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Abstract

Datatype-generic programming (DGP) involves parametrization of programs by the shape

of data, in the form of type constructors such as ‘list of’. Most approaches to DGP

are developed in pure functional programming languages such as Haskell. We argue that

the functional object-oriented language Scala is in many ways a better choice. Not only

does Scala provide equivalents of all the necessary functional programming features (such

as parametric polymorphism, higher-order functions, higher-kinded type operations, and

type- and constructor-classes), but it also provides the most useful features of object-

oriented languages (such as subtyping, overriding, traditional single inheritance, and multiple

inheritance in the form of traits). Common Haskell techniques for DGP can be conveniently

replicated in Scala, whereas the extra expressivity provides some important additional benefits

in terms of extensibility and reuse. We illustrate this by comparing two simple approaches

in Haskell, pointing out their limitations and showing how equivalent approaches in Scala

address some of these limitations. Finally, we present three case studies on how to implement

in Scala real DGP approaches from the literature: Hinze’s ‘Generics for the Masses’, Lämmel

and Peyton Jones’s ‘Scrap your Boilerplate with Class’, and Gibbons’s ‘Origami Programming’.

1 Introduction

Datatype-generic programming (DGP) is about writing programs that are

parametrized by a datatype, such as lists or trees. This is different from para-

metric polymorphism, or ‘generics’ as the term is used by most object-oriented

programmers: parametric polymorphism abstracts from the ‘integers’ in ‘lists of

integers’, whereas DGP abstracts from the ‘lists of’.

There is a large and growing collection of techniques for writing datatype-

generic programs. Much of the early research on DGP relied on special-purpose

languages or language extensions such as Charity (Cockett & Fukushima 1992),

PolyP (Jansson 2000), and Generic Haskell (Hinze & Jeuring 2002). With time,

research has shifted towards more lightweight approaches, based on language

extensions such as Scrap your Boilerplate (Lämmel & Peyton Jones 2003) and

Template Haskell (Sheard & Peyton Jones 2002); more recently, DGP techniques
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have been encapsulated in libraries for existing general-purpose languages, such

as Generics for the Masses (GM) (Hinze 2006) for Haskell and Adaptive Object-

Oriented Programming (Lieberherr 1996) for C++. One key advantage of the

lightweight approaches is that DGP becomes more accessible to potential users,

since no new tool or compiler is required in order to enjoy its benefits. Indeed, the

use of libraries or simple language extensions rather than completely new languages

has greatly promoted the adoption of DGP.

Despite the rather wide variety of host languages involved in the techniques listed

above, the casual observer might be forgiven for concluding, from the wealth of

proposals for lightweight generic programming in Haskell (Cheney & Hinze 2002;

Lämmel & Peyton Jones 2005; Hinze 2006; Hinze et al. 2006; Oliveira et al. 2006;

Weirich 2006; Hinze & Löh 2007; Mitchell & Runciman 2007; Brown & Sampson

2009), that ‘Haskell is the programming language of choice for discriminating

datatype-generic programmers’. Our purpose in this paper is to argue to the

contrary; we believe that although Haskell is ‘a fine tool for many datatype-generic

applications’, it is not necessarily the best choice.

In particular, we argue that the discriminating datatype-generic programmer ought

seriously to consider using Scala, a relatively recent language providing a smooth

integration of the functional and object-oriented paradigms. Scala offers equivalents

for most familiar features cherished by datatype-generic Haskell programmers, such

parametric polymorphism, higher-order functions, higher-kinded types, and type- and

constructor-classes. (Two significant missing features are lazy evaluation and higher-

ranked types.) In addition, it offers some of the most useful features of object-oriented

programming languages, such as subtyping, overriding, and both single and a form of

multiple inheritance (via ‘traits’). We show not only that Haskell techniques for DGP

can be conveniently replicated in Scala, but also that the extra expressivity provides

important additional benefits in terms of extensibility and reuse. Specifically, intricate

constructions are often needed to bend the implicit dictionaries in Haskell’s class

system to DGP purposes – these convolutions could mostly be avoided if one had

first-class dictionaries. Scala’s traits mechanism provides such a facility, including

the ability to pass them implicitly where appropriate.

We are not the first to consider DGP in Scala: Moors et al. (2006) presented a

translation into Scala of a Haskell library of ‘origami operators’ (Gibbons 2006);

we discuss this translation in depth in Section 9. And of course, it is not really

surprising that Scala should turn out effectively to subsume Haskell, since its design

is substantially inspired by functional programming.

We are interested in finding the limitations of the general-purpose mechanisms, in

order to point out their weaknesses and to promote their improvement. The aim here

is not to compare particular DGP libraries, as was done by Rodriguez et al. (2008),

but rather to consider the basic mechanisms used to implement those libraries.

We claim that the language mechanisms traditionally used for implementing DGP

libraries, namely type classes (Hall et al. 1996) and generalized algebraic datatypes

(GADTs) (Peyton Jones et al. 2006), each have their limitations, and that it might

be better to exploit a different mechanism incorporating the advantages of both.

This paper explores Scala’s object system as such an alternative mechanism.
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We feel that our main contribution is as a call to datatype-generic programmers

to look beyond Haskell, and particularly to look at Scala. Not only can Scala be

used to express current approaches to DGP; in some ways – in particular, with its

open datatypes, inheritance, and implicits mechanism – it improves upon Haskell.

Some of those advantages derive from Scala’s mixed-paradigm nature, and so do

not translate back into Haskell; but others (such as case classes and anonymous

case analyses, as we shall see) would fit perfectly well into Haskell. We emphasize

that we are not arguing that Scala is universally superior to Haskell. Indeed, as

we shall see, Scala too has some limitations. Instead, our purpose is to promote

the migration of good ideas from Scala to Haskell and vice versa, so as to improve

support for DGP in both languages.

As a secondary contribution, we show that Scala is more of a functional

programming language than is typically appreciated. Scala tends to be seen primarily

as an object-oriented language that happens to have some functional features, and so

potential users feel that they have to use it in an object-oriented way. For example,

Moors et al. (2006) claimed to be ‘staying as close to the original work as possible’

in their translation of the origami operators, but as we show in Section 9 they

still ended up less functional than they might have done. Scala is also a functional

programming language that happens to have object-oriented features; indeed, it

offers the best of both worlds, and this paper serves also as a tutorial in exploiting

Scala as a multi-paradigm language.

The rest of this paper is structured as follows. Section 2 sets the scene, by reviewing

two straightforward approaches to DGP in Haskell – using representation datatypes

and type classes, respectively – and pointing out their limitations. Sections 3 and 4

introduce the basics of Scala, and those more advanced features of its type and

class system on which we depend. Our contribution starts in Sections 5 and 6,

which show how to implement in Scala the two approaches presented in Haskell

in Section 2. After that, three case studies of the translation of existing DGP

libraries into Scala are presented: Section 7 discusses an implementation of Hinze’s

GM approach (Hinze 2006); Section 8 shows a Scala implementation of Scrap your

Boilerplate with Class (Lämmel & Peyton Jones 2005); and Section 9 presents a more

functional alternative to Moors et al.’s encoding (2006) of the Origami Programming

operators (Gibbons 2003, 2006) in Scala. Finally, Section 10 compares Haskell and

Scala support for DGP, and briefly discusses some of the key ideas of the paper,

and Section 11 concludes. Scala code for the examples is available online (Oliveira

2009b).

2 Some limitations of Haskell for datatype-generic programming

To conduct our experiments, we consider two very simple and straightforward

libraries for generic programming, using representation datatypes and type classes,

respectively. The purpose here is to discuss the limitations of the two mechanisms.

While there are various clever tricks and workarounds for dealing with these

limitations, better linguistic mechanisms would provide support more naturally,

and do away with the need for these tricks in the first place. We do not intend to
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have a debate about whether one structural view of datatypes is better or worse than

another; the issues we identify are pervasive to most generic programming libraries.

2.1 Generic programming with representation datatypes

A very natural style in which to write a generic programming library is to base it on

a datatype of type representations (Cheney & Hinze 2002; Hinze et al. 2006; Weirich

2006), leading to a structural approach similar to that of Generic Haskell. Cheney

and Hinze’s lightweight implementation of generics and dynamics (LIGD) (Cheney &

Hinze 2002) provides the earliest example of such an approach, showing how to do

a kind of generic programming using only the standard Hindley–Milner type system

extended with existential datatypes. The key idea is to use a parametrized datatype,

with the actual parameter being (a representation of) the type index; constraints on

the parameter enforce consistency between the behaviour and the type index. Since

Cheney and Hinze’s proposal, some Haskell implementations have been extended

with GADTs, which provide additional convenience that existential datatypes alone

lack; we use GADTs in this section to illustrate the approach.

