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RAY SEQUENCES
OF BEST RATIONAL APPROXIMANTS FOR |x|*

E. B. SAFF AND H. STAHL

ABsTRACT.  The convergence behavior of best uniform rational approximationsryy,
with numerator degree m and denominator degree n to the function |X|*, « > 0, on
[—1,1] is investigated. It is assumed that the indices (m,n) progress along a ray se-
quence in the lower triangle of the Walsh table, i.e. the sequence of indices {(m,n)}
satisfies

m
" — Cc€[l,00) asm+n— oco.

In addition to the convergence behavior, the asymptotic distribution of poles and ze-
ros of the approximants and the distribution of the extreme points of the error function
[X|% = rin(X) on [—1, 1] will be studied. The results will be compared with those for
paradiagonal sequences (m = n + 2[«r/2]) and for sequences of best polynomial ap-
proximants.

1. Introduction and statementsof mainresults. Our aimisto investigatethe con-
vergence of ray sequencesin the Walsh table of the function

1.1 fx)=1Ix% xe[-11],0< .

Let M, denote the collection of all real polynomials p of degree at most n and Ry, the
set of rational functions

Rm = {p/dq|p€MNmagemnq#0}, mneN,

where N := {0,1,2,...}. By ry, = rin(f,[—1,1]; -) € Rm we denote the best uniform
rational approximant to f on the interval [—1, 1], i.e.

1.2 Em(f,[-1,1]) := If —ripll-1y = riﬂf If —rll-v1,

where | - ||;-11) denotesthe sup norm on [—1, 1].
We know that for each pair m,n € N the best rational approximant r,, existsand is
unique (see [M€g], §9.1 and §9.2, or [Ri], §5.1). The doubly infinite array of all rational
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functions r};,,,m,n € N, is called the Walsh table of the function f approximated on
[—1,1].

Aninfinite sequenceN = N; C N2 of indices (m, n) as well asthe corresponding se-
quence{rin }mnen. Of approximantsis called aray sequencewith associated asymptotic
numer ator-denominator ratio c if

1.3) ?—>ce[0,oo]asm+n—>oo, (m,n) € Nc.

Sincethe sequence {(n, n) }72, correspondsto the diagonal of the Walshtable, it iscalled
diagonal, and any sequence N with ¢ = 1 is called near diagonal, while sequences
{(n+ X,n)}2,, with A aconstant, carry the name paradiagonal. The sequence of best
polynomial approximants{r;,}=_, correspondsto the sequence{(m, 0)}>>_, of indices,
i.e. they constitute the first column of the Walsh table and best reciprocal polynomial
approximants rg, correspond to the first row of the Walsh table. We shall investigate
sequencesin the lower triangle of the Walsh table, i.e. ¢ € [1, 00]. It will turn out that
asymptotic behavior of the approximants {r;,, } mnen. €ssentially dependson the param-
eter c.

Sincef isan even function, it is an immediate consequenceof the uniqueness of best
real rational approximantsthat ry,, is also an even function, and we have
1.4

Fomei 20 (X7 [= 1,115 7) = Moman(X|*, [=1,1];)  formne Nandi,j € {0,1}.

Substituting x for x? leads to the identity
(1.5) oman(X [=1, 103 1) = rig (37, [0, 1]; %)

for all m,n € N and o > 0. Identity (1.5) shows that an investigation of the Walsh table
of the function |x|?* with respect to approximation on the interval [—1, 1] is equivalent
to an investigation of the Walsh table of x* with respect to approximation on [0, 1]. For
o € N both Walsh tables are trivial, for in these cases each entry is identical with the
functionf if m> «.

The approximation of |x| on [—1, 1] can be seen asa prototype of the somewhat more
general problem of approximating |x|* on[—1, 1]. Much attention has been given to both
problemsin the literature. After the pioneering result by Newman [Ne], who showed in
1964 that

(1.6) % ~VN < Enn(X,[-1,1]) <3¢ V" forn=4,5,...,

a series of results has been published. A rather complete list of contributions can be
found in [Vj2] and [SaSt1]. We will mention here only some results that are related to
our special interest. In [V]j3] it is shown that there exist constants0 < M; < M, < 0o
such that

(1.7) Mie ™" < Enn(X), [—-1,1]) < Mze ™ forneN.
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From (1.7) we learn that —7y/n is the correct exponent in the error formula. However,
nothing is said in [V]j3] about the constants M; and M, except that, from a result of
Bulanow [Bu], it follows that M; > 1/3. Based on high precision calculations it has
been conjectured by Varga, Ruttan and Carpenter [V RC] that

(1.8) lim &Y Eqn(x|, [-1,1]) = 8.

This conjecture has been recently proved in [St1].

For the approximation of |x|* with « # 1, T. Ganelius [Ga] and N. S. Vjacheslavov
[Vj2] have independently proved error estimates that are comparable with (1.7) in their
precision. They have shown that there existsa constant M;(«) > Ofor each o € R, \ 2N
and a constant M»(«) < oo for each rational number o such that

(1.9) My (a)e ™" < Enn(1X*,[—1,1]) < Ma()e™@  forn e N.

However, it could not be proved that the constant M, («) depends continuously on «,
so that the upper estimate in (1.9) remained open for all irrational «. In [Ga] aslightly
weaker result is proved which is not restricted to rational «. Thereit is shown that there
exist three constants 0 < M1 (a) < My(er) < oo and c(er) < oo for all o € R, \ 2N such
that

(1.10)  My(@)e ™ < Enn(|X|%, [—1,1]) < My(a)e ™V eV forn e N.

The strong error estimate (1.8) can be extended to the problem of approximating |x|*
on [—1, 1]. In [St2] aproof of the limit

(1.12) lim &V Eq (x|, [-1,1]) = 4"*/| sin(arm/2)

has been announced. Of course, (1.11) implies (1.9) and (1.10). Thelimit (1.11) has been
investigated numerically in [V C2], where the right-hand side of (1.11) was conjectured
independently of [St2].
In [An], among other results, the lower bound of (1.10) has been extended to Markov
functions of type x*, i.e. to functions f of the form
00 (p(X) dx

(1.12) Q=) 5

where ¢ is apositive function satisfying
0<c <X (X)) <cp<oo forxe[0,¢], e >0.

We note that —z* is of type (1.12).

Turning from diagonal sequences of best rational approximants to best polynomial
approximants of |x|* on [—1, 1], we mention the classical results of S. Bernstein [Bel],
[Be2] that the limit

(1.13) 1im M Emol(X|”, [-1,1]) = 5(e)
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existsfor o > 0. Thevalue of 3(1) has been calculated with a precision up to 100 digits
in [VC1] and numerica investigations of 3(«) for other values of « can be found in
[vca].

A comparison of (1.10) with (1.13) shows that the rational approximants converge
substantially faster than the polynomial ones. Since ray sequencesin the Walsh table
constitute a bridge between both types of approximants, an essential question which we
addressin this paper is how the convergence behavior and especially the rate of conver-
gence changes with the variation of the asymptotic numerator-denominator ratio c. The
next theorem gives an answer and shows that for all ray sequenceswith ¢ € (0, co0) the
rate of convergenceis more similar to the diagonal case than to the polynomial one.

THEOREM 1.1. Let o > 0, and let N. C N2 be a ray sequence with numerator-
denominator ratio ¢ € (0, o). For any pair of constants (c, ) with

(1.14) c<min(l,/) and C>max(1,+/0),
we have
(L15) sin(Za)le ™™ < Ena((7, [-1,1]) < &%/

for (m,n) € N; and m+ n sufficiently large.

REMARK. In the theorem we have not excluded the case o € 2N, although it is a
trivial one as mentioned earlier. The sine function on the left-hand side of (1.15) can be
replaced by any other bounded function that is zero for « € 2N and positive elsewhere.
Contrary to the other theorems that will be formulated and discussed in the sequel, we
have in Theorem 1.1 not excluded ray sequences from the upper triangle of the Walsh
table i.e.c < 1.

Theorem 1.1 is an immediate consequenceof Ganelius' result stated in (1.10) and the
observationthat R € Ry € R if £ = min(m, n) and k = max(m, n).

If ¢ # 1, then ¢ < ¢ and therefore Theorem 1.1 does not give the precise coeffi-
cient in the exponent of the error estimate. The determination of the correct exponent
remains open. However, it will turn out that the estimatein (1.15) is good enough for the
investigations of the present paper.

It is conjectured that for every ray sequence N, ¢ € (0, 00), the limit

lim ——
(mMeNe 74/an
exists. From Theorem 1.1 we only know that if this is true, then the limit has to lie
between min(1, v/c) and max(1, \/c).

