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WALLMAN COMPACTIFICATION AND
REPRESENTATION

SHANKAR HEGDE

Introduction. Let X be any set and 4 be a uniformly closed algebra
of bounded real valued functions on X which contains the constants and
separates the points. For a lattice.Z of subsets of X (we assume through-
out that @ and X belong t0.%), let MR(¥) denote the space of all finite,
finitely additive,.# -regular measures defined on the field of sets generated
by . Generalizing the notion of an integral representation, in [5] Kirk
and Crenshaw define a standard representation of A*, the Banach dual of
A, in MR(¥) to be a linear map [ of 4* into MR (¥ ) with the property
that if 0 < ¢ € A%, then

Io(W) = inf {¢(f): f € 4, xw < f}

for every Win.% . The space MR (Y ) is said to represent A* if there exists
a (unique) standard representation I of A4* onto MR(Y¥) which is a
Banach lattice isomorphism. Among other things the following theorem
is proved therein: 1f % is a normal base for the weak topology generated
by 4 on X and if 4 consists of precisely those continuous functions on X
which have continuous extensions to the Wallman compactification of X
relative to ., then MR(Y) represents A*.

The purpose of this paper is to derive some necessary conditions on the
lattice ¥ when MR(Y) represents A*. In particular, we prove that if
MR(Y) represents A* then.¥ is a separating, disjunctive lattice and 4
contains the algebra of all those functions which have continuous exten-
sions to the Wallman compact space relative to .. Furthermore, the
algebra 4 coincides with the latter one, if and only if £ is normal. Thus
if & is a normal lattice to start with, the converse of Kirk and Crenshaw’s
theorem holds. This also generalizes an earlier result of [4]. Finally we
give topological implications of our result.

1. Preliminaries. Throughout the paper, 4 and MR(¥) are as
described in the introduction. Let X 4 denote the structure space of 4,
that is, the set of all non-zero real homomorphisms of 4 topologized by
the weak-star topology. Thus X 4 is a Hausdorff compactification of X
where X carries the relative topology 74 which is also the weak topology
generated by 4 on X, and A4 consists of precisely those continuous
functions on X which can be continuously extended to X 4.

Received July 27, 1979 and in revised form November 6, 1979.
372

https://doi.org/10.4153/CJM-1981-031-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-031-6

WALLMAN COMPACTIFICATION 373

A lattice.? of subsets of X is called i) separating if given distinct x and
y in X there exists some L in.¥ such thatx ¢ Landy ¢ L,ii) disjunctive
if forevery L € . andx € X — L there exists M € ¢ such thatx € M
and L N M = 0, iii) normal if whenever L and M are disjoint members
of Z, thereexist Uand Vin.¥ suchthat LC X —U, M C X — Vand
UVvV=X.

Given a separating, disjunctive lattice % of subsets of X the Wallman
compact space relative to &£ is the space w(L) of all & -ultrafilters having
as the base for its closed sets the sets of the form L = (% € w(L):
L € Y} where L € . Then w(L) is a T -compactification of X where X
carries the topology having . as a base for its closed sets and L is
precisely the closure of L in w(%). Furthermore, w(%¢) is Hausdorff if
and only if . is normal (see [1]).

Given a separating, disjunctive lattice & of subsets of X, a bounded
real valued function f on X is said to be £ -uniformly continuous if for
every e > 0 there exists a finite family {L,, L, . . . L,} of members of ¥
such that M= L; = @ and the oscillation of f on each X — L, is less
than e. The set C,(.&) of all ¥ -uniformly continuous functions on X is
a uniformly closed algebra consisting of all those bounded real valued
continuous functions on X which are continuously extendible to w(%).
(see (1), [3]. We note that in the proof of Theorem 2 in [3], the Haus-
dorffness of w(%’) is not needed).

Given a lattice &, the set of all non-zero measures in MR (%) which
assume only two values 0 and 1 is denoted by IR(Y). In [6], Sultan
showed that there is a one to one correspondence between the members
of IR(Z) and those of w(¥) and the correspondence is given by asso-
ciating with each u in IR(Y), the Z-ultrafilter

F,={LecZL: ul) = 1}.

