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RAY SEQUENCES
OF BEST RATIONAL APPROXIMANTS FOR jxjã

E. B. SAFF AND H. STAHL

ABSTRACT. The convergence behavior of best uniform rational approximations rŁmn
with numerator degree m and denominator degree n to the function jxjã , ã Ù 0, on
[�1, 1] is investigated. It is assumed that the indices (m, n) progress along a ray se-
quence in the lower triangle of the Walsh table, i.e. the sequence of indices f(m, n)g
satisfies

m
n
! c 2 [1,1) as m + n !1.

In addition to the convergence behavior, the asymptotic distribution of poles and ze-
ros of the approximants and the distribution of the extreme points of the error function
jxjã � rŁmn(x) on [�1, 1] will be studied. The results will be compared with those for
paradiagonal sequences (m ≥ n + 2[ãÛ2]) and for sequences of best polynomial ap-
proximants.

1. Introduction and statements of main results. Our aim is to investigate the con-
vergence of ray sequences in the Walsh table of the function

(1. 1) f (x) ≥ jxjã, x 2 [�1, 1], 0 Ú ã.

Let Πn denote the collection of all real polynomials p of degree at most n and Rmn the
set of rational functions

Rmn :≥ fpÛq j p 2 Πm, q 2 Πn, q Â� 0g, m, n 2 N,

where N :≥ f0, 1, 2, . . .g. By rŁmn ≥ rŁmn(f , [�1, 1]; Ð) 2 Rmn we denote the best uniform
rational approximant to f on the interval [�1, 1], i.e.

(1. 2) Emn(f , [�1, 1]) :≥ kf � rŁmnk[�1,1] ≥ inf
r2Rmn

kf � rk[�1,1],

where k Ð k[�1,1] denotes the sup norm on [�1, 1].
We know that for each pair m, n 2 N the best rational approximant rŁmn exists and is

unique (see [Me], x9.1 and x9.2, or [Ri], x5.1). The doubly infinite array of all rational
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functions rŁmn, m, n 2 N, is called the Walsh table of the function f approximated on
[�1, 1].

An infinite sequence N ≥ Nc � N2 of indices (m, n) as well as the corresponding se-
quencefrŁmng(m,n)2Nc of approximants is called a ray sequence with associated asymptotic
numerator-denominator ratio c if

(1. 3)
m
n
! c 2 [0,1] as m + n !1, (m, n) 2 Nc.

Since the sequencef(n, n)g1n≥0 corresponds to the diagonal of the Walsh table, it is called
diagonal, and any sequence Nc with c ≥ 1 is called near diagonal, while sequences
f(n + ï, n)g1n≥M with ï a constant, carry the name paradiagonal. The sequence of best
polynomial approximants frŁm0g1m≥0 corresponds to the sequence f(m, 0)g1m≥0 of indices,
i.e. they constitute the first column of the Walsh table and best reciprocal polynomial
approximants rŁ0n correspond to the first row of the Walsh table. We shall investigate
sequences in the lower triangle of the Walsh table, i.e. c 2 [1,1]. It will turn out that
asymptotic behavior of the approximants frŁmng(m,n)2Nc essentially depends on the param-
eter c.

Since f is an even function, it is an immediate consequence of the uniqueness of best
real rational approximants that rŁmn is also an even function, and we have
(1. 4)

rŁ2m+i,2n+j(jxjã, [�1, 1]; Ð) ≥ rŁ2m,2n(jxjã, [�1, 1]; Ð) for m, n 2 N and i, j 2 f0, 1g.

Substituting x for x2 leads to the identity

(1. 5) rŁ2m,2n(jxj2ã, [�1, 1]; t) ≥ rŁmn(xã, [0, 1]; t2)

for all m, n 2 N and ã Ù 0. Identity (1.5) shows that an investigation of the Walsh table
of the function jxj2ã with respect to approximation on the interval [�1, 1] is equivalent
to an investigation of the Walsh table of xã with respect to approximation on [0, 1]. For
ã 2 N both Walsh tables are trivial, for in these cases each entry is identical with the
function f if m ½ ã.

The approximation of jxj on [�1, 1] can be seen as a prototype of the somewhat more
general problem of approximating jxjã on [�1, 1]. Much attention has been given to both
problems in the literature. After the pioneering result by Newman [Ne], who showed in
1964 that

(1. 6)
1
2

e�9
p

n � En,n(jxj, [�1, 1]) � 3e�
p

n for n ≥ 4, 5, . . . ,

a series of results has been published. A rather complete list of contributions can be
found in [Vj2] and [SaSt1]. We will mention here only some results that are related to
our special interest. In [Vj3] it is shown that there exist constants 0 Ú M1 � M2 Ú 1
such that

(1. 7) M1e�ô
p

n � En,n(jxj, [�1, 1]) � M2e�ô
p

n for n 2 N.
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From (1.7) we learn that �ôpn is the correct exponent in the error formula. However,
nothing is said in [Vj3] about the constants M1 and M2 except that, from a result of
Bulanow [Bu], it follows that M1 ½ 1Û3. Based on high precision calculations it has
been conjectured by Varga, Ruttan and Carpenter [VRC] that

(1. 8) lim
n!1 eô

p
nEn,n(jxj, [�1, 1]) ≥ 8.

This conjecture has been recently proved in [St1].
For the approximation of jxjã with ã Â≥ 1, T. Ganelius [Ga] and N. S. Vjacheslavov

[Vj2] have independently proved error estimates that are comparable with (1.7) in their
precision. They have shown that there exists a constant M1(ã) Ù 0 for each ã 2 R+ n2N
and a constant M2(ã) Ú 1 for each rational number ã such that

(1. 9) M1(ã)e�ô
pãn � En,n(jxjã, [�1, 1]) � M2(ã)e�ô

p
an for n 2 N.

However, it could not be proved that the constant M2(ã) depends continuously on ã,
so that the upper estimate in (1.9) remained open for all irrational ã. In [Ga] a slightly
weaker result is proved which is not restricted to rational ã. There it is shown that there
exist three constants 0 Ú M1(ã) Ú M2(ã) Ú 1 and c(ã) Ú 1 for all ã 2 R+ n 2N such
that

(1. 10) M1(ã)e�ô
pãn � En,n(jxjã, [�1, 1]) � M2(ã)e�ô

pãnec(ã) 4
p

n for n 2 N.

The strong error estimate (1.8) can be extended to the problem of approximating jxjã
on [�1, 1]. In [St2] a proof of the limit

(1. 11) lim
n!1 eô

p
anEn,n(jxjã, [�1, 1]) ≥ 41+ãÛ2j sin(ãôÛ2)j

has been announced. Of course, (1.11) implies (1.9) and (1.10). The limit (1.11) has been
investigated numerically in [VC2], where the right-hand side of (1.11) was conjectured
independently of [St2].

In [An], among other results, the lower bound of (1.10) has been extended to Markov
functions of type xã, i.e. to functions f of the form

(1. 12) f (z) ≥ Z 1
0

ß(x) dx
z + x

,

where ß is a positive function satisfying

0 Ú c1 � x�ãß(x) � c2 Ú 1 for x 2 [0, è], è Ù 0.

We note that �zã is of type (1.12).
Turning from diagonal sequences of best rational approximants to best polynomial

approximants of jxjã on [�1, 1], we mention the classical results of S. Bernstein [Be1],
[Be2] that the limit

(1. 13) lim
m!1mãEm,0(jxjã, [�1, 1]) :≥ å(ã)

https://doi.org/10.4153/CJM-1997-052-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-052-3


RAY SEQUENCES OF BEST RATIONAL APPROXIMANTS 1037

exists for ã Ù 0. The value of å(1) has been calculated with a precision up to 100 digits
in [VC1] and numerical investigations of å(ã) for other values of ã can be found in
[VC3].

A comparison of (1.10) with (1.13) shows that the rational approximants converge
substantially faster than the polynomial ones. Since ray sequences in the Walsh table
constitute a bridge between both types of approximants, an essential question which we
address in this paper is how the convergence behavior and especially the rate of conver-
gence changes with the variation of the asymptotic numerator-denominator ratio c. The
next theorem gives an answer and shows that for all ray sequences with c 2 (0,1) the
rate of convergence is more similar to the diagonal case than to the polynomial one.

THEOREM 1.1. Let ã Ù 0, and let Nc � N2 be a ray sequence with numerator-
denominator ratio c 2 (0,1). For any pair of constants (c, c̄) with

(1. 14) c Ú min(1,
p

c) and c̄ Ù max(1,
p

c),

we have

(1. 15)
þþþþsin

�ô
2
ã
�þþþþe�ôc̄

pãn � Em,n(jxjã, [�1, 1]) � e�ôc
pãn

for (m, n) 2 Nc and m + n sufficiently large.

REMARK. In the theorem we have not excluded the case ã 2 2N, although it is a
trivial one as mentioned earlier. The sine function on the left-hand side of (1.15) can be
replaced by any other bounded function that is zero for ã 2 2N and positive elsewhere.
Contrary to the other theorems that will be formulated and discussed in the sequel, we
have in Theorem 1.1 not excluded ray sequences from the upper triangle of the Walsh
table, i.e. c Ú 1.

Theorem 1.1 is an immediate consequence of Ganelius’ result stated in (1.10) and the
observation that Rll � Rmn � Rkk if ‡ ≥ min(m, n) and k ≥ max(m, n).

If c Â≥ 1, then c Ú c̄ and therefore Theorem 1.1 does not give the precise coeffi-
cient in the exponent of the error estimate. The determination of the correct exponent
remains open. However, it will turn out that the estimate in (1.15) is good enough for the
investigations of the present paper.

It is conjectured that for every ray sequence Nc, c 2 (0,1), the limit

(1. 16) lim
(m,n)2Nc

�1

ôpãn
log

�
Emn(jxjã, [�1, 1])

�

exists. From Theorem 1.1 we only know that if this is true, then the limit has to lie
between min(1,

p
c) and max(1,

p
c).

For the special case of the function f (x) ≥ jxj it has been proved in [BIS] by
Blatt, Iserles, and Saff that the diagonal sequence frŁnng converges not only on the
interval [�1, 1] but also in the two half-planes H+ :≥ fz : Re(z) Ù 0g and H� :≥
fz : Re(z) Ú 0g. We have

(1. 17) lim
n!1 rŁnn(z) ≥

(
z for z 2 H+

�z for z 2 H�,
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i.e., there is an overconvergence, which is maximal since the closure of H+ [ H� is C.
Further, it has been shown that all poles and zeros of the approximants rŁnn lie on the
imaginary axis, and poles and zeros interlace on each imaginary half-axis.

On the other hand, in the polynomial case, there is no overconvergence (see e.g. [Sa]).
Outside of the interval [�1, 1] it can be shown that

(1. 18) lim
m!1 rŁm0(z) ≥ 1

uniformly on every compact subset of C n [�1, 1]. Thus, the question arises to what
happens in the intermediate case of a ray sequence with c 2 (1,1). Do the approximants
in the intermediate case behave more like the diagonal or more like the best polynomial
approximants, or is there some specific intermediate form of behavior? Corollary 1.3
provides an answer to this question.