For the specia case of the function f(x) = |x| it has been proved in [BIS] by
Blatt, Iserles, and Saff that the diagonal sequence {r,} converges not only on the
interval [—1,1] but also in the two half-planes H, := {z : Re(z) > 0} and H_ :=
{z: Re(2) < 0}. We have

(1.16) log(Emn(|X|”, [—1,1]))

z forzeH.

(1.17) Mm@ =12, forzeH.,
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i.e., there is an overconvergence, which is maximal since the closure of H. U H_ isC.
Further, it has been shown that all poles and zeros of the approximants r};,, lie on the
imaginary axis, and poles and zeros interlace on each imaginary half-axis.

On the other hand, in the polynomial case, thereis no overconvergence(seee.g. [Sd]).
Outside of theinterval [—1, 1] it can be shown that

(1.18) 1im r7,4(2) = o0

uniformly on every compact subset of C \ [—1,1]. Thus, the question arises to what
happensin the intermediate case of aray sequencewith ¢ € (1, oo). Do the approximants
in the intermediate case behave more like the diagonal or more like the best polynomial
approximants, or is there some specific intermediate form of behavior? Corollary 1.3
provides an answer to this question.

THEOREM 1.2. Let« € R: \ 2N and riy, = rin(x|%, [—1,1]; ). Then for any ray
sequence Ne C N?, with ¢ > 1, and for the paradiagonal sequence N with ¢ = 1 and
m= n+2[«/2] for all (m, n) € N, we have

. X c—-1
(1.19) Aim (@)Y = exD[m%\[ﬂ,l](Za 00)],
(mn)eN
where
(1. 20) 95\_11(z ) := log|z+ V2 — 1]

is the Green function of the domain C \ [—1, 1] with logarithmic pole at co. The limit
(1.19) holds uniformly on compact subsets of C \ [—1,1] if ¢ > 1, and uniformly on
compact subsetsof C \ iR if c = Land m = n+ 2[«/2]. (By [/ 2] we denote the largest
integer not greater than o/ 2.)

REMARK. If c=1andm= n+2[«/2] forall (m, n) € Ny, then the right-hand side
of (1.19) isidentically 1in C \ iR. Hence, in this case zeros or poles of r,, can have no
cluster pointsin C \ iR. Thesituation is different in case of a near-to-diagonal sequence,
i.e.c = 1lwithm > n+2[«/2], for then (1.19) may hold only in some weaker form,
because cluster points of zeros of r},, off theimaginary axis can no longer be excluded.

COROLLARY 1.3. If 1< ¢ < oo, then(c—1)/(c+1) > 0, and therefore
(1.21) [ Irin@| =00 forzg[—1,1].

im

ReEMARK. Since the analytic continuation of f(z) = |Z* is equa to z* in H, and
equal to (—2)* in H_, Corollary 1.3 shows that in case of ray sequenceswith ¢ > 1 the
phenomenon of overconvergence no longer exists.

Theorem 1.2 aswell asthe later theorems stated herewill be proved in Section 4 after
preparations in the next two sections.

It turns out that the overconvergence stated in (1.17) for the function f(z) = |z| has
an analogue for the wider class of functionsf(«; z2) = 2%, o > 0. Sincef(«; -) hasazero
of order ¢ at z = 0, anatural extension of (1.17) is obtained by using the paradiagonal

sequence {(n+ 2[ar/2], M)}22,.
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THEOREM 14. Let « > 0 and r},, denote the best rational approximant
rin(x%[—1,1]; ) for mn € N.
(@) We have

pad for ze H.

(1.22) JLTOrmz[a/z],n(z): (—2* forzeH_,

uniformly on compact subsetsof H_ UH, = C \ iR.

(b) Let nbeevenand o ¢ 2N. Then then polesand n — 2 of the n + 2[«/ 2] zeros of
r::+2[a/2],n lie on theimaginary axisiR, the polesare simple, andn/2 polesandn/2 — 1
zerosinterlace on each half-axis.

REMARKS. (1) Incasear = 0,2,4,..., wehavery ,, » (2 = Z" foraln e N,
and part (b) of thetheorem doesnot hold. However, thereisaniceintuitive interpretation
for these special cases. If o approaches one of the numbersin 2N, then the n poles and
n of the n + « zeros become pairwise identical and cancel out. The remaining « zeros
convergeto z= 0. Thelimit (1.22) then holdstrivialy for all z € C.

(2) If nisodd, thenit followsfrom (1.4) that r:;+2[a/2]]n = r:;71+2[og/2],n71' andtherefore
part (b) of the theorem is applicable with n replaced by n — 1. It can be shown that for
a € R, \ 2N the poles and zeros of r;+2[a/2]yn are asymptotically densein iR for n — oo
(see[Sast2)).

Next, we investigate the asymptotic distribution of the extreme points of the error
function f — rf,, on [—1,1]. It will turn out that the shape of this distribution depends
on the numerator-denominator ratio ¢ of the ray sequence N. C N2. We have seen in
(1.5) that al approximants r;n(2) = rim(1x|%, [—1, 1]; 2) are even functions; hence, we
can assume without loss of generality that m,n € N are even.

LEMMA 1.5. For o € R+ \ 2N and m,n € N even, there exist m+ n + 3 points

(1.23) “Ll=x<x< - <Xmws=1
such that
(L.24) ()22 2K 3| — (%) | = Ema(IX]*, [-1, 11)

fork=1,....m+n+3,andx =X, k=1,...,m+n+ 3, aretheonly pointsof [—1, 1]
at which the error ‘ [x|* — r;*m(x)‘ attains its sup norm Ep .

The lemma follows from Chebyshev’stheorem on alternation points (see [M¢g], The-
orem 23, or [Ri], Theorem 5.2) and the fact that

(1.25) Wim = span{1,x,...,x"2 x¥/2 xt+e/2 yme)/2y

forms aHaar space of dimension (m+n)/2+10on[0,1] if « ¢ 2N. More details can be
found in Section 2, where we give a complete proof of Lemma 1.5.
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Thepointsin (1.23) arecalled extremepoints, theset of all suchpoints {Xy, . . . , Xmen+3 }
is denoted by Am,, and the counting measure of the set Any, isdenoted by v 4, and defined
as

(1.26) VAm = 2 Ox
XEAm

where §; is Dirac's measurefor z € C. By wj—1,17 We denote the equilibrium distribution
of theset[—1,1],i.e. dw—19(X) = (1/7) dx/v/1—x2,x € [-1,1],and by — we denote
convergencein the weak-star topology on the Riemann sphere; i.e. we say that asequence
of measures {vn} convergesweak-star to ameasurev, written v Su,if ffdvy — [fdv
asn — oo for every function f continuous on C. The next theorem contains our main
result about the asymptotic distribution of extreme points.

THEOREM 1.6. Let o € R, \ 2N. For any ray sequence N; C N? with numerator-
denominator ratio ¢ € [1, 00] andm > n+ 2[«/2] for all (m, n) € N; we have

1 * 2 +<:—1
- - L
m+n+3VA‘m c+10 c+1

(1. 27) w[fl,l]

asm+n— oo, (Mn) € Ne.

REMARKS. (1) Weseethat the asymptotic distribution of the extreme pointschanges
continuously with the numerator-denominator ratio c. Actually, it is a convex combina-
tion of the two measureséo and wy—1,13, Which are the asymptotic distributions in the two
extreme cases of the near-to-diagonal sequencewith m = n+ 2[« /2] and the sequence
of best polynomial approximants.

(2) In the special casem = n + 2[«/2] (paradiagonal case) we have ¢ = 1, and
therefore in this case “amost al” extreme points of f — r}, convergetoz = 0.

(3) Inthecaseof polynomial approximants(c = oo), assertion (1.27) isaspecial case
of atheorem of Kadec [Ka]. However, Theorem 1.6 is somewhat more general since it
also covers sequences {ry,, }rv; With m/ng, — oo.

We cometo the last group of resultsin this paper, the asymptotic distribution of zeros
and poles of the approximantsrr,, = ri, (X%, [—1,1]; ).

THEOREM 1.7. Let € R: \ 2N and let N; be a ray sequence with numerator-
denominator ratio ¢ € [1,00), m> n+ 2[«/2], and m, neven for all (m,n) € Ne.

(@ All npolesof ry,, aresimple and lie on the imaginary axis.