We give IR(Z’) the topology of transference from w(¥) and call it the
Wallman topology on IR(&). Thus the Wallman topology on IR(.%) has
a base for its closed sets, the sets of the form

L={peIRZ): ul) =1}

where L € &£

Finally, as in [3], we assume throughout that all lattices . for which
MR(Y) represents A* are lattices of 7 4-closed sets of X.

2. Weak topology on IR(Y). Let MR(Y) represent A*. The weak
topology on MR(Z) induced by A4 is the unique topology on MR(¥)
which makes the standard representation I a topological isomorphism
when A* has the weak-star topology. This topology on MR(Y) is
characterized by the convergence of nets: 4 net {u.} in MR(¥) converges
toa u € MR(Z) in weak topology if and only if [yfdu, — [xfdu for
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every fin 4. Asa subset of MR(Z'), IR(Y) inherits the relative topology
which we call the weak topology on IR(Z) induced by 4. In the following
proposition we prove that IR(Y) with this topology is homeomorphic
to X 4.

PrOPOSITION 2.1. Let MR(ZL') represent A*. Then IR(Y) with weak
topology induced by A ts homeomorphic to X 4.

Proof. By definition, X 4 is a subspace of 4* where A* has the weak-
star topology. Hence to complete the proof it is enough to show that the
standard representation I maps X , onto IR(Y). Since [ is an integral
representation (see [5]), the proof of the latter fact is analogous to the
proofs of Lemmas 3.1 and 3.2 of [6]. We leave the details to the reader.

Thus when MR (Y ) represents A*, IR(Y") with weak topology induced
by A4 is a Hausdorff compactification of (X, r4). For an x € X, let &,
denote the bounded linear functional on 4 defined by %,(f) = f(x) for
every f € A. Let p, be the measure in MR(Y) representing h,. Since
x — h, is an embedding of X into X 4, x — u, is an embedding of X into
IR(Y). Later in Section 3, we show that u, is precisely the unit mass
measure concentrated at x.

Given a Tychonoff space, let C,(X) denote the space of all bounded
real valued continuous functions on X. Recall that the structure space
of C,(X) is homeomorphic to the Stone-Cech compactification 38X of X.
Hence by Proposition 2.1, it follows that if . is any lattice of closed
subsets of X for which MR(Z') represents C,(X)*, then IR(Y) is
homeomorphic to fX. In particular, IR(Z[X]) is homeomorphic to X
where Z[X] denotes the lattice of zero sets on X. This latter result is
due to Varadarajan (Theorem 4 of Part III, [7]).

Our next result gives a comparison of the weak topology on ITR(%)
with the Wallman topology on it.

PROPOSITION 2.2. Let MR(KL) represent A*. Then the Wallman topology
on IR(Z) is weaker than the weak topology on IR(Z) induced by A.

Proof. It is enough to prove that the convergence of a net in the weak
topology implies its convergence in the Wallman topology on IR(Y).
Let {ue} be a net in IR(Y) with ue— u € IR(Y) weakly. Then
fxfdu,, —»fxfdy for every f € A. Since u is non-negative, for every W ¢ .%,

u(W) =inf{fyfd#¢fEA,xW éf}-

Hence given ¢ > 0, there exists f € A with

xw = f and fod# <wu) +e
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We then have

lim, sup uo (W) = lim, f fduq =fxfdp, < u(W) + e
X
Since ¢ > 0 is arbitrary, it follows that

lim, sup (W) =< w(W).

In particular if u(IW) = 0, then u, (W) — 0.

Note that a base for the closed sets of Wallman topology is given
by {(W: W cZ} where W = {p€ IR(ZL): w(W) = 1}. Hence if
IR(Y) — W is any Wallman neighbourhood of u then (W) = 0. But
then u. (W) — 0. Since each u, is {0, 1}-valued, if follows that u, (W) = 0
for all & = ay for some ag. That is e € IR(L) — W for all @ = a,. This
proves that u, — p in the Wallman topology.