Here is a representation of a family of datatypes based on sums of products:

data Unit = Unit

data Sum a b = Inl a | Inr b

data Prod a b = Prod a b

data Rep t where

RUnit :: Rep Unit

RInt :: Rep Int

RChar :: Rep Char

RSum :: Rep a → Rep b → Rep (Sum a b)

RProd :: Rep a → Rep b → Rep (Prod a b)

The types Unit , Sum , and Prod represent, respectively, the unit type and the binary

sum and binary product type constructors. The datatype Rep t provides the structural

representation of a type t as a sum of products built from the primitive types Unit ,

Int , and Char . For simplicity of presentation, the treatment of isomorphisms, which

allows the application of generic functions to values isomorphic to a sum of products,

is omitted here; for the full details, see elsewhere (Cheney & Hinze 2002; Weirich

2006).

Generic functions are defined by case analysis on the datatype of type represen-

tations. For example, here is a definition of generic equality:

equals :: ∀t . Rep t → t → t → Bool

equals RUnit = True

equals RInt t1 t2 = (t1 ≡ t2)

equals RChar t1 t2 = (t1 ≡ t2)

equals (RSum ra rb) t1 t2 = case (t1, t2) of

(Inl x , Inl y) → equals ra x y

(Inr x , Inr y) → equals rb x y

→ False
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Fig. 1. A generic ‘sum’ function, using type classes.

equals (RProd ra rb) t1 t2 = case (t1, t2) of

(Prod x y ,Prod x ′ y ′) → equals ra x x ′ ∧ equals rb y y ′

Equality is vacuous at the unit type, represented by RUnit , since there is exactly one

value of that type. When the type representation is RInt , the type constraint ensures

that the two values of type t being compared are indeed integers, and so the primitive

comparison on integers is used; and similarly for RChar and characters. For binary

sums, the constructor RSum of the representation is applied to representations of the

two summands, and these representations are used in the recursive calls; similarly

for products and RProd .

2.2 Generic programming with type classes

An alternative to using datatypes for type representations is to use type classes

(Lämmel & Peyton Jones 2003; Hinze 2006; Mitchell & Runciman 2007; Brown &

Sampson 2009), since both techniques can be used to define type-indexed functions,

albeit with slightly different properties (Oliveira & Gibbons 2005). Figure 1 presents

a simple definition of a generic ‘sum’ function using type classes. The class Total a

has a method total that takes an argument of type a and returns an integer result.

There are instances for each of the sum-of-products structural types: for the unit

type, zero is returned; for binary products, the results on the two components

are added; for binary sums, the function is applied recursively to the appropriate

case; for integers, the integer itself is returned. Instead of specially crafting an

instance specific to lists, the argument is converted into sum-of-products form using

the function fromList and then subjected to structural cases of total . The same

structural approach can be taken for other datatypes, avoiding the need for specific

definitions for those datatypes.
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2.3 Limitations

The two approaches presented in Sections 2.1 and 2.2 are relatively simple to

understand. Unfortunately, they are also rather simple-minded, and suffer from

some limitations in terms of both convenience and expressiveness. More realistic

generic programming libraries address some of these limitations, but usually at the

cost of comprehensibility. We discuss these limitations next, together with some of

the attempts to address them.

2.3.1 Convenience and readability

Two important considerations of convenience concerning a DGP library are how

easy it is to define generic functions, and how easy it is to apply them. Defining

generic functions with a datatype of type representations is usually straightforward,

since all that is needed is to use pattern matching on the type representation

to introduce a definition by cases. Type classes impose some overhead, since each

instance declaration requires some additional code. Furthermore, the use of datatypes

and pattern matching is arguably more natural than type classes and dispatching.

Nonetheless, the overhead imposed by type classes is tolerable.

Using a generic function based on type representations requires that the corre-

sponding value of the type representation is constructed. For example, to compare

two pairs of integers, one needs a third argument representing the type ‘pairs of

integers’:

testDT = equals (RProd RInt RInt) (Prod 3 4) (Prod 4 4)

In contrast, with the type class approach, the explicit construction of the type

representation is not necessary:

testTC = total (Prod 3 4)

Not having to explicitly construct type representations is an advantage of the type

class approach, and provides additional convenience over an approach based on

representation datatypes.

The reality. In existing proposals for DGP libraries using datatypes of type repre-

sentations, it is common to use type classes to automatically generate the values

of the type representations. There are even some proposals, such as Hinze’s (GM)

approach (Hinze 2006), which do not directly use a datatype of type representations,

but encode one using type classes, and also use the same mechanism to generate the

values of the encoded type representations. The basic idea is as follows:

class Representable a where

rep :: Rep a

instance Representable Int where

rep = RInt

instance (Representable a ,Representable b) ⇒ Representable (Prod a b) where

rep = RProd rep rep
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(Here, an LIGD-like approach is used for illustration.) An equality function that

does not need an explicit value for the type representation is definable as follows:

eq :: Representable a ⇒ a → a → Bool

eq = equals rep

While this design does bring some of the convenience of type classes into a datatype-

based approach, the fact is that two different functions for equality are needed: the

function equals defines the structural generic function, and the eq function provides

a convenient interface to this generic function. As we shall see in Section 2.3.2,

sometimes it would be handy to have functions that could take an optional argument,

leaving the job of generating the value to the compiler when this argument is

omitted. Having two differently-named functions for the explicit and implicit cases

is awkward.

2.3.2 Coexistence of implicit and explicit arguments

Generic Haskell provides a simple mechanism for precisely controlling which case

gets applied. For instance, using a Generic Haskell generic function total〈T 〉 similar

to the function presented in Figure 1, it is possible to employ local redefinition (Löh

2004, Chapter 8) to override a case in a particular use of the generic function. With

local redefinitions it is easy to have one variation that counts the values in a list:

let total〈a〉 = const 1 in total〈[a ]〉[1 . . 10]

and another sums the (integer) values in that list:

let total〈Int〉 = id in total〈[Int ]〉[1 . . 10]

The total function in Figure 1 sums the integers in a structure. In order to provide

a local redefinition to count rather than sum the elements, one might attempt to

provide the following alternative instance for integers:

instance Total Int where

total = const 1

However, this instance overlaps with the one already given in Figure 1. This leads

to an ambiguity in instance selection; Haskell provides no mechanism for resolving

the ambiguity, and disallows the coexistence of such instances. (What is needed here

is some explicit mechanism for dictionaries, rather than the implicit mechanism pro-

vided by the class system. GHC’s ‘overlapping instances’ flag does not help, because

the instances are duplicated; it is useful only when one instance is more specific

than the other, when it allows the compiler to select the more specific instance.)

The reality. Very few generic programming libraries in Haskell provide support for

local redefinitions. In fact, we believe that currently only GM and its extensible and

modular generics for the masses (EMGM) extension (Oliveira et al. 2006) provide

some support for this feature, and then only partially – although there is an

alternative encoding using a proposed extension to Haskell (Hinze & Löh 2009).

As Hinze (2006) points out, in the GM approach, a generic counter function can

https://doi.org/10.1017/S0956796810000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000171


310 B. C. D. S. Oliveira and J. Gibbons

be instantiated to behave like a summing function or a size function. However,

this is significantly less convenient to use than the Generic Haskell solution, since

two different functions are needed: one for when no local redefinitions are used,

and another to explicitly pass the type representation argument with the local

redefinition. Worse, first-class generic functions induce an exponential growth in

the number of combinations. For example, in the case of a generic function like

everywhere (Lämmel & Peyton Jones 2003), which in turn takes a generic function

as an argument, four different variations would be needed – for each combination of

allowing and disallowing local redefinitions for everywhere itself and for the generic

function passed as an argument.

In a generic programming approach like the one shown in Figure 1, it is simply

not possible to have local redefinitions without some forward planning. There have

been some proposals to extend Haskell with a mechanism for choosing a particular

named instance (Kahl & Scheffczyk 2001; Dijkstra & Swierstra 2005), but these

extensions are not widely implemented. It is possible to use a simple trick to emulate

named instances, as shown for example by Löh (2004); however, this still entails

significant rewriting, planning ahead, and some advanced Haskell extensions.