THEOREM 1.2. Let ã 2 R+ n 2N and rŁmn ≥ rŁmn(jxjã, [�1, 1]; Ð). Then for any ray
sequence Nc � N2, with c Ù 1, and for the paradiagonal sequence Nc with c ≥ 1 and
m ≥ n + 2[ãÛ2] for all (m, n) 2 Nc, we have

(1. 19) lim
m+n!1
(m,n)2Nc

jrŁmn(z)j1Û(m+n) ≥ exp
�c � 1

c + 1
gC̄n[�1,1](z,1)

½
,

where

(1. 20) gC̄n[�1,1](z,1) :≥ log
þþþz +

p
z2 � 1

þþþ
is the Green function of the domain C n [�1, 1] with logarithmic pole at 1. The limit
(1.19) holds uniformly on compact subsets of C n [�1, 1] if c Ù 1, and uniformly on
compact subsets of C n iR if c ≥ 1 and m ≥ n + 2[ãÛ2]. (By [ãÛ2] we denote the largest
integer not greater than ãÛ2.)

REMARK. If c ≥ 1 and m ≥ n + 2[ãÛ2] for all (m, n) 2 N1, then the right-hand side
of (1.19) is identically 1 in C n iR. Hence, in this case zeros or poles of rŁmn can have no
cluster points in C n iR. The situation is different in case of a near-to-diagonal sequence,
i.e. c ≥ 1 with m Ù n + 2[ãÛ2], for then (1.19) may hold only in some weaker form,
because cluster points of zeros of rŁmn off the imaginary axis can no longer be excluded.

COROLLARY 1.3. If 1 Ú c � 1, then (c � 1)Û(c + 1) Ù 0, and therefore

(1. 21) lim
m+n!1
(m,n)2Nc

jrŁmn(z)j ≥ 1 for z Â2 [�1, 1].

REMARK. Since the analytic continuation of f (z) ≥ jzjã is equal to zã in H+ and
equal to (�z)ã in H�, Corollary 1.3 shows that in case of ray sequences with c Ù 1 the
phenomenon of overconvergence no longer exists.

Theorem 1.2 as well as the later theorems stated here will be proved in Section 4 after
preparations in the next two sections.

It turns out that the overconvergence stated in (1.17) for the function f (z) ≥ jzj has
an analogue for the wider class of functions f (ã; z) ≥ zã, ã Ù 0. Since f (ã; Ð) has a zero
of order ã at z ≥ 0, a natural extension of (1.17) is obtained by using the paradiagonal
sequence f(n + 2[ãÛ2], n)g1n≥1.
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THEOREM 1.4. Let ã Ù 0 and rŁmn denote the best rational approximant
rŁmn(jxjã, [�1, 1]; Ð) for m, n 2 N.

(a) We have

(1. 22) lim
n!1 rŁn+2[ãÛ2],n(z) ≥

(
zã for z 2 H+

(�z)ã for z 2 H�,

uniformly on compact subsets of H� [ H+ ≥ C n iR.
(b) Let n be even and ã Û2 2N. Then the n poles and n� 2 of the n + 2[ãÛ2] zeros of

rŁn+2[ãÛ2],n lie on the imaginary axis iR, the poles are simple, and nÛ2 poles and nÛ2� 1
zeros interlace on each half-axis.

REMARKS. (1) In case ã ≥ 0, 2, 4, . . . , we have rŁn+2[ãÛ2],n(z) � zã for all n 2 N,
and part (b) of the theorem does not hold. However, there is a nice intuitive interpretation
for these special cases. If ã approaches one of the numbers in 2N, then the n poles and
n of the n + ã zeros become pairwise identical and cancel out. The remaining ã zeros
converge to z ≥ 0. The limit (1.22) then holds trivially for all z 2 C.

(2) If n is odd, then it follows from (1.4) that rŁn+2[ãÛ2],n ≥ rŁn�1+2[ãÛ2],n�1, and therefore
part (b) of the theorem is applicable with n replaced by n � 1. It can be shown that for
ã 2 R+ n 2N the poles and zeros of rŁn+2[ãÛ2],n are asymptotically dense in iR for n !1
(see [SaSt2]).

Next, we investigate the asymptotic distribution of the extreme points of the error
function f � rŁmn on [�1, 1]. It will turn out that the shape of this distribution depends
on the numerator-denominator ratio c of the ray sequence Nc � N2. We have seen in
(1.5) that all approximants rŁmn(z) ≥ rŁmn(jxjã, [�1, 1]; z) are even functions; hence, we
can assume without loss of generality that m, n 2 N are even.

LEMMA 1.5. For ã 2 R+ n 2N and m, n 2 N even, there exist m + n + 3 points

(1. 23) �1 ≥ x1 Ú x2 Ú Ð Ð Ð Ú xm+n+3 ≥ 1

such that

(1. 24) (�1)(m+n+2)Û2+[ãÛ2]+k
hjxkjã � rŁmn(xk)

i ≥ Em,n(jxjã, [�1, 1])

for k ≥ 1, . . . , m + n + 3, and x ≥ xk, k ≥ 1, . . . , m + n + 3, are the only points of [�1, 1]
at which the error

þþþ jxjã � rŁmn(x)
þþþ attains its sup norm Em,n.

The lemma follows from Chebyshev’s theorem on alternation points (see [Me], The-
orem 23, or [Ri], Theorem 5.2) and the fact that

(1. 25) Wmn :≥ spanf1, x, . . . , xmÛ2, xãÛ2, x1+ãÛ2, . . . , x(n+ã)Û2g

forms a Haar space of dimension (m + n)Û2 + 1 on [0, 1] if ã Â2 2N. More details can be
found in Section 2, where we give a complete proof of Lemma 1.5.
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The points in (1.23) are called extreme points, the set of all such points fx1, . . . , xm+n+3g
is denoted by Amn, and the counting measure of the set Amn is denoted by óAmn and defined
as

(1. 26) óAmn :≥ X
x2Amn

éx,

where éz is Dirac’s measure for z 2 C. By °[�1,1] we denote the equilibrium distribution

of the set [�1, 1], i.e. d°[�1,1](x) ≥ (1Ûô) dxÛp1 � x2, x 2 [�1, 1], and by
Ł!we denote

convergence in the weak-star topology on the Riemann sphere; i.e. we say that a sequence
of measures fóng converges weak-star to a measureó, written ón

Ł! ó, if
R

f dón ! R
f dó

as n ! 1 for every function f continuous on C̄. The next theorem contains our main
result about the asymptotic distribution of extreme points.

THEOREM 1.6. Let ã 2 R+ n 2N. For any ray sequence Nc � N2 with numerator-
denominator ratio c 2 [1,1] and m ½ n + 2[ãÛ2] for all (m, n) 2 Nc we have

(1. 27)
1

m + n + 3
óAmn

Ł�! 2
c + 1

é0 +
c � 1
c + 1

°[�1,1]

as m + n !1, (m, n) 2 Nc.

REMARKS. (1) We see that the asymptotic distribution of the extreme points changes
continuously with the numerator-denominator ratio c. Actually, it is a convex combina-
tion of the two measures é0 and °[�1,1], which are the asymptotic distributions in the two
extreme cases of the near-to-diagonal sequence with m ≥ n + 2[ãÛ2] and the sequence
of best polynomial approximants.

(2) In the special case m ≥ n + 2[ãÛ2] (paradiagonal case) we have c ≥ 1, and
therefore in this case “almost all” extreme points of f � rŁnn converge to z ≥ 0.

(3) In the case of polynomial approximants (c ≥ 1), assertion (1.27) is a special case
of a theorem of Kadec [Ka]. However, Theorem 1.6 is somewhat more general since it
also covers sequences frŁm,nm

g1m≥1 with mÛnm !1.
We come to the last group of results in this paper, the asymptotic distribution of zeros

and poles of the approximants rŁmn ≥ rŁmn(jxjã, [�1, 1]; Ð).
THEOREM 1.7. Let ã 2 R+ n 2N and let Nc be a ray sequence with numerator-

denominator ratio c 2 [1,1), m ½ n + 2[ãÛ2], and m, n even for all (m, n) 2 Nc.
(a) All n poles of rŁmn are simple and lie on the imaginary axis.
(b) Let Pmn :≥ fô1, . . . ,ông and Zmn ≥ fê1, . . . êmg denote the sets of (finite) poles

and zeros rŁmn. The points can be ordered in such a way that
(1. 28)

1
i
ô1 Ù 1

i
ê1 Ù 1

i
ô2 Ù 1

i
ê2 Ù Ð Ð Ð Ù 1

i
ônÛ2 Ù 0 Ù 1

i
ônÛ2+1 Ù Ð Ð Ð Ù 1

i
ên�2 Ù 1

i
ôn,

i.e. there are at least n�2 zeros on the imaginary axis, with at least one on each segment
joining adjacent poles on each half-axis.
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(c) We have

(1.29)
1
n
óPmn

Ł�! é0,

1
m
óZmn

Ł�! 1
c
é0 +

�
1 � 1

c

�
°[�1,1]

as m + n !1, (m, n) 2 Nc.
(d) If c Ù 1, then all poles of rŁmn converge to z ≥ 0, and all zeros of rŁmn cluster on

[�1, 1], i.e.

(1. 30)
1\

k≥1

[
(m,n)2Nc
m+n½k

Pmn ≥ f0g,
1\

k≥1

[
(m,n)2Nc
m+n½k

Zmn ≥ [�1, 1].

REMARK. Part (d) of Theorem 1.7 holds only for numerator-denominator ratios
c Ù 1. It can be shown (see [SaSt2]) that in the special case of the paradiagonal se-
quence f(n + 2[ãÛ2], n)gn2N, poles and zeros are asymptotically dense on the imaginary
axis. It follows from Theorem 1.4 that in this case the poles and zeros have no cluster
points outside of the imaginary axis. This last result is perhaps not true for all other se-
quences with numerator-denominator ratio c ≥ 1. For the case m Ù n+2[ãÛ2] and c ≥ 1
the results (1.28) and (1.29) are the only ones that we can prove so far. We remark that in
the survey paper [SaSt1], formulas (20), (23) and (25) of that paper should be replaced
by (1.24), (1.27) and (1.29), respectively.

2. Connections with Stieltjes functions. In the present paragraph we establish a
connection between best rational approximants and multipoint Padé approximants. This
connection will enable us to prove several properties of the best rational approximants
rŁmn.

From (1.5) we know that all rŁmn are even functions. It is therefore possible to replace
z2 by z simultaneously in the approximant rŁmn and in the function jzjã. The substitution
corresponds to a mapping

(2. 1) ß: H+ ! D :≥ C̄ n R� (R� :≥ fx 2 R j x Ú 0g)

with ß(z) ≥ z2. Throughout the following sections we denote by f the function

(2. 2) f (z) :≥ f (ã; z) :≥ zã for z 2 D and ã 2 R.

and by rŁmn we denote the best rational approximant

(2. 3) rŁmn ≥ rŁmn(xã, [0, 1]; Ð) 2 Rmn for m, n 2 N, ã ½ 0.