Since compact topology is minimal among the Hausdorff topologies,
the two topologies on IR(Y') coincide if and only if the Wallman
topology on IR(Y') is Hausdorff. That is, if and only if whenever
U1 F Mo, M1, Mo S IR(D%) there exist Wl, W2 € g, with Wl V) W2 =X
such that u; (W) = 0 = ua(Wo).

3. Some necessary conditions on .. We first prove a ‘lattice ver-
sion’ of the Urysohn’s lemma. Let % be a separating, disjunctive lattice
of subsets of a set X. We call ¥ a Urysohn lattice if for every pair of
disjoint sets L and M in %, there exists an % -uniformly continuous
function f on X such that f(L) = 0 and f(M) = 1.

PROPOSITION 3.1. Let £ be a separating, disjunctive lattice of subsets of
a set X. Then L is normal if and only if L is Urysohn.

Proof. Let ¥ be normal. Then the Wallman compact space w(-&) is
a Hausdorff compactification of X where X has the topology with & as
a base for its closed sets. Let L, M €.% with LN M = @. Then
LN M = ¢. By the Urysohn's lemma for normal topological spaces,
there exists an f € C(w(¥)) such that f(L) = 0 and Ff(M) = 1. Let
f = fIX. Then fis ¥ -uniformly continuous and f(L) = 0 and f(M) = 1
proving that.¥ is Urysohn.

Conversely suppose .# is Urysohn. Consider the Wallman compact
space (&) relative to.%. Recall that w (%) is Hausdorff if and only if &
is normal. (See [1]). Hence we complete the proof by showing that w (%)
is Hausdorft. .

Let x,y € (&), x # . Since ¥ ={L: L ¢ %} is a base for the
closed sets of w(-¥), and {x}, {y} are closed, there is an L € . such that
x € Land vy ¢ L. Again for every z € L, there exists M, € . such that
y € M,and z ¢ M,. Now {w(¥) — M,: z € L} forms an open cover of
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the compact set L. Hence there exists a finite subcover, say {w(¥) —
M, :i=1,2,...,n}. Let

M= N M.
Then M €% and L C w(¥) — M. Hence x ¢ L, y € M and
LNM=60. Then LN M =@. By hypothesis, there exists an
& -uniformly continuous function f such that f(L) = 0 and f(M) = 1.
But then f(L) = 0 and f(M) = 1 where f is the unique continuous
extension of f to w(¥’). This guarantees that (%) is Hausdorff.

COROLLARY 3.2. 4 topological space X is Tychonoff if and only if X has
a Urysohn lattice & which is a base for its closed sels.

Proof. A Ty-space X is Tychonoff if and only if X has a normal base
for its closed sets [3]. If X is Tychonoff then it has a normal base %
which is clearly Urysohn by Proposition 3.1. Conversely suppose X has
a Urysohn lattice as a base for its closed sets. Since ¢ is separating and
disjunctive X is a 7';-space. Now the result follows from [3].

When X is a normal topological space and.# is the lattice of the closed
sets of X, then MR(Y¥) represents C,(X)* (see [2], p. 262). More
generally, let X be any Tychonoff space and .¥ be a disjunctive, sep-
arating lattice of its closed sets which is also a base for its closed sets. If
& is normal then MR(Y') represents C,(£)*. (This follows from
Theorem 3.12 of [5]). The following corollary contains a converse of these
results.

COROLLARY 3.3 Let & be a disjunctive, separating lattice of subsets of «
set X such that the algebra C,(&L) is point separating. Then MR(ZL)
represents C,(L)* if and only if & is normal.

Proof. If ¥ is normal, we have already pointed out that MR(Y)
represents C,(¥)*. We now prove the converse. It is easy to see that
the members of ¥ are closed sets in the weak topology generated by
C.(&) on X. By Proposition 3.5 of [5], if MR(Y) represents the dual 4*
of an algebra 4, then the disjoint sets in.% are separated by a member
of A. Thus when MR(Y) represents C,(¥)*, & is Urysohn, and hence
normal by Proposition 3.1.