2.3.3 Extensibility

Generic functions are useful because they work ‘out of the box’ for a newly

introduced datatype. However, it is sometimes desirable to define a specific (non-

generic) behaviour for the generic function on a particular datatype. For this

to happen, the generic function needs to be extensible, allowing the definition

of new cases for particular datatypes. From a generic programming point of

view, extensible generic functions are essential for the design of modular generic

programming libraries (Hinze & Peyton Jones 2000; Lämmel & Peyton Jones 2005;

Hinze 2006; Oliveira et al. 2006). For example, abstract datatypes such as sets are

often represented using a standard algebraic datatype like lists or trees, but a generic

function based solely on the algebraic structure of the representation probably does

not provide an appropriate implementation on the abstract type. Consider the case

of equality; while structural equality is the right thing to do for most datatypes, it

is wrong for an abstract datatype of sets represented as lists.

In the simple DGP approach presented in Section 2.1, it is not possible to extend

the equality generic function in a modular way. In order to add a new case for sets,

one must add a new constructor to the Rep datatype, and provide a special case for

equality on sets, as follows:

newtype Set a = Set [a ]

data Rep t where

. . .

RSet :: Rep a → Rep (Set a)

equals :: ∀t . Rep t → t → t → Bool

. . .

equals (RSet a) = . . .
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On the other hand, in the type-class-based approach, the generic function can be

easily extended with new cases; all that is needed is to create a new instance:

instance Total (Set a) where

total (Set xs) = . . .

In essence, approaches based on datatypes of representations usually do not

support modular extensions, whereas those based on type classes do.

The reality. In recent proposals for DGP libraries, the trend is to use type classes:

they can be extended more easily than datatypes, and also they make the use

of generic functions quite convenient (see Section 2.1). However, even using type

classes, extensibility can still be problematic – especially in combination with first-

class generic functions, as we shall see in Section 2.3.4. This is the case, for example,

for the original GM approach, which does not allow extensible generic functions.

To address these extensibility problems, a number of clever approaches have been

proposed. RepLib (Weirich 2006) uses a mix of datatypes and type classes to allow

extensible generic functions; the key idea is to use a standard generic function

defined on a datatype of type representations, and use that generic function

as the default for another (type-class-overloaded) function that can be extended

with new ad hoc cases. While the approach achieves its goal of supporting an

extensible generic programming library, it does so at the loss of some usability

and understandability: it relies on several non-standard extensions, and it requires

the programmer to write generic functions in two different styles, namely using

datatypes and type classes. Ultimately, a programmer needs to understand quite a

bit of the mechanics of the generic programming library and some advanced Haskell

features to use the approach effectively. The EMGM approach (Oliveira et al. 2006)

addresses the extensibility limitations of the original GM proposal requiring only a

common extension to Haskell 98, namely, multiple-parameter type classes; however,

writing generic functions in EMGM (and in the original GM) is not as direct as

using a datatype of type representations. The original Scrap your Boilerplate (SyB)

approach (Lämmel & Peyton Jones 2003) approach does not support extensible

generic functions; to address this problem, an alternative implementation (Lämmel

& Peyton Jones 2005) of SyB using type classes has been proposed, but this approach

uses many non-standard extensions and tricks.

A different solution (Löh & Hinze 2006) to the extensibility problem consists of

extending Haskell with open datatypes and open functions. This would have some

important advantages, especially from a usability point of view, since the natural style

of writing a generic function using pattern matching on the type representation would

be preserved. However, to date that extension is not supported by any compiler.

2.3.4 First-class generic functions and generic function abstraction

The SyB approach has shown the utility of first-class generic functions for generic

traversals and queries. With a datatype of type representations, it is straightfor-

ward to write such functions (Hinze 2003). For example, considerthe function
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everywhere:

everywhere :: (∀b. Rep b → b → b) → Rep a → a → a

It takes as an argument a generic function that transforms a value of type b into

another value of the same type; it also takes a representation of some type a and a

value of that type, and returns a value of the same type. In this approach, first-class

generic functions are quite simple and natural. However, with the simple type-class

approach, it is far from obvious how to write the type of everywhere. The key

problem is that everywhere needs to be applicable to any generic function as its first

argument. In pseudo-code, the intended type is as follows:

everywhere :: Everywhere a ⇒ (∀b. g b ⇒ b → b) → a → a

That is, everywhere should take a generic function defined in an arbitrary type class

g as the first argument. However, Haskell does not support type class abstraction,

and the type class constraint g b ⇒ . . . is not valid.

In summary, while a datatype-based approach trivially supports first-class generic

functions, a type-class-based approach stumbles over the fact that type classes cannot

be abstracted.

The reality. There are some generic programming approaches based on type classes

that do not have a problem with first-class generic functions. Interestingly enough,

these show a strong correlation with the approaches that have a problem with

extensibility. In other words, there seems to be a conspicuous relationship between

extensibility and first-class generic functions: having one of these features makes the

other feature harder to achieve (in Haskell, at least).

Using a technique proposed by Hughes (1999), it is possible to emulate type-class

abstraction in Haskell using only existing extensions. This technique has been used

in the ‘SyB with Class’ approach (Lämmel & Peyton Jones 2005) to allow extensible

higher-order generic functions (see Section 8.1 for more details); a similar technique

is used in RepLib (Weirich 2006).

2.3.5 Reuse of generic functions

Generic Haskell provides default cases, a mechanism that allows the reuse of generic

functions (Löh 2004, Chapter 14). The motivation for this is that often minor

variations of a generic function are written over and over again. For example,

consider collecting variables in some datatype of abstract syntax trees. Instead of

defining a function generic in the datatype but specific to the problem of collecting

variables, a more general function for collecting values (Löh 2004, Chapter 9) could

be reused, overriding the case for the variable type. In Generic Haskell, this idea

can be expressed as follows:

newtype Var = V String

varcollect extends collect

varcollect〈Var〉(V x ) = [x ]
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Neither the datatype nor the type class solutions allow for this kind of reusability;

without anticipation, it is necessary to duplicate code in creating a variation of the

original function.

The reality. As far as we are aware, this kind of reuse is not addressed by any generic

programming library in existence, except by an early approach (Lämmel et al. 2000)

based on Haskell records that achieves reuse between algebras by exploiting record

updates. Unfortunately, although the current implementation of type classes in most

Haskell compilers is based on records, the updating feature is not available for type

classes.

Reuse of generic functions is akin to inheritance, and it is known how to encode

inheritance in functional languages (Cook 1989). So, in theory, it should be possible

to adapt existing generic programming libraries to achieve this kind of reuse via

inheritance; however, any encoding introduces its own cost in terms of usability.

Another alternative is to create a more general generic function that is parametrized

by functions covering the different cases; but this requires anticipation, and makes

the interface of the generic function more complex.

2.3.6 Exotic types

DGP techniques are applicable to some exotic types, such as datatypes with higher-

kinded type arguments and nested datatypes (Hinze 2000). One example of the

former is the type of generalized rose trees:

data GRose f a = GFork a (f (GRose f a))

The type constructor GRose is parametrized by a higher-kinded argument f .

Datatype-based approaches to DGP comfortably support type representations for

such types, and corresponding cases for generic functions:

data Rep t where

. . .

RGRose :: (∀a . Rep a → Rep (f a)) → Rep a → Rep (GRose f a)

equals :: ∀t . Rep t → t → t → Bool

. . .

equals (RGRose f a) (GFork x xs) (GFork y ys) =

equals a x y ∧ equals (f (RGRose f a)) xs ys

One small inconvenience with the datatype-based approach is that it is not possible

to use nested patterns such as RGRose RList a: the first argument of the RGRose

constructor is not a valid pattern, since it is not fully applied to the right number

of arguments. Nevertheless, there is a workaround that allows emulation of such

nested patterns (Hinze & Löh 2009).

With type-class-based approaches, support for datatypes like GRose does not

work so smoothly. Recent versions of some Haskell compilers support recursive

dictionaries in type classes, and accept the following code:
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Fig. 2. Evaluation of the Haskell mechanisms for DGP. Key: � = ‘good’, � = ‘sufficient’,

� = ‘poor’ support. Notes: (1) datatypes only allow explicit parametrization; (2) type classes

only allow implicit parametrization; (3) datatypes with higher-kinded type arguments can be

accommodated using undecidable instances.

instance (Total a ,Total (f (GRose f a))) ⇒ Total (GRose f a) where

total (GFork x xs) = total x + total xs

but this requires allowing undecidable type class instances. (Indeed, in older versions

of some compilers, it used to be the case that such an instance would lead to

non-termination of the type checker (Hinze & Peyton Jones 2000).)

