-order random walks can be obtained from a set of linear equations, which
has potential applications in higher-order classification and link prediction methods [4, 6, 40].
Moreover, we prove that mean return times of second-order random walks coincide with standard
return times of suitably defined random walks in the original graph. In particular, mean return
times for non-backtracking random walks coincide with the usual mean return times in all finite
undirected graphs.

The paper is organised as follows. In Sections 2 and 3, we present the notations used in
this work and some basic results about random walks and second-order random walks, respec-
tively. In Section 4, we introduce mean hitting times and return times for second-order random
walks and we present first results concerning possible ways to compute them numerically via
the solution of systems of linear equations. Our main results are in Section 5. There, we analyse
second-order mean hitting and return times under what we call ‘equilibrium assumption’, corre-
sponding to the condition that the second-order random walk is at the steady state. In particular,
we derive an algebraic relationship between the hitting time matrix for a second-order random
walk and the one corresponding to a standard random walk on the directed line graph of the
original graph. Moreover, we show second-order analogues of the Kac’s and the Random Target
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Lemmas for standard Markov chains. Finally, in Section 6, we illustrate some of the results of
this paper on some real-world examples.

2 Notations and basic results

An oriented graph (or network) is a pair G = (V , E), where V is the vertex (or node) set and E is
the set of oriented edges, i.e., ordered pairs of nodes. We say that (i, j) ∈ E is an edge going from
i to j. From here onward, letters i, j, k denote generic nodes of G, while e, f are used to denote
generic edges of G. Furthermore,

• if e = (i, j) ∈ E, then we set S(e) = i and T(e) = j, the source and terminal node of the edge e;

• for i ∈ V we denote by Ii = {e ∈ E : T(e) = i} and Oi = {e ∈ E : S(e) = i} the
in-neighbourhood and out-neighbourhood of i, respectively. The in-degree and the
out-degree of node i are d−

i = |Oi| and d+
i = |Ii|, respectively.

In the present work, G can have a countably infinite number of nodes. However, we will
assume that G is locally finite, that is, V is possibly infinite but each node has finite in- and
out-degree.

A graph G = (V , E) can be completely described by its (possibly infinite dimensional)
adjacency matrix A = (Aij), defined as

Aij =
⎧⎨⎩1 if (i, j) ∈ E;

0 otherwise.

If the adjacency matrix is symmetric then G is called undirected. Hence, in an undirected graph
each edge (i, j) has its own reciprocal edge ( j, i). In that case we have d−

i = d+
i and this common

value is the degree of node i, denoted as di.
A walk of length m on G is a sequence v0, v1, . . . , vm ∈ V of nodes such that (vi−1, vi) ∈ E for

i = 1, . . . , m. If for all i, j ∈ V there exists a walk from i to j, then the graph G is called strongly
connected.

Finally, the symbols P and E denote the probability and the expectation, respectively. All
vectors used in the text are column vectors, with possibly infinitely many entries. In particular,
the symbol 1 denotes the column vector with all entries equal to 1, the size of which should be
clear from the context.

2.1 Random walks

In this section, we recall from [21, 35] some basic concepts and results in Markov chain theory.
A random walk on G is a sequence of nodes v0, v1, . . . , vk , . . . where vk+1 is chosen at random
between the out-neighbours of vk , according to specified probabilities pi,j := P(vk+1 = j|vk = i)
such that pi,j = 0 if (i, j) /∈ E and

∑
j∈Oi

pi,j = 1 for every i ∈ V . The last condition implies that
d+

i ≥ 1 for every i ∈ V , which will be assumed henceforth. A standard choice for pi,j is pi,j =
1/d+

i , for j ∈Oi. In this case, the random walk is called uniform. Our subsequent discussion is
not restricted to this case.
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A random walk can be viewed as a Markov chain {Yn, n ∈N} with state space V and transition
matrix P with entries Pij = pi,j. Clearly, P is a row-stochastic matrix. The random variable Yn

represents the state of the walker at time n.
For a fixed subset S ⊂ V , we call hitting time to S the random variable TS defined as TS =

min{n ∈N : Yn ∈ S}. In other words, TS is the first time the random walker reaches the subset S,
starting from a given initial state Y0. Based on TS , we can define the hitting probability ϕi→S

from i to S as

ϕi→S = P(TS < +∞|Y0 = i), (2.1)

i.e., the probability that, starting from node i, the random walker ever hits S. When ϕi→S = 1, it
is interesting to compute the average time taken by the random walker to reach S, starting from
i. This quantity is given by

τi→S =E(TS|Y0 = i),

and is called the mean hitting time from i to S. It is well-known that the quantities ϕi→S and τi→S

can be obtained from the solution of certain linear systems, as shown by the next two theorems,
whose proofs can be found in, e.g., [35].

Theorem 2.1. For a graph G = (V , E) and for a subset S ⊂ V, the hitting probabilities {ϕi→S :
i ∈ V} are the minimal non-negative solution of the following linear system:⎧⎨⎩ϕi→S = 1 if i ∈ S

ϕi→S =∑
j∈V Pi,jϕj→S if i /∈ S.

(2.2)

In the previous theorem, minimality of the solution means that if {xi : i ∈ V} is another non-
negative solution of (2.2) then ϕi→S ≤ xi for all i ∈ V .

Theorem 2.2. For a graph G = (V , E) and for a subset S ⊂ V, suppose that ϕi→S = 1 for all
i ∈ V. Then the mean hitting times {τi→S : i ∈ V} are the minimal non-negative solution of the
following linear system: ⎧⎨⎩τi→S = 0 if i ∈ S

τi→S = 1 +∑
j∈V Pi,jτj→S if i /∈ S.

(2.3)

The case of finite graphs is the most usual in applications. In this case, a well-known result
shows that for strongly connected graphs (2.3) has a unique solution, see e.g., Chap. III of [21].
Precisely:

Theorem 2.3. Let G = (V , E) be finite and strongly connected. For any given subset S ⊂ V, all
the hitting probabilities to S are equal to 1 and the linear system (2.3) has a unique solution.

