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ABSTRACT. Time evolution of the solution of model Ζ is considered 
simply as an aid to obtain the steady state solution. Balance equations 
of the energy of the azimuthal field EB showes that excluding several 
beginning time steps the solution exposes the time behaviour with a 
physical sense. 

1. Introduction 
S.I. Braginsky (1975) introduced an idea of the Model Ζ for planetary 
dynamos as a possible solution of hydromagnetic nearly symmetric dy-
namo problem where z-component of poloidal magnetic field dominate 
in the main volume of the liquid and conductive core. The solution 
of model Ζ was found in many cases taking into account both viscous 
and electromagnetic core-mantle coupling, however, minimum atten-
tion was paid to time evolution of the solution which was used rather 
as an aid to obtain the steady state solution. An important question is 
which characteristics of the time behaviour of the soulution reflect the 
physical behaviour of the system and which follow from the limitations 
of the numerical method. We anticipate that the balance equation of 
energy provide a good independent test of the solution. The inbalance 
(caused by a numerical process) then indicates in which time steps the 
behaviour of the solution has no physical sense. 

2. Governing equations 
The equations governing the model Ζ in dimensionless form were de-
rived by Braginsky (1975). Relative to spherical coordinates r, θ,φ 
or cylindrical coordinates s, z, we introduce the stream functions of 
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meridional magnetic field and meridional velocity respectively Bp = 
s~1Vip χ 1 = 5_1Vx x I«/,. Taking into account only viscous core 
mantle coupling and that V2B - s~2B = sV · (s~2VsB), V2s"V -
β~2φ = V · (s2Vs~2V>) the equations can be re-written in the form (see 
e.g. Cupal k Hejda 1989): 

^ = V - ( - < K + s2Vs^) + saB, (2.1) 

f ) Β = s v · {-s~lBwp + s~2VsB + CBP), (2.2) 

υ, = a ^ V • (sBBp), (2.3) 

C = / + s~2B2 + ω, (2.4) 

where ("(5, ζ) = z)'/s. f(s, z) is the Archimedean wind, s~2B2(syz) 
is the magnetic wind and α;(θ) = v(s,Zi)/s is the geostrophic shear 
determined by the equation 

Ρ*·*)· (2·5) 

where zx = yj 1 — s2. The viscous coupling parametr ε is the same 
as ει used by Cupal & Hejda (1989). Following Braginsky(1978) the 
Archimedean wind 

f = -3f0s2( 1 - r 2 ) , (2.6) 

is prescribed and a slightly generalized form of α-effect is used (Cupal 
& Hejda, 1992) 

s <1-δ, 

a ~ ^ 20 a0z\l - (^) 6 ] sin[(2f (1 - j - '-δ)} 1-δ<β<1, ^ 

which makes possible to change the thickness, <?>, of α-layer and to 
investigate the influence of the changed δ on the solution. 
Appropriate functions, which measure the amplitude of the magnetic 
field in the volume of the core, are toroidal field energy, EB(t) = 
- JvB2dV, and the squared poloidal magnetic flux, E^(t) = \ Jvip2dV, 
integrated throughout the volume, V, of the core. Multiplying the 
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equation (2.2) by Β and integrating it over volume V, we obtain the 
following balance equation for energy: 

^ = QA~QJ - Q„ ( 2 . 8 ) 

where only the Archimedean forces, QA, do work and energy is lost 
by the Joule's dissipation, Qj, and by the viscous dissipation in the 
Ekman layer, Qv. The terms on r.h.s. of equation (2.8) are 

QA = — F Sfv. dV, QJ= F s~2[W(sB)]2dV, 
Jv Jv 

Qv = 2πε / (su)2/yfz{sds. 
Jo 

We call the inbalance the difference between l.h.s. and r.h.s. of eq. 
(2.8). 

3.Calculated models 
Cupal h Hejda (1992) calculated several cases of model Z. Several 
solutions tended to oscillate before they reached their steady state. 
The oscillatory solution for ε = 0.01 , / 0 = 500, a0 = 25 and δ = 0.3 is 
particularly useful in demonstrating the time behaviour of the solution 
using the equation (2.8). 
Figure 3.1 shows the behaviour of dEB/dt (solid line) and the r.h.s. 
of equation (2.8) (circles). The dashed line represents the inbalance 
to which a constant 500 is added to aid comparison. The start of the 
graph is characterized by a large inbalance and there is not sensible to 
discuss about time behaviour of the solution. After time t=0.02 the 
inbalance begins to decrease and the time behaviour illustrated by the 
solution makes physical sense. However even later e.g. after t=0.11 the 
inbalance remains small, but non-zero as a consequence of the space 
discretization. 
The space discretization and the length of time step can influence the 
solution, but artificial time behaviour of the numerical origin can eas-
ily be distinguished. An experiment was been done with automatical 
time step change depending on the magnitude of the inbalance to save 
the time of calculations. Unfortunately, the numerical process had a 
certain inertia and we received the system like a pendulum with non-
decaying oscillations driven by numerical process. The inbalance was 

https://doi.org/10.1017/S0074180900174601 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900174601


450 

time(0.01 is 500years) 
Figure 3.1 

periodically too large and in those moments the pendulum received 
impulses from the numerical method. The balance equation (2.8) iso-
lated this problem and so we knew that our numerical results are unre-
liable. Generally, the coarse grid was used in the space discretization. 
The names "coarse" and "fine" grid were introduced by Braginsky & 
Roberts (1987) and they relate to 32 χ 32 or 64 χ 64 space grids in 
θ and r respectively. The fine space grid also have been used at the 
relative steady part of the solution about the time t = 0.11. The in-
balance was observed essentially smaller (roughly 8times) than in the 
case of the coarse grid. The inbalance for longer time practically does 
not vary and the beginning of this time interval may be a time when 
the searching the steady solution for given space discretization can be 
stopped. The inbalance also decreased roughly 0.3 times when 5 times 
shorter time step was used and kept constant during calculation. It 
was observed mainly in those critical points where balance equation 
changes its sign quickly from positive to negative values. 
It may be useful to see what happen during one period of the oscillation 
when the inbalance begins to be small. The Figure 3.2b) is an analog 
of Fig. 3.1 for one period of oscillations when coarse grid is used, 
however, the inbalance is now plotted without an additive constant. 
The Fig. 3.2.a) additionaly represents the behaviour of the variables 
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t ime(0.01 is 500years ) 

Figure 3.2 

Ε Β (solid line), Εφ (short dashed line) and QA (long dashed line) where 
the variables are scaled to aid comparison. The inbalance shows some 
substantial non-zero values at the times t = 0.0216 and t = 0.0276 of 
maximum EB. However, this inbalance generally decreases when the 
fine space grid is used and also it somewhat decreases when the time 
step is shortened. 
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4.Conclusion 
The balance equation helps to decide which time intervals the time 
dependent behaviour of the solution in model Ζ makes physical sense. 
After several initial time steps, where the inbalance caused by the 
numerical process is large, the later time steps reflect the true time 
behaviour of the solution. The oscillating solutions aire characterized 
by two time scales. The short is the period of oscillations and the long 
is the decay time of oscillation. The small time scale seems to be a 
diffusion time for toroidal field Β through the layer at CMB while the 
long time scale is the diffusion time of poloidal field from the generating 
region into main volume of the core (see Anufriev et. al.,1992). 
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