(b) Let Py = {m1,...,m} and Zm = {4, . ..(n} denote the sets of (finite) poles
and zerosr;y,,. The points can be ordered in such a way that
(1.28)

1 1 1 1 1 1
i—7T1 > I—<1 > i—Tf‘z > I—<2 > > i—ﬂ'n/z >0> i—ﬂ'n/2+1 > > i—Cnfz > i—’ﬂ'n,

i.e. thereareat least n— 2 zeroson theimaginary axis, with at least one on each segment
joining adjacent poles on each half-axis.
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(c) Wehave
1
(1.29) VP bo,
1 « 1 1
= —5+@——)_
ml/zrm — c 0 c Wi-1,1]

asm+n— oo, (Mn) € Ne.
(d) Ifc> 1, thenall polesof r},, convergeto z = 0, and all zeros of r,, cluster on

[—1,1],i.e.
0 0
(1. 30) m U mn — {0}, m U Zmn = [_1, 1].
k=1 (mn)eN k=1 (mn)eN
m+n>k mn>k

REMARK. Part (d) of Theorem 1.7 holds only for numerator-denominator ratios
¢ > 1. It can be shown (see [SaSt2]) that in the special case of the paradiagonal se-
quence {(n+2[a/ 2], ) }nen, polesand zeros are asymptotically dense on the imaginary
axis. It follows from Theorem 1.4 that in this case the poles and zeros have no cluster
points outside of the imaginary axis. This last result is perhaps not true for all other se-
quenceswith numerator-denominator ratio ¢ = 1. For thecasem > n+2[«r/2] andc = 1
the results (1.28) and (1.29) are the only onesthat we can prove so far. We remark that in
the survey paper [SaSt1], formulas (20), (23) and (25) of that paper should be replaced
by (1.24), (1.27) and (1.29), respectively.

2. Connections with Stieltjes functions. In the present paragraph we establish a
connection between best rational approximants and multipoint Pade approximants. This
connection will enable us to prove several properties of the best rational approximants

(.

From (1.5) we know that all r};,, are even functions. It is therefore possible to replace
7% by z simultaneously in the approximant r},, and in the function |z|*. The substitution

correspondsto a mapping

2.1) piHy —D:=C\R. (R_:={xeR|x<0})

with ¢(2) = Z2. Throughout the following sections we denote by f the function
(2.2 f(2:=f(;2 . =2 forzeDando €R.

and by r.,, we denote the best rational approximant

(2.3 r,=rnax*[0,1;) e Ry formneN, a >0.

In the new setting the best rational approximantsr:,, areidentical tof(«; -) foral o € N
and m > «. Since these special cases are trivial, we will exclude them from further
considerations and assume that

(2.4) a €R.\N.
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As as immediate consequence of Cauchy’sintegral formula we have the representa-
tion

_Z[a]+18il’l(7r(a —[a] — 1)) /oo w(e—lel=1) gy

(2.5) f(o; 2 = A v

forall ze D.

Y
Since—1 < o — [a] — 1 < 0, theintegral in (2.5) defines a Stieltjes function. It is easy
to check that the integral existsfor all z < D.
Before we turn to the study of the connection of r},, with the theory of multipoint
Padé approximants, we prove alemma that covers most of the assertions of Lemma 1.5.
The full proof of Lemma 1.5 will be given at the end of the present section.

LEMMA 2.1. Leta € R+ \ N, and setry;,, = P/ Gmn With pmn and gy coprime and
Omn MoONic, m > n+[«], m,n € N. Thendeg(pm) = mand deg(dm) = n, and thereexists
a set of m+n+ 2 alternation pointsin [0, 1], i.e, wehave 0 < x; < - -+ < Xmene2 < 1,
and the error function

(2.6) em = flor) — Iy
satisfies
2.7) em() = A\ Em(x*[0,1]), j=1,...,m+n+2,

withA=1lor A= —1.

PrROOF. It has already been mentioned in the introduction that the best rational ap-
proximant r},, exists and is unique for each m, n € N. Let Xy, ..., Xme2—g bE @ S&-
guence of alternation points of maximal length. From Chebyshev’s Theorem on alterna-
tion points (see [Me€], Theorem 23, or [Ri], Theorem 5.2) we know that

(2.9 d < min(m — deg(pm), N — deg(thm))-

We shall show that d = 0.
From the intermediate val ue theorem and the definition of alternation pointsit follows
that there exist at least m+ n+ 1 — d zeros z of ey, satisfying

and
(2.10) em(z)=0 forj=1,....m+n+1—d.

From (2.10) we learn that ry,, interpolates the function f(«;-) in the points z, ...,
Zmn+1—d, and the expression

(2.11) Orm€m = Gmf (@} -) — Pm

has zeros at the points zy, . . . , Zyn+1—q- FOr z € [0, 1] the right-hand side of (2.11) isan
element of the space
(2.12)

Wiy = span{1,z,...,2", 2%, 2*%,..., 2"}, o :=deg(pm), N := deg(Qm).
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Since Wyyy forms a Chebyshev system on [0, 1] of dimension m’ + n’ + 2 (see [KaS{],
Chapter 1, §3), we know that (2.11) and therefore also e, has at most nY +n’ + 1 zeros
in[0,1]. Hence, m+n+1—d < 1+ deg(pmn) + deg(gm)-

Onthe other hand, it followsfrom (2.8) that 2d+deg(pmn) +deg(dm) < m+n. Thelast
two inequalitiestogether imply that d = 0. Thus, we have proved that there exist m+n+2
alternation points, and further we have shown that deg(pm) = mand deg(gm) = n. =

From (2.7), (2.9) and (2.10) it follows that the rational approximant r},, interpolates
f(a; ) inthem+ n+ 1 points of the set

(2.13) Bm = {z1,. .., Znene1 -

We shall see below that these are the only zeros of e, on R... The polynomial

(2- 14) Wmn(z) = H (Z_ X) € Mmen+1,
XEBm
will be frequently used.
The next lemma contains most of the results about the structure of the denominator
and numerator polynomials of r?,, that can be deduced from the interpolatory property
of 1,

LEMMA 2.2. Leta € R, \ N, and let the rational function rpn = Prm/0dm € Rm
interpolate f(o; ) in the points of Byyy = Bm(a) C (0, 1), pm and g coprime, and
assumethat m> n+ [«a].

(a) Thedenominator polynomial g, satisfies the orthogonality relation

(2.15) /Ooox‘}%x"dx:o for (=0,...,n—1,
where wm isthe polynomial defined in (2.14). All zeros of g are simple, contained in
(—o00,0), and their total number is exactly n.

(b) The numerator polynomial pn, is of exact degree m, and in the segment between
two adjacent zeros of g thereis at least one zero of pm.

(c) For theerror function ey, := f(o; -) — rf,, We have the representation

_ sinTa wm(?) /oo Grmn(—X)?x dx
Jo

for ze D.
™ an(z)2 W (—X)(X +2)

(2.16) &m(2) =

PrOOF. (@) Wewill write p, g, w, f instead of pmn, Om, wm, f(a; ), respectively.
Since r interpolatesf in the points of By, we have

(2.17) qf —p = wg

with g afunction analytic in D. Let Do be a simply connected domain with rectifiable
boundary dDg, Dg C D, B C Do, and let C be the positively oriented boundary dDg.
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Multiplying (2.17) by Z, ¢ = 0,...,n — 1, and dividing by w yields with Cauchy’s
theorem that

9O 0y g PO
S Gl

Sincedeg(w) = m+n+1>m+(+2>deg(p)+ ¢ +2if £ <n—1, weseethat inthe
second integral on the left-hand side of (2.18) the integrand has a zero of order at least 2
at infinity, and the integrand is analytic outside C. Hence, this integral vanishes, and we
have

(2.18) ¢ do= ¢ ¢'gQ)dc =o.

(2.19) fcdqgg d=0 for¢=0,... n—1
If we let C deform to the boundary of an annulus slit along the negative real axis and
let its inner radius tend to 0 and its outer radius tend to oo, then the integral in (2.19)
convergesto (2.15), provided that the integral in (2.15) exists. Here only the behavior of
the integrand near { = 0 and ( = oo iscritical. The modulus of the integrand at { = 0
behaveslike [¢|**' since By, C (0, 1). At¢ = oo it behaveslike |¢|’

(2.20) g<@n—-1D—(m+n+)+a<—Ja]+ta—2< -1

From (2.20) we deduce that the integral in (2.15) exists. In (2.20) we have used the
assumptionm > n+ [o].

From the orthogonality relation (2.14) it follows rather immediately that deg(q) = n,
and that all its zeros are simple and contained in (—oo, 0) (see[Sz], Chapter 111).