A theoretically more appealing solution, suggested by Hinze and Peyton Jones

(2000), would be to allow polymorphic predicates in the constraints. With such a

feature, the following instance would be valid:

instance (∀a . Total a ⇒ Total (f a),Total a) ⇒ Total (GRose f a) where

total (GFork x xs) = total x + total xs

The reality. As shown by the recent comparison of generic programming libraries in

Haskell (Rodriguez et al. 2008), exotic features such as datatypes with higher-kinded

type arguments and nested datatypes are not a problem for most approaches that

use a datatype of type representations. However, none of the approaches based on

type classes is fully capable of handling such exotic types. The limitations of type

classes are to blame.

2.4 Discussion

Type classes and datatypes provide two alternative mechanisms for DGP, but neither

mechanism is clearly superior to the other. Figure 2 shows the trade-offs between

the two mechanisms. Datatypes provide a very natural and convenient way to define

new generic functions, but they also require every value to be explicitly constructed

by the programmer; this makes generic functions harder to use. Datatypes make

it easy to support first-class generic functions, and they can be used to construct

type representations for higher-kinded types; however, achieving extensibility is

difficult. Type classes are convenient when it comes to using generic functions,

since dictionaries are automatically inferred by the compiler, but they provide a
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somewhat less natural syntax for defining generic functions. It is easy to extend

generic functions with new cases, but hard to support first-class generic functions.

Exotica such as higher-kinded types and nested datatypes pose a challenge to a type-

class-based implementation. Values of datatypes can only be passed explicitly, while

type class dictionaries can only be passed implicitly. Neither mechanism provides an

easy way to reuse generic functions.

The reality is that in Haskell it is usually possible to work around the limitations

of the two mechanisms in one way or another, but doing so typically requires

clever tricks or solutions that hinder usability and comprehensibility. We feel that

this a symptom of inappropriate language features, and we claim that with a

different mechanism, generic libraries could be defined more naturally and used

more conveniently.

3 Functional programming in Scala

Scala is a strongly typed programming language that combines object-oriented and

functional programming features. Although inspired by recent research, Scala is not

just a research language; it is also aimed at industrial usage: a key design goal

of Scala is that it should be easy to interoperate with mainstream languages like

Java and C#, making their many libraries readily available to Scala programmers.

The user base of Scala is already quite significant, with the compiler being actively

developed and maintained. For a more complete introduction to and description of

Scala, see (Odersky 2006a, 2007a, 2007b; Schinz 2007; Odersky et al. 2008).

3.1 Definitions and values

Functions are introduced using the def keyword. For example, the squaring function

on Doubles could be written:

def square (x : Double) : Double = x ∗ x

Scala distinguishes between definitions and values. In a definition def x = e, the

expression e will not be evaluated until the value of x is needed. Scala also offers a

value definition val x = e, in which the right-hand side e is evaluated at the point of

definition. However, only definitions can take parameters; values must be constants

(although these constants can be functions).

3.2 First-class functions

Functions in Scala are first-class values, so higher-order functions are supported. For

example, to define the function twice that applies a given function f twice to its

argument x , we could write:

def twice (f : Int ⇒ Int , x : Int) : Int = f (f (x ))

Scala supports anonymous functions. For instance, to define a function that raises

an integer to the fourth power, one could use the function twice together with an

anonymous function:

def power (x : Int) : Int = twice ((y : Int) ⇒ y ∗ y , x )

https://doi.org/10.1017/S0956796810000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000171


316 B. C. D. S. Oliveira and J. Gibbons

The first argument of the function twice is the anonymous function that takes an

integer y and returns y ∗ y .

Scala also supports currying. To declare a curried version of twice, one can write:

def curryTwice (f : Int ⇒ Int) (x : Int) : Int = f (f (x ))

3.3 Parametric polymorphism

Like Haskell and ML, and more recently Java and C#, Scala supports parametric

polymorphism (known as generics in the object-oriented world). For example, function

composition can be defined as follows:

def comp [a , b, c ] (f : b ⇒ c) (g : a ⇒ b) (x : a) : c = f (g (x ))

The function comp is parametrically polymorphic in the three types a , b, c of the

initial, intermediate and final values. Note that these type variables have to be

explicitly quantified.

3.4 Call-by-name arguments

Function arguments are, by default, passed by value, being evaluated at the point

of function application. This gives Scala a strict functional programming flavour.

However, one can also pass arguments by name, by prefixing the type of the formal

parameter with ‘⇒’; the argument is then evaluated at each use within the function

definition. This can be used to emulate lazy functional programming; although

multiple uses do not share evaluation, it is still useful, for example, for defining new

control structures. Parser combinators are a good example of the use of laziness:

the combinator Then tries to apply a parser p, and if that parser succeeds, applies

another parser q to the remainder of the input:

def Then (p : Parser) (q : ⇒Parser) : Parser = . . .

Here, the second parser q is passed by name: only if q is needed will it be evaluated.

3.5 Type inference

The design goal of interoperability with languages like Java requires compatibility

between type systems. In particular, this means that Scala needs to support subtyping

and (name-) overloaded definitions such as:

def add (x : Int) : Unit = . . .

def add (x : String) : Unit = . . .

This makes type inference more difficult than in languages like Haskell. Nevertheless,

Scala does support a form of local type inference (Odersky et al. 2001). Thus, it is

possible, most of the time, to infer the return type of a definition and the type of a

lambda-bound variable. For example, one may write:

def power (x : Int) = twice (y ⇒ y ∗ y , x )

and both the return type and the type of the lambda variable y will be inferred.
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3.6 Sums, products and lists

The Scala libraries provide implementations of sums, products, and lists. For sum

types, the type constructor Either is used. Following Haskell conventions, this type

has two constructors Left and Right , injections into the sum. For example,

val leftVal : Either [Int , String ] = Left (1)

val rightVal : Either [Int , String ] = Right ("c")

define two values of the type Either [Int , String ]. One can use pattern matching to

deconstruct a value of a sum type, as discussed in Section 4.2, but a more compact

notation is given by the fold of the Either type. For example,

def stringVal (x : Either [Int , String ]) = x .fold (y ⇒ y .toString (), y ⇒ y)

defines a function that takes a value of type Either [Int , String ] and returns a string

representing the value contained in the sum.

Products can be defined with the usual tuple notation; for example:

val prodVal : (Int ,Char) = (3, 'c')

To extract the components of a tuple, Scala provides methods with names consisting

of an underscore followed by the component number:

val fstVal = prodVal . 1

val sndVal = prodVal . 2

Finally, we can use the syntax List (a1, . . . , an ) to construct a list of size n with the

elements ai for i ∈ [1..n]. For example:

val list = List (1, 2, 3)

builds the list with 1, 2 and 3 as elements.

4 Object-oriented programming in Scala

Scala has a rich object system, including object-oriented constructs such as concrete

and abstract classes, subtyping, and inheritance familiar from mainstream languages

like Java or C#. Scala also incorporates some less commonly known concepts; in

particular, there is a syntactic notion of object, and interfaces are replaced by the

more general notion of traits (Schärli et al. 2003), which can be composed using a

form of mixin composition. Furthermore, Scala introduces the notion of case classes,

instances of which can be decomposed using case analysis and pattern matching.

This section introduces a subset of the full Scala object system, sufficient to model

all the programs in this paper.

4.1 Traits and mixin composition

Instead of interfaces, Scala has the more general concept of traits (Schärli et al.

2003). Like interfaces, traits can be used to define abstract methods (that is, method

signatures). However, unlike interfaces, traits can also define concrete methods.

Traits can be combined using mixin composition, making a safe form of multiple

inheritance possible, as the following example demonstrates:
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trait Hello {
val hello = "Hello!"

}
trait HowAreU {

val howAreU = "How are you?"

}
trait WhatIsUrName {

val whatIsUrName = "What is your name?"

}
trait Shout {

def shout (str : String) : String

}

This example uses traits in much the same way as one might have used classes,

allowing the declaration of both abstract methods like shout and concrete methods

like hello, howAreU and whatIsUrName. In a single-inheritance language like Java

or C#, it would not be possible to define a subclass that combined the functionality

of the four code blocks above. However, mixin composition allows any number of

traits to be combined:

trait Basics extends Hello with HowAreU with WhatIsUrName with Shout {
val greet = hello + " " + howAreU

def shout (str : String) = str .toUpperCase ()

}

The trait Basics inherits methods from Hello, HowAreU and WhatIsUrName,

implements the method shout from Shout , and defines a value greet using the

inherited methods hello and howAreU .