We remark here that if . is normal then the algebra C,(¥) is point
separating. However C,(-¢’) can be point separating without ¢ being
normal. For example, if X is a non-normal Tychonoff space then the
lattice ¢ of its closed sets is non-normal but C,(¢) = C,(X) is point
separating.

Next we prove that the point separating property of an algebra 4 is
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enough to ensure that.%¥ is separating and disjunctive whenever MR (Z)
represents A*. We first prove two lemmas.

For anx € X, let §, denote the unit mass measure concentrated at the
point x, thatis, §,(E) = 1ifx € E and §,(E) = 0 if x ¢ E for every E
in the domain of §,. Note that for a given lattice %, in general §, need
not be ¥ -regular.

LEMMA 3.4, Let & be a lattice of subsets of a set X. Then ¥ is disjunctive
if and only if the unit mass measure 8, is £ -regular for every x € X.

Proof. Let £ be disjunctive. Let x € X. Let E be a set in the field
of subsets of X generated by .#. To prove that §, is £ -regular it is
enough to show that whenever x ¢ E, there exists some L € . such that
x € LCE NowE = U7 (L; — M,) for some n where L;, M; € L,
M, C L;and

Let x € E. Then x € L; — M, for some 7, 1 £ 72 £ n. By hypothesis,
there exists some M €.% such that x € M and M N\ M, = 0. Let
L=MMNL, Thenx ¢ L C E.

Conversely suppose 8, is -Z-regular for each x € X. Let L € .% and
x ¢ L. Then 6,(X — L) = 1. By the .%Z-regularity of §,, there exists
M ¢ % such that M C X — L and 6,(M) = 1. Then it follows that
x € Mand LN M = 0.

LeMMA 3.5. Let & be a disjunctive lattice of subsets of a set X. Then &
s separating if and only if 6, # 6, whenever x,y € X, x # y.

Proof. Suppose ¥ is separating. Then it is easy to see that 6, # §,
whenever x # y. Conversely let the hypothesis be true. Let x, y € X,
x # y. Then 6, # §,. Hence there exists L € % such that é,(L) # 6,(L).
Therefore L contains exactly one of the points x or y. Now together with
the disjunctive property of %, it follows that ¥ is separating.

We now prove

PROPOSITION 3.6. Let £ be a lattice of 7 4-closed subsets of X such that
MR(YZ) represents A*. Then L is separating and disjunctive.

Proof. For x € X, let h, € X4 be the evaluation-at-x homomorphism
and let u, € IR(Y) represent h, (Proposition 2.1). Since u, is.¥ -regular,
to show that.# is disjunctive we need only show that u, = §,. Now for
any L € &

Mz (L)

inf {h(f): f € 4, xz £ f},
inf {f(x): f € 4, xz £ f},
= 1if and only if x € L.

It
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The last line follows by an application of the Urysohn’s lemma to the
pair L and x in the normal topological space X ,.

For an arbitrary E in the field of subsets of X generated by ¢ we can
show, by a similar argument applied in the proof of Lemma 3.4, that
wu,(E) =1 if and only if x € E. This proves that u, = 6,. Since 4 is
point separating, k, # h, and hence u, # u, whenever x, y € X, x # y.
Now the proof of the proposition is complete by direct applications of
LLemmas 3.4 and 3.5.

In Corollary 3.3, we proved that if the algebra C,(%) is point separat-
ing, then . should be normal whenever MR(Y) represents C,(&)*.
However MR(Z') can represent the dual A* of a point separating
algebra 4 even if & is not normal. (See example Appendix (a) of [5].) In
the following theorem, we prove that M R(%’) can not represent the dual
of any smaller point separating algebra than C,(%).

TuEOREM 3.7. Let A be a uniformly closed algebra of bounded real valued
Junctions on a set X which contains the constants and separates the points.
Let % be a lattice of T 4-closed subsets of X such that MR(ZL) represents A*.
Then C,(&) C A. Furthermore C,(&) = A if and only if & is normal.

Proof. Since MR(Z) represents A*, by Proposition 3.6.¢ is separating
and disjunctive. Hence the Wallman compact space w(L) relative to.%
is a 7';-compactification of X. That is, IR(Z") with Wallman topology
is a 7';-compactification of X and each f ¢ C,(%) has a unique con-
tinuous extension to IR () with this topology.