(c) We continue with the proof of assertion (c) and defer the proof of assertion (b)
until later. Let h € My, bean arbitrary polynomial, and let thedomain Dy C D, its contour
C, the polynomials p, g, w, and the function g be the same as those used in (2.17) and
(2.18). By Cauchy’sintegral formula we deduce from (2.17) that

1 (9
- 2niJe (—z

d¢
eay @—wchj 073 d = (h9)?
for al z € Dg. Since the degree of hp is smaller than that of w, the rational function
hp/w isanalytic outside of Dy and has azero at infinity. The second integral in (2.21) is
therefore identically zero. With the identity ghey,, = ghf — hp we have thus proved that

w(2)

(2.22) em(2 = @2 fc " (C)

for z € Do.
Choosing h = g and letting C deform to [—oo, Q] as before yields (2.16). We note that
the integral in (2.16) exists for al z € D, which can be proved in the same way as the
existence of the integral (2.15) in part (a) has been verified. Further, we note that the
factor (sinra) /7 arises from the analytic continuation of ¢* to (—oo, 0) from both sides.
The techniqueis the same as that in the derivation of formula (2.5).
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(b) We use the same notation as in the proof of part (c). From (2.22) and the identity
gem = df (o; -) — pit follows that

P =l (05) — ewl(@ = 52 f, 50— 220 f Lo

2m -z h(Z)27rI
(2.23) i @) @w(©) — (qh)(é)w(z) ¢*dg
h(z)27r| (-2 w(©)

for z € Dy. If we chooseh = g and develop the right-hand side of (2.23) in powers of z,
and if we assumethat q is monic, i.e. q(2) = 2" + - - -, then it follows from the identity

q(0)* — q(2)?

9@2%w(Q) — aQ’w@ _ wQ) — w(Z)
(2.24) 2 R Gt ¥
that in the development p(z) = anz" + - - - the leading coefficient a, is given by
0|(C)2
(2.29) = 27 fé: w(@)

Note that becauseof m > n+[a] > nwehavedeg(w) = m+n+1>2n+1>2n=
deg(q?). Asin (2.20) we can show that the curve C in (2.25) can be deformed to [—oo, 0],

and we have

sinra o g(—x)?
(2.26) =l cif(—)i) x*dx # 0,
which proves deg(p) =

Next, we show that between two adjacent zeros of q thereisat least one zero of p. Let
Y1,...,Yn be the zeros of g numbered according to their value. From part (&) we know
that all zeros of g liein (—o0,0). Since all zeros are simple, we know that the partial
fraction representation of p/q has the form

@.20) B =3 2 +P0)

with P € Mm_pn. Sincef(c; -) hasan analytic continuation across (—oo, 0) from both sides
and since f(c; -) is therefore bounded at each zero y; of g, the rational function (2.27) is
dominant in the error function e, = f(a;-) — p/q near every poley;,j = 1,...,n, of
p/q. From the analytic continuation property of f(«; -) we note that in (2.22) teh contour
C can be deformed so asto contain y; in its interior. We therefore deduce with hj(2) :=
A(2)/(z—y;) € Mny that

—\j = Res—y, em(2) = lLrg em(2(z—Y)
]

w(y) ‘ ( q() )an d¢

(2.28) T 2mg ()2 le\c—y ) w(©
i T
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The last equality is a result of deforming C to [—oo, 0], and the integral cannot vanish
since the integrand does not changeits sign on [0, co].

Since o aswell asthe sign of sin o isfixed, it followsfrom (2.28) that all A4, ..., An
are of same sign. It therefore follows from (2.27) that p has at least one zero in each
interval (y;,yj+1),j =1,...,n—1. "

PROOF OF LEMMA 1.5. Inview of Lemma2.1 it remains only to be shown that the
aternation points X, . . . , Xmen+2 iN (2.7) are the only extreme points of ey, on [0, 1] and
further that X; = 0, Xmene2 = 1, and A = (=) in (2.7). All assertions of Lemma 1.5
then follow from Lemma 2.1 by using identity (1.5), which describes the connection
between the problem of approximating x* on [0, 1] and |x|2* on [—1, 1].

Setri, = Pmn/Gm. For c € R we have

(2.29) em(@=c
for somez € [0, 1] if and only if

(2.30) Z"0m(2) — cdm(2 — pm(2 = 0.

Since the left-hand side of (2.30) is an element of W, defined in (2.12), for eachc € R
there exist at most m+ n + 1 zeros of (2.29) in [0, 1]. The extreme points of ey, satisfy
(2.29) with c = Eqp(x%, [0, 1]) or ¢ = —Empn(x*, [0, 1]). If an extreme point liesin (0, 1),
thenitisat least adouble zero of (2.29), while at the endpoints0 and 1 it may correspond
to asimple zero of (2.29). Since we know from Lemma2.1 that there are at least m+n+2
aternation points, it follows that these are the only extreme points, and more than that,
it follows that the two endpoints 0 and 1 have to be among these points.

In order to prove A = (—1)[*! in (2.7), we consider e, near infinity. For m > n+[a]
the approximant r};,,(2) = amz2™ " + - - - isdominant in ey Near infinity. From (2.26) we
then know that

(2.31) sign(am) = (- sign{wm(¥) | x € R_} = (=)™,

which is the same as — signem(2) for z € R near infinity. From (2.16) we know that
em hasexactly m+ n+ 1 sign changeson R. which shows that

(2.32) A= —signem(0) = (-1

form > n+[a]. Thecasem = n + [«] follows in the same way if we observe that
sign(em(?) = 1forz> 1. n

3. Some results involving logarithmic potentials. In order to simplify notation
we assume that in every ray sequence Ne = {(m,n)} C N2 each index n appears only
once and therefore we can consider mas afunction of n,i.e m=m,,n € N C N, and
{(m,n)} = {(Mn, N) }nen. It is obviousthat such an assumption can be made without loss
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of generality. We also will change the parameterization of the sequences N.. Instead of
the numerator-denominator ratio ¢ we now use the parameter ©, which is defined by

3.1) lim™ —: 1420,
N n

From (1.3) weseethat © = (c—1)/2. We shall writen € Ng if (My, n) € N and call Ng
the index sequence of Nc. A ray sequence belongs asymptotically to the lower triangle
of the Walsh tableif © > 0. Throughout the present paragraph, we make the assumption
that

(3.2 m, >n+[a] foralne Ng.

The assumption (3.2) implies® > 0.

In order to have a further simplification of notation we write ¢, pn, wn instead of
Om,ns Pm,ny W, n, FESPectively. Since zeros of ¢, can tend to —oo asn — oo, we haveto
normalize g, in away that avoids g, from “blowing up” if zerostend to —oo. The monic
polynomials are not appropriate for this purpose. In the present section we assume that
the polynomials g, are normalized so that

(3.3) w@ = I1 -y [ =L =]-2

yl<1 wisr Yl = max(L [ys)

holdstrue, whereys, ..., y, are the n zeros of g.

For any polynomial p € M, we denote by v, the counting measure of its zeros, i.e. v
associates a mass to each zero of p that is equal to the order of the zero. From the weak
compactness of the unit ball of positive measures it follows that any ray sequence Ng
contains an infinite subsequence, which we continue to denote by Ng, so that measures
v, w and a constant ¢cq exist with

1
(3. 4) ﬁ]/q

*
Vy 57Vy

* 1 —
. 2n,n—>w,%log|ln(1)|—>coelR asn— o090, N € Ng,

where |, denotesthe integral

. 2|y|a
snwa/o an(9)*[X|* dx z€ C\ [—00,0].

(3.5) h@=——/ X—2)wn(¥)’

In Lemma2.2(a) it has been shown that all zeros of g, are contained in (—oo, 0), and that
deg(gn) = n. Hence, v is a probability measure with

(3.6) supp(v) < [—o0,0].

Since the polynomial w, has m, + n + 1 zeros and since all these zeros are contained in
(0,1), it follows from (3.1) and (3.3) that w is a positive measure with

(3.7 supp(w) C€0,1] and w([0,1]) =1+06.

https://doi.org/10.4153/CJM-1997-052-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-052-3

1048 E. B. SAFF AND H. STAHL

By

3.9 PG = [10g 2 duy
we denote the logarithmic potential of a given signed measure .

Definition (3.8) differs somewhat from the usual one (seefor instance[La], Chapter |,
or [StTo], Appendix), but it hasthe advantagethat it is not affected by a strong growth of
the measure 1, near infinity. The definition can be reduced to acombination of logarithmic
potentials that are defined in the usual way. Indeed, let © = p; + 2 be adecomposition
of 11 such that supp(u1) C {z| |2 < 1} and supp(u2) C {2 |2 > 1}. Let 3 denotethe
image of 1, under the mapping x — 1/x. Then supp(u3) C {z ‘ |7 < l}, and we have
the identity

p(::2) = [10g M 9 = floa 2

(3.9 = /Iog dul(x) /Iog

duE(X) + ||uz(C)|| log |7|

S+ [ log = dnz(¥

|1/z—

= p(Hl:Z)+p(U2= )+||M2(@)|||09| 7

Note that if supp(i) C {z | |2| < 1}, then we have

(3.10) P(:2) = [10g =7 du(x),

which is the usual definition of alogarithmic potential.