4.2 Objects and case classes

New object instances can be created as in most object-oriented languages, by using

the new keyword. For example, we could define a new Basics object by:

def basics1 = new Basics () {}

Alternatively, Scala supports a distinct notion of object:

object basics2 extends Basics

Scala also supports the notion of a case class, which simplifies the definition

of functions by case analysis. In particular, case classes allow the emulation

of algebraic datatypes from conventional functional languages. Figure 3 gives

definitions analogous to the algebraic datatype of lists and the length and (ordered)

insertion functions. The trait List [A] declares the type of lists parametrized by some

element type A; the case classes Nil and Cons act as the two constructors of lists. The

function len is defined using standard case analysis on the list value. The definition
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Fig. 3. Algebraic datatypes and case analysis in Scala.

of the function ins shows another case analysis on lists, and also demonstrates the

use of type-parameter bounds: the list elements must be drawn from an ordered type.

Case classes do not require the use of the new keyword for instantiation, as they

provide a more compact syntax inspired by functional programming languages:

val alist = Cons (3,Cons (2,Cons (1,Nil ())))

4.3 Higher-kinded types

Type-constructor polymorphism and constructor classes have proven to be very

useful in Haskell, allowing, among other things, the definition of concepts such

as monads (Wadler 1993), applicative functors (McBride & Paterson 2008), and

container-like abstractions. This motivated the recent addition of type-constructor

polymorphism to Scala (Moors et al. 2008). For example, a very simple interface for

the Iterable class could be defined in Scala as:

trait Iterable [A,Container [ ]] {
def map [B ] (f : A ⇒ B ) : Container [B ]

def filter (p : A ⇒ Boolean) : Container [A]

}

Note that Iterable is parametrized by Container [ ], a type that is itself parametrized

by another type – in other words, Container is a type constructor. By parametrizing

over the type constructor rather than a particular type Container [A], one can use the

parameter in method definitions with different types. In particular, in the definition

of map, the return type is Container [B ], where B is a type parameter of the method

map; with parametrization by types only, map would have to be homogeneous.

4.4 Abstract types

Scala has a notion of abstract types, which provide a flexible way to abstract over

concrete types used inside a class or trait declaration. Abstract types are used to
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Fig. 4. An abstract datatype for sets.

hide information about internals of a component, in a way similar to their use in

Standard ML (Harper & Lillibridge 1994) and OCaml (Leroy 1994). Odersky and

Zenger (2005) argue that abstract types are essential for the construction of reusable

components: they allow information hiding over several objects, a key ingredient of

component-oriented programming.

Figure 4 shows a typical example of an ML-style abstract datatype for sets. The

abstract trait SetInterface declares the types and the operations required by sets. The

abstract types A and Set (which is a type constructor) are, respectively, abstractions

over the element type and the shape of the set. The operations supported by the

set interface are empty , insert and extract . The trait SetOrdered presents a concrete

refinement of SetInterface, in which sets are implemented with lists and the elements

of the set are ordered.

4.5 Implicit parameters and type classes

Scala’s implicit parameters allow some parameters to be inferred implicitly by the

compiler on the basis of type information; as noted by Odersky (2006b), Oliveira

et al. (2010), they can be used to emulate Haskell’s type classes (Hall et al. 1996).

Consider this approximation to the concept of a monoid (Odersky 2006a), omitting

any formalization of the monoid laws:

trait Monoid [a ] {
def unit : a // unit of op

def op (x : a , y : a) : a // associative

}
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This is clearly analogous to a type class. An example object would be a monoid on

strings, with the unit being the empty string and the binary operation being string

concatenation.

implicit object strMonoid extends Monoid [String ] {
def unit = ""

def op (x : String , y : String) = x .concat (y)

}

Again, there is a clear correspondence with an instance declaration in Haskell.

Ignoring the implicit keyword for a moment, one can now define operations that

are generic in the monoid:

def reduce [a ] (xs : List [a ]) (implicit m : Monoid [a ]) : a =

if (xs .isEmpty) m .unit else m .op (xs .head , reduce (xs .tail ) (m))

Now reduce can be used in the obvious way:

def test1 = reduce (List ("a", "bc", "def")) (strMonoid )

However, one can omit the second argument to reduce, since the compiler has

enough information to infer it automatically:

def test2 : String = reduce (List ("a", "bc", "def"))

This works because (a) the implicit quantifier in the object states that strMonoid

is the default value for the type Monoid [String ], and (b), the implicit quantifier in

the function states that the argument m may be omitted if there exists an implicit

object in scope with the type Monoid [a ]. (If there are multiple such objects, the

most specific one is chosen.) The second use of reduce, with the implicit parameter

inferred by the compiler, is similar to Haskell usage; however, it is more flexible,

because there is the option to provide an explicit value overriding the one implied

by the type.

5 Generic programming with open datatypes

In this section, we present a Scala version of the Haskell approach based on

datatypes of type representations described in Section 2.1. As shown in Section 4.2,

Scala readily supports a form of algebraic datatypes, via case classes. It turns out

that these algebraic datatypes are quite expressive, being effectively comparable to

Haskell’s GADTs. However, unlike the algebraic datatypes found in most functional

programming languages, Scala allows an encoding of open datatypes (or, from

an object-oriented programming perspective, multi-methods Agrawal et al. 1991),

enabling the addition of new variants to a datatype. This section exploits this

encoding as a basis for a generic programming library with open type representations,

and hence with support for (modular) ad hoc cases.
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Fig. 5. Type representations in Scala.

5.1 Type representations and generic functions

The trait Rep [A] in Figure 5 is a datatype of type representations. The three objects

RUnit , RInt , RChar are used to represent the basic types Unit , Int and Char; these

objects can be implicitly passed to functions that accept implicit values of type

Rep [A]. The case classes RPlus and RProd handle sums and products, and the

RView case class can be used to map datatypes into sums of products (and vice

versa). The first argument of RView should correspond to an isomorphism, which

is defined as:

trait Iso [A,B ] { // from and to are inverses

def from : A ⇒ B

def to : B ⇒ A

}

For example, the isomorphism between lists and their sum-of-products representation

is given by listIso:

def fromList [a ] = (l : List [a ]) ⇒ l match {
case Nil ⇒ Left ({})
case (x :: xs) ⇒ Right (x , xs)

}
def toList [a ] = (s : Either [Unit , (a ,List [a ])]) ⇒ s match {

case Left ( ) ⇒ Nil

case Right (x , xs) ⇒ x :: xs

}
def listIso [a ] = Iso [List [a ],Either [Unit , (a ,List [a ])]] (fromList) (toList)

Note that the second argument of RView should be lazily constructed. Unfortunately,

Scala forbids the by-name qualification at that argument position, so we have to

encode call-by-name manually using the conventional ‘thunk’ technique.

As a simple example of a generic function, we present a serializer. The idea is

that, given some representable type t , we can define a generic binary serializer by

case analysis on the structure of the representation of t:

def serial [t ] (x : t) (implicit r : Rep [t ]) : String =

r match {
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case RUnit ⇒ ""

case RInt ⇒ encodeInt (x )

case RChar ⇒ encodeChar (x )

case RPlus (a , b) ⇒ x .fold ("0" + serial ( ) (a), "1" + serial ( ) (b))

case RProd (a , b) ⇒ serial (x . 1 ) (a) + serial (x . 2 ) (b)

case RView (i , a) ⇒ serial (i .from (x )) (a ())

}

For the purposes of presentation, we encode the binary representation as a string

of zeroes and ones rather than a true binary stream. The arguments of serial are

the value x of type t to encode and a representation of t (which may be passed

implicitly). For the Unit case, we return an empty string; for Int and Char , we

assume primitive encoders encodeInt and encodeChar . The case for sums applies

the fold method (defined in the Either trait) to the value x ; in case x there is an

instance of Left , we encode the rest of the value and prepend 0; in case x there

is an instance of Right , we encode the rest of the value and prepend 1. The case

for products concatenates the results of encoding the two components of the pair.

Finally, for the view case, we convert the value x into its sum-of-products equivalent

and apply the serialization function to that.

5.2 Open type representations and ad hoc cases

In Scala, datatypes may be open to extension – that is, it is possible to introduce

new variants; in the case of type representations, it means that we can add new

constructors for representations of new types. This is useful for ad hoc cases in

generic functions – that is, to provide a behaviour different from the generic one for

a particular datatype in a particular generic function.