In the new setting the best rational approximants rŁmn are identical to f (ã; Ð) for all ã 2 N
and m ½ ã. Since these special cases are trivial, we will exclude them from further
considerations and assume that

(2. 4) ã 2 R+ n N.
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As as immediate consequence of Cauchy’s integral formula we have the representa-
tion

(2. 5) f (ã; z) ≥ �z[ã]+1 sin
�
ô(ã � [ã] � 1)

�
ô

Z 1
0

x(ã�[ã]�1) dx
x + z

for all z 2 D.

Since �1 Ú ã � [ã] � 1 Ú 0, the integral in (2.5) defines a Stieltjes function. It is easy
to check that the integral exists for all z 2 D.

Before we turn to the study of the connection of rŁmn with the theory of multipoint
Padé approximants, we prove a lemma that covers most of the assertions of Lemma 1.5.
The full proof of Lemma 1.5 will be given at the end of the present section.

LEMMA 2.1. Let ã 2 R+ n N, and set rŁmn ≥ pmnÛqmn with pmn and qmn coprime and
qmn monic, m ½ n+[ã], m, n 2 N. Then deg(pmn) ≥ m and deg(qmn) ≥ n, and there exists
a set of m + n + 2 alternation points in [0, 1], i.e., we have 0 � x1 Ú Ð Ð Ð Ú xm+n+2 � 1,
and the error function

(2. 6) emn :≥ f (ã; Ð) � rŁmn

satisfies

(2. 7) emn(xj) ≥ ï(�1)jEmn(xã, [0, 1]), j ≥ 1, . . . , m + n + 2,

with ï ≥ 1 or ï ≥ �1.

PROOF. It has already been mentioned in the introduction that the best rational ap-
proximant rŁmn exists and is unique for each m, n 2 N. Let x1, . . . , xm+n+2�d be a se-
quence of alternation points of maximal length. From Chebyshev’s Theorem on alterna-
tion points (see [Me], Theorem 23, or [Ri], Theorem 5.2) we know that

(2. 8) d � min
�
m � deg(pmn), n � deg(qmn)

�
.

We shall show that d ≥ 0.
From the intermediate value theorem and the definition of alternation points it follows

that there exist at least m + n + 1 � d zeros zj of emn satisfying

(2. 9) xj Ú zj Ú xj+1

and

(2. 10) emn(zj) ≥ 0 for j ≥ 1, . . . , m + n + 1 � d.

From (2.10) we learn that rŁmn interpolates the function f (ã; Ð) in the points z1, . . . ,
zm+n+1�d, and the expression

(2. 11) qmnemn ≥ qmnf (ã; Ð) � pmn

has zeros at the points z1, . . . , zm+n+1�d. For z 2 [0, 1] the right-hand side of (2.11) is an
element of the space
(2. 12)

Wm0n0 :≥ spanf1, z, . . . , zm0

, zã, zã+1, . . . , zã+n0g, m0 :≥ deg(pmn), n0 :≥ deg(qmn).
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Since Wm0n0 forms a Chebyshev system on [0, 1] of dimension m0 + n0 + 2 (see [KaSt],
Chapter I, x3), we know that (2.11) and therefore also emn has at most m0 + n0 + 1 zeros
in [0, 1]. Hence, m + n + 1 � d � 1 + deg(pmn) + deg(qmn).

On the other hand, it follows from (2.8) that 2d+deg(pmn)+deg(qmn) � m+n. The last
two inequalities together imply that d ≥ 0. Thus, we have proved that there exist m+n+2
alternation points, and further we have shown that deg(pmn) ≥ m and deg(qmn) ≥ n.

From (2.7), (2.9) and (2.10) it follows that the rational approximant rŁmn interpolates
f (ã; Ð) in the m + n + 1 points of the set

(2. 13) Bmn :≥ fz1, . . . , zm+n+1g.

We shall see below that these are the only zeros of emn on R+. The polynomial

(2. 14) °mn(z) :≥ Y
x2Bmn

(z � x) 2 Πm+n+1,

will be frequently used.
The next lemma contains most of the results about the structure of the denominator

and numerator polynomials of rŁmn that can be deduced from the interpolatory property
of rŁmn.

LEMMA 2.2. Let ã 2 R+ n N, and let the rational function rmn ≥ pmnÛqmn 2 Rmn

interpolate f (ã; Ð) in the points of Bmn ≥ Bmn(ã) � (0, 1), pmn and qmn coprime, and
assume that m ½ n + [ã].

(a) The denominator polynomial qmn satisfies the orthogonality relation

(2. 15)
Z 1

0
x‡

qmn(�x)
°mn(�x)

xã dx ≥ 0 for ‡ ≥ 0, . . . , n � 1,

where °mn is the polynomial defined in (2.14). All zeros of qmn are simple, contained in
(�1, 0), and their total number is exactly n.

(b) The numerator polynomial pmn is of exact degree m, and in the segment between
two adjacent zeros of qmn there is at least one zero of pmn.

(c) For the error function emn :≥ f (ã; Ð) � rŁmn we have the representation

(2. 16) emn(z) ≥ � sinôã
ô

°mn(z)
qmn(z)2

Z 1
0

qmn(�x)2xã dx
°mn(�x)(x + z)

for z 2 D.

PROOF. (a) We will write p, q, °, f instead of pmn, qmn, °mn, f (ã; Ð), respectively.
Since rmn interpolates f in the points of Bmn, we have

(2. 17) qf � p ≥ °g

with g a function analytic in D. Let D0 be a simply connected domain with rectifiable
boundary ∂D0, D̄0 � D, Bmn � D0, and let C be the positively oriented boundary ∂D0.
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Multiplying (2.17) by z‡, ‡ ≥ 0, . . . , n � 1, and dividing by ° yields with Cauchy’s
theorem that

(2. 18)
I

C
ê‡ q(ê)
°(ê) ê

ã dê � I
C
ê‡ p(ê)
°(ê) dê ≥ I

C
ê‡g(ê) dê ≥ 0.

Since deg(°) ≥ m + n + 1 ½ m + ‡ + 2 ½ deg(p) + ‡ + 2 if ‡ � n � 1, we see that in the
second integral on the left-hand side of (2.18) the integrand has a zero of order at least 2
at infinity, and the integrand is analytic outside C. Hence, this integral vanishes, and we
have

(2. 19)
I

C
ê‡ q(ê)
°(ê) ê

ã dê ≥ 0 for ‡ ≥ 0, . . . , n � 1.

If we let C deform to the boundary of an annulus slit along the negative real axis and
let its inner radius tend to 0 and its outer radius tend to 1, then the integral in (2.19)
converges to (2.15), provided that the integral in (2.15) exists. Here only the behavior of
the integrand near ê ≥ 0 and ê ≥ 1 is critical. The modulus of the integrand at ê ≥ 0
behaves like jêjã+l since Bmn � (0, 1). At ê ≥ 1 it behaves like jêjå

(2. 20) å � (2n � 1) � (m + n + 1) + ã � �[ã] + ã � 2 Ú �1.

From (2.20) we deduce that the integral in (2.15) exists. In (2.20) we have used the
assumption m ½ n + [ã].

From the orthogonality relation (2.14) it follows rather immediately that deg(q) ≥ n,
and that all its zeros are simple and contained in (�1, 0) (see [Sz], Chapter III).

(c) We continue with the proof of assertion (c) and defer the proof of assertion (b)
until later. Let h 2 Πn be an arbitrary polynomial, and let the domain D0 � D, its contour
C, the polynomials p, q, °, and the function g be the same as those used in (2.17) and
(2.18). By Cauchy’s integral formula we deduce from (2.17) that

(2. 21)
1

2ôi

I
C

hq
° (ê) êã

ê � z
dê � 1

2ôi

I
C

hp
° (ê) dê

ê � z
≥ 1

2ôi

I
C

(hg)(ê)
ê � z

dê ≥ (hg)(z)

for all z 2 D0. Since the degree of hp is smaller than that of °, the rational function
hpÛ° is analytic outside of D0 and has a zero at infinity. The second integral in (2.21) is
therefore identically zero. With the identity qhemn ≥ qhf � hp we have thus proved that

(2. 22) emn(z) ≥ °(z)
(qh)(z)2ôi

I
C

qh
° (ê) ê

ã dê
ê � z

for z 2 D0.

Choosing h ≥ q and letting C deform to [�1, 0] as before yields (2.16). We note that
the integral in (2.16) exists for all z 2 D, which can be proved in the same way as the
existence of the integral (2.15) in part (a) has been verified. Further, we note that the
factor (sinôã)Ûô arises from the analytic continuation of êã to (�1, 0) from both sides.
The technique is the same as that in the derivation of formula (2.5).
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(b) We use the same notation as in the proof of part (c). From (2.22) and the identity
qemn ≥ qf (ã; Ð) � p it follows that

(2. 23)
p(z) ≥ q[f (ã; Ð) � emn](z) ≥ q(z)

2ôi

I
C

êã dê
ê � z

� °(z)
h(z)2ôi

I
C

qh
° (ê) ê

ã dê
ê � z

≥ 1
h(z)2ôi

I
C

(qh)(z)°(ê) � (qh)(ê)°(z)
ê � z

êã dê
°(ê)

for z 2 D0. If we choose h ≥ q and develop the right-hand side of (2.23) in powers of z,
and if we assume that q is monic, i.e. q(z) ≥ zn + Ð Ð Ð , then it follows from the identity

(2. 24)
q(z)2°(ê) � q(ê)2°(z)

ê � z
≥ °(ê) � °(z)

ê � z
q(ê)2 � q(ê)2 � q(z)2

ê � z
°(ê)

that in the development p(z) ≥ amzm + Ð Ð Ð the leading coefficient am is given by

(2. 25) am ≥ 1
2ôi

I
C

q(ê)2

°(ê) ê
ã dê.

Note that because of m ½ n + [ã] ½ n we have deg(°) ≥ m + n + 1 ½ 2n + 1 Ù 2n ≥
deg(q2). As in (2.20) we can show that the curve C in (2.25) can be deformed to [�1, 0],
and we have

(2. 26) am ≥ sinôã
ô

Z 1
0

q(�x)2

°(�x)
xã dx Â≥ 0,

which proves deg(p) ≥ m.
Next, we show that between two adjacent zeros of q there is at least one zero of p. Let

y1, . . . , yn be the zeros of q numbered according to their value. From part (a) we know
that all zeros of q lie in (�1, 0). Since all zeros are simple, we know that the partial
fraction representation of pÛq has the form

(2. 27)
p
q

(z) ≥
nX

i≥1

ïi

z � yi
+ P(z)

with P 2 Πm�n. Since f (ã; Ð) has an analytic continuation across (�1, 0) from both sides
and since f (ã; Ð) is therefore bounded at each zero yj of q, the rational function (2.27) is
dominant in the error function emn ≥ f (ã; Ð) � pÛq near every pole yj, j ≥ 1, . . . , n, of
pÛq. From the analytic continuation property of f (ã; Ð) we note that in (2.22) teh contour
C can be deformed so as to contain yj in its interior. We therefore deduce with hj(z) :≥
q(z)Û(z � yj) 2 Πn�1 that

(2. 28)

�ïj ≥ Resz≥yj emn(z) ≥ lim
z!yj

emn(z)(z � yj)

≥ °(yj)
2ôiq0(yj)2

I
C

 
q(ê)
ê � yj

!2 êã dê
°(ê)

≥ °(yj)
q0(yj)2

sinôã
ô

Z 1
0

hj(�x)2 xã dx
°(�x)

Â≥ 0.
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The last equality is a result of deforming C to [�1, 0], and the integral cannot vanish
since the integrand does not change its sign on [0,1].