LEMMA 3.1. Wehave

1 wn(@ | .
(3.11) ';'JQ,“ on log w22~ plv —w;2)
locally uniformly z€ C \ [—o0, 1],
: 1 wn(@ | _ o
(3.12) I|n’1\‘esup on log edl pv — w;2)

for quasi-everyz € C \ [—o0, 0], and for every sequence of points z, € C, n € Np, with
z,— 2y € C\ [—00,0] asn — oo, n € Ng, we have

(3.13) Ilmsup 2— log :n((znZ;)Z < pv — w; o).
N

Further we have

(3.14) I|m|nf — Iog w”((z?z =p(v — w;2)
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for quasi-every z € C \ [0, 1], and for every sequence of points z, € C, n € Ng, With
z,— 2z € C\ [0,1] asn— oo, n € Ng, we have

UJn(Zn)
On(zn)?

R |
= > —
(3.15) IlmN;nf n log > plv — w; 29).

REMARK. We write limy, instead of limy_onen, . A property is said to hold quasi-
everywhereon aset V C C if it holds for every z € V with possible exceptions on a set
of capacity zero (see[La], Chapter |1, No. 6).

ProoF. Thelimit (3.11) follows from thefirst two limitsin (3.4) and the fact that all
zeros of gn and wy, are contained in (—oo, 1). The asymptotic inequality (3.13) follows
from the first two limits in (3.4) together with the principle of descent (see [La], The-
orem 1.3), which has to be applied to the sequence of potentials (1/2n) log[1/wn(2)].
This sequence converges to p(w; 2). In the same way the asymptotic inequality (3.15)
follows from the first two limits in (3.4) and the principle of descent, but now the princi-
ple of descent hasto be applied to the functions (1/n)log |1/ dn(2)|, which are not of the
form covered by Theorem 1.3 in [La] because of the normalization (3.3). However, by
using the decomposition described in (3.9), it is immediate that the principle of descent
proved in Theorem 1.3 of [La&] is also applicable to the sequence {(1/n)log |1/ an(2)|}-
The limits (3.12) and (3.14) follow from the first two limits in (3.4) and the lower en-
velope theorem of potential theory (see [La], Theorem 3.8), where in case of the limit
(3.14) the decomposition (3.9) again has be used in order to justify the applicability of
Theorem 3.8 of [La]. ]

In (3.4) we have only assumed the convergence of the sequence (1/2n)log|l.(2)|,
n € Ng, a z = 1, where we alow the limits +o0o0. The integral 1, has been defined in
(3.5).

LEMMA 3.2. (a) Wehave
(3.16) (2 #0 forallzeD=C\R_.
(b) For every compact set V C D we have
1
(3.17) lim 5 log[In(d] = co

uniformly for z€ V.

REMARK. The value of co may depend on the subsequence Ng. Note that as yet we
do not know whether ¢ isfinite.

PrROOF. (@) Thefirst assertion follows from the observation that

(3.18) Im(2) - Im(%() <0

https://doi.org/10.4153/CJM-1997-052-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-052-3

1050 E. B. SAFF AND H. STAHL

foral Im(z) # 0 andx € R, and
(3.19) Re( ! )>0

Z+X
for al z,x € R..
(b) Thefunction gn(—x)?x* /wn(—X) doesnot changesign on (0, 0o), andit is positive
or negative depending on whether m, + n + 1 is even or odd. Since we have assumed in
(3.2) that my > n+ [«], for fixed z € D we have the estimate

Gn(—X)°x”

(3.20) o (X+Z X+

< cex*7 1912 forall x € [0, 0],

where c3 isaconstant that dependson z, g, wn, but isindependent of x. Inequality (3.20)
can easily be verified for large x by moving all zeros of the polynomiaswy and g, to the
point x = 0 and using theinequality 2n+a — (M, +n+1) — 1 < o — [a] — 2. For finite
X, inequality (3.20) follows from the fact that all zeros of w, are contained in (0, 1). It
follows from (3.20) that the integral in (3.5) existsfor eachn € Ng and z € D.

For a given z with Im(z) > O, the image of (0,c0) under the mapping X —
1/(x+2) iscontained in the lower half-plane {w | Im(w) < O}. Hence, for Im(z) > Owe
havelm(ln(z)/ln(l)) < 0. Notethat I,(1) isreal. For Im(z) < 0, the opposite inequality
Im(ln(z) / In(l)) > 0 holds. From these observations we deduce that

(3.21) larg(1n(2)) — arg(In(1))| < = forall ze D.
Hence,
(3.22) mw 2—1n\arg(|n(z)) —arg(Ia(1))| =0

locally uniformly in D. Since arg(ln(z)) is the harmonic conjugate of log|In(2)|, limit
(3.17) follows from (3.22), the third limit in (3.4), and Schwarz' s representation formula
for the conjugate function. ]

The inequality and the equality proved in the next lemmaare of basic importance.
LEMMA 3.3. Wehave

=0 foralze]0,1]
>0 forall ze[—o0,0].

The constant ¢y € R has been defined in (3.4), and it isfinite.
PrROOF. (@) We start by showing that the inequality

(3.23) Pl — w;2) +Co [

(3.24) plv —w;2)+cp <0 foralzel0,1]

isaconsequenceof the error estimate (1.15) in Theorem 1.1. From the upper estimate in
(1.15) it follows that

. 1 1
J— < —_— =
(3.25) I|rr’L§Jp o loglen(z)| < I'l‘rg\ 2n( civadn) =0
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uniformly for z € [0, 1], wherec; isaconstant smaller than 7. We note that because of the
substitution 2 — zwe have to substitute the degree n by 2n in the error estimate (1.15).
From the remainder formula (2.16) of Lemma 2.2 together with (3.25) we know that

wn(2)
on(2)?

uniformly for z € [0, 1]. The function I, in (3.26) has been defined in (3.5). From (3.12)
of Lemma 3.1 we know that

. 1 . 1
. > — = -
(3.26) 0> Im:q:up on log |en(2)] Im’l‘:up on {Iog

+log |In(z)|}

wn(2)
n(2)?

(3.27) Iimsupilog =plv —w;2)
No 2n

for quasi-every z € [0, 1]. Together with the limit (3.17) in Lemma 3.2 we deduce from
(3.27) and (3.26) that the inequality (3.24) holds for quasi-every z € [0,1]. The set
F:={z€e[01] | plv — w;2) + ¢ > 0} is thin near every x € [0,1]. Hence, in
the fine to;ology, the set F belongs to the fine boundary of [0, 1] \ F (see[La, chapter V,
Section 3]) and because of the continuity of p(v —w; 2) in the finetopology, the inequality
(3.24) holdsfor al z € (0, 1].

(b) Next we show the inequality in (3.23). Let x be an arbitrary point of (—oo, 0) and
6 > 0. Because of the upper semicontinuity of p(—v; z) and the continuity of p(w; z) on
(—00, 0) there existsan ¢ > 0 such that

(3.28) p(—v;Xx) < max p(—v;2),

p(w;2) — 6 < minp(w; 2)
zel

fordlzel:=1.x:=[X—¢,x+¢e] C (—00,0). Denote by My the maximum

(3.29) My 1= max|an(9)]

Because of thefirst limit in (3.4) and the principle of descent (see[La], Theorem 1.3) we
know that

(3.30 limsup = l0g | (z0)] < p(—v: 2)

Ne N

for any sequencez, — 7 < I. (That the principle of descent and the lower envelope
theorem holds for potentials of type (3.8) has been shown in the proof of Lemma 3.1.)
From the lower envelope theorem (see [La], Theorem 3.8) we know that

. 1
(3.31) Im,Lsupﬁ log|an(2)| = p(—v:2)

for quasi-every z < I. It follows from (3.30) that

(3.32) Iimsup} logMp < max p(—v; 2).
Noe DN z€l
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Since (3.31) holds for any infinite subsequence of Ng, it follows from (3.30) and (3.31)
that

(3.33) M > e ™c)

for al n € Ng sufficiently large with

(3.34) logc; = malx p(—v;2).
ze

From the uniform convergence of (1/2n)log|wn(z)] — p(—w;2) on I, it follows that
there exists a constant cz such that

1 o
sinta |Z| Im( 1 ) > @

(3.35) e

for al ze |, n sufficiently large, zy € C \ R fixed, and the constant c; satisfies
(3.36) logcs < milnp(w; 2) <logcs + 25,
ze

where we have used inequality (3.28).
Let x, € | besuchthat M, = |gn(X,)|. From Markov’s inequality we know that

2
(3.37) 0@ < Im, foralzel.
13

Integrating g, shows that

Mn . € .
(3.38) |an (2| > > forall ze | with |z— x| < > = en-
Since at least one half of theinterval [x, — &, X, + £5] iScontained in | we have the lower
estimate
sinma %0 On(—X)?x* dx
| > |— _
)l = 0 Tn( 0 2)
Xnten

(3.39) > 2 /Xn " (9P o

Mp 2 _ €
> C%”(%) en > (C3C2€ 5)2nW

for the function I, defined in (3.5) if nis sufficiently large. We have used in (3.39) the
inequalities (3.35), (3.38), and (3.33). With (3.34), (3.36), and (3.38) the estimate (3.39)
implies that
(3.40)

o1 L 1 €

Impll)nf o log|In(z0)| > IlmNG!nf o log o +logc, +logcs — &) = logc, +logcs — 6

= maxp(—v;2) + minp(w; 2) — 38 = p(—v;X) + p(w; X) — 4.
Z Z
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From the limit (3.17) and the arbitrariness of 6 > 0 we deduce from (3.40) that
(3.41) p(w —v;X) < Co.