For example, suppose that we want to use a different encoding of lists than the

one derived generically: it suffices to encode the length of a list, followed by the

encodings of each of its elements. For long lists, this encoding is more efficient than

the generic behaviour obtained from the sum-of-products view, which essentially

encodes the length in unary rather than binary format. In order to be able to define

an ad hoc case, we first need to extend our type representations with a new case for

lists.

case class RList [A] (a : Rep [A]) extends

RView [Either [Unit , (A,List [A])],List [A]]

(listIso, () ⇒ RPlus (RUnit ,RProd (a ,RList (a))))

implicit def RepList [a ] (implicit a : Rep [a ]) = RList (a)

This is achieved by creating a subtype of RView , using the isomorphism between

lists and their sum-of-products representation. Notice that RList depends on itself;

had this representation parameter not been made lazy, the representation would

unfold indefinitely. The function RepList yields a default implicit representation for

lists, given a representation of the elements.
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With the extra case for lists, we can have an alternative serialization function with

a special case for lists:

def serial1 [t ] (x : t) (implicit r : Rep [t ]) : String =

r match {
case RUnit ⇒ ""

case RInt ⇒ encodeInt (x )

case RChar ⇒ encodeChar (x )

case RPlus (a , b) ⇒ x .fold ("0" + serial1 ( ) (a), "1" + serial1 ( ) (b))

case RList (a) ⇒ serial1 (x .length) +

x .map (serial1 ( ) (a)).foldRight ("") ((x , y) ⇒ x + y)

case RView (i , a) ⇒ serial1 (i .from (x )) (a ())

}

The definition of serial1 is essentially the same as serial , except that there is an extra

case for lists, producing an encoding of the list length followed by the encodings of

its elements.

5.3 Inheritance of generic functions

The definition of the serial1 generic function is somewhat unsatisfactory, because

it involves code duplication. Scala, being an object-oriented language, supports

inheritance. However, to make use of inheritance on generic functions, we need to

adapt our programs to use classes instead of function definitions: the serialization

function serial has to be rewritten as follows:

trait Producer [a ] {
def apply [t ] (x : t) (implicit r : Rep [t ]) : a

}
case class Serial extends Producer [String ] {

def apply [t ] (x : t) (implicit r : Rep [t ]) : String = r match {
case RUnit ⇒ ""

case RInt ⇒ encodeInt (x )

case RChar ⇒ encodeChar (x )

case RPlus (a , b) ⇒ x .fold ("0" + apply ( ) (a), "1" + apply ( ) (b))

case RProd (a , b) ⇒ apply (x . 1 ) (a) + apply (x . 2 ) (b)

case RView (iso, a) ⇒ apply (iso.from (x )) (a ())

}
}
object serial extends Serial

The trait Producer defines a ‘template’ for generic producer functions such as

serialization, and can be reused for other producers. The case class Serial is a

subclass of Producer , implementing the apply method. The definition of serial is

recovered by an object extending Serial . Scala treats methods named apply specially,

allowing the use of the conventional function application notation for invocation:
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we can write o (arg) instead of o.apply (arg), and serial (List (1)) instead of

serial .apply (List (1)).

The advantage of writing the generic function in this style, rather than more

directly using a function definition, is that inheritance allows the definition to be

reused. For example, instead of repeating all the cases in serial1, we could write the

following:

case class Serial1 extends Serial {
override def apply [t ] (x : t) (implicit r : Rep [t ]) : String = r match {

case RList (a) ⇒
apply (x .length) + x .map (apply ( ) (a)).foldRight ("") ((x , y) ⇒ x + y)

case ⇒ super.apply (x ) (r)

}
}
object serial1 extends Serial1

The case class Serial1 inherits from Serial and adds a special case for lists, overriding

the generic definition. The default case ‘ ’ uses super to invoke the definition of apply

from Serial whenever the argument is not a list representation. The definition of

serial1 is once again recovered by an object extending the class Serial1 that represents

the generic function. The following shows how client code can use the new versions

of serial and serial1:

val testSerial = serial (List (1))

val testSerial1 = serial1 (List (1))

5.4 Evaluation of the approach

The Scala approach presented in this section compares favourably with the Haskell

approach using GADTs to encode type representations, which was presented in

Section 2.1. While it is true that the code to define the representation type is

somewhat more verbose than the Haskell equivalent, we no longer need to create

a separate type class to allow implicit construction of representations. Implicit

representations may not be strictly necessary for a generic programming library, but

they are very convenient, and nearly all approaches provide them. The definition of

generic functions using type representations is basically as straightforward in Scala

as in Haskell; no significant additional verbosity is involved.

In Haskell, it is difficult to extend a datatype with new variants, which has

drawbacks from a generic programming point of view, as discussed in Section 2.3.3.

In contrast, in Scala, adding a new variant is essentially the same as adding a new

subclass. While it would be possible to overcome Haskell’s extensibility limitations

with the open datatypes proposal (Löh & Hinze 2006), Scala’s case classes have an

extra advantage when compared to that proposal. In Scala, we can mark a trait as

sealed, which prohibits direct subclassing of that trait outside the module defining

it. Still, we can extend subclasses even in a different module. Therefore, we could

have marked the trait Rep [A] as sealed; but modular extension of RView would
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still be allowed. The nice thing about this solution is that we can be sure that a

fixed set of patterns is exhaustive, so it is easier to avoid pattern-matching errors.

Scala even has coverage checking of patterns when using case analysis on values of

sealed types, warning about any missing cases.

Finally, inheritance allows one to reuse code from existing generic functions.

However, generic functions need to be written using classes instead of function

definitions, which is a bit more verbose and less direct. Nonetheless, reuse of generic

functions is an important and useful feature to have, and the native support provided

by Scala makes this feature quite usable.

6 Generic programming with type classes

This section shows how to implement a Scala equivalent for the simple generic

programming approach based on type classes presented in Section 2.2. Following

Section 4.5, the key idea is to use Scala’s implicits mechanism instead of Haskell’s

type classes.

6.1 Simple extensible generic functions

Figure 6 shows a Scala implementation of the Haskell code presented in Figure 1.

The trait Total [A] plays a role similar to that of the class Total in the Haskell

version: it defines an interface containing a function total that takes a value of

type A and returns an integer. The gtotal function provides an interface to the sum

function, constructing the dictionary implicitly; this is not needed in the Haskell

version. However, unlike with the type class version, such a dictionary can also

be passed explicitly. The totalUnit , totalInt , totalPair and totalEither definitions

are analogous to the type class instances for units, integers, products, and sums.

One notable difference is the explicit selection of the dictionary in which to find a

subsidiary sum function; for example, in the definition for pairs, totalA.total selects

the sum function from the first dictionary argument. For lists, the gtotal function is

used instead, allowing the dictionary to be automatically inferred by the compiler.

(The function fromList was defined in Section 5.1.)

6.2 Local redefinition

With the Scala approach, local redefinition is possible. For example, we can obtain a

generic function that counts the integers in a structure by using a different dictionary

for integers:

object countInt extends Total [Int ] {
def total = x ⇒ 1

}
val x = gtotal (List (1, 2, 3))

val y = gtotal (List (1, 2, 3)) (totalList (countInt))
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Fig. 6. A simple generic ‘sum’ function.

The values x and y are computed by calling the same generic function gtotal on

the same list; however, in the second case, a local redefinition of the dictionary to

use for integers means that the result is 3 rather than 6. (Given this facility for local

redefinition, it would be reasonable to make the basic function a generic ‘counter’,

returning zero for each base case, and to expect some cases to be locally redefined

for each use.)