As shown in, e.g., Section 1.3 of [35], if G is either infinite or finite but not strongly connected
then the solution of the equations (2.2) and (2.3) may not be unique, and the minimality condition
is essential for the correct definition of the hitting times and probabilities. It is interesting to note
that equation (2.3) can be written in compact matrix-vector form as follows. Let tS and rS be the
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vectors entrywise defined as follows:

tS
i =

⎧⎨⎩0 i ∈ S

τi→S i /∈ S
rS

i =
⎧⎨⎩τ+

i→S i ∈ S

0 i /∈ S,
(2.4)

where the numbers τ+
i→S are defined as

τ+
i→S = 1 +

∑
j∈V

Pi,jτj→S , (i ∈ S) . (2.5)

Then, the vector tS solves the singular equation

(I − P)x = 1− rS . (2.6)

In particular, among the infinitely many solutions x of this equation, the vector tS is the one char-
acterised by the condition tS

i = 0 for i ∈ S. The quantities (2.5) are called mean return times and
represent the average number of steps required to return to S after leaving it from i ∈ S. Indeed,
if we consider the random variable T+

S = min{n ≥ 1 : Yn ∈ S}, then it holds τ+
i→S =E(T+

S |Y0 = i).
The special case when S is a singleton deserves a special attention, and we adopt the simplified
notation τi =E(T+

i |Y0 = i). This quantity is called mean return time to i.
When G is finite and strongly connected, by means of the Perron–Frobenius theorem (see,

e.g., [29]), we can conclude that the random walk {Yn, n ∈N} admits a unique positive invariant
distribution, i.e., a vector π > 0 such that πT1= 1 and πT P = πT . More generally, when V is
countable, the same conclusion holds true if and only if the associated Markov chain is irre-
ducible and positive recurrent, that is, τi is finite for at least one i ∈ V , see e.g., Thm. 21.12 of
[25] or Thm. 1.7.7 of [35]. The latter property also implies that all hitting probabilities (2.1) are
equal to 1 and all hitting times are finite.

With the help of the invariant distribution, we can obtain an explicit formula for the mean
return time to a set S ⊂ V ,

τS =E(T+
S |Y0 ∈ S)

=
∑
i∈S

P(Y0 = i|Y0 ∈ S)E(T+
S |Y0 = i) = 1∑

j∈S πj

∑
i∈S

πiτ
+
i→S .

This number quantifies the average number of steps taken by a random walker initially placed
in S to hit again S, given that its probability of being in node i is proportional to πi. Indeed, the
number πi/

∑
j∈S πj gives the conditional probability that the random walker is in i given that it

is in S. The average return time τS can be computed by means of Kac’s Lemma, see e.g., [19] or
Lemma 21.13 of [25]:

Lemma 2.4. Let π be the stationary density of an irreducible Markov chain on the state space
V. Then for any S ⊂ V,

τS = 1∑
i∈S πi

.

In particular, τi = 1/πi for every i ∈ V.
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If G is finite then the mean hitting times fulfill the so-called Random Target Lemma, see e.g.,
Lemma 10.1 of [25].

Lemma 2.5. Let P be irreducible, and let π be its stationary density. Then, there exists a constant
κ such that ∑

j∈V

πjτi→j = κ ,

independently of i ∈ V.

The number κ = κ(P) appearing in the preceding Lemma is the renowned Kemeny’s constant
of P. This constant quantifies the expected number of steps to get from node i to a node j, selected
randomly according to the stationary density.

Introducing the matrix T = (τi→j), whose ij-th entry is the mean hitting time from i to j, the
claim of Lemma 2.5 can be compactly expressed via the identity Tπ = κ1. Since the j-th column
of T fulfills equation (2.6) with S = { j}, using Lemma 2.4 it is not difficult to verify that this
matrix solves the equation

(I − P)T = 11T − Diag(π )−1, (2.7)

where Diag(π ) is the diagonal matrix with diagonal entries given by the entries of the vector π .
Actually, the matrix T is the unique solution of (2.7) with zero diagonal entries.

We conclude this review on random walks with a technical lemma of independent interest
and that will be useful for later. This result shows that, apart from a constant term, the vector tS

defined in (2.4) can be expressed by a convex linear combination of the vectors {ti, i ∈ S}. Hence,
mean access times to a subset can be computed from mean access times to the single elements of
the set.

Lemma 2.6. For any fixed subset S ⊂ V there exist positive coefficients β and {αi}, for i ∈ S,
such that

∑
i∈S αi = 1, and

tS =
∑
i∈S

αit
i − β1.

In particular, τi→S =∑
j∈S αjτi→j − β for every i ∈ V.

Proof. Consider the vector a = (αi)i∈V with entries

αi =
⎧⎨⎩0 i /∈ S

πiτ
+
i→S i ∈ S.

(2.8)

By (2.6), we have

0 = πT (I − P)tS = πT (1− rS) = 1 −
∑
i∈S

πiτ
+
i→S .

Hence,
∑

i αi =∑
i∈S πiτ

+
i→S = 1. Moreover, from (2.7) we derive

(I − P)Ta = (11T − Diag(π )−1)a = 1(1T a) − rS = 1− rS .
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This proves that the difference Ta − tS belongs to the kernel of I − P, that is,
∑

i∈S αiti − tS = β1

for some β ∈R. Considering the k-th entry of this identity for k ∈ S, we have

β =
∑
i∈S

αiτk→i − tS
k =

∑
i∈S

αiτk→i > 0,

and the proof is complete. �

3 Second-order random walks

A second-order random walk on a graph G = (V , E) is a walk v0, v1, . . . , vk , . . . where the prob-
ability of choosing vk+1 depends not only on vk but also on vk−1. More precisely, we describe
this random walk by means of a stochastic process {Xn, n ∈N}, where Xn ∈ V represents the node
where the walker is located at time n. Hence, there exists constant probabilities pi,j,k such that,
for n ≥ 0

P(Xn+2 = k|Xn+1 = j, Xn = i) = pi,j,k , (3.1)

if (i, j) and (j, k) are in E, while P(Xn+2 = k|Xn+1 = j, Xn = i) = 0, otherwise. We additionally
assume that there are specific probabilities p′

i,j for the first transition, that is,

P(X1 = j|X0 = i) = p′
i,j (i, j) ∈ E. (3.2)

A second-order random walk is not a Markov chain because it does not fulfill the Markov
condition, as we need to remember the previous step in order to take the next step. However,
it can be turned into a Markov chain by changing the state space from the vertices of the graph
to the directed edges. More precisely, let Ĝ = (V̂ , Ê) be the (directed) line graph of G = (V , E),
where V̂ = E and (e, f ) ∈ Ê if and only if T(e) = S(f ). Then, the second-order random walk can be
seen as a (first-order) walk on Ĝ, that is, a sequence of directed edges e0, e1, . . . , ek , . . . where
v0 = S(e0) and vi = S(ei) = T(ei−1), for n ≥ 1. However, we must keep in mind that a walk of
length m in G corresponds to a walk of length m − 1 in Ĝ.