Since x € (—oo, 0) was arbitrary, (3.41) completes the proof of the inequality in (3.23)
for al z € (—oo, 0). That the inequality holds also for x = 0 and x = —oo, follows from
the continuity of p(v — w; -) in the fine topology (see [La], Chapter |11, §1) and the fact
that —oo and 0 are regular points of [—oo, Q].

(c) Inorder to provethe equality in (3.23) for al z € [0, 1] we first show that

(3.42) plv —w;2) +co >0 foral z e supp(w).

From (3.7) we know that supp(w) C [0, 1]. In part (b) it has been shown that (3.42) holds
for z= 0. Now let x bean arbitrary element of supp(w) \ {0}. Then from the second limit
in(3.4) itfollowsthat for every n € Ng thereexist at least two pointsan, b, € Bp := By.n
with a, < b, and both limits a, — x and b, — x exist asn — oo. Note that B, is the
set of zeros of the error function e, (see (2.10)). Thus, there exists at least one extreme
point z, € An := An,n With ay < z, < b, for every n € Ng and of coursewe also have

(3.43) Zy— X asn— oo, N € Ng,
and
(3.44) |en(z0)| = [lenlli0yy  forall n € No.

From the lower estimatein (1.15) of Theorem 1.1 together with (3.44) it follows that
. 1 1
(3.45) limsup — log|en(z,)| > lim ——(—c4v adn) = 0,
No 2N No 2N

where ¢4 is a constant larger than mv/1+20. With remainder formula (2.16) of
Lemma 2.2 it then follows from (3.45) in a similar way asin (3.26) that

Wn(zn)
On(zn)?

(3.46) Oglimsupilog|en(zn)| = Iimsupi{log +Iog||n(zn)|}.
No 2n No 2n

With the limit (3.17) of Lemma 3.2 and (3.13) of Lemma 3.1 it then follows from (3.46)
that p(v — w;x) + o > 0. Since x was an arbitrary point of supp(w) \ {0}, we have

proved (3.42).

Since p(v — w; -) is superharmonicin € \ supp(w), it follows from the minimum prin-
cipleand (3.42) that
(3.47) plv —w;)+cp >0 foralzecC.

Together with the inequality (3.24) this provesthe equality in (3.23) for al z € (0, 1].
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(d) It remains to be shown that ¢y € R is finite, which will turn out to be a rather
immediate consequence of the equality in (3.23). It follows from the definition of p(v; 2)
in (3.8), supp(v) C [—0,0], and ||v|| = 1 that for al z € (0, 1] we have

(3.48) Iog% <p;2 < Iog%.

Because suppw C [0, 1], the potential p(w;2) is bounded from below on [0, 1] and
p(w;2) = oo can only hold for a set of capacity zero on [0, 1] (see [La], Chapter I,
Section 1). Hence, from (3.48) and the equality in (3.23) it follows that ¢y isfinite. =

The next lemmaisto alarge extent a corollary of Lemma3.3.

LEMMA 3.4. Wehave

(349) p(l/ —w, Z) +C = egf\[o,l] (Z, OO);
(3.50) v = bo,
(3.51) w = 0o+ Ouwio,

wheredg isthe Dirac measureat z = 0 and wyg 1) isthe equilibriumdistribution on [0, 1].

PrOOF. In (3.6) and (3.7) it hasbeen shown that v and w are positive measureswith
|v|| = Land ||w| = 1+ O, therefore (w — v)(C) = ©. From the equality in (3.23) of
Lemma 3.3 we then immediately deduce that

(3.52) Pl — w3 2) + Co = O, (0.11(2 %) * [ G0y (ZX) dv(¥).
We now proceed with a proof by contradiction. Assume that
(3.53) v # bp.

Sincewe know from (3.6) that supp() C [—o0, 0], it follows from (3.53) that v/|[—,0) #
0 and therefore it follows from (3.52) that

(3.54) p(r —w;2)+co >0 foralzeC\[0,1].

We shall show that inequality (3.54) impliesthat all zeros of the pol ynomials g, converge
tozeroasn — oo. Thisthen contradicts(3.53), and thus (3.49) and (3.50) follow. Further,
(3.52) follows from (3.49) since the Green function %\ (0.1 (z, 00) hasthe representation

1
(3.55) O (o) (%00) = log4 — [ log 7 a9

(see[Ts], Theorem 111.12, or [StTo], Appendix V).
Let us assumethat yn, N € Ng, isa sequence of zeros of g, satisfying
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for some0 < e < 1. Leté > 0be chosenin such away that from (3.54) we can deduce
(3.57) plv —w;2) > —co+40 forze [—oo,—¢].

It then follows from the asymptotic inequality (3.15) in Lemma 3.1 that

qn(x)2|x|[a]+2
lwn(Q[ [x — 1]
for ng sufficiently large. Note that the function on the left of (3.58) is subharmonic in

a neighborhood of infinity since from (3.2) we know that m, > n + [«], which implies
2n+[a]+2—my—n—-1-1<6.

(3.58) —Iog <cp—3) foralxe[—oo,—¢€], N> ny,neE Ng,

From (3.58) we deduce that
(3.59)
—= n(X)?|X|* dx < n(co—3) —[0]—2
a—[a] d < ezn(Co 25) f > , N ,
/ 7|x—1| o = / x| X orn>ng, N € Ng

if ng is sufficiently large. From the third limit in (3.4), the definition of |, in (3.5), and
the estimate (3.59) it then follows that

0 gn(x)?[X|* dx an(9)?X|* dx > @2(co—) _ g2n(co—2)
(3.60) /- [x =1 (] (/ / ) X =1 Jwn ()| ~
= @91 —e ) forn>ng, ne Np,

if ng is sufficiently large.

We factor out the zero y, from g, by defining

ax(l [Ynl)

n

whichisapolynomial normalized in accordancewith (3.3). Thefactoring out of onezero
does not changethe first limit in (3.4). Consequently, we have
1
2n
It is easy to verify that the asymptotic inequality (3.15) in Lemma 3.1 remainstrue if g2
is replaced by gngn. Thus, it follows from (3.62) and (3.57) in exactly the same way as

(3.61) (@) == (2 € Mp-1,

(3.62) Vot — @SN — 00, N € No.

in (3.58) that
~ [a]+2
(3.63) iIogM <cp—3 foralxe[—oo,—¢], N> 1Ny, NE Npg,
2n wn(X)

if ng is sufficiently large. As a consequencewe have, asin (3.59),

(3.64) / W < &%=2)  forn>ny, n € Ne.
o )
The equality
(3.65) [X= Yol

max(L, [ya)x = 1| ~
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holdsfor all x € R_. Because of (3.56) the polynomial q,g, does not changeits sign on
[—e, 0]. Hence, we deduce from (3.65) that

o
dx >

(3.66) [ de‘ [ [ an(x)21X|” dx

J—e wn(X) wn(X) - (X— 1) wn(X)
for al n € Ng. Using (3.60), (3.64), and (3.66) we obtain the estimate
( / /—5) (@) O X1

|wn(X)|
> g(eo—d) _ @leo=2) — (=81 — g2¥) > Q

/0 (ann)(X)|X|a dx
J—00 wn(X)

(3.67)

for n € Ng sufficiently large.

Since §, € MNy—1, the strict inequality in (3.67) contradicts the orthogonality (2.15)
in Lemma 2.2. Thus, we have shown that inequality (3.54) implies that all zeros of the
polynomials g, have to convergeto zero as n € Ng tendsto infinity. This completesthe
proof. ]

In the proof of Lemma 3.4 we have actually shown more than has been stated in
Lemma 3.4. The identity (3.50) implies only that almost all zeros of the denominator
polynomials g, convergeto z= 0 ash — oo, h € Ng. The proof, however, shows that
under certain conditions all zeros convergeto z = 0. This stronger assertion is part of
the next lemma.

For a polynomial p € My we denote by Z(p) the set of al zeros taking account of
multiplicities.

LEMMA 3.5. If ©® > 0, then

o0

(3.68) N U Za) = {0},
- 2k

(3.69) ﬁ U Z(pn) = [0,1],
e

whereq, and p, are the denominator and numerator polynomials of the approximant ;.