6.3 Exotic types

In the Haskell approach using type classes, exotic types such as nested datatypes or

datatypes with higher-kinded type arguments presented a challenge; in Scala, they

pose less of a problem. For example, the type of generalized trees can be defined as

follows:

sealed case class GRose [F [ ],A] (x : A, children : F [GRose [F ,A]])

It is possible to define an implicit representation for the generic sum function

using an approach similar to the polymorphic predicates technique, as discussed in

Section 2.3.6.
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implicit def totalGRose [F [ ],A] (implicit totalA : Total [A],

totalF : {def apply [B ] (implicit totalB : Total [B ]) : Total [F [B ]]}) =

new Total [GRose [F ,A]] {
def total = r ⇒ totalA.total (r .x ) +

totalF (totalGRose [F ,A] (totalA, totalF )).total (r .children)

}

However, Scala currently does not support type inference for datatypes with higher-

kinded type arguments, so in the definition above it is necessary to explicitly construct

the dictionary

totalF (totalGRose [F ,A] (totalA, totalF ))

so that the dictionary constructor function totalGRose can be passed the type

constructor argument F . To emulate polymorphic predicates, such as the totalF

argument of totalGRose, we have to encode higher-ranked types; this is not too

hard using structural types, as discussed in more detail in Section 10.3. It is also

necessary to provide a dictionary object that fits the interface required for totalF

values:

implicit object totalList2 {
def apply [a ] (implicit totalA : Total [a ]) : Total [List [a ]] =

totalList [a ] (totalA)

}

Having set up all this machinery, we can now apply generic sum to generalized

rose trees:

val myRose : GRose [List , Int ] = GRose [List , Int ] (3,Nil )

def test (rose : GRose [List , Int ]) (implicit totalR : (Total [GRose [List , Int ]])) =

totalR.total (rose)

def testCount : Int = test (myRose) (totalGRose [List , Int ] (countInt , totalList2 ))

The function test takes a value rose of type GRose [List , Int ] and an implicit

dictionary for the generic sum function, and returns the result of applying the

appropriate member of this dictionary to the rose tree. The function testCount applies

this function to a particular rose tree and an explicit dictionary for generalized rose

trees, returning the result 1. Unfortunately, the dictionary cannot be constructed

automatically, because the higher-kinded type List cannot be inferred.

6.4 Evaluation of the approach

Not surprisingly, the Scala approach has some additional verbosity when compared

to the Haskell one, in particular with the long-winded syntax for implicits. In the

Scala approach, a gtotal function is required in order to be able to pass a dictionary

explicitly, while in Haskell no such definition is necessary. However, gtotal can be

used for passing arguments both implicitly and explicitly, while in Haskell only

implicit dictionaries are possible. Exotic types pose a challenge to Scala, as they do
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for Haskell, but for different reasons. In Scala, there is no native support for higher-

ranked types; they have to be encoded, which adds extra overhead. Furthermore,

the current version of Scala does not yet support type inference for higher-kinded

types; in practice, this means that it is essentially not possible to automatically infer

dictionaries that involve higher-kinded types. Having to write those dictionaries

manually is tedious. However, in the Scala approach, local redefinition is possible,

and can be used in a convenient way.

In summary, the Scala approach is slightly more verbose than the corresponding

Haskell version, but it is also more expressive, since both local redefinitions and

polymorphic predicates are possible. However, the latter feature has some significant

overhead that makes it impractical to use.

7 Generic programming with encodings of datatypes

This section presents the first of three case studies on existing DGP approaches.

Building on Section 4.5, which showed how implicit parameters can be used for

type-class-style programming, a Scala implementation of the GM technique (Hinze

2006) is shown. Furthermore, we discuss two distinct techniques for reusing generic

functions in Scala: reuse by inheritance and local redefinition. (Moors (2007) provides

an alternative Scala tutorial on GM.)

7.1 Generics for the Masses, in Haskell

Figure 7 shows the essence of the GM approach in Haskell. The constructor

class Generic is used to represent the type of generic functions. The parameter

g represents the generic function, and each of the member functions of the class

encodes the behaviour of that generic function for a specific structural case. Generic

functions over user-defined types can be defined using the view type case: an iso-

morphism between the datatype and its structural representation must be provided.

Instances of the type class Rep denote representable types; each such instance

consists of a method accept that selects the appropriate behaviour from a generic

function.

A new generic function is represented as an instance of Generic, providing an

implementation for each structural case. For instance, consider a generic template

for functions that compute some integer measure of a data structure. Each case is a

record of type Count a for some type a , which contains a single function count of

type a → Int that can be used for a structure of type a . The function gCount , which

is the actual generic function, simply extracts the sole field count from a record

of the appropriate type, built automatically by accept . For sums, products, and

user-defined datatypes, it does the ‘obvious’ thing: choosing the appropriate branch

of a sum, adding the counts of the two components of a product, and unpacking a

view and recursively counting its contents; it counts zero for each of the base cases,

but these can be overridden to implement more interesting behaviour.
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Fig. 7. ‘Generics for the Masses’ in Haskell.

7.2 Generics for the Masses, in Scala

Figure 8 presents a translation of the code in Figure 7 into Scala. The trait Generic

is parametrized with a higher-kinded type constructor G . As in Haskell, there are

methods for sums, products, the unit type, and also a few built-in types such as

integers and characters; for sums and products, which have type parameters, we need

extra arguments that define the generic functions for values of those type parameters.

The view case uses an isomorphism to adapt generic functions to existing datatypes;

the ‘⇒’ before the type G [a ] signals that that parameter is passed by name.

The trait Rep [T ] has a single method accept , which takes an encoded generic

function of type Generic [G ]. The Scala implementation of the subclasses of Rep [T ]

is almost a transliteration of the Haskell type class version, except that it uses

implicit parameters instead of type classes.

The generic counter function uses a parametrized class Count with a single field: a

function of type A ⇒ Int . The concrete subtype CountG of the trait Generic [Count ]

provides implementations for the actual generic function: each method yields a value

of type Count [A] for the appropriate type A.
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Fig. 8. ‘Generics for the Masses’ in Scala.

7.3 Constructing type representations

For each datatype T we want to represent, we need to create a value of type Rep [T ].

For example, for lists we could write:

def listRep [a , g [ ]] (a : g [a ]) (implicit gen : Generic [g ]) : g [List [a ]] = {
import gen .

view (listIso [a ]) (plus (unit) (prod (a) (listRep [a , g ] (a) (gen))))

}
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implicit def RList [a ] (implicit a : Rep [a ]) = new Rep [List [a ]] {
def accept [g [ ]] (implicit gen : Generic [g ]) =

listRep [a , g ] (a .accept [g ] (gen)) (gen)

}

(The import declaration allows unqualified use of the methods view , plus , and so

on of the object gen; listIso is the isomorphism presented in Section 5.2.) Here, the

auxiliary function listRep constructs the right Generic value following the sum-of-

product structure. Using listRep, the representation RList for lists is easily defined.

7.4 Applying generic functions

We can now define a method gCount that provides an easy-to-use interface for the

generic function encoded by CountG: this takes a value of a representable type a

and returns the corresponding count.

def gCount [a ] (x : a) (implicit rep : Rep [a ]) = rep.accept [Count ].count (x )

We defined CountG as a trait instead of an object so that it can be extended, as

we discuss in more detail in Sections 7.5 and 7.6. We may, however, be interested in

having an object that simply inherits the basic functionality defined in CountG .

Furthermore, this object can be made implicit, so that methods like rep can

automatically infer this instance of Generic.

implicit object countG extends CountG

Of course, this will still return a count of zero for any data structure; we show next

how to override it with more interesting behaviour.

7.5 Reuse via inheritance

To recover a generic function that counts the integers in a structure, we can use

inheritance to extend CountG and override the case for integers so that it counts 1

for each integer value.

trait CountInt extends CountG {override def int = Count (x ⇒ 1)}

We can then define a method countInt to count the integers in any structure of

representable type.

def countInt [a ] (x : a) (implicit rep : Rep [a ]) =

rep.accept [Count ] (new CountInt {}).count (x )

The ability to explicitly pass an alternative ‘dictionary’ is essential to the definition

of the method countInt , since we need to parametrize the accept method with an

instance of Count other than the implicitly inferred one.

Using such generic functions is straightforward. The following snippet defines a

list of integers test and applies countInt to this list.

val test = List (3, 4, 5)

def countTest = countInt (test)
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Fig. 9. Tree with depth information at the nodes.

Note that the implicit parameter for the type representations is not needed, because

it can be inferred by the compiler (since we provided an implicit def RList).