For n ≥ 0 consider the random variable Wn ∈ E defined as

Wn = (i, j) ⇐⇒ Xn+1 = j, Xn = i. (3.3)

On the basis of (3.1) and (3.2), the sequence {Wn} is a Markov chain with initial distribution
P(W0 = (i, j)) = P(X0 = i)p′

i,j and transition matrix P̂ given by P̂(i,j)(j,k) = pi,j,k . Hence, if (e, f ) ∈
Ê then P̂ef ≥ 0 while P̂ef = 0 if (e, f ) /∈ Ê. Note that we allow the case P̂ef = 0 for some pair
(e, f ) ∈ Ê, which may occur in some special circumstances, notably the non-backtracking random
walk on G, see Example 3.2 below.

We remark that, as for standard first-order random walks on graphs, the second-order stochas-
tic process defined by (3.1) relies on the underlying graph structure. As such, the assumption on
the first transition probabilities in (3.2) is a necessary requirement. Different choices of pij

′ may
impact the long-term behaviour of the process, as we will show in Section 5. In particular, we
emphasise that, depending on the graph structure, this model may differ from a general second-
order Markov chain as defined in, e.g., [5, 15, 42], whilst the two models always coincide when
G is the complete graph. For example, Raftery’s Mixture Transition Distribution model [36] and
its variants, such as the LAMP [24] and RHOMP [43] models, are not second-order random
walks as per the above definition since they allow transitions that do not correspond to edges
in G. While adhering to the graph structure may limit the generality of the model in (3.1), we
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observe below that several well-known stochastic processes from the graph literature are indeed
of the form we consider here.

Example 3.1. The uniform random walk on Ĝ is the Markov chain governed by the transition
matrix P̂,

P̂ef =
⎧⎨⎩1/d+

S(f ) S(f ) = T(e)

0 otherwise.

As P̂ef do not depend on S(e), the corresponding stochastic process on G is the uniform random
walk where Pij = P(Xn+1 = j|Xn = i) = 1/d+

i . If G is undirected, then P̂ is bi-stochastic.

Example 3.2. The Hashimoto graph of G = (V , E) is the (directed) graph H= (VH, EH) where
VH = E and (e, f ) ∈ EH if and only if both T(e) = S(f ) and T(f ) �= S(e). A random walk on the
Hashimoto graph is obviously related to a non-backtracking random walk on G. We can look at a
random walk on H as a weighted random walk on the directed line graph Ĝ = (V̂ , Ê) by applying
a null weight on the edges (e, f ) ∈ Ê such that T(f ) = S(e). The corresponding transition matrix
P̂ is defined as follows. If e = (i, j) and A is the adjacency matrix of G, then

P̂ef =
⎧⎨⎩1/(d+

j − Aji) S(f ) = j and i �= T(f )

0 otherwise.
(3.4)

A directed edge e = (i, j) ∈ E such that Oj = {(j, i)} is called dangling. The stochasticity condition∑
f ∈E P̂ef = 1 implies that no edge in G is dangling, otherwise the out-degree of the correspond-

ing node in H would be zero. Hence, the non-backtracking random walk on G is well defined if
(and only if) d+

i ≥ 1 for i ∈ V and there are no dangling edges. Finally, we recall from, e.g., [22]
that, if G is undirected then P̂ is bi-stochastic.

Example 3.3. Let P̂(1) and P̂(0) be the stochastic matrices defined in the Example 3.1 and
Example 3.2, respectively. For any α ∈ (0, 1), the matrix P̂(α) = αP̂(1) + (1 − α)̂P(0) is stochas-
tic (bi-stochastic, if G is undirected). The corresponding Markov chain describes random walks
in G where backtracking steps are not completely eliminated, but rather the probability of per-
forming one such step is downweighted by a factor depending on α. Thus, the corresponding
second-order process can be called a backtrack-downweighted random walk. Combinatorial
aspects of this kind of walks are addressed in, e.g., [3].

Remark 3.4. The Markov chain {Wn} defined by (3.3) may not be irreducible even if G is strongly
connected. For example, if G is an undirected graph consisting of a cycle, then the Hashimoto
graph of G is not connected, and the matrix P̂ built as in Example 3.2 is reducible. However,
the matrix P̂(α) defined in Example 3.3 is irreducible in the sole assumption that G is strongly
connected.

4 Second-order mean hitting times

In this section, we introduce the concept of mean hitting time for the second-order random walk
{Xn, n ∈N} defined by (3.1) and (3.2) and we give results analogous to Theorems 2.1 and 2.2 for
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it. For each node k ∈ V , let T̃k be the random variable counting the first time the process arrives
at node k,

T̃k = min{n ≥ 0 : Xn = k}.
The aim of this section is to compute the corresponding mean second-order hitting time τ̃i→k =
E
(
T̃k|X0 = i

)
, i.e., how many steps are required by a second-order random walk on average to

reach k, starting from i. To this goal, we first compute the mean second-order hitting times to a
node k, given both the first and the second node,

τ̃i,j→k =E(T̃k|X1 = j, X0 = i) , (4.1)

and then we use these values to compute τ̃i→k by means of the formula

τ̃i→k =E
(
T̃k|X0 = i

)
=
∑
j∈V

P(X1 = j|X0 = i)E(T̃k|X1 = j, X0 = i) =
∑
j∈V

p′
ijτ̃i,j→k . (4.2)

The above formula shows that, unlike mean hitting times for Markov chains, second-order
mean hitting times depend on the choice of the first transition probabilities, as defined in
(3.2). In the sequel, we will see that there is a quite natural choice for these probabilities.
On the other hand, the finiteness of the numbers τ̃i,j→k , which is essential for the finiteness
of second-order hitting times, is not influenced by the values of the probabilities p′

ij. Indeed,
in an infinite network it can happen that P(T̃k=+∞|X1 = j, X0 = i) > 0 for some (i, j) ∈ E and
k ∈ V . For example, this happens when P̂ is the transition matrix of the uniform random walk
on Ĝ and this chain is transient. In this case, τ̃i,j→k = +∞ because τ̃i,j→k is the expectation of
a random variable that is equal to +∞ with positive probability. For this reason, we first com-
pute ϕi,j→k = P(T̃k<+∞|X1 = j, X0 = i), the probability that, starting with X0 = i and X1 = j, the
random walker reaches k in finite time. For these quantities, the following result holds:

Theorem 4.1. For all k ∈ V, {ϕi,j→k : (i, j) ∈ E} is the minimal non-negative solution of the
following linear system: ⎧⎨⎩ϕi,j→k = 1 if i = k or j = k

ϕi,j→k =∑
�∈V pi,j,�ϕj,�→k otherwise.