By Proposition 2.2, the Wallman topology on IR(Y) is weaker than
the weak topology induced by A. By Proposition 2.1, IR(¥’) with the
weak topology induced by 4 is homeomorphic to X 4.

Let f € C,(&) and let f be the unique continuous extension of f to
IR(Z) in the Wallman topology. Then f is continuous on IR(%") in the
weak topology induced by A4 as well.

Thus f has a unique continuous extension to X 4. Since 4 consists of
precisely those bounded real valued functions on X which have con-
tinuous extensions to X 4, f € A. This proves the first part of the theorem.

Now suppose £ is normal. Then the Wallman topology on IR(Y) is
Hausdorff and hence coincides with the weak topology induced by 4.
Therefore by Propositions 2.1 and 2.2 X, is homeomorphic to the
Wallman compactification w (L) of X relative to.# and a homeomorphism
can be so chosen that it leaves X pointwise fixed. Now it follows that
A = C(&).

Conversely suppose C,(¢) = A. Then the normality of ¥ follows
from Corollary 3.3.

Remark 1. In [5] Kirk and Crenshaw proved that if X, = w(L) for
some normal base ¥ on X with r,-topology, then MR () represents A*.
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Theorem 3.7 proves that if we start with a normal lattice & of 7 ,-closed
sets the converse also holds. That is, if ¢ is a normal lattice of 7 4-closed
sets on X such that MR(Y) represents A*, then.¥ is a normal base on X
and X, = ().

Remark 2. Let Z[A] denote the lattice of the zero-sets of members of 4.
In [4] we proved that MR(Z[A]) represents A* if and only if 4 =
Cu(Z[A)). Theorem 3.7 and Corollary 3.3 together generalize this result
which can be stated as: Let.? be a separating, disjunctive, normal lattice
of 74-closed subsets of X. Then MR(Y') represents A* if and only if
4 = C(&).

Every Tychonoff space has a normal base which is a separating, dis-
junctive normal lattice of its closed sets. We show by an example below
that a separating, disjunctive, normal lattice of closed sets need not be
a base for the closed sets.

Example 3.8. Let N denote the set of all positive integers with discrete
topology. Let.Z be the lattice of subsets of NV generated by the sets of the
form

Apn =1k € N:k =2m — 1,0r k = 2nf,
Bm,n:{kENgﬂ’Lékéz’}’L—l}

where m, n € N. Clearly.% consists of finite unions of B,, ,,’s or the unions
of a finite number of B,, ,’s and an 4,, ,. Since . itself is a field of subsets
of N, is a separating, disjunctive, normal lattice of closed subsets of
N. However.? is not a base for the closed sets of N. In fact, ¥ = N — {1}
is closed in NV and 1 ¢ F. But each member of ¢ which contains F also
contains 1.

For a given separating, disjunctive, normal lattice ¥ of subsets of X
let 7, denote the topology on X having ¥ as a base for its closed sets.
Then 74 is a completely regular Hausdorft topology on X. Now as an
immediate consequence of Theorem 3.7 we have

COROLLARY 3.9. Let & be a separating disjunctive normal lattice of
7 4-closed subsets of X. Then 4 = 74 if and only if MR(ZL) represents A*.

Proof. If MR(Z) represents A*, then as in the proof of Theorem 3.7
X4 = w(L). Hence the corresponding relative topologies 74 and 7, on X
coincide.

Conversely if 7, = 74, then £ is a normal base for the r,-closed sets
and hence X, = (). Therefore MR(Y) represents A*.

In particular if X is any Tychonoff space, and .¥ is a separating, dis-
junctive, normal lattice of its closed sets then the topology on X having
% as a base for its closed sets coincides with the original topology if and
only if MR() represents C,(X)*. In fact, C,(X) here can be replaced
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by any ‘‘completely regular’” algebra A4, a subalgebra of C,(X) which
determines the topology of X.

Finally the author thanks Professor Robert F. Wheeler for helpful
discussions and the referee for a suggestion regarding the notation.
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