Since ã as well as the sign of sinôã is fixed, it follows from (2.28) that all ï1, . . . ,ïn

are of same sign. It therefore follows from (2.27) that p has at least one zero in each
interval (yj, yj+1), j ≥ 1, . . . , n � 1.

PROOF OF LEMMA 1.5. In view of Lemma 2.1 it remains only to be shown that the
alternation points x1, . . . , xm+n+2 in (2.7) are the only extreme points of emn on [0, 1] and
further that x1 ≥ 0, xm+n+2 ≥ 1, and ï ≥ (�1)[ã] in (2.7). All assertions of Lemma 1.5
then follow from Lemma 2.1 by using identity (1.5), which describes the connection
between the problem of approximating xã on [0, 1] and jxj2ã on [�1, 1].

Set rŁmn ≥ pmnÛqmn. For c 2 R we have

(2. 29) emn(z) ≥ c

for some z 2 [0, 1] if and only if

(2. 30) zãqmn(z) � cqmn(z) � pmn(z) ≥ 0.

Since the left-hand side of (2.30) is an element of Wmn defined in (2.12), for each c 2 R
there exist at most m + n + 1 zeros of (2.29) in [0, 1]. The extreme points of emn satisfy
(2.29) with c ≥ Em,n(xã, [0, 1]) or c ≥ �Em,n(xã, [0, 1]). If an extreme point lies in (0, 1),
then it is at least a double zero of (2.29), while at the endpoints 0 and 1 it may correspond
to a simple zero of (2.29). Since we know from Lemma 2.1 that there are at least m+n+2
alternation points, it follows that these are the only extreme points, and more than that,
it follows that the two endpoints 0 and 1 have to be among these points.

In order to prove ï ≥ (�1)[ã] in (2.7), we consider emn near infinity. For m Ù n + [ã]
the approximant rŁmn(z) ≥ amzm�n + Ð Ð Ð is dominant in emn near infinity. From (2.26) we
then know that

(2. 31) sign(am) ≥ (�1)[ã] signf°mn(x) j x 2 R�g ≥ (�1)[ã]+m+n+1,

which is the same as � sign emn(z) for z 2 R+ near infinity. From (2.16) we know that
emn has exactly m + n + 1 sign changes on R+ which shows that

(2. 32) ï ≥ � sign emn(0) ≥ (�1)[ã]

for m Ù n + [ã]. The case m ≥ n + [ã] follows in the same way if we observe that
sign

�
emn(z)

� ≥ 1 for z Ù 1.

3. Some results involving logarithmic potentials. In order to simplify notation
we assume that in every ray sequence Nc ≥ f(m, n)g � N2 each index n appears only
once and therefore we can consider m as a function of n, i.e. m ≥ mn, n 2 N � N, and
f(m, n)g ≥ f(mn, n)gn2N. It is obvious that such an assumption can be made without loss
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of generality. We also will change the parameterization of the sequences Nc. Instead of
the numerator-denominator ratio c we now use the parameter Θ, which is defined by

(3. 1) lim
N

mn

n
≥: 1 + 2Θ.

From (1.3) we see that Θ ≥ (c�1)Û2. We shall write n 2 NΘ if (mn, n) 2 Nc and call NΘ
the index sequence of Nc. A ray sequence belongs asymptotically to the lower triangle
of the Walsh table if Θ ½ 0. Throughout the present paragraph, we make the assumption
that

(3. 2) mn ½ n + [ã] for all n 2 NΘ.

The assumption (3.2) implies Θ ½ 0.
In order to have a further simplification of notation we write qn, pn, °n instead of

qmn,n, pmn,n, °mn ,n, respectively. Since zeros of qn can tend to �1 as n !1, we have to
normalize qn in a way that avoids qn from “blowing up” if zeros tend to �1. The monic
polynomials are not appropriate for this purpose. In the present section we assume that
the polynomials qn are normalized so that

(3. 3) qn(z) ≥ Y
jyj j�1

(z � yj)
Y
jyj jÙ1

z � yj

jyjj ≥
nY

j≥1

z� yj

max(1, jyjj)

holds true, where y1, . . . , yn are the n zeros of qn.
For any polynomial p 2 Πn we denote by óp the counting measure of its zeros, i.e. óp

associates a mass to each zero of p that is equal to the order of the zero. From the weak
compactness of the unit ball of positive measures it follows that any ray sequence NΘ

contains an infinite subsequence, which we continue to denote by NΘ, so that measures
ó, ° and a constant c0 exist with

(3. 4)
1
n
óqn

Ł�! ó,
1

2n
ó°n

Ł�! °,
1

2n
log jIn(1)j �! c0 2 R as n !1, n 2 NΘ,

where In denotes the integral

(3. 5) In(z) :≥ sinôã
ô

Z 0

�1
qn(x)2jxjã dx
(x � z)°n(x)

, z 2 C n [�1, 0].

In Lemma 2.2(a) it has been shown that all zeros of qn are contained in (�1, 0), and that
deg(qn) ≥ n. Hence, ó is a probability measure with

(3. 6) supp(ó) � [�1, 0].

Since the polynomial °n has mn + n + 1 zeros and since all these zeros are contained in
(0, 1), it follows from (3.1) and (3.3) that ° is a positive measure with

(3. 7) supp(°) � [0, 1] and °([0, 1]) ≥ 1 + Θ.
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By

(3. 8) p(ñ; z) :≥ Z
log

max(1, jxj)
jz � xj dñ(x)

we denote the logarithmic potential of a given signed measure ñ.
Definition (3.8) differs somewhat from the usual one (see for instance [La], Chapter I,

or [StTo], Appendix), but it has the advantage that it is not affected by a strong growth of
the measureñ near infinity. The definition can be reduced to a combination of logarithmic
potentials that are defined in the usual way. Indeed, let ñ ≥ ñ1 + ñ2 be a decomposition
of ñ such that supp(ñ1) � n

z
þþþ jzj � 1

o
and supp(ñ2) � n

z
þþþ jzj ½ 1

o
. Let ñŁ2 denote the

image of ñ2 under the mapping x 7! 1Ûx. Then supp(ñŁ2) �
n

z
þþþ jzj � 1

o
, and we have

the identity

(3. 9)

p(ñ; z) ≥ Z
log

max(1, jxj)
jz � xj dñ(x) ≥ Z

log
1

jz � xj dñ1(x) +
Z

log
jxj

jz � xj dñ2(x)

≥ Z
log

1
jz � xj dñ1(x) +

Z
log

1
j1Ûz� xj dñŁ2(x) + kñ2(C)k log

1
jzj

≥ p(ñ1; z) + p
�
ñŁ2;

1
z

�
+ kñ2(C)k log

1
jzj .

Note that if supp(ñ) �
n

z
þþþ jzj � 1

o
, then we have

(3. 10) p(ñ; z) ≥ Z
log

1
jz � xj dñ(x),

which is the usual definition of a logarithmic potential.

LEMMA 3.1. We have

(3. 11) lim
NΘ

1
2n

log
þþþþþ °n(z)
qn(z)2

þþþþþ ≥ p(ó � °; z)

locally uniformly z 2 C n [�1, 1],

(3. 12) lim sup
NΘ

1
2n

log
þþþþþ °n(z)
qn(z)2

þþþþþ ≥ p(ó � °; z)

for quasi-every z 2 C n [�1, 0], and for every sequence of points zn 2 C, n 2 NΘ, with
zn ! z0 2 C n [�1, 0] as n !1, n 2 NΘ, we have

(3. 13) lim sup
NΘ

1
2n

log
þþþþþ °n(zn)
qn(zn)2

þþþþþ � p(ó � °; z0).

Further we have

(3. 14) lim inf
NΘ

1
2n

log
þþþþþ °n(z)
qn(z)2

þþþþþ ≥ p(ó � °; z)
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for quasi-every z 2 C n [0, 1], and for every sequence of points zn 2 C, n 2 NΘ, with
zn ! z0 2 C n [0, 1] as n !1, n 2 NΘ, we have

(3. 15) lim inf
NΘ

1
2n

log
þþþþþ °n(zn)
qn(zn)2

þþþþþ ½ p(ó � °; z0).

REMARK. We write limNΘ instead of limn!1,n2NΘ . A property is said to hold quasi-
everywhere on a set V � C if it holds for every z 2 V with possible exceptions on a set
of capacity zero (see [La], Chapter II, No. 6).

PROOF. The limit (3.11) follows from the first two limits in (3.4) and the fact that all
zeros of qn and °n are contained in (�1, 1). The asymptotic inequality (3.13) follows
from the first two limits in (3.4) together with the principle of descent (see [La], The-
orem 1.3), which has to be applied to the sequence of potentials (1Û2n) log[1Û°n(z)].
This sequence converges to p(°; z). In the same way the asymptotic inequality (3.15)
follows from the first two limits in (3.4) and the principle of descent, but now the princi-
ple of descent has to be applied to the functions (1Ûn) log j1Ûqn(z)j, which are not of the
form covered by Theorem 1.3 in [La] because of the normalization (3.3). However, by
using the decomposition described in (3.9), it is immediate that the principle of descent
proved in Theorem 1.3 of [La] is also applicable to the sequence f(1Ûn) log j1Ûqn(z)jg.
The limits (3.12) and (3.14) follow from the first two limits in (3.4) and the lower en-
velope theorem of potential theory (see [La], Theorem 3.8), where in case of the limit
(3.14) the decomposition (3.9) again has be used in order to justify the applicability of
Theorem 3.8 of [La].

In (3.4) we have only assumed the convergence of the sequence (1Û2n) log jIn(z)j,
n 2 NΘ, at z ≥ 1, where we allow the limits š1. The integral In has been defined in
(3.5).

LEMMA 3.2. (a) We have

(3. 16) In(z) Â≥ 0 for all z 2 D ≥ C n R�.

(b) For every compact set V � D we have

(3. 17) lim
NΘ

1
2n

log jIn(z)j ≥ c0

uniformly for z 2 V.

REMARK. The value of c0 may depend on the subsequence NΘ. Note that as yet we
do not know whether c0 is finite.