(4.3)

Proof. We first show that {ϕi,j→k : (i, j) ∈ E} solves the linear system (4.3). Let us consider an
edge (i, j) ∈ E. If i = k then X0 = k, so T̃k = 0; if j = k then X1 = k and T̃k = 1. In both cases, it
immediately follows that ϕi,j→k = P(T̃k<+∞|X1 = j, X0 = i) = 1. In the other cases, we have

ϕi,j→k = P(T̃k<+∞|X1 = j, X0 = i)

=
∑
�∈V

P(X2 = �|X1 = j, X0 = i)P(T̃k < +∞|X2 = �, X1 = j, X0 = i)

=
∑
�∈V

pi,j,�ϕj,�→k ,
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that is, (4.3). Now let {xi,j : (i, j) ∈ E} be another non-negative solution of (4.3) for a fixed k. We
show that xi,j ≥ ϕi,j→k for all (i, j) ∈ E. Indeed, if i = k or j = k then xi,j = ϕi,j→k and the claim
follows. Otherwise, for i, j �= k we have xi,j = pi,j,k +∑

� �=k pi,j,�xj,l. Let �0 = i and �1 = j. For any
n̄ ≥ 2, we have

x�0,�1 = p�0,�1,k +
∑
�2 �=k

p�0,�1,�2x�1,�2

= p�0,�1,k +
∑
�2 �=k

p�0,�1,�2

[
p�1,�2,k +

∑
�3 �=k

p�1,�2,�3 x�2,�3

]
= . . .

=
n̄∑

n=1

[ ∑
�2,. . .,�n �=k

n∏
t=2

p�t−2,�t−1,�n

]
p�n−1,�n,k +

∑
�2,. . .,�n̄+1 �=k

n̄+1∏
t=2

p�t−2,�t−1,�t x�t−1�t

≥
n̄∑

n=1

[∑
�2 �=k

· · ·
∑
�n �=k

n∏
t=2

p�t−2,�t−1,�n

]
p�n−1,�n,k ,

where we used the inequality x�t−1�t ≥ 0 and the empty sum (i.e., the square bracket in the n = 1
case) must be considered equal to 1. Observe that for n = 1, 2, 3, . . .[∑

�2 �=k

· · ·
∑
�n �=k

n∏
t=2

p�t−2,�t−1,�n

]
p�n−1,�n,k = P(T̃k = n + 1|X1 = j, X0 = i).

Hence, we have xi,j ≥ P(T̃k ≤ n̄ + 1|X1 = j, X0 = i). Finally,

xi,j ≥ lim
n̄→+∞ P(T̃k≤n̄ + 1|X1 = j, X0 = i)

= P(T̃k<+∞|X1 = j, X0 = i) = ϕi,j→k

and the claim follows. �

On the basis of the preceding theorem, we can compute the probability that the second-order
process {Xn} hits a node k ∈ V in a finite number of steps.

Corollary 4.2. For any fixed k ∈ V define ϕi→k = P(T̃k < +∞|X0 = i). Then, the vector (ϕi→k)i∈V

is the vector (ϕi,j→k)(i,j)∈E premultiplied by the matrix M ∈R
|V |×|E| given by

Mie =
⎧⎨⎩p′

i,j e = (i, j) ∈ E

0 else.
(4.4)
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Proof. By elementary considerations, we have

ϕi→k = P(T̃k < +∞|X0 = i)

=
∑
j∈V

P(X1 = j|X0 = i)P(T̃k<+∞|X1 = j, X0 = i) =
∑
j∈V

p′
i,jϕi,j→k .

�

In a similar way, we can compute the second-order mean hitting times, as shown in the next
theorem:

Theorem 4.3. In the previous notation, if ϕi,j→k = 1 for each (i, j) ∈ E, then {̃τi,j→k : (i, j) ∈ E} is
the minimal non-negative solution of the following linear system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

τ̃i,j→k = 0 if i = k

τ̃i,j→k = 1 if j = k and i �= k

τ̃i,j→k = 1 +∑
�∈V pi,j,�τ̃j,�→k if i �= k and j �= k.

(4.5)

Proof. We first show that {̃τi,j→k : (i, j) ∈ E} is a solution of the linear system (4.5). Let (i, j) ∈ E.
If i = k then P(T̃k=0|X1 = j, X0 = i) = 1 and τ̃i,j→k = 0. If j = k then P(T̃k=1|X1 = j, X0 = i) = 1
and τ̃i,j→k = 1. Otherwise, if both i �= k and j �= k then, by using the definition of expectation we
obtain

τ̃i,j→k =E(T̃k|X1 = j, X0 = i)

= 2P(T̃k=2|X1 = j, X0 = i) +
∑
n≥3

nP(T̃k = n|X1 = j, X0 = i).

Now we observe that P(T̃k = 2|X1 = j, X0 = i) = P(X2 = k|X1 = j, X0 = i) = pi,j,k . Then τ̃i,j→k is
given by

τ̃i,j→k = 2pi,j,k +
∑
n≥3

n
∑
� �=k

P(X2 = �|X1 = j, X0 = i)P(T̃k = n|X2 = �, X1 = j)

= 2pi,j,k +
∑
� �=k

pi,j,�

∑
n≥3

n P(T̃k = n|X2 = �, X1 = j)

= 2pi,j,k +
∑
� �=k

pi,j,�

∑
m≥2

(m + 1)P(T̃k = m|X1 = �, X0 = j).

Finally, since
∑

m≥2 mP(T̃k = m|X1 = �, X0 = j) = τ̃j,�→k and
∑

m≥2 P(T̃k = m|X1 = �, X0 = j) = 1
for � �= k, we have

τ̃i,j→k = 2pi,j,k +
∑
� �=k

pi,j,� (̃τj,�→k + 1)

https://doi.org/10.1017/S0956792522000213 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000213


Hitting times for second-order random walks 653

= 2pi,j,k +
∑
� �=k

pi,j,�τ̃j,�→k +
∑
� �=k

pi,j,�

= 1 + pi,j,k +
∑
� �=k

pi,j,�τ̃j,�→k = 1 +
∑
�∈V

pi,j,�τ̃j,�→k ,

where in the last passages we have used the fact that
∑

�∈V pi,j,� = 1. �

Now let {yi,j : (i, j) ∈ E} be another non-negative solution of (4.5). We show that yi,j ≥ τ̃i,j→k

for all (i, j) ∈ E. If i = k or j = k, then yi,j = τ̃i,j→k and the claim follows.
For i, j �= k, we have yi,j = 1 + pi,j,k +∑

� �=k pi,j,�yj,l. Now, let �0 = i and �1 = j. For any n̄ ≥ 2,
we have

y�0,�1 = 1 + p�0,�1,k +
∑
�2 �=k

p�0,�1,�2 y�1,�2

= 1 + p�0,�1,k +
∑
�2 �=k

p�0,�1,�2

[
1 + p�1,�2,k +

∑
�3 �=k

p�1,�2,�3 y�2,�3

]
= . . .