REMARK. Thecase® = 0 hasbeen excluded from Lemma3.5. Theorem 1.4, which
will be proved below, implies that for the case of the sequence {1}, }nen @l zerosand
poles of the approximantsrp,,; , cluster on [—oo, 0]. So at least in this case there is an
asymptotic behavior different from that described in (3.68).

ProoF. If © > 0, then it follows from (3.49) that inequality (3.54) holds. In the
proof of Lemma 3.4 it has been shown that from thisinequality it follows that all zeros
of the denominator polynomials g, convergeto z = 0. This proves (3.68).

In order to prove (3.69) we need some preparation. Since © > 0 implies inequality
(3.54), we know that all results aretrue that have been provedin (3.58)—3.67),ande > 0
can be chosen arbitrarily small.
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Now, letr > 0,6 > 0,andl"; = {z‘ |z =r,|agz < w—é}.ThereexiStSs >0
such that

(3.70) foral x € [—¢,0], ze Iy,

e
x/z—1 x—117 |x—1]

and there exists a constant ¢; < oo with

1 C1

_ < R_ .
(3.72) )z—1 = x=1] foralxeR_, zel;
Define

an(X)?|X|* dx

3.72 = ———— —— Nné€Neg.
3.72) &= L = Dn® ®
From (3.60) we know that
(3.73) |lan| > €@~ forn>ny, n e Ne,

if ng is sufficiently large. Because of the third limit in (3.4) we know that
1
(3.74) Illq?%log|an| =
From (3.71) together with (3.59) we deduce that

(3.75) ‘ / _Gn(X)?[X]* dx_

o (/2= Dwn(¥)| ~
forn > ng, n € Np, z € N1, and ng sufficiently large. From (3.70) together with (3.72)
we further deduce that

/*E On(X)?[Xx|* dx < 2n(co—2)
=00 [X = 1| |wn(¥)| ~

0 gn(X)?|x|* dx
1) wn(X)

Since en(2) = ¥ — (pn/an)(2), it follows from formula (2.16) in Lemma 2.2 that

(3.76) —lan] <

—an| <élai] forne Ne.

zeC\ [—0o0,0].

7pn(2) on(2) ZO(+1C|n(Z)2 . sinmar /0 qn(x)2|x|0‘ dx

3.77) @ @@ T Jo (X/2— 1) wn(X)’

As a consequence of the inequality (3.54), the three limits in (3.4), and limit (3.74) we
haveasin Lemma 3.1 that
+1 2
(3.78) ljm Z_(@” _
No anwn(z)
locally uniformly for z e C \ [0, 1].
From (3.76) together with (3.75) and (3.73) it follows that
(3.79)
iem |l wOFN

L 1 <§+e? forn>ng, neNg, z€ g,
8 )0 /2= D) = Mo nefozeh
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which proves that
(3.80) lim 2@ (@ _ snma
No @nwn(2) m
uniformly for z € [, Sincer > 0ands > 0 arearhitrary, it follows that (3.80) holdsfor
adlze C\R_.

Since we already know from the proof of Lemma 3.4 that the polynomials g, and wn
have all their zerosin the interval [—e, 1] for n € Ng sufficiently large, and asymptoti-
caly all these zeros cluster on [0, 1], it follows from (3.80) and the argument principle
that all zeros of the polynomials pn, n € Ng, haveto cluster on [0, 1]. n

4. Proofs. Inthe present section we shall prove all results of Section 1 except The-
orem 1.1, which has aready been verified as an immediate consequence of Ganelius
result (1.10), and Lemma 1.5, which has been proved in Section 2.

We note that in Section 1 notation has been used that differs from that in Sections 2
and 3. Thus, in Section 1 we have considered only even functions, which then have been
transformed by the mapping (2.1), to the problem of approximating x* on [0, 1]. The
mapping (2.1) is basically a substitution of z° by z. As a consequence, approximation on
[—1, 1] istransformed to approximation on [0, 1], the degree 2n is reduced to n, and the
exponent « is reduced to /2. While in Section 1 nontrivial approximation problems
ariseif o ¢ 2N, thisconditionis o ¢ N in the |ater sections.

In Section 3 therewas afurther change: we have switched from the numerator-denom-
inator ratio c to the parameter ©. Thetransition has been definedin (3.1). From (1.3) and

(3.1) we deduced that
1
4.1 c=1+20 and Ozé(c—l).
It follows that
m m-—n S} c—1
4.2 F—>cand o n 170 - or1l asm+n— oo, (Mn) € Nc.
We continue to write n € Ng for (m,n) € N and ry, wp, ... for ry, ,, wmpn, ... in

Sections 2 and 3. In all proofs we shall consider the approximation problem on [0, 1],
and at the end of each proof we shall describe the transition to the versions given in
Section 1.

PrROOF OF THEOREM 1.2. Let o € R+ \ N and let Ng be aray sequencewith © > 0.
From (2.16) of Lemma 2.2(c) we know that

M@ =2"—e(?
(4.3) . SnTa wn(@ [0 gn(X)?X* dx
T On(2)? /o0 wn(X)(X — 2)

forze D = C\R_. Sincef(«; 2) = z* isbounded on compact subsetsof D, and sincethe
sameistrue for the analytic continuation of z* across (—oo, 0), it follows that the second
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term on the right-hand side of (4.3) isthe dominant one; it is decisive for the asymptotic
behavior of |r}| asn — co.

Without loss of generality we can assume that the limits in (3.4) exist; for otherwise
we can choose an infinite subsegquence of Ng for which these assumptions hold.

From the limits in (3.4), limit (3.11) in Lemma 3.1, limit (3.17) in Lemma 3.2, and
identity (3.49) in Lemma 3.4 we deduce that

(4.4)
sinma wn(2) on(X)%[x|* dx| wn(2)
02199 o [ g | = 0 2n e 1091

= p(v — w;2) + o = Ogg,[01(2 20),

locally uniformly for z€ C \ [—oo0, 1].
From (4.3), (4.4), and (4.2) together with the fact that 2n/(m, +n) — 1/(1+©) as
n— oo, N € Ng, it follows that

1 . o
o log|ri(2)| = mgé\[ou(zy 00) = gc\ 0.13(z,9)

4.5 li
(4.5) rl\l?r‘rh c+1l

locally uniformly for z € C\ [—o0, 1]. Asanimmediate consequenceof (3.68) and (3.69)
in Lemma 3.5 we see that (4.5) also holdslocally uniformly for z< C \ [0, 1].

By the transformation (2.1), limit (4.5) transformsto (1.19). Thus(1.19) is proved for
c>1

Incasethat c = 1, and m= n+ 2[«/2] for (m,n) € N, the right-hand side of (1.19)
isidentically 1. Thelimit (1.19) follows then as a consequence of Theorem 1.4 part (a),
which will be proved next. L]

PROOF OF THEOREM 1.4, Themainwork isto show that the sequence of error func-
tionsen(2) = ¥ — ri(2), n € N, is bounded on any compact subset V C C \ R_. In the
proof we shal I use divided differences and iterated differences; the relevant properties of
these notionswill be assembled first.

Let f be areal function defined on C, and let xo,...,% € C be afinite sequence of
distinct points. The divided differencef(xo, ..., %) of order j is recursively defined by

f(xo,...,xH)—f(xl,...,xj).

(4.6) f(Xo,...,%) = -

with f(x;) the divided difference of order 0. For pointsx; that form an arithmetic progres-
sion

4.7) X =X+jh, Xx,heC h#0jeN,
the iterated differences are defined recursively by

(4.8) Af(X) = f(x+h) —f(%)
Nf(X) = AN Hx+h) —ANHX), j=1,2....
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We have the formulae

(4.9) f(Xo,-..,%) = j!ithif(xo)
and
(4.10) Nf(x0) = Z( 1y~ '()f(x.)

forj =1,2,...(see[Ge], Chapter 1).

Since under the assumption (4.7) &l points xo, ..., X; lie on a straight line, for each
real function f that has a j-th order continuous derivative f0 there existsa ¢ € (xo, %))
such that

(4.11) f(Xo, ..., %) = jl!fm(g).

From Theorem 1.1 we know that the error function e, convergesto 0 uniformly on
[0,1] asn — oo. Therefore the e, are bounded on [0, 1] for all n € N. Leta € (0,1)
and h areal number with 0 < h < (1 — a)/([o] + 1). Further let the sequence {x } be
definedby x, = a+jhforj =0,...,[«] + 1 Thenit follows from (4.9) and (4.10) that
there exists a constant ¢; such that
(4.12)

len(Xo, ..., X)| < %i<;>|%(x|)|<cl forj=0,...,[a] +1landal ne N.

Since z* isanalyticin D, the sameistrue for the divided differences of z* with respect to
the sequences {xo, ..., % },j = 0,...,[a] + 1. Hence, these differences are bounded on
compact subsets of D independent of n € N. Thedivided differenceis alinear operator,
and therefore it follows from (4.12) and from the identity e, = z* — r}: that there exists
aconstant ¢, so that

(4.13) (o, ....%)| <c foralj=0,...,[a]+1landdlne N.
With (4.11) it then follows that there exist points ¢J € (xo, %) C [a, 1] with
(4.14) Ir0EV)y <c, foralj=0,...,[a+1]andalneN.

