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Abstract

In this paper we refine a Poisson limit theorem of Gnedenko and Kolmogorov (1954):
we determine the error order of a Poisson approximation for sums of asymptotically
negligible integer-valued random variables that converge in distribution to the Poisson
law. As an application of our results, we investigate the case of the coupon collector’s
problem when the distribution of the collector’s waiting time is asymptotically Poisson.
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1. Introduction

In this paper we are concerned with a Poisson approximation for the distribution of sums
of asymptotically negligible integer-valued random variables. We complement the classical
Poisson convergence theorem of Gnedenko and Kolmogorov [4], in the setting of triangular
arrays, with error bounds that are expressed in terms of the total variation distance, which is
defined as

dTV(X, Y ) := sup
A⊂Z+

|P(X ∈ A) − P(Y ∈ A)| (1)

for any two random variables X and Y that map into Z+ := {0, 1, . . . }.
For each n, we approximate the distribution of the nth row sum with a Poisson distribution

whose mean λn is defined only in terms of the distributions of the random variables in the nth
row. We do not assume the existence of moments, as is the case in analogous results proved
by Barbour and Hall [1], and our lower bounds are much simpler in form to theirs, being of
precisely the same form, up to a constant, as our upper bounds, provided that the means λn are
bounded away from ∞.

We then continue with an application of these results to the coupon collector’s problem.
A collector samples with replacement a set of n ∈ N := {1, 2, . . . } distinct coupons so that
the draws are independent and at each time any one of the n coupons is drawn with the same
probability 1/n. For an integer mn ∈ {0, 1, . . . , n− 1} that depends on n, sampling is repeated
until the first time, Wn,mn , that the collector has collected n − mn distinct coupons. Baum and
Billingsley [3] proved (using the method of characteristic functions) that if, as n → ∞,

mn → ∞ and
n − mn√

n
→ √

2λ for some λ > 0 constant, (2)

then Wn,mn − (n − mn) converges in distribution to the Poisson law with mean λ.
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We express this problem as a special case of the Poisson limit theorem above, and immedi-
ately obtain the corresponding Poisson approximation results. An even stronger result can be
proved in this special case: due to the combinatorial structure of the problem, we can explicitly
determine the first-order term in the error of the approximation. We finish by stating this result.

Throughout, all asymptotic relations are meant as n → ∞.

2. Poisson approximation in a Poisson limit theorem

Gnedenko and Kolmogorov [4, p. 132] gave necessary and sufficient conditions for sums
of independent infinitesimal random variables to converge to the Poisson law. In the case of
nonnegative integer-valued random variables, their limit theorem can be stated as follows.

Theorem 1. Let {Yn1, Yn2, . . . , Ynrn}n∈N be a triangular array of row-wise independent, non-
negative integer-valued random variables such that

min
1≤k≤rn

P(Ynk = 0) → 1 as n → ∞, (3)

rn∑
k=1

P(Ynk ≥ 1) → λ as n → ∞ (λ > 0 constant), (4)

rn∑
k=1

P(Ynk ≥ 2) → 0 as n → ∞. (5)

Then

Yn :=
rn∑

k=1

Ynk
d−→ Nλ as n → ∞,

where Nλ is a Poisson random variable with parameter λ and ‘
d−→’ denotes convergence in

distribution.
We shall refine the obvious approximation of the Yns that the limit theorem suggests by

approximating the distribution of each of the Yn random variables not with the limiting Poisson
distribution, but with a Poisson distribution that has a suitably chosen parameter that depends
on n, namely by the distribution of Nλn ∼ Poisson(λn), where

λn =
rn∑

k=1

P(Ynk ≥ 1).

Theorem 2. (The upper bound.) We have

dTV(Yn, Nλn) ≤
rn∑

k=1

[P(Ynk ≥ 2) + P(Ynk ≥ 1)2].

Proof. The proof follows the same argument as in [2, p. 181]. For each k = 1, 2, . . . , rn,

n ∈ N, we define the random variable

Ink :=
{

0 if Ynk = 0,

1 if Ynk ≥ 1.
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Thus, for each n ∈ N, In := ∑rn
k=1 Ink is a sum of independent Bernoulli random variables

with success probabilities qnk := P(Ynk ≥ 1), k = 1, 2, . . . , rn. By Le Cam’s inequality [5],

dTV(In, Nλn) ≤
rn∑

k=1

q2
nk =

rn∑
k=1

P(Ynk ≥ 1)2.