=
n̄∑

n=1

[ ∑
�2,. . .,�n �=k

n∏
t=2

p�t−2,�t−1,�n

](
1 + p�n−1,�n,k

)+
∑

�2,. . .,�n̄+1 �=k

n̄+1∏
t=2

p�t−2,�t−1,�t y�t−1,�t

≥
n̄∑

n=1

[ ∑
�2,. . .,�n �=k

n∏
t=2

p�t−2,�t−1,�n

](
1 + p�n−1,�n,k

)
,

where the empty sum (i.e., the square bracket when n = 1) must be considered equal to 1 and the
last inequality holds since y�t−1,�t ≥ 0. Rearranging terms,

y�0,�1 ≥ 1 +
∑
�2

p�0,�1,�2 +
n̄∑

n=3

∑
�2 �=k

· · ·
∑

�n−1 �=k

∑
�n

n∏
t=2

p�t−2,�t−1,�n

=
n̄∑

n=1

P(T̃k ≥ n|X1 = j, X0 = i)

≥
n̄∑

n=1

n P(T̃k = n|X1 = j, X0 = i).

Finally, passing to the limit n̄ → ∞, we obtain

yi,j ≥
∞∑

n=1

n P(T̃k = n|X1 = j, X0 = i) =E(T̃k|X1 = j, X0 = i) = τ̂i,j→k ,

and the proof is complete.
As in the first-order case, if G is finite and strongly connected then a result analogous to

Theorem 2.3 holds true and the solution of the linear systems (4.3) and (4.5) is unique. If the state
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space is countable or G is not strongly connected, then uniqueness can be lost. This motivates
the minimality condition in Theorems 4.1 and 4.3.

Analogously to the argument of Corollary 4.2, we obtain the following characterisation for the
second-order hitting times directly from equation (4.2).

Corollary 4.4. For any fixed k ∈ V, the vector (̃τi→k)i∈V coincides with the vector (̃τi,j→k)(i,j)∈E

pre-multiplied by the matrix M in (4.4).

4.1 Mean hitting times via directed line graph

The linear system in Theorem 4.3 allows us to compute second-order mean hitting times by
means of the transition probabilities of the stochastic process {Xn, n ∈N}. In this section, we
show that, for finite graphs, one can also characterise the second-order mean hitting times using
another system of linear equations. This system is obtained using the fact that to any second-order
random walk {Xn} on G corresponds a suitable random walk {Wn} on the directed line graph Ĝ,
as in (3.3). The two walks have the same transition probability, but the second is shorter than the
first by one step. By correcting this discrepancy, we can obtain mean hitting times for {Xn} from
those for {Wn}.

To this end, for any fixed subset S ⊂ E, consider the random variables

T̂S = min{n ≥ 0 : Wn ∈ S}, T̂+
S = min{n ≥ 1 : Wn ∈ S},

and the corresponding expectations

τ̂e→S =E(TS|W0 = e), τ̂+
e→S =E(T+

S |W0 = e). (4.6)

These quantities can be computed by means of the techniques recalled in Section 2.1, since {Wn}
is a classical Markov chain. The theorem below shows how mean hitting (4.6) for {Wn} relate to
the solution of the linear system in (4.5). It follows that the problem of computing second-order
mean hitting times in G can be expressed as the problem of computing traditional mean hitting
times in Ĝ.

Let us consider a node k ∈ V . By Theorem 2.2, {τ̂e→Ik : e ∈ E} is the minimal non-negative
solution of the following linear system:⎧⎨⎩τ̂e→Ik = 0 if e ∈ Ik

τ̂e→Ik = 1 +∑
f ∈E P̂ef τ̂f →Ik if e /∈ Ik .

(4.7)

Theorem 4.5. In the previous notation, it holds

τ̃i,j→k =
⎧⎨⎩0 if i = k

τ̂(i,j)→Ik + 1 if i �= k.

Proof. We show that each non-negative solution of (4.7) corresponds to a non-negative solution
of (4.5) and vice versa. Let {zi,j : (i, j) ∈ E} be a non-negative solution of (4.7). For all (i, j) ∈ E,
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we define yi,j as

yi,j =
⎧⎨⎩0 if i = k

zi,j + 1 if i �= k.

Then {yi,j : (i, j) ∈ E} is a non-negative solution of (4.5). In fact, if j = k but i �= k then yi,j = 1. On
the other hand, when i �= k and j �= k we have

yi,j = 1 + zi,j = 1 +
(

1 +
∑
�∈V

P̂(i,j)(j,�)zj,�

)
= 1 +

∑
�∈V

P̂(i,j)(j,�)(1 + z�,m) = 1 +
∑
�∈V

pi,j,� yj,�.

In the previous passages, we used the fact that P̂ is stochastic and P̂(i,j)(�,m) = 0 if � �= j.
Conversely, if {yi,j : (i, j) ∈ E} is a non-negative solution of (4.5), then yi,j ≥ 1 if i �= k. Thus, if we
put, for all (i, j) ∈ E,

zi,j =
⎧⎨⎩0 if i = k

yi,j − 1 if i �= k,

then {zi,j : (i, j) ∈ E} is a non-negative solution of (4.7). The thesis follows by considering the
minimal non-negative solution of both systems. �

4.2 Second-order mean return times

In this section, we formulate the concept of return time for second-order random walks and we
give an explicit formula for their computation in arbitrary networks, whenever the numbers τ̃i,j→k

can be computed from (4.5). For a set S ⊂ V , consider the random variable

T̃+
S = min{n ≥ 1 : Xn ∈ S}.

We are interested in computing the second-order mean return time to S, namely, τ̃S =E(T̃+
S |

X0 ∈ S). This quantity represents the average number of steps that are required to reach again
S, starting from a node in S and moving through the vertices of G according to a second-order
random walk. For simplicity, in this section, we limit ourselves to the single-node case S = {i}.
We will go back to the general case in Section 5.1. Firstly, we observe that

τ̃i =E(T̃+
i |X0 = i) =

∑
j∈V

P(X1 = j|X0 = i)E(T̃+
i |X1 = j, X0 = i).

Introducing the auxiliary notation τ̃i,j =E(T̃+
i |X1 = j, X0 = i), we obtain

τ̃i =
∑

j

p′
i,jτ̃i,j. (4.8)

The intuition behind this formula is that the random walker chooses at first an out-neighbour j of
i at random and then follows a second-order random walk that ends with node i. In fact, τ̃i,j can
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be easily computed by using the vector {̃τi,j→k : (i, j) ∈ E} obtained from (4.5). Indeed, it holds

τ̃i,j =
∑
k∈V

P(X2 = k|X1 = j, X0 = i)E(T̃+
i |X2 = k, X1 = j, X0 = i)

=
∑
k∈V

pi,j,k
(
1 +E(T̃i|X1 = k, X0 = j)

)
= 1 +

∑
k∈V

pi,j,k τ̃j,k→i.