From Lemma2.2(a) we know that the denominator polynomial gy, of r}; has exactly n
zeros yin, j = 1,...,n, which are al simple and contained in (—oo,0). From
Lemma 2.2(b) we know that the numerator polynomial of r; is exactly of degreem, =
n+ [«]. Hence, the partial fraction decomposition of r;, hasthe form

(@.15) =3

=1 in

+Pn(2) = Si(2) + Pn(2),
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where P, € N[y and S, isthefractional part of r}; (see also (2.27)). It has been shownin
(2.28) that

_ sinrTa Wn(an) /oo(qn(—x))Z X dx j=1 n
Js 'EEERRL

4.16 Ain = ,
@18 == mE o vy ) ol

which implies that all coefficients A1n, ..., Any are of identical sign for a given n. Since
P, isapolynomial of degree[«], we have P{1*) = 0 and

n )\
(4.17) @) = @) = DT ) Y B
j=1 (Z - yjn)[a]
From elementary considerationsit follows that for any compact set V C D there existsa
constant cz = c¢3(V) such that
1 C3
|Z— X|[ry]+2 S |< _ X|[(y]+2

With (4.18) we derive from (4.17) that there exists a constant ¢4 such that

(4.18) fordlzeV, (€al], xeR_.

n .
«([]+1) [ Ain
r | < (o] +1) Y —
| n ( )| = ([ ] ) J;l |Z_ yjn|[a]+2
(4.19) [Ain]

n
<c(a+) Y —mmy s
1 |l Dy Lo +2

< Cg|r,*1([°’]+l)(§§][o‘]+l))| <cy

forall ze Vandn € N, where £{*1* € (xo, X(41+1) are the points introduced in (4.14).
Integrating (4.19) [o] + 1 times and using theinitial values¢?, j = 0, ..., [a] + 1, which
are assumed to satisfy (4.14), shows that there exists a constant cs so that

(4.20) [ri(@)] <cs foralzeVandneN.

Since r}; converges to z* uniformly on [0,1] asn — oo, it follows from (4.20) and
Montel’s theorem that

(4.21) limry(2) = 2°

uniformly on each compactV C C \ [—o0, 0].

With the mapping (2.1), it thenisimmediate that (4.21) implies (1.22). Thus, the proof
of part (a) of Theorem 1.4 is complete.

Part (b) is basically aconsequenceof Lemma2.2(b). Thereis has been shown that all
poleslie on R_. By the mapping (2.1) these locations are moved to iR and their number
is duplicated. Sincein Lemma2.2(b) it has been shown that between two polesthereis
aways azero, this guaranteesthat at least n — 2 zeros of ry,,; , lieoniR. "

PROOF OF THEOREM 1.6. By transformation (2.1) the assumption in Theorem 1.6
transformsto « € R+ \ N andm, > n+[a] for al n € Ng. Hence, the assumptions (2.4)
and (3.2) of Sections2 and 3 are satisfied.
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Let A, = Ann bethe set of m, + n + 2 extreme points of the error function ey(2) =
¥ —r}(2) on [0, 1] for the transformed problem. It has been shown in (2.9) that between
two adjacent points of A, there is always a zero of the error function e,. These are alto-
gether m, + n + 1 zeros, they form the set B, = By, , defined in (2.13), and they are also
the zeros of the polynomial wy, definedin (2.14).

In the second limit of (3.3) we have assumed that the sequence Ng has been selected
in such away that the limit

(4.22) 2—1nani>w asn— 00, N € Ng,

exists. From (4.2) we know that

(4.23) %:”—mﬂa ash — o0, n € No.

Since the points of A, and B, interlace, limit (4.22) still holdsif the set By, is replaced by
the set A,.

In (3.60) of Lemma 3.4 it has been shown that w = ég + Owyg 1}, Where w is the limit
measure in (4.22). Putting (4.22) and (4.23) together with the last identity we have
(4.24)

1

2 c—1
woy, asn— o0, N€ Ng,

+ = & Sg+-——=
(60 + Owio,17) or 150 1

m,+n+ ZVA” - 1+0
wherein the last equality we have used the identity © = (c — 1) /2 from (4.1).

With (4.24) the limit (1.27) is practically proved; it only remains to show that the
inverse of transformation (2.1) transforms the measures g and wyg,1; in the measures o
and wy_1,17, respectively. Indeed, the two branches of the mapping z — x = ¢1(2) =
++/zmap thedomainD = C\ [—00,0] ontoH, = {z€ C | Re(z) > 0} andH_ = {z €
C | Re(2) < 0}. The equilibrium distribution

dz
(4. 25) dW[oyl] (Z) = -

m, 26[0,1],

is mapped by both branches of 1 onto the measure

2dx

(4. 26) ZdW[_ly 1 (X) - m ,
This is twice the equilibrium distribution on [—1, 1]. Since » ! is 2-valued, we have to
divide the measure (4.26) by 2. The same considerations hold for the transformation of
the Dirac measure q.

Thus, the limit (1.27) follows from (4.24) for the subsequence Ng, for which the lim-
its in (3.3) hold. Since the right-hand sides of (4.24) and (1.27) are independent of the
selected subsequence, the limit (1.27) holds also for the original sequence Nc. ]

x€[-1,1].

PROOF OF THEOREM 1.7. The assumptions are the same as in Theorem 1.6, and
again we transform the problem by (2.1) in aform that allows the application of results
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from Sections2 and 3. The original degrees mand n have been assumed to be even. After
the transformation of the problem these degrees are halved.

(8 From part (a) of Lemma 2.1 we know that the denominator polynomial gy in the
transformed problem has exactly n simple zeros on the negative real axis(—oo, 0). From
part (b) of Lemma 2.1 it follows that each of these zeros is a pole of r;. The inverse
mapping p 1 of transformation (2.1) then transforms these poles to a doubled number
of poleson the imaginary axisiR.

(b) From part (b) of Lemma 2.1 it follows that between two adjacent poles of r;, on
the two imaginary halfaxesthereis at |least one zero of r};. This proves (1.28).

(d) Wenow proveassertion (d) and continuewith the proof of assertion (c) afterwards.
Theassumptionc > limpliesthat in thetransformed problem® > 0. Hence, Lemma3.5
is applicable. In (3.68) and (3.69) of this lemmait has been shown that all poles of the
transformed approximant r;; convergeto z = 0, and all zerosconvergeto [0, 1] asn — oo
and n € Np. Transforming back via the inverse mapping ¢~ to the original problem,
the set [0, 1] is mapped on [—1, 1] and the point z = 0 is mapped on x = 0. Thus, (3.68)
and (3.69) of Lemma 3.5 imply (1.30).

(c) From (3.55) in Lemma 3.4 together with Lemma2.2(b) and thefirst limit in (3.4),
it follows that

1 %
(4.27) P — g asm+n— oo, (Mn) €N,

which proves thefirst limit (1.29).

In the proof of thesecondlimit in (1.29) we distinguish thetwo casesc = 1andc > 1.
If ¢ = 1, then it follows from the interlacing property (1.28) in part (b), that the limit
(4.27) remains true if we substitute Py, by Zm,. This proves the second limit in (1.29) if
c=1

If ¢ > 1, then in the transformed problem we have © > 0, and, as in the proof of
Theorem 1.2, we can deducethat (4.5) holds. Transforming thislimit back by theinverse
mapping o~ of (2.1) and taking care of degrees and the effect of the transformation on
the Green function, yields that

1 N o c—1
log[rin(@)| = mgé\[fl,l](zy 00) = o1

(4.28)  lim 9¢\-1,1(z 00)
(m,n)eNg

uniformly on compact subsets of C \ [—1, 1]. The last equality in (4.28) follows from
(4.1). Since the Green function 98\ 1.4 (z, 00) hasthe representation

(4.29) 9c\(-1y(z 00) =1092 — p(w-11;2)
(cf. [Ts], Theorem I11.12, or [StTo], Appendix V), and since

n 1

4. —
(4.30) m+n 1+c

asm+n— o0, (Mn) € Ng,
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it follows from (4.29) and the interlacing property (1.28) of poles and zeros proved in
part (b) that

1 1 *
(4.31) (ﬁVZ“ - ﬁl/prm> — (€= Dwi—1y asmM+n— oo, (Mn) € Nc.

With the limit (4.27) and the fact that m/n — ¢, we deduce from (4.31) that

1 « 1 1
(4.32) =z, Zhot (1 - E)w[_m asm+n— oo, (M) € N.
This completes the proof of Theorem 1.7. ]
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