PROOF. (a) The first assertion follows from the observation that

(3. 18) Im(z) Ð Im
� 1

z + x

�
Ú 0
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for all Im(z) Â≥ 0 and x 2 R+ and

(3. 19) Re
� 1

z + x

�
Ù 0

for all z, x 2 R+.
(b) The function qn(�x)2xãÛ°n(�x) does not change sign on (0,1), and it is positive

or negative depending on whether mn + n + 1 is even or odd. Since we have assumed in
(3.2) that mn ½ n + [ã], for fixed z 2 D we have the estimate

(3. 20)
þþþþþ qn(�x)2xã

°n(�x)jx + zj
þþþþþ � c3xã�[ã]�2 for all x 2 [0,1],

where c3 is a constant that depends on z, qn, °n, but is independent of x. Inequality (3.20)
can easily be verified for large x by moving all zeros of the polynomials°n and qn to the
point x ≥ 0 and using the inequality 2n + ã� (mn + n + 1)� 1 � ã� [ã]� 2. For finite
x, inequality (3.20) follows from the fact that all zeros of °n are contained in (0, 1). It
follows from (3.20) that the integral in (3.5) exists for each n 2 NΘ and z 2 D.

For a given z with Im(z) Ù 0, the image of (0,1) under the mapping x 7!
1Û(x + z) is contained in the lower half-plane fw j Im(w) Ú 0g. Hence, for Im(z) Ù 0 we
have Im

�
In(z)ÛIn(1)

� Ú 0. Note that In(1) is real. For Im(z) Ú 0, the opposite inequality

Im
�
In(z)ÛIn(1)

�
Ù 0 holds. From these observations we deduce that

(3. 21)
þþþarg

�
In(z)

�� arg
�
In(1)

�þþþ Ú ô for all z 2 D.

Hence,

(3. 22) lim
NΘ

1
2n

þþþarg
�
In(z)

�� arg
�
In(1)

�þþþ ≥ 0

locally uniformly in D. Since arg
�
In(z)

�
is the harmonic conjugate of log jIn(z)j, limit

(3. 17) follows from (3.22), the third limit in (3.4), and Schwarz’s representation formula
for the conjugate function.

The inequality and the equality proved in the next lemma are of basic importance.

LEMMA 3.3. We have

(3. 23) p(ó � °; z) + c0

(≥ 0 for all z 2 [0, 1]
½ 0 for all z 2 [�1, 0].

The constant c0 2 R has been defined in (3.4), and it is finite.

PROOF. (a) We start by showing that the inequality

(3. 24) p(ó � °; z) + c0 � 0 for all z 2 [0, 1]

is a consequence of the error estimate (1.15) in Theorem 1.1. From the upper estimate in
(1.15) it follows that

(3. 25) lim sup
NΘ

1
2n

log jen(z)j � lim
NΘ

1
2n

(�c1

p
ã4n) ≥ 0
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uniformly for z 2 [0, 1], where c1 is a constant smaller than ô. We note that because of the
substitution z2 7! z we have to substitute the degree n by 2n in the error estimate (1.15).

From the remainder formula (2.16) of Lemma 2.2 together with (3.25) we know that

(3. 26) 0 ½ lim sup
NΘ

1
2n

log jen(z)j ≥ lim sup
NΘ

1
2n

"
log

þþþþþ °n(z)
qn(z)2

þþþþþ + log jIn(z)j
#

uniformly for z 2 [0, 1]. The function In in (3.26) has been defined in (3.5). From (3.12)
of Lemma 3.1 we know that

(3. 27) lim sup
NΘ

1
2n

log
þþþþþ °n(z)
qn(z)2

þþþþþ ≥ p(ó � °; z)

for quasi-every z 2 [0, 1]. Together with the limit (3.17) in Lemma 3.2 we deduce from
(3.27) and (3.26) that the inequality (3.24) holds for quasi-every z 2 [0, 1]. The set
F :≥ fz 2 [0, 1] j p(ó � °; z) + c0 Ù 0g is thin near every x 2 [0, 1]. Hence, in
the fine to;ology, the set F belongs to the fine boundary of [0, 1] n F (see [La, chapter V,
Section 3]) and because of the continuity of p(ó�°; z) in the fine topology, the inequality
(3.24) holds for all z 2 (0, 1].

(b) Next we show the inequality in (3.23). Let x be an arbitrary point of (�1, 0) and
é Ù 0. Because of the upper semicontinuity of p(�ó; z) and the continuity of p(°; z) on
(�1, 0) there exists an ¢ Ù 0 such that

(3.28) p(�ó; x) � max
z2I

p(�ó; z),

p(°; z) � é � min
z2I

p(°; z)

for all z 2 I :≥ I¢,x :≥ [x � ¢, x + ¢] � (�1, 0). Denote by Mn the maximum

(3. 29) Mn :≥ max
z2I

jqn(z)j.

Because of the first limit in (3.4) and the principle of descent (see [La], Theorem 1.3) we
know that

(3. 30) lim sup
NΘ

1
n

log jqn(zn)j � p(�ó; z0)

for any sequence zn ! z0 2 I. (That the principle of descent and the lower envelope
theorem holds for potentials of type (3.8) has been shown in the proof of Lemma 3.1.)
From the lower envelope theorem (see [La], Theorem 3.8) we know that

(3. 31) lim sup
NΘ

1
n

log jqn(z)j ≥ p(�ó; z)

for quasi-every z 2 I. It follows from (3.30) that

(3. 32) lim sup
NΘ

1
n

log Mn � max
z2I

p(�ó; z).
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Since (3.31) holds for any infinite subsequence of NΘ, it follows from (3.30) and (3.31)
that

(3. 33) Mn ½ e�nécn
2

for all n 2 NΘ sufficiently large with

(3. 34) log c2 :≥ max
z2I

p(�ó; z).

From the uniform convergence of (1Û2n) log j°n(z)j ! p(�°; z) on I, it follows that
there exists a constant c3 such that

(3. 35)
þþþþþ sinôã

ô
jzjã
°n(z)

Im
� 1
�z + z0

�þþþþþ ½ c2n
3

for all z 2 I, n sufficiently large, z0 2 C n R fixed, and the constant c3 satisfies

(3. 36) log c3 � min
z2I

p(°; z) � log c3 + 2é,

where we have used inequality (3.28).
Let xn 2 I be such that Mn ≥ jqn(xn)j. From Markov’s inequality we know that

(3. 37) jq0n(z)j � n2

¢ Mn for all z 2 I.

Integrating q0n shows that

(3. 38) jqn(z)j ½ Mn

2
for all z 2 I with jz � xnj � ¢

2n2
≥: ¢n.

Since at least one half of the interval [xn �¢, xn + ¢n] is contained in I we have the lower
estimate

(3. 39)

jIn(z0)j ½
þþþþþsinôã

ô Im
Z 1

0

qn(�x)2xã dx
°n(�x)(x + z0)

þþþþþ
½ c2n

3

Z xn+¢n

xn�¢n

jqn(x)j2 dx

½ c2n
3

�Mn

2

�2¢n ½ (c3c2e�é)2n ¢
8n2

for the function In defined in (3.5) if n is sufficiently large. We have used in (3.39) the
inequalities (3.35), (3.38), and (3.33). With (3.34), (3.36), and (3.38) the estimate (3.39)
implies that
(3. 40)

lim inf
NΘ

1
2n

log jIn(z0)j ½ lim inf
NΘ

� 1
2n

log
¢

8n2
+ log c2 + log c3 � é

½
≥ log c2 + log c3 � é

½ max
z2I

p(�ó; z) + min
z2I

p(°; z) � 3é ½ p(�ó; x) + p(°; x) � 4é.
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From the limit (3.17) and the arbitrariness of é Ù 0 we deduce from (3.40) that

(3. 41) p(° � ó; x) � c0.

Since x 2 (�1, 0) was arbitrary, (3.41) completes the proof of the inequality in (3.23)
for all z 2 (�1, 0). That the inequality holds also for x ≥ 0 and x ≥ �1, follows from
the continuity of p(ó � °; Ð) in the fine topology (see [La], Chapter III, x1) and the fact
that �1 and 0 are regular points of [�1, 0].

(c) In order to prove the equality in (3.23) for all z 2 [0, 1] we first show that

(3. 42) p(ó � °; z) + c0 ½ 0 for all z 2 supp(°).

From (3.7) we know that supp(°) � [0, 1]. In part (b) it has been shown that (3.42) holds
for z ≥ 0. Now let x be an arbitrary element of supp(°)nf0g. Then from the second limit
in (3.4) it follows that for every n 2 NΘ there exist at least two points an, bn 2 Bn :≥ Bmn,n

with an Ú bn and both limits an ! x and bn ! x exist as n ! 1. Note that Bn is the
set of zeros of the error function en (see (2.10)). Thus, there exists at least one extreme
point zn 2 An :≥ Amn ,n with an Ú zn Ú bn for every n 2 NΘ and of course we also have

(3. 43) zn ! x as n !1, n 2 NΘ,

and

(3. 44) jen(zn)j ≥ kenk[0,1] for all n 2 NΘ.

From the lower estimate in (1.15) of Theorem 1.1 together with (3.44) it follows that

(3. 45) lim sup
NΘ

1
2n

log jen(zn)j ½ lim
NΘ

1
2n

(�c4

p
ã4n) ≥ 0,

where c4 is a constant larger than ôp1 + 2Θ. With remainder formula (2.16) of
Lemma 2.2 it then follows from (3.45) in a similar way as in (3.26) that

(3. 46) 0 � lim sup
NΘ

1
2n

log jen(zn)j ≥ lim sup
NΘ

1
2n

"
log

þþþþþ °n(zn)
qn(zn)2

þþþþþ + log jIn(zn)j
#
.

With the limit (3.17) of Lemma 3.2 and (3.13) of Lemma 3.1 it then follows from (3.46)
that p(ó � °; x) + c0 ½ 0. Since x was an arbitrary point of supp(°) n f0g, we have
proved (3.42).

Since p(ó�°; Ð) is superharmonic in Cn supp(°), it follows from the minimum prin-
ciple and (3.42) that

(3. 47) p(ó � °; Ð) + c0 ½ 0 for all z 2 C.

Together with the inequality (3.24) this proves the equality in (3.23) for all z 2 (0, 1].
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(d) It remains to be shown that c0 2 R is finite, which will turn out to be a rather
immediate consequence of the equality in (3.23). It follows from the definition of p(ó; z)
in (3.8), supp(ó) � [�1, 0], and kók ≥ 1 that for all z 2 (0, 1] we have

(3. 48) log
1
2
� p(ó; z) � log

1
jzj .

Because supp° � [0, 1], the potential p(°; z) is bounded from below on [0, 1] and
p(°; z) ≥ 1 can only hold for a set of capacity zero on [0, 1] (see [La], Chapter III,
Section 1). Hence, from (3.48) and the equality in (3.23) it follows that c0 is finite.

The next lemma is to a large extent a corollary of Lemma 3.3.