Placing the formula above into (4.8) yields

τ̃i = 1 +
∑
j,k∈V

p′
i,jpi,j,k τ̃j,k→i.

This identity represents the second-order counterpart of equation (2.5) in the case where S = {i}.
Here, the first transition probabilities p′

i,j are needed to specify the initial distribution of the
second-order process. In the sequel, we propose to adopt a specific choice for the numbers p′

i,j

that allows us to obtain a result for any S ⊂ V analogous to Lemma 2.4.

5 The pullback of a second-order random walk

From now on, we suppose that the Markov chain associated to P̂ is ergodic, so that there exists
a (unique) vector π̂ > 0 with π̂T P̂ = π̂T . In this case, we can consider the additional assumption
that the random walk {Wn} on Ĝ is at equilibrium, i.e., P(Wn = e) = π̂e, for n ≥ 0. Indeed, if the
Markov chain {Wn} is at the stationary state, then, owing to the correspondence between the
events Xn+1 = i and Wn ∈ Ii for n ≥ 0, the analysis of the process {Xn} is simplified and reveals
new properties.

For every e ∈ E, define

λe = π̂e∑
f :T(f )=T(e) π̂f

. (5.1)

The numbers λe appearing in (5.1) have a simple probabilistic interpretation, namely λe =
P(Wn = e|Wn ∈ IT(e)) is the conditional probability that the random walker in Ĝ is in e, given
that they are also in IT(e). Moreover, let L ∈R

|V |×|E| be the “lifting” matrix defined as follows:

Lie =
⎧⎨⎩λe T(e) = i

0 else,
(5.2)

Note that the scalars λe fulfill the condition∑
e∈Ii

λe = 1, i = 1, . . . , n.

This condition implies that L is stochastic, L1= 1. If p is a probability vector on the nodes of G,
then p̂T = pT L is a probability vector defined on the edges, and fulfills the identity pi =∑

e∈Ii
p̂e.
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Furthermore, let R ∈R
|E|×|V | be the ‘restriction’ matrix

Rei =
⎧⎨⎩1 if T(e) = i

0 else.
(5.3)

Given any probability distribution p̂ on the edges of G, the product pT = p̂T R defines a probability
distribution on the nodes such that pi =∑

e∈Ii
p̂e. We note in passing that the product LR is the

identity in R
n.

Theorem 5.1 relates the stationary distributions of P̂ and P = LP̂R for suitable choices of the
initial transition probabilities (3.2), generalising to second-order processes a known property of
the non-backtracking random walk on undirected graphs, see e.g. [22, Thm. 2] (see also Example
5.3 below).

Theorem 5.1. Let P = LP̂R ∈R
n×n,

Pij =
∑
e∈Ii

∑
f ∈Ij

λeP̂ef . (5.4)

Then, P is an irreducible stochastic matrix. Assuming that the Markov chain {Wn} is at equilib-
rium with stationary density π̂ , then also {Xn} is at equilibrium with stationary density πT = π̂T R
and, for n ≥ 1,

Pij = P(Xn+1 = j|Xn = i).

Moreover, the initial transition probabilities (3.2) are

p′
i,j = π̂(i,j)∑

f ∈Oi
π̂f

, (i, j) ∈ E, (5.5)

and the vector πT = π̂T R is the (unique) invariant vector of the Markov chain associated to P.

Proof. First, note that the matrix P is non-negative and stochastic. To prove that P is irreducible,
let i, j ∈ V be arbitrary. Owing to the irreducibility of P̂, for any e ∈ Ii and f ∈ Ij there is a path in
Ĝ from e to f . Let e = e0, e1, . . . , em = f be such path. Then, the sequence T(e0), T(e1), . . . , T(em)
is a path in G from i to j. �

Thus, owing to the correspondence between Xn+1 = i and Wn ∈ Ii, we have

P(Xn+1 = j|Xn = i) = P(Wn ∈ Ij|Wn−1 ∈ Ii)

=
∑
e∈Ii

∑
f ∈Ij

P(Wn = f |Wn−1 = e)P(Wn−1 = e|Wn−1 ∈ Ii)

=
∑
e∈Ii

∑
f ∈Ij

P̂ef λe = Pij

for any n ≥ 1. Moreover, consider the vector πT = π̂T R. In detail,

πi =
∑
e∈Ii

π̂e > 0, i = 1, . . . , n. (5.6)
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To prove that π is an invariant vector of P, first observe that π̂T RL = π̂ . Indeed, owing to (5.1),
for any fixed e ∈ E, we obtain

(π̂T RL)e = λe

∑
f :T(f )=T(e)

π̂f = π̂e.

Moreover, πT1= π̂T R1= π̂T1= 1, eventually yielding

πT P = π̂T RLP̂R = π̂T P̂R = π̂T R = πT .

To complete the proof, it is sufficient to observe that, if {Wn} is at equilibrium then also {Xn} is
at equilibrium and

π̂(i,j) = P(W0 = (i, j)) = P(X1 = j, X0 = i)

= P(X1 = j|X0 = i)P(X0 = i) = p′
i,j

∑
f ∈Ii

π̂f .

Thus, p′
i,j = π̂(i,j)/

∑
f ∈Ii

π̂f . Finally, as
∑

f ∈Ii
π̂f =∑

f ∈Oi
π̂f , we obtain (5.5), which concludes

the proof.
We call the matrix P in (5.4) the pullback of P̂ on G. Note that these two matrices correspond

to two different stochastic processes, as briefly pointed out in Remark 5.2 below. Moreover, as
we may expect, we remark that the pullback operation is not injective, as different stochastic
processes on Ĝ may have the same pullback in G. This is shown by the Example 5.3 below,
where the classic and non-backtracking processes are shown to have the same pullback.

Remark 5.2. As shown in Theorem 5.1, the entries of the pullback matrix P correspond to first-
order transition probabilities of the stochastic process {Xn}. However, this does not mean that
{Xn} is a Markov chain, which would be true if (and only if) the sequence {Xn} were to satisfy the
Markov condition P(Xn+1 = k|Xn = j) = P(Xn+1 = k|Xn = j, Xn−1 = i), for every (i, j), (j, k) ∈ E,
at least under the considered assumptions. On the other hand, Equation (5.4) yields

Pij =
∑

(h,i)∈E

λ(h,i)ph,i,j,

that is, Pij is a convex combinations of the numbers ph,i,j. Consequently, the Markov condition
holds true if and only if the second-order transition probabilities (3.1) are independent of the
oldest state, in which case {Xn} is trivially a Markov chain.