Also, for any two random variables X and Y defined on the same probability space, the coupling
inequality (see, for example, [6, p. 12]) says that

dTV(X, Y ) ≤ P(X 
= Y );
hence, we have

dTV(Yn, In) ≤ P

( rn∑
k=1

Ynk 
=
rn∑

k=1

Ink

)

= P

( rn⋃
k=1

{Ynk 
= Ink}
)

≤
rn∑

k=1

P(Ynk 
= Ink)

=
rn∑

k=1

P(Ynk ≥ 2).

Putting these two bounds together in

dTV(Yn, Nλn) ≤ dTV(Yn, In) + dTV(In, Nλn),

the assertion of the theorem follows.

Theorem 3. (The lower bound.) For all n such that min1≤k≤rn P(Ynk = 0) ≥ 3
4 ,

dTV(Yn, Nλn) ≥ 1

10

( rn∏
k=1

P(Ynk = 0)

) rn∑
k=1

[P(Ynk ≥ 2) + P(Ynk ≥ 1)2].

Before turning to the proof of Theorem 3, we prove a simple result that will be needed later.

Proposition 1. If 0 ≤ yi ≤ xi ≤ 1 for all i = 1, 2, . . . , n, n ∈ N, then( n∏
i=1

yi

) n∑
i=1

(xi − yi) ≤
n∏

i=1

xi −
n∏

i=1

yi ≤
n∑

i=1

(xi − yi).

Proof. Defining y0 := 1, we can write the difference of the two products in the form of a
telescopic sum; thus,

n∏
i=1

xi −
n∏

i=1

yi =
n∑

k=1

[y1 · · · yk−1xk · · · xn − y1 · · · ykxk+1 · · · xn]

=
n∑

k=1

(xk − yk)(y1 · · · yk−1xk+1 · · · xn).
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Owing to our assumption on the yis, the last expression can be bounded from above and from
below by

y1 · · · yn

n∑
k=1

(xk − yk) ≤
n∑

k=1

(xk − yk)(y1 · · · yk−1xk+1 · · · xn) ≤
n∑

k=1

(xk − yk),

and the assertion follows.

Proof of Theorem 3. We introduce the notation P(Ynk = 0) = pnk and P(Ynk = 1) =
(1 − pnk)p̃nk, k = 1, 2, . . . , rn; thus, λn = ∑rn

k=1(1 − pnk), n ∈ N. We are going to prove
the theorem by approximating the following elementary lower bound for the total variation
distance of the distributions considered:

dTV(Yn, Nλn) ≥ 1
2 |P(Yn = 0) − P(Nλn = 0)| + 1

2 |P(Yn = 1) − P(Nλn = 1)|, (6)

which can be justified by taking A = {0} and A = {1} in (1).
We start by bounding the difference of the point probabilities at 0. Since

P(Nλn = 0) = exp{−λn} =
rn∏

k=1

exp{−(1 − pnk)}, (7)

P(Yn = 0) =
rn∏

k=1

pnk, (8)

and exp{−(1 − pnk)} ≥ pnk for all k = 1, 2, . . . , rn, n ∈ N, applying the proposition above
yields

|P(Nλn = 0) − P(Yn = 0)| ≥
( rn∏

k=1

pnk

) rn∑
k=1

[exp{−(1 − pnk)} − pnk].

Since 1 − pnk ≤ 1, we have

exp{−(1 − pnk)} ≥ 1 − (1 − pnk) + 1
2 (1 − pnk)

2 − 1
6 (1 − pnk)

3 ≥ pnk + 1
3 (1 − pnk)

2

for k = 1, 2, . . . , n, n ∈ N, which yields

|P(Nλn = 0) − P(Yn = 0)| ≥ 1

3

( rn∏
k=1

pnk

) rn∑
k=1

(1 − pnk)
2. (9)

This inequality implies the assertion of the theorem in the case when 3
∑rn

k=1(1 − pnk)
2 ≥

2
∑rn

k=1(1 − pnk)(1 − p̃nk), because we can bound 3
5 ths of the sum in the display above using

this assumption. In fact, in this case we obtain a better bound than the one we aimed at.
Otherwise, if 2

∑rn
k=1(1 − pnk)(1 − p̃nk) ≥ 3

∑rn
k=1(1 − pnk)

2, we need to examine the point
probabilities at 1 too to improve our current bound.