LEMMA 3.4. We have

(3.49) p(ó � °; z) + c0 � ΘgCn[0,1](z,1),

(3.50) ó ≥ é0,

(3.51) ° ≥ é0 + Θ°[0,1],

where é0 is the Dirac measure at z ≥ 0 and°[0,1] is the equilibrium distribution on [0, 1].

PROOF. In (3.6) and (3.7) it has been shown that ó and ° are positive measures with
kók ≥ 1 and k°k ≥ 1 + Θ, therefore (° � ó)(C) ≥ Θ. From the equality in (3.23) of
Lemma 3.3 we then immediately deduce that

(3. 52) p(ó � °; z) + c0 ≥ ΘgCn[0,1](z,1) +
Z

gCn[0,1]::(z, x) dó(x).

We now proceed with a proof by contradiction. Assume that

(3. 53) ó Â≥ é0.

Since we know from (3.6) that supp(ó) � [�1, 0], it follows from (3.53) that ój[�1,0) Â≥
0 and therefore it follows from (3.52) that

(3. 54) p(ó � °; z) + c0 Ù 0 for all z 2 C n [0, 1].

We shall show that inequality (3.54) implies that all zeros of the polynomials qn converge
to zero as n !1. This then contradicts (3.53), and thus (3.49) and (3.50) follow. Further,
(3.51) follows from (3.49) since the Green function gCn[0,1](z,1) has the representation

(3. 55) gCn[0,1](z,1) � log 4 � Z
log

1
jz � xj d°[0,1](x)

(see [Ts], Theorem III.12, or [StTo], Appendix V).
Let us assume that yn, n 2 NΘ, is a sequence of zeros of qn satisfying

(3. 56) yn Ú �¢
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for some 0 Ú ¢ Ú 1. Let é Ù 0 be chosen in such a way that from (3.54) we can deduce

(3. 57) p(ó � °; z) ½ �c0 + 4é for z 2 [�1,�¢].

It then follows from the asymptotic inequality (3.15) in Lemma 3.1 that

(3. 58)
1

2n
log

qn(x)2jxj[ã]+2

j°n(x)j jx � 1j � c0 � 3é for all x 2 [�1,�¢], n ½ n0, n 2 NΘ,

for n0 sufficiently large. Note that the function on the left of (3.58) is subharmonic in
a neighborhood of infinity since from (3.2) we know that mn ½ n + [ã], which implies
2n + [ã] + 2 � mn � n � 1 � 1 � í.

From (3.58) we deduce that
(3. 59)Z �¢

�1
qn(x)2jxjã dx
jx � 1j j°n(x)j � e2n(c0�3é) Z �¢

�1 jxjã�[ã]�2 dx � e2n(c0�2é) for n ½ n0, n 2 NΘ,

if n0 is sufficiently large. From the third limit in (3.4), the definition of In in (3.5), and
the estimate (3.59) it then follows that

(3. 60)

Z 0

�¢
qn(x)2jxjã dx
jx � 1j j°n(x)j ≥

�Z 0

�1� Z �¢
�1

� qn(x)2jxjã dx
jx � 1j j°n(x)j ½ e2n(c0�é) � e2n(c0�2é)

≥ e2n(c0�é)(1 � e�2né) for n ½ n0, n 2 NΘ,

if n0 is sufficiently large.
We factor out the zero yn from qn by defining

(3. 61) q̃n(z) :≥ qn(z)
max(1, jynj)

z� yn
2 Πn�1,

which is a polynomial normalized in accordance with (3.3). The factoring out of one zero
does not change the first limit in (3.4). Consequently, we have

(3. 62)
1

2n
óqnq̃n

Ł�! as n !1, n 2 NΘ.

It is easy to verify that the asymptotic inequality (3.15) in Lemma 3.1 remains true if q2
n

is replaced by qnq̃n. Thus, it follows from (3.62) and (3.57) in exactly the same way as
in (3.58) that

(3. 63)
1
2n

log
þþþþþ (qnq̃n)(x)jxj[ã]+2

°n(x)

þþþþþ � c0 � 3é for all x 2 [�1,�¢], n ½ n0, n 2 NΘ,

if n0 is sufficiently large. As a consequence we have, as in (3.59),

(3. 64)
Z �¢
�1

j(qnq̃n)(x)j jxjã dx
j°n(x)j � e2n(c0�2é) for n Ù n0, n 2 NΘ.

The equality

(3. 65)
jx � ynj

max(1, jynj)jx � 1j � 1
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holds for all x 2 R�. Because of (3.56) the polynomial qnq̃n does not change its sign on
[�¢, 0]. Hence, we deduce from (3.65) that

(3. 66)
þþþþþ
Z 0

�¢
(qnq̃n)(x)jxjã

°n(x)
dx

þþþþþ ≥
Z 0

�¢

þþþþþ (qnq̃n)(x)jxjã
°n(x)

þþþþþ dx ½
þþþþþ
Z 0

�¢
qn(x)2jxjã dx
(x � 1)°n(x)

þþþþþ
for all n 2 NΘ. Using (3.60), (3.64), and (3.66) we obtain the estimate

(3. 67)

þþþþþ
Z 0

�1
(qnq̃n)(x)jxjã dx

°n(x)

þþþþþ
�Z 0

�¢�
Z �¢
�1

� j(qnq̃n)(x)j jxjã
j°n(x)j dx

½ e2n(c0�é) � e2n(c0�2é) ≥ e2n(c0�é)(1 � e�2né) Ù 0

for n 2 NΘ sufficiently large.
Since q̃n 2 Πn�1, the strict inequality in (3.67) contradicts the orthogonality (2.15)

in Lemma 2.2. Thus, we have shown that inequality (3.54) implies that all zeros of the
polynomials qn have to converge to zero as n 2 NΘ tends to infinity. This completes the
proof.

In the proof of Lemma 3.4 we have actually shown more than has been stated in
Lemma 3.4. The identity (3.50) implies only that almost all zeros of the denominator
polynomials qn converge to z ≥ 0 as n ! 1, n 2 NΘ. The proof, however, shows that
under certain conditions all zeros converge to z ≥ 0. This stronger assertion is part of
the next lemma.

For a polynomial p 2 Πn we denote by Z(p) the set of all zeros taking account of
multiplicities.

LEMMA 3.5. If Θ Ù 0, then

(3.68)
1\

k≥1

[
n½k

n2NΘ

Z(qn) ≥ f0g,

(3.69)
1\

k≥1

[
n½k

n2NΘ

Z(pn) ≥ [0, 1],

where qn and pn are the denominator and numerator polynomials of the approximant rŁn.

REMARK. The case Θ ≥ 0 has been excluded from Lemma 3.5. Theorem 1.4, which
will be proved below, implies that for the case of the sequence frŁn+[ã],ngn2N all zeros and
poles of the approximants rŁn+[ã],n cluster on [�1, 0]. So at least in this case there is an
asymptotic behavior different from that described in (3.68).

PROOF. If Θ Ù 0, then it follows from (3.49) that inequality (3.54) holds. In the
proof of Lemma 3.4 it has been shown that from this inequality it follows that all zeros
of the denominator polynomials qn converge to z ≥ 0. This proves (3.68).

In order to prove (3.69) we need some preparation. Since Θ Ù 0 implies inequality
(3.54), we know that all results are true that have been proved in (3.58)–(3.67), and ¢ Ù 0
can be chosen arbitrarily small.
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Now, let r Ù 0, é Ù 0, and Γ1 ≥
n

z
þþþ jzj ≥ r, j arg zj � ô � éo. There exists ¢ Ù 0

such that

(3. 70)
þþþþ 1
xÛz� 1

� 1
x � 1

þþþþ � é
jx � 1j for all x 2 [�¢, 0], z 2 Γ1,

and there exists a constant c1 Ú 1 with

(3. 71)
1

jxÛz � 1j �
c1

jx � 1j for all x 2 R�, z 2 Γ1.

Define

(3. 72) an :≥ Z 0

�¢
qn(x)2jxjã dx
(x � 1)°n(x)

, n 2 NΘ.

From (3.60) we know that

(3. 73) janj ½ e2n(c0�é) for n ½ n0, n 2 NΘ,

if n0 is sufficiently large. Because of the third limit in (3.4) we know that

(3. 74) lim
NΘ

1
2n

log janj ≥ c0.

From (3.71) together with (3.59) we deduce that

(3. 75)
þþþþþ
Z �¢
�1

qn(x)2jxjã dx
(xÛz � 1)°n(x)

þþþþþ � c1

Z �¢
�1

qn(x)2jxjã dx
jx � 1j j°n(x)j � e2n(c0�2é)

for n ½ n0, n 2 NΘ, z 2 Γ1, and n0 sufficiently large. From (3.70) together with (3.72)
we further deduce that

(3. 76) �éjanj �
þþþþþ
Z 0

�¢
qn(x)2jxjã dx

(xÛz � 1)°n(x)
� an

þþþþþ � éjanj for n 2 NΘ.

Since en(z) ≥ zã � (pnÛqn)(z), it follows from formula (2.16) in Lemma 2.2 that

(3. 77)
zpn(z) qn(z)

an°n(z)
≥ zã+1qn(z)2

an°n(z)
� sinôã

ô
Z 0

�1
qn(x)2jxjã dx

(xÛz � 1)°n(x)
, z 2 C n [�1, 0].

As a consequence of the inequality (3.54), the three limits in (3.4), and limit (3.74) we
have as in Lemma 3.1 that

(3. 78) lim
NΘ

zã+1qn(z)2

an°n(z)
≥ 0

locally uniformly for z 2 C n [0, 1].
From (3.76) together with (3.75) and (3.73) it follows that

(3. 79)

�é � e�2né �
þþþþþ 1
an

Z 0

�1
qn(x)2jxjã dx

(xÛz � 1)°n(x)
� 1

þþþþþ � é + e�2né for n ½ n0, n 2 NΘ, z 2 Γ1,

https://doi.org/10.4153/CJM-1997-052-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-052-3


1058 E. B. SAFF AND H. STAHL

which proves that

(3. 80) lim
NΘ

zqn(z) pn(z)
an°n(z)

≥ sinôã
ô

uniformly for z 2 Γ1. Since r Ù 0 and é Ù í are arbitrary, it follows that (3.80) holds for
all z 2 C n R�.

Since we already know from the proof of Lemma 3.4 that the polynomials qn and °n

have all their zeros in the interval [�¢, 1] for n 2 NΘ sufficiently large, and asymptoti-
cally all these zeros cluster on [0, 1], it follows from (3.80) and the argument principle
that all zeros of the polynomials pn, n 2 NΘ, have to cluster on [0, 1].

4. Proofs. In the present section we shall prove all results of Section 1 except The-
orem 1.1, which has already been verified as an immediate consequence of Ganelius’
result (1.10), and Lemma 1.5, which has been proved in Section 2.