Actually, the construction of P from P̂ is reminiscent of a so-called lumping of {Wn}, see e.g.,
[38] and [21, Sec. 6.3-4]. Lumping methods are known to allow the construction of Markov
chains with a reduced number of states from certain finite Markov chains with a larger states
set. The corresponding transition matrices are related by an identity similar to the one defining
P from P̂ in Theorem 5.1. However, the process {Xn} is not a lumping of {Wn} since it is not a
Markov chain, even when at equilibrium. This is the reason why second-order mean hitting times
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differ ostensibly from mean hitting times corresponding to P, as shown in various numerical
experiments in Section 6.

Example 5.3. Let G be undirected and (strongly) connected, with adjacency matrix A, and let
Ĝ be its line graph. Consider the random walk on Ĝ defined as in Example 3.1, with transition
matrix P̂. It is not hard to verify that the pullback of P̂ on G coincides with the transition matrix
of the standard random walk on G. The same conclusion is true also for the matrix P̂ considered
in Example 3.2. Indeed, if Aij = 0 then

(LP̂R)ij =
∑
e∈Ii

∑
f ∈Ij

λeP̂ef = 0,

because the condition S(f ) = T(e) is always false. On the other hand, if Aij = 1 then

(LP̂R)ij = 1∑
e∈Ii

∑
f ∈Ij

λeP̂ef

=
∑
e∈Ii

∑
f ∈Ij

λe

d+
S(f ) − 1

= (|Ii| − 1)
1/d−

i

d+
i − 1

= 1

di
,

since |Ii| = d−
i = d+

i = di. By linearity, also the pullback of the backtrack-downweighted random
walk in Example 3.3 coincides with the standard random walk on G. Consequently, also the
invariant vectors of these two processes coincide. This result generalises the one for the non-
backtracking walk shown in Theorem 2 of [22].

5.1 Hitting and return times at equilibrium

Due to Theorem 5.1, it is convenient to assume that the initial probabilities of the second-order
stochastic process under consideration (3.2) are equal to λ(i,j). Hence, from here onward, we
consider the ‘equilibrium assumption’ P(X0 = i) = πi together with (5.5). With this assumption,
the presentation of the mean hitting and return times introduced in the previous section can be
carried out with greater clarity and simplicity. To begin with, we derive an algebraic expression
for the second-order hitting times matrix T̃ = (̃τi→j) of a very different nature from that at the
basis of equation (4.2).

Theorem 5.4. Let T̃ = (̃τi→j)i,j∈V and T̂ = (̂τe→f )e,f ∈E. There exists a vector a = (αe)e∈E and a
vector b = (βi)i∈V such that

T̃ = LT̂ Diag(a)R − 1bT ,

where L is as in (5.2) and R is as in (5.3).
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Proof. Introduce the matrix C ∈R
|E|×|V | such that Cei = τ̂e→Ii is defined as in Section 4.1. From

the identity

τ̃i→j =E(T̃j|X0 = i) =E(T̂Ij |W0 ∈ Ii)

=
∑
e∈Ii

P(W0 = e|W0 ∈ Ii) E(T̂Ij |W0 = e) =
∑
e∈Ii

λeτ̂e→Ij

it follows that T̃ = LC. Using the technical Lemma 2.6, for every e ∈ E and i ∈ V there exist
coefficients αe and βi such that τ̂e→Ii =∑

f ∈Ii
αf τ̂e→f − βi. The latter identity can be expressed

in matrix terms as

C = T̂ Diag(a)R − 1bT .

Finally, as L1= 1, we conclude. �

The previous theorem yields a formula for the matrix T̃ that is amenable to numerical com-
putations, once the matrix T̂ has been computed by standard methods via, e.g., (2.7). The next
result proves that second-order mean return times defined in Section 4.2 coincide with the usual
return times of the random walk associated with the pullback of P̂ on G.

Theorem 5.5. Let π be the stationary density of the pullback of P̂ on G. For every S ⊂ V it holds
τ̃S = 1/

∑
i∈S πi. In particular, τ̃i = 1/πi for i ∈ V.

Proof. Let Ŝ = ∪i∈SIi. Then, τ̃S can be reformulated as the mean return time in Ŝ of the chain
{Wn}. From Lemma 2.4 and (5.6), we get

τ̃S =E

(
T̂+

Ŝ
|W0 ∈ Ŝ

)
= 1∑

i∈S

∑
e∈Ii

π̂e
= 1∑

i∈S πi
,

and we have the claim. �

Example 5.6. Let G = (V , E) be finite and undirected. For α ∈ [0, 1], the stationary density π̂

of the matrix P̂(α) in Example 3.3 is a constant vector, π̂e = 1/|E|, as the transition matrix is
bi-stochastic. Consequently, the second-order mean return times coincides with the mean return
times of the uniform random walk on G, namely, τ̃i = (

∑
j dj)/di, independently of α and the

topology of G. Moreover, in this example Equation (5.5) becomes λ(i,j) = 1/di being G undirected,
i.e., the first step in the second-order process coincides with one step of a standard uniform
random walk on G.

Theorem 5.5 yields a second-order analogous to Kac’s Lemma, see Lemma 2.4. For a family of
networks that exhibit some specific symmetries, Lemma 2.5 can also be extended to second-order
random walks, as shown in the sequel.

The coefficients αe appearing in the proof of Theorem 5.4 come from Lemma 2.6 and, accord-
ing to (2.8), can be expressed as αe = π̂eτ̂

+
e→Ii

where i = T(e) and τ̂+
e→Ii

represents the mean
return time to Ii of {Wn}, after leaving it from e ∈ Ii, as defined in (4.6). Suppose that these return
times depend on i but not on e ∈ Ii. This assumption is clearly verified if for every e, f ∈ Ii there
is an automorphism of Ĝ that exchanges e and f , i.e., the nodes e and f in Ĝ can be exchanged
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without altering the topology of Ĝ. The latter condition is satisfied if, for example, {Wn} is a
uniform random walk on a bipartite regular graph, that is, an undirected, bipartite graph whose
adjacency matrix has the form (

O 11T

11T O

)
,

in which the diagonal blocks can have different sizes.
For notational simplicity, denote by ρi = τ̂+

e→Ii
that common value. Then, from Theorem 5.1

we have

1 =
∑
e∈Ii

αe =
∑
e∈Ii

π̂eτ̂
+
e→Ii

= ρi

∑
e∈Ii

π̂e = ρiπi.

Thus ρi = 1/πi. Moreover, for e ∈ Ii we obtain

αe = π̂eρi = π̂e/πi.