We have

P(Nλn = 1) = λn exp{−λn} =
rn∑

k=1

(1 − pnk) exp

{
−

rn∑
k=1

(1 − pnk)

}
,
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and since, for an arbitrary n ∈ N, Yn = 1 if and only if, for k = 1, 2, . . . , rn, exactly one of the
Ynks is 1 and the rest are 0,

P(Yn = 1) =
( rn∏

k=1

pnk

) rn∑
k=1

(1 − pnk)p̃nk

pnk

.

Some elementary algebra gives

P(Nλn = 1) − P(Yn = 1) =
rn∏

k=1

pnk

( rn∑
k=1

(1 − pnk)(1 − p̃nk) −
rn∑

k=1

(1 − pnk)
2p̃nk

pnk

)

+
(

exp

{
−

rn∑
k=1

(1 − pnk)

}
−

rn∏
k=1

pnk

) rn∑
k=1

(1 − pnk),

where in the second term we recognize the point probabilities at 0. Using

p̃nk

pnk

≤ 1

min1≤k≤rn pnk

and the fact that the difference in the point probabilities at 0 in the formula above is always
positive, we obtain

P(Nλn = 1)−P(Yn = 1) ≥
rn∏

k=1

pnk

( rn∑
k=1

(1−pnk)(1− p̃nk)− 1

min1≤k≤rn pnk

rn∑
k=1

(1−pnk)
2
)

.

From this, by (9) we obtain

P(Nλn = 0) − P(Yn = 0) + P(Nλn = 1) − P(Yn = 1)

≥
( n∏

k=1

pnk

)( rn∑
k=1

(1 − pnk)(1 − p̃nk) +
[

1

3
− 1

min1≤k≤rn pnk

] rn∑
k=1

(1 − pnk)
2
)

.

Now 1
3 −1/ min1≤k≤rn pnk ≥ −1 in the range of n for which the assumption min1≤k≤rn pnk ≥ 3

4
of the theorem holds; thus,

P(Nλn = 0) − P(Yn = 0) + P(Nλn = 1) − P(Yn = 1)

≥
( n∏

k=1

pnk

)( rn∑
k=1

(1 − pnk)(1 − p̃nk) −
rn∑

k=1

(1 − pnk)
2
)

,

and it can be seen that the latter bound is at most

1

5

( n∏
k=1

pnk

)( rn∑
k=1

(1 − pnk)(1 − p̃nk) +
rn∑

k=1

(1 − pnk)
2
)

for all n such that 2
∑rn

k=1(1 − pnk)(1 − p̃nk) ≥ 3
∑rn

k=1(1 − pnk)
2. This together with (6)

completes the proof.
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Theorem 2 and Theorem 3 together state that the order of the error of our Poisson approxima-
tion for the random variables in Theorem 1 is

∑rn
k=1[P(Ynk /∈ {0, 1}) + P(Ynk ≥ 1)2]. Barbour

and Hall [1] proved similar results using Stein’s method: they approximated a sum
∑n

j=1 Yj

of independent, nonnegative integer-valued random variables with a Poisson variable that has
mean

∑n
j=1 P(Yj = 1) or

∑n
j=1 E(Yj ). (Note that the parameter of our approximating Poisson

random variable is between these two values.) Their bounds are expressed differently, and
involve second moments of the random variables Yj . Moreover, their lower bounds would
yield no useful information at all in the application to be considered in the next section.

We also obtain the following result.

Corollary 1. For the rate of convergence in Theorem 1, we have the upper bound

dTV(Yn, Nλn) ≤
rn∑

k=1

[P(Ynk ≥ 2) + P(Ynk ≥ 1)2] +
∣∣∣∣

rn∑
k=1

P(Ynk ≥ 1) − λ

∣∣∣∣, n ∈ N.

Proof. Since
dTV(Yn, Nλn) ≤ dTV(Yn, Nλn) + dTV(Nλn, Nλ),

the assertion follows from Theorem 2 and because, for any Nν1 ∼ Poisson(ν1) and Nν2 ∼
Poisson(ν2), where 0 < ν1 < ν2, we have

dTV(Nν1 , Nν2) ≤ min{1, ν
−1/2
2 }(ν2 − ν1).

For reference, see, for example, [2, Remark 1.1.4].