We note that in Section 1 notation has been used that differs from that in Sections 2
and 3. Thus, in Section 1 we have considered only even functions, which then have been
transformed by the mapping (2.1), to the problem of approximating xã on [0, 1]. The
mapping (2.1) is basically a substitution of z2 by z. As a consequence, approximation on
[�1, 1] is transformed to approximation on [0, 1], the degree 2n is reduced to n, and the
exponent ã is reduced to ãÛ2. While in Section 1 nontrivial approximation problems
arise if ã Û2 2N, this condition is ã Û2 N in the later sections.

In Section 3 there was a further change: we have switched from the numerator-denom-
inator ratio c to the parameter Θ. The transition has been defined in (3.1). From (1.3) and
(3.1) we deduced that

(4. 1) c ≥ 1 + 2Θ and Θ ≥ 1
2

(c � 1).

It follows that

(4. 2)
m
n
! c and

m � n
m + n

! Θ
1 + Θ

≥ c � 1
c + 1

as m + n !1, (m, n) 2 Nc.

We continue to write n 2 NΘ for (m, n) 2 Nc and rŁn,°n, . . . for rŁmnn,°mnn, . . . in
Sections 2 and 3. In all proofs we shall consider the approximation problem on [0, 1],
and at the end of each proof we shall describe the transition to the versions given in
Section 1.

PROOF OF THEOREM 1.2. Let ã 2 R+ nN and let NΘ be a ray sequence with Θ Ù 0.
From (2.16) of Lemma 2.2(c) we know that

(4. 3)

rŁn(z) ≥ zã � en(z)

≥ zã � sinôã
ô

°n(z)
qn(z)2

Z 0

�1
qn(x)2jxjã dx
°n(x)(x � z)

for z 2 D ≥ CnR�. Since f (ã; z) ≥ zã is bounded on compact subsets of D, and since the
same is true for the analytic continuation of zã across (�1, 0), it follows that the second
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term on the right-hand side of (4.3) is the dominant one; it is decisive for the asymptotic
behavior of jrŁnj as n !1.

Without loss of generality we can assume that the limits in (3.4) exist; for otherwise
we can choose an infinite subsequence of NΘ for which these assumptions hold.

From the limits in (3.4), limit (3.11) in Lemma 3.1, limit (3.17) in Lemma 3.2, and
identity (3.49) in Lemma 3.4 we deduce that
(4. 4)

lim
NΘ

1
2n

log
þþþþþsinôã

ô
°n(z)
qn(z)2

Z 0

�1
qn(x)2jxjã dx
°n(x)(x � z)

þþþþþ ≥ lim
NΘ

1
2n

"
log

þþþþþ °n(z)
qn(z)2

þþþþþ + log jIn(z)j
#

≥ p(ó � °; z) + c0 ≥ ΘgC̄n[0,1](z,1),

locally uniformly for z 2 C n [�1, 1].
From (4.3), (4.4), and (4.2) together with the fact that 2nÛ(mn + n) ! 1Û(1 + Θ) as

n !1, n 2 NΘ, it follows that

(4. 5) lim
NΘ

1
mn + n

log jrŁn(z)j ≥ Θ
1 + Θ

gC̄n[01](z,1) ≥ c� 1
c + 1

gC̄n[0,1](z,1)

locally uniformly for z 2 Cn[�1, 1]. As an immediate consequenceof (3.68) and (3.69)
in Lemma 3.5 we see that (4.5) also holds locally uniformly for z 2 C n [0, 1].

By the transformation (2.1), limit (4.5) transforms to (1.19). Thus (1.19) is proved for
c Ù 1.

In case that c ≥ 1, and m ≥ n + 2[ãÛ2] for (m, n) 2 Nc, the right-hand side of (1.19)
is identically 1. The limit (1.19) follows then as a consequence of Theorem 1.4 part (a),
which will be proved next.

PROOF OF THEOREM 1.4. The main work is to show that the sequence of error func-
tions en(z) ≥ zã � rŁn(z), n 2 N, is bounded on any compact subset V � C n R�. In the
proof we shall use divided differences and iterated differences; the relevant properties of
these notions will be assembled first.

Let f be a real function defined on C, and let x0, . . . , xj 2 C be a finite sequence of
distinct points. The divided difference f (x0, . . . , xj) of order j is recursively defined by

(4. 6) f (x0, . . . , xj) :≥ f (x0, . . . , xj�1) � f (x1, . . . , xj)
x0 � xj

.

with f (xj) the divided difference of order 0. For points xj that form an arithmetic progres-
sion

(4. 7) xj ≥ x0 + jh, x0, h 2 C, h Â≥ 0, j 2 N,

the iterated differences are defined recursively by

(4.8) ∆f (x) ≥ f (x + h)� f (x)

∆jf (x) ≥ ∆j�1f (x + h) � ∆j�1f (x), j ≥ 1, 2, . . . .
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We have the formulae

(4. 9) f (x0, . . . , xj) ≥ 1
j! hj

∆jf (x0)

and

(4. 10) ∆jf (x0) ≥
jX

l≥0
(�1)j�l

0
@j

l

1
Af (xl)

for j ≥ 1, 2, . . . (see [Ge], Chapter 1).
Since under the assumption (4.7) all points x0, . . . , xj lie on a straight line, for each

real function f that has a j-th order continuous derivative f (j) there exists a ò 2 (x0, xj)
such that

(4. 11) f (x0, . . . , xj) ≥ 1
j!

f (j)(ò).

From Theorem 1.1 we know that the error function en converges to 0 uniformly on
[0, 1] as n ! 1. Therefore the en are bounded on [0, 1] for all n 2 N. Let a 2 (0, 1)
and h a real number with 0 Ú h Ú (1 � a)Û([ã] + 1). Further let the sequence fxjg be
defined by xj ≥ a + jh for j ≥ 0, . . . , [ã] + 1. Then it follows from (4.9) and (4.10) that
there exists a constant c1 such that
(4. 12)

jen(x0, . . . , xj)j � 1
j! hj

jX
l≥0

0
@j

l

1
Ajen(xl)j � c1 for j ≥ 0, . . . , [ã] + 1 and all n 2 N.

Since zã is analytic in D, the same is true for the divided differences of zã with respect to
the sequences fx0, . . . , xjg, j ≥ 0, . . . , [ã] + 1. Hence, these differences are bounded on
compact subsets of D independent of n 2 N. The divided difference is a linear operator,
and therefore it follows from (4.12) and from the identity en ≥ zã � rŁn that there exists
a constant c2 so that

(4. 13) jrŁn(x0, . . . , xj)j � c2 for all j ≥ 0, . . . , [ã] + 1 and all n 2 N.

With (4.11) it then follows that there exist points ò(j)
n 2 (x0, xj) � [a, 1] with

(4. 14) jrŁ(j)
n (ò(j)

n ) � c2 for all j ≥ 0, . . . , [ã + 1] and all n 2 N.

From Lemma 2.2(a) we know that the denominator polynomial qn of rŁn has exactly n
zeros yjn, j ≥ 1, . . . , n, which are all simple and contained in (�1, 0). From
Lemma 2.2(b) we know that the numerator polynomial of rŁn is exactly of degree mn ≥
n + [ã]. Hence, the partial fraction decomposition of rŁn has the form

(4. 15) rŁn(z) ≥
nX

j≥1

ïjn

z � yjn
+ Pn(z) ≥ Sn(z) + Pn(z),
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where Pn 2 Π[ã] and Sn is the fractional part of rŁn (see also (2.27)). It has been shown in
(2.28) that

(4. 16) ïjn ≥ sinôã
ô

°n(yjn)
q0n(yjn)2

Z 1
0

 
qn(�x)
x + yjn

!2 xã dx
°n(�x)

, j ≥ 1, . . . , n,

which implies that all coefficients ï1n, . . . ,ïnn are of identical sign for a given n. Since
Pn is a polynomial of degree [ã], we have P([ã]+1)

n � 0 and

(4. 17) rŁ([ã]+1)
n (z) ≥ S([ã]+1)

n (z) ≥ (�1)[ã]+1([ã] + 1)!
nX

j≥1

ïjn

(z � yjn)[ã]+2
.

From elementary considerations it follows that for any compact set V � D there exists a
constant c3 ≥ c3(V) such that

(4. 18)
1

jz � xj[ã]+2
� c3

jê � xj[ã]+2
for all z 2 V, ê 2 [a, 1], x 2 R�.

With (4.18) we derive from (4.17) that there exists a constant c4 such that

(4. 19)

jrŁ([ã]+1)
n (z)j � ([ã] + 1)!

nX
j≥1

jïjnj
jz � yjnj[ã]+2

� c3([ã + 1)!
nX

j≥1

jïjnj
jò([ã]+1)

n yjnj[ã]+2

� c3jrŁ([ã]+1)
n (ò([ã]+1)

n )j � c4

for all z 2 V and n 2 N, where ò([ã]+1)
n 2 (x0, x[ã]+1) are the points introduced in (4.14).

Integrating (4.19) [ã] + 1 times and using the initial values ò(j)
n , j ≥ 0, . . . , [ã] + 1, which

are assumed to satisfy (4.14), shows that there exists a constant c5 so that

(4. 20) jrŁn(z)j � c5 for all z 2 V and n 2 N.

Since rŁn converges to zã uniformly on [0, 1] as n ! 1, it follows from (4.20) and
Montel’s theorem that

(4. 21) lim
n!1 rŁn(z) ≥ zã

uniformly on each compact V � C n [�1, 0].
With the mapping (2.1), it then is immediate that (4.21) implies (1.22). Thus, the proof

of part (a) of Theorem 1.4 is complete.
Part (b) is basically a consequence of Lemma 2.2(b). There is has been shown that all

poles lie on R�. By the mapping (2.1) these locations are moved to iR and their number
is duplicated. Since in Lemma 2.2(b) it has been shown that between two poles there is
always a zero, this guarantees that at least n � 2 zeros of rŁn+[ã],n lie on iR.

PROOF OF THEOREM 1.6. By transformation (2.1) the assumption in Theorem 1.6
transforms to ã 2 R+ nN and mn ½ n + [ã] for all n 2 NΘ. Hence, the assumptions (2.4)
and (3.2) of Sections 2 and 3 are satisfied.
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Let An ≥ Amnn be the set of mn + n + 2 extreme points of the error function en(z) ≥
zã� rŁn(z) on [0, 1] for the transformed problem. It has been shown in (2.9) that between
two adjacent points of An there is always a zero of the error function en. These are alto-
gether mn + n + 1 zeros, they form the set Bn ≥ Bmnn defined in (2.13), and they are also
the zeros of the polynomial °n defined in (2.14).

In the second limit of (3.3) we have assumed that the sequence NΘ has been selected
in such a way that the limit

(4. 22)
1

2n
óBn

Ł! ° as n !1, n 2 NΘ,

exists. From (4.2) we know that

(4. 23)
mn + n + 1

2n
! 1 + Θ as n !1, n 2 NΘ.

Since the points of An and Bn interlace, limit (4.22) still holds if the set Bn is replaced by
the set An.