Hence, in the notation of Theorem 5.4, we have that Diag(a)Rπ = π̂ , and thus

T̃π = LT̂ Diag(a)Rπ − 1bTπ = LT̂ π̂ − 1bTπ ,

where b = (βi)i∈V is the coefficient vector defined in Theorem 5.4. By Lemma 2.5, we have
T̂ π̂ = κ1 where κ is the Kemeny’s constant of T̂ , and we eventually obtain:

T̃π = κL1− 1bTπ = 1 (κ − bTπ
)

.

Combining all the observations above, we obtain the following second-order equivalent of the
Random Target Lemma:

Corollary 5.7. Let π be the stationary density given in Theorem 5.1. In the equilibrium assump-
tion discussed at the beginning of Section 5.1 and using the previous notation, we have that, if
for every i ∈ V the return time τ̂+

e→Ii
depends on i but not on e ∈ Ii, then∑

j∈V

πjτ̃i→j = κ̃ ,

independently on i, where κ̃ = κ − bTπ .

A different Kemeny constant has been considered for the case of non-backtracking random
walks in [8], which is shown to be smaller than the standard Kemeny constant of random walks,
at least for certain families of graphs. However, no relation with hitting and return times for that
constant is known. Our second-order version of the Random Target Lemma above provides a
different notion of Kemeny constant for general second-order random walks which is directly
related to hitting times of the process, as in the standard first-order case.

6 Numerical experiments on real-world networks

In this section, we present numerical results on the computation of second-order mean hitting
times on some real-world networks. We consider three undirected and unweighted networks:
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Table 1. Dimension of the networks used in our experiments before and after leaf
node removal

Before removal After removal

Nodes Edges Diameter Nodes Edges Diameter

Guppy 99 726 6 98 725 5
Dolphins 62 159 8 53 150 7
Householder93 104 211 7 73 180 5
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FIGURE 1. Scatter plot of the average non-backtracking mean hitting times against the average tradi-
tional mean hitting times for the networks Guppy, Dolphins and Householder93. The dotted lines
represent the bisectors.

Guppy [11], that represents the social interactions of a population of free-ranging guppies
(Poecilia reticulata), Dolphins [27], that represents the social structure of a group of dolphins,
and Householder93 [30], that represents a collaboration network of a group of mathemati-
cians. Since these graphs contain dangling edges, we remove in sequence all the nodes of
degree 1 until each vertex has degree greater or equal to 2. Table 1 shows the dimension of these
networks before and after removing such leaf nodes. Our experiments illustrate various statistics
on the second-order hitting times τ̂i→j for non-backtracking random walks in these graphs. Note
that hitting times computed with the pullback transition matrix coincide with the hitting times
τi→j for the standard random walk, see Example 5.6.

In Figure 1, we scatter plot the average non-backtracking mean hitting times m̂j =∑
i∈V τ̂i→j/|V | against the average traditional mean hitting times mj =∑

i∈V τi→j/|V |. The dot-
ted red line is the bisector of the first quadrant. We observe that, in all these networks, the
ratio between mj and m̂j is always smaller than 1. Intuitively, this means that, on average,
non-backtracking random walks are shorter than classical random walks.

Figure 2 displays the value of the non-backtracking mean access time

ai =
∑
j∈V

πjτ̂i→j (6.1)
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FIGURE 2. Plot of the non-backtracking mean access times (6.1) for the networks Guppy, Dolphins
and Householder93.
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FIGURE 3. Behaviour of the mean hitting time ratios (6.2) for the backtrack-penalised random walks. The
solid lines represent maximum, average and minimum values of the mean hitting time ratios, respectively,
as α varies in [0,1].

with respect to the node index i ∈ V . Recall that these values for the standard random walks are
all equal to the Kemeny constant of the graph, see Lemma 2.5. Remarkably, the values for non-
backtracking walks have a very narrow range, as shown by the small variation of the values in the
y-axes. This experiment shows that in these graphs the claim of Corollary 4.4 is approximately
valid, even though the assumptions about the structure of the graph are not satisfied.

Finally, we computed mean hitting times for the backtrack-downweighted random walks
introduced in Example 3.3, with varying α ∈ [0, 1]. The corresponding stochastic processes inter-
polate between the standard random walk (α = 1) and the non-backtracking variant (α = 0).
Nevertheless, the pullback matrix does not depend on α, as noted in Example 5.3. Let τ

(α)
i→j denote

second-order mean hitting times associated with the transition matrix P̂(α). To better illustrate the
effect of penalising backtracking steps, we measure the mean hitting times ratio

r(α)
j =

∑
i∈V τ

(α)
i→j∑

i∈V τ
(1)
i→j

. (6.2)

The curves in Figure 3 illustrate the behaviour of the average value (magenta line), along with the
maximum and the minimum value (black lines) of these ratios. The values for α = 0 correspond
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to the results shown in Figure 1 as τ
(0)
i→j = τ̂i→j. Clearly, r(1)

j = 1 for every j ∈ V . The mean hitting

time (
∑

i∈V τ
(α)
i→j)/|V | quantifies the average time to reach node j by backtrack-penalised random

walks, and the coefficient r(α)
j in (6.2) measures how much this accessibility index is modified

by gradually disallowing backtracking steps. The pictures show that decreasing the amount of
backtracking allowed steadily improves average accessibility while increasing the differences
between individual nodes. However, the overall effect of disallowing backtracking steps varies
greatly from network to network. These observations confirm that second-order random walks
can describe navigation or diffusion dynamics on graphs and networks that are significantly
different from their first-order counterparts.

7 Conclusions

Second-order random walks, which include non-backtracking random walks as a particular case,
provide stochastic models for navigation and diffusion processes on networks that can offer
improved modelling capacity with respect to classical random-walks, and thus allow us to better
capture real-world dynamics on networks. In this paper, we propose a very general framework
to properly define mean hitting times and mean return times for second-order random walks
for directed graphs with finite or countably many nodes. Our approach is based on the corre-
spondence between the second-order random walk and a standard random walk obtained by first
lifting the second-random walk to the directed line graph and then pulling back onto the original
graph. The ‘pullback’ Markov chain obtained this way has the same stationary density as the ini-
tial second-order random process and allow us to transfer several well-known results for standard
random walks to the second-order case. For example, we prove that second-order mean return
times coincide with the mean return times of the corresponding pullback Markov chain and we
show how to extend the Kac’s and Random Target Lemmas to second-order random walks.

These results prompt us to further investigations concerning computational issues as well
as theoretical properties of second-order random walks. For instance, it is certainly interest-
ing to devise more efficient numerical methods to compute second-order hitting times than the
one based on Corollary 4.4 and Theorem 5.4. Furthermore, numerical experiments show that
non-backtracking hitting times are consistently smaller than their corresponding classical, back-
tracking versions. In fact, reducing the probability of backtracking results in a reduction of the
mean hitting times. However, a formal explanation of this fact, at the best of our knowledge, is
still missing.
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