3. Coupon collecting with an approximately Poisson distributed waiting time

We begin this section by examining how the coupon collector’s problem defined in the
introduction fits in the framework of the previous section. It can be seen that the following
equality in distribution holds for W̃n,mn := Wn,mn − (n − mn):

W̃n,mn

d=
n∑

i=mn+1

X̃n,i ,

where the X̃ni random variables are independent, and X̃n,i +1 has geometric distributions with
success probability i/n, i ∈ {mn + 1, . . . , n}, n ∈ N, that is,

P(X̃n,i + 1 = j) =
(

1 − i

n

)j−1
i

n
, j ∈ N, i ∈ {mn + 1, . . . , n}.

The triangular array {X̃n,mn+1, . . . , X̃n,n}n∈N satisfies the conditions of Theorem 1. The vari-
ables of the array are infinitesimal, i.e. they satisfy condition (3): for any 0 < ε < 1,

max
mn+1≤i≤n

P(X̃n,i > ε) = 1 − min
mn+1≤i≤n

P(X̃n,i = 0)

= 1 − min
mn+1≤i≤n

i

n

= n − mn + 1

n

→ 0,
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by (2); they also satisfy (4) and (5), because

n∑
i=mn+1

P(Ynk ≥ 1) =
n∑

i=mn+1

(
1 − i

n

)
= (n − mn)(n − mn − 1)

2n
→ λ

and
n∑

i=mn+1

P(Ynk ≥ 2) =
n∑

i=mn+1

(
1 − i

n

)2

= (n − mn)(n − mm − 1/2)(n − mn − 1)

3n2 → 0,

by (2) again. Thus, we see that the limit theorem proved in [3] concerning the coupon collector’s
problem is a special case of the Gnedeno–Kolmogorov theorem [4, p. 132]. If we apply the
results of the previous section to W̃n,mn , we obtain the following result.

Corollary 2. If {mn}n∈N is a sequence of integers that satisfies (2) then the error of the
approximation of the coupon collector’s waiting time, W̃n,mn , with the Poisson random variable
Nλn , which has mean λn = ∑n

i=mn+1(1 − i/n), is of order
∑n

i=mn+1(1 − i/n)2. In fact, for

all n such that minmn+1≤i≤n i/n ≥ 3
4 ,

1

5

( n∏
i=mn+1

i

n

) n∑
i=mn+1

(
1 − i

n

)2

≤ dTV(W̃n,mn, Nλn) ≤ 2
n∑

i=mn+1

(
1 − i

n

)2

.

Corollary 3. For the rate of convergence in the Poisson limit theorem concerning the coupon
collector’s problem, we have the upper bound

dTV(W̃n,mn, Nλ) ≤ 2
n∑

i=mn+1

(
1 − i

n

)2

+
∣∣∣∣

n∑
i=mn+1

(
1 − i

n

)
− λ

∣∣∣∣.
Finally, we note that the Poisson approximation of Corollary 2 can be refined. Using the

special combinatorial structure of the coupon collector’s problem, with elementary but delicate
combinatorial considerations and calculations, we can derive the first asymptotic corrections of
the P(W̃n,mn = k), k = 0, 1, . . . , probabilities to the corresponding Poisson point probabilities.
We state this result in the following theorem, the proof can be found in [8].

Theorem 4. If {mn}n∈N is a sequence of nonnegative integers that satisfies (2),

λn =
n∑

i=mn+1

(
1 − i

n

)
, and λn,2 =

n∑
i=mn+1

(
1 − i

n

)2

,

then

P(W̃n,mn = 0) = exp{−λn} − exp{−λn}λn,2

2
+ O

(
1

n

)
,

P(W̃n,mn = 1) = exp{−λn}λn − exp{−λn}λn

λn,2

2
+ O

(
1

n

)
,

P(W̃n,mn = k) = exp{−λn}λ
k
n

k! + exp{−λn}
(

λk−2
n

(k − 2)! − λk
n

k!
)

λn,2

2
+ O

(
1

n

)
, k ≥ 2.

We note that λn,2 = (2λn)
3/2/3

√
n + O(1/n).
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The results of this section complete the refinement of the limit theorems proved by Baum
and Billingsley [3], who determined all possible limiting distributions of the appropriately
standardized waiting times of the coupon collector, which vary according to the way the
sequence of mns behaves as n → ∞. They obtained three different nondegenerate limiting
distributions: a ‘Gumbel-like’distribution when mn is constant for all n, the rate of convergence
is given in [9]; a standard normal distribution when mn → ∞ and (n − mn)/

√
n → ∞, the

rate of convergence is treated in [7]; and, finally, a Poisson distribution with mean λ when mn

is as in (2).
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