In (3.60) of Lemma 3.4 it has been shown that ° ≥ é0 + Θ°[0,1], where ° is the limit
measure in (4.22). Putting (4.22) and (4.23) together with the last identity we have
(4. 24)

1
mn + n + 2

óAn

Ł! 1
1 + Θ

(é0 + Θ°[0,1]) ≥ 2
c + 1

é0 +
c � 1
c + 1

°[0,1], as n !1, n 2 NΘ,

where in the last equality we have used the identity Θ ≥ (c � 1)Û2 from (4.1).
With (4.24) the limit (1.27) is practically proved; it only remains to show that the

inverse of transformation (2.1) transforms the measures é0 and °[0,1] in the measures é0

and °[�1,1], respectively. Indeed, the two branches of the mapping z 7! x ≥ ß�1(z) ≥
špz map the domain D ≥ C n [�1, 0] onto H+ ≥ fz 2 C j Re(z) Ù 0g and H� ≥ fz 2
C j Re(z) Ú 0g. The equilibrium distribution

(4. 25) d°[0,1](z) ≥ dz

ôpz(1 � z)
, z 2 [0, 1],

is mapped by both branches of ß�1 onto the measure

(4. 26) 2d°[�1,1](x) ≥ 2dx

ô
p

1 � x2
, x 2 [�1, 1].

This is twice the equilibrium distribution on [�1, 1]. Since ß�1 is 2-valued, we have to
divide the measure (4.26) by 2. The same considerations hold for the transformation of
the Dirac measure é0.

Thus, the limit (1.27) follows from (4.24) for the subsequence NΘ, for which the lim-
its in (3.3) hold. Since the right-hand sides of (4.24) and (1.27) are independent of the
selected subsequence, the limit (1.27) holds also for the original sequence Nc.

PROOF OF THEOREM 1.7. The assumptions are the same as in Theorem 1.6, and
again we transform the problem by (2.1) in a form that allows the application of results
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from Sections 2 and 3. The original degrees m and n have been assumed to be even. After
the transformation of the problem these degrees are halved.

(a) From part (a) of Lemma 2.1 we know that the denominator polynomial qn in the
transformed problem has exactly n simple zeros on the negative real axis (�1, 0). From
part (b) of Lemma 2.1 it follows that each of these zeros is a pole of rŁn. The inverse
mapping ß�1 of transformation (2.1) then transforms these poles to a doubled number
of poles on the imaginary axis iR.

(b) From part (b) of Lemma 2.1 it follows that between two adjacent poles of rŁn on
the two imaginary halfaxes there is at least one zero of rŁn. This proves (1.28).

(d) We now prove assertion (d) and continue with the proof of assertion (c) afterwards.
The assumption c Ù 1 implies that in the transformed problem Θ Ù 0. Hence, Lemma 3.5
is applicable. In (3.68) and (3.69) of this lemma it has been shown that all poles of the
transformed approximant rŁn converge to z ≥ 0, and all zeros converge to [0, 1] as n !1
and n 2 NΘ. Transforming back via the inverse mapping ß�1 to the original problem,
the set [0, 1] is mapped on [�1, 1] and the point z ≥ 0 is mapped on x ≥ 0. Thus, (3.68)
and (3.69) of Lemma 3.5 imply (1.30).

(c) From (3.55) in Lemma 3.4 together with Lemma 2.2(b) and the first limit in (3.4),
it follows that

(4. 27)
1
n
óPmn

Ł! é0 as m + n !1, (m, n) 2 Nc,

which proves the first limit (1.29).
In the proof of the second limit in (1.29) we distinguish the two cases c ≥ 1 and c Ù 1.

If c ≥ 1, then it follows from the interlacing property (1.28) in part (b), that the limit
(4.27) remains true if we substitute Pmn by Zmn. This proves the second limit in (1.29) if
c ≥ 1.

If c Ù 1, then in the transformed problem we have Θ Ù 0, and, as in the proof of
Theorem 1.2, we can deduce that (4.5) holds. Transforming this limit back by the inverse
mapping ß�1 of (2.1) and taking care of degrees and the effect of the transformation on
the Green function, yields that

(4. 28) lim
m+n!1
(m,n)2Nc

1
m + n

log jrŁmn(z)j ≥ Θ
1 + Θ

gC̄n[�1,1](z,1) ≥ c � 1
c + 1

gC̄n[�1,1](z,1)

uniformly on compact subsets of C n [�1, 1]. The last equality in (4.28) follows from
(4.1). Since the Green function gC̄n[�1,1](z,1) has the representation

(4. 29) gC̄n[�1,1](z,1) � log 2 � p(°[�1,1]; z)

(cf. [Ts], Theorem III.12, or [StTo], Appendix V), and since

(4. 30)
n

m + n
! 1

1 + c
as m + n !1, (m, n) 2 Nc,
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it follows from (4.29) and the interlacing property (1.28) of poles and zeros proved in
part (b) that

(4. 31)
�1

n
óZmn �

1
n
óPmn

� Ł! (c � 1)°[�1,1] as m + n !1, (m, n) 2 Nc.

With the limit (4.27) and the fact that mÛn ! c, we deduce from (4.31) that

(4. 32)
1
m
óZmn

Ł! 1
c
é0 +

�
1 � 1

c

�
°[�1,1] as m + n !1, (m, n) 2 Nc.

This completes the proof of Theorem 1.7.
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1–57.

[BIS] H.-P. Blatt, A. Iserles and E. B. Saff, Remarks on the behavior of zeros and poles of best approximating
polynomials and rational functions. In: Algorithms for Approximation, (eds. J. C. Mason and M. G. Cox),
Inst. Math. Appl. Conf. Ser. New Ser. 10, Claredon Press, Oxford, 1987, 437–445.

[BS] H.-P. Blatt and E. B. Saff, Behavior of zeros of polynomials of near best approximation, J. Approx. Theory
46(1986), 323–344.

[Bu1] A. P. Bulanow, Asymptotics for the least derivation of jxj from rational functions, Mat. Sb. (118) 76
(1968), 288–303; English transl. in Math. USSR-Sb. 5(1968), 275–290.

[Bu2] , The approximation of x1Û3 by rational functions, (Russian), Vestsı̄ Akad. Navuk Belarusı̄ Ser.
Fı̄z. Mat. Navuk 2(1968), 47–56.

[FrSz] G. Freud and J. Szabados, Rational approximation to xã, Acta Math. Acad. Sci. Hungar. 18(1967), 393.
[Ga] T. Ganelius, Rational approximation to xã on [0, 1], Anal. Math. 5(1979), 19–33.
[Ge] A. O. Gelfond, Differenzenrechnung, Deutscher Verlag der Wissenschaften, Berlin, 1958.
[Go1] A. A. Gonchar, On the speed of rational approximation of continuous functions with characteristic

singularities, Mat. Sb. (115) 73(1967), 630–638; English transl. in Math. USSR-Sb. 2(1967).
[Go2] , Rational approximation of the function xã. (Russian), In: Constructive Theory of Functions,

Proc. Internat. Conf, Varna, 1970, Izdat. Bolgar. Akad. Nauk, Sofia, 1972, 51–53.
[Go3] , The rate of rational approximation and the property of single-valuedness of an analytic function

in a neighborhood of an isolated singular point, Mat. Sb. (136) 94(1974), 265–282; English transl. in Math.
USSR-Sb. 23(1974).

[Ka] M. I. Kadec, On the distribution of points of maximum deviation in the approximation of continuous
functions by polynomials, Amer. Math. Soc. Transl. (2) 26(1963), 231–234.

[KaSt] S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics, Inter-
science Publishers, New York, 1966.

[La] N. S. Landkof, Foundations of Modern Potential Theory, Grundlehren Math. Wiss. 190, Springer-Verlag,
New York, 1972.

[Me] G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer-Verlag, New York,
1967.

[Ne] D. J. Newman, Rational approximation to jxj, Michigan Math. J. 11(1964), 11–14.
[Ri] T. J. Rivlin, An Introduction to the Approximation of Functions, Blaisdell Publ. Co., Waltham, Mas-

sachusetts, 1969.
[Sa] E. B. Saff, A principle of contamination in best polynomial approximation. In: Approximation and Opti-

mization, Lecture Notes in Math. 1354, (eds. Gomez, Guerra, Jimeniz and Lopez), Springer-Verlag, Berlin,
1988, 79–97.

https://doi.org/10.4153/CJM-1997-052-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-052-3


RAY SEQUENCES OF BEST RATIONAL APPROXIMANTS 1065

[SaSt1] E. B. Saff and H. Stahl, Sequences in the Walsh table for xã. In: Constructive Theory of Functions,
(eds. K. Ivanov, P. Petrushev and Bl. Sendov), Bulgarian Academy of Science, Sofia, 1992, 249–259.

[SaSt2] , Asymptotic distribution of poles and zeros of best rational approximants for jxjã , Proc. of the
Semester of Funct. Theory at the Internat. Banach Center, Warsaw, 1992, to appear.

[St1] H. Stahl, Best uniform rational approximation of jxj on [�1, 1], Mat. Sb. (8) 183, 85–118.
[St2] , Best uniform rational approximation of xã on [0, 1], Bull. Amer. Math. Soc. 28(1993), 116–122.
[StTo] H. Stahl and V. Totik, General Orthogonal Polynomials, Encyclopedia Math. Appl. 43, Cambridge

University Press, 1992.
[Ts] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
[Tz] J. Tzimbalario, Rational approximation to xã, J. Approx. Theory 16(1976), 187–193.
[VC1] R. S. Varga and A. J. Carpenter, On the Bernstein conjecture in approximation theory, Constr. Approx.

1(1985), 333–348; Russian transl. in Mat. Sb. (171) 129(1986), 535–548.
[VC2] , Some numerical results on best uniform rational approximation of xã on [0, 1], Numer. Algo-

rithms, to appear.
[VC3] , Some numerical results on best uniform polynomial approximation of xã on [0, 1]. In: Meth-

ods of Approximation Theory in Complex Analysis and Mathematical Physics, (eds. A. A. Gonchar and
E. B. Saff), Moskow, “Nauka”, 1992, 192–222.

[VRC] R. S. Varga, A. Ruttan and A. J. Carpenter, Numerical results on best uniform rational approximation
of jxj on [�1, 1], Mat. Sb. (11) 182(1991), 1523–1541.

[Vj1] N. S. Vjacheslavov, On the approximation of xã by rational functions, Izv. Akad. Nauk-USSR 44(1980);
English transl. in Math. USSR-Izv. 16(1981), 83–101.

[Vj2] , On the uniform approximation of jxj by rational functions, Dokl. Akad. Nauk SSSR 220(1975),
512–515; English transl. in Soviet Math. Dokl. 16(1975), 100–104.

[Vj3] , The approximation of jxj by rational functions, (Russian), Mat. Zametki 16(1974), 163–171.

Institute for Constructive Mathematics
Department of Mathematics
University of South Florida
Tampa, Florida 33620
U.S.A.

TFH/FB2
Luxemburger Str. 10
D-1000 Berlin 65
Germany

https://doi.org/10.4153/CJM-1997-052-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-052-3