7.6 Local redefinition

Suppose that we want to count the instances of the type parameter in an instance of

a parametric datatype such as lists. It is not possible to specialize Generic to define

such a function directly, because there is no way to distinguish values of the type

parameter from other values that happen to be stored in the structure. For example,

we could have a parametric binary tree that has an auxiliary integer at each node

that is used to store the depth of the tree at that node; this could be useful in

keeping the tree balanced. Figure 9 shows such a tree; the squares represent the

auxiliary integers, and the circles represent the values contained in the tree. If the

elements of the tree are themselves integers, we cannot count them without also

counting the balance information.

val testTree = Fork (2,Fork (1,Value (6),Value (1)),Value (5))

val five = countInt (testTree) // returns 5

To solve this problem, we need to account for the representations of the type

parameters of a parametric type. The method listRep, for example, needs to receive

as an argument a representation of type g [a ] for its type parameter. A similar thing

happens with binary trees; assuming that the equivalent method is called btreeRep,

we can provide a special-purpose counter for trees that counts only the values of

the type parameter.

def countOne [a ] = Count ((x : a) ⇒ 1)

def countTree [a ] (x : Tree [a ]) = btreeRep [a ,Count ] (countOne [a ]).count (x )

val three = countTree (testTree) // returns 3

The idea here is to replace the default behaviour that would be used for the

type parameter (as inferred from the type) by user-defined behaviour specified by

countOne.
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7.7 Evaluation of the approach

Like other generic programming approaches, the GM technique is more verbose in

Scala than in Haskell: in the definitions of instances (such as RUnit , RChar , and

RProd ) of the trait Rep, we need to explicitly declare the implicit argument of the

accept method and the type constructor argument g for each instance; this is not

necessary in the Haskell version.

In terms of functionality, the Scala solution provides everything present in the

Haskell solution, including the ability to handle local redefinitions. In addition,

we can easily reuse one generic function to define another through inheritance, as

demonstrated in Section 7.5; with the Haskell approaches, this kind of reuse is

harder to achieve. The only mechanism that we know of that comes close to this

form of reuse in terms of simplicity is Generic Haskell’s default case construct (Löh

2004), as discussed in Section 2.3.5.

Another nice aspect of the Scala approach is the ability to override an implicit

parameter. The accept method of Rep takes an implicit argument of type Generic [g ].

When we defined the generic countInt function (see Section 7.5), we needed to

override that argument. This was easily achieved in Scala simply by explicitly

passing an argument; it would be non-trivial to achieve the same effect in Haskell

using type classes, since dictionaries are always implicitly passed. Note that we also

explicitly override an implicit parameter in the definition of countTree (since the

first argument of btreeRep is implicit by default).

Finally, it is interesting to observe that, when interpreted in an object-oriented

language, the GM approach essentially corresponds to the Visitor pattern. While

this fact is not entirely surprising – the inspiration for GM comes from encodings of

datatypes, and encodings of datatypes are known to be related to visitors (Buchlovsky

& Thielecke 2006; Oliveira 2007) – it does not seem to have been observed in the liter-

ature before. As a consequence, many of the variations observed by Hinze have direct

correspondents in variations of visitors, and we may hope that ideas developed in

the past in the context of visitors may reveal themselves to be useful in the context of

generic programming. Oliveira (2007) explored this, and has shown, for example, both

how solutions to the expression problem (Wadler 1998) using visitors can be adapted

to GM, and how solutions to the problem of extensible generic functions in the GM

approach can be used as solutions to the expression problem (Oliveira 2009a).

8 Generic programming with extensible superclasses

This section presents the second case study of a DGP library in Scala. We show

how to emulate extensible superclasses (Sulzmann & Wang 2006), and how this

technique can be used to provide an implementation of the Scrap your Boilerplate

with Class (Lämmel & Peyton Jones 2005) approach to generic programming.

8.1 Scrap your boilerplate with class

After realizing that earlier implementations of the SyB approach (Lämmel & Peyton

Jones 2003) were limiting because they did not support extensible generic functions,
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Fig. 10. The original ‘SyB with Class’ implementation in Haskell.

Lämmel and Peyton Jones (2005) proposed a variation using type classes. This

solution is shown in Figure 10. The Data class defines the higher-order generic

function gmapQ , which is used to define new generic functions. The Size class

declares a new generic function size. Overlapping instances are used to provide a

default implementation of the function in terms of gmapQ; in the case of Size,

the instance Size t plays this role. Generic functions can be made extensible by

providing additional instances of class Size that override the default case. The

solution is somewhat involved, and it requires a number of non-standard Haskell

extensions to get everything to work. In particular, undecidable instances are needed,

and an extension allowing recursive dictionaries had to be built into the GHC

compiler. Also, proxies for types, which involve passing an extra (bottom) value to

functions, are required to resolve type ambiguities.

The major difficulty Lämmel and Peyton Jones found was that, in order to

provide a modular definition of a new generic function, the Data class had itself

to be parametrized by the generic function being defined. In essence, what seems

to be needed here are extensible superclasses. Inspired by Hughes’ (1999) work on

restricted datatypes, Lämmel and Peyton Jones found a solution by emulating type

class parametrization: in the class Data ctx a , the ctx argument is supposed to
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Fig. 11. An implementation of ‘SyB with Class’ in Scala.

represent an unknown type class, but because Haskell does not allow abstraction

over type classes, this has to be emulated using records.

8.2 Scrap your boilerplate with class, in Scala

Because of the wide range of non-standard features of Haskell used by the SyB with

Class approach, it is interesting to see what is involved in expressing the approach

in Scala. Like Haskell, Scala does not support extensible superclasses directly; that

is, it is not possible to have a trait (or class)

trait T [Super ] extends Super

in which the trait is parametrized by its own superclass. However, Scala does provide

explicit self-types (Odersky 2006a), which can be used to emulate this feature. In

Figure 11, a Scala implementation of the Data class is shown. As with the Haskell
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solution, the Data trait is parametrized by a type constructor ctx (the generic

function) and a type a . The major difference from the Haskell solution is the use

of a self-type to ensure that the type of the self object is a subtype of ctx [a ].

This is to make the generic functions defined in ctx available to all instances of

Data . (The definition me is just a public reference for the self object, and the

gmapQ generic function uses the technique discussed in Section 10.3 to emulate

higher-ranked types.) Two base ‘instances’ are provided for characters and lists, as in

the Haskell implementation. Abstract case classes are used because DataChar and

DataList are incomplete, that is, they still need to be mixed with implementations

of the types ctx [Char ] and ctx [List [a ]]. The trait Size extends Data and defines

the generic function gsize in terms of gmapQ . This trait plays the role of both the

Size class and the Size t instance in the Haskell solution. The abstract case class

SizeList provides the overriding case for lists. Note that Size and SizeList satisfy,

respectively, the Data [Size, a ] and DataList [Size, a ] requirements for the self-type.

The implicit definitions sizeChar and sizeList allow the dictionaries for characters

and lists to be built automatically. Finally, test shows how the generic function can

be used – here, to compute the size of a character and of a list of characters. Because

test takes two implicit arguments, it is possible to call it without those arguments;

alternatively, different dictionaries can be provided, overriding the ones selected by

the compiler.

8.3 Local redefinition

In the Scala implementation of SyB with Class, local redefinition is possible. For

example, instead of using the sizeList dictionary for lists, it is possible to provide

an alternative dictionary that inherits the generic behaviour for lists rather than

overriding it:

def alternativeList [a ] (implicit d : Size [a ]) : Size [List [a ]] =

new DataList [Size, a ] () (d ) with Size [List [a ]]

Given this definition, both test and test (sizeChar , alternativeList ) are possible

applications, returning (1, 2) and (1, 5) respectively.

8.4 Evaluation of the approach

Verbosity is once again a problem. The lack of direct support for higher-ranked

types and a long-winded syntax for implicits adds significant additional code in

comparison to the Haskell approach. Another problem is that separate implicit

definitions for dictionaries like sizeChar and sizeList are needed.

The Scala approach imposes an additional burden on the programmer due to

the absence of a mechanism similar to overlapping instances. This requires the

programmer to implement the definitions for the implicit dictionaries one by one.

In the Haskell solution, if there is no overridden case, then no additional effort is

needed. On the other hand, the Scala solution does not distinguish between types and

type classes, and abstracting over the ‘type class’ is just the same as abstracting over

a type: no encoding of this feature is required. Furthermore, a solution with explicit
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self-types does not require other advanced features such as recursive dictionaries

or undecidable instances; everything is accomplished naturally, using the standard

extension mechanism.

In terms of expressiveness, the Scala solution is better, because it supports local

redefinitions and allows greater control of dictionaries by providing the possibility

to pass them explicitly. In the original SyB with ‘Class’ solution, local redefinitions

are not possible.

In summary, for the SyB with ‘Class’ approach the results are mixed: Haskell is

more convenient to use because it imposes a lighter burden on the programmer,

but the Scala solution is more expressive and flexible because local redefinitions are

possible.

9 Generic programming with recursion patterns

Most generic programming libraries involve writing generic functions by case

analysis on the structure of the shape of the datatype, whether that case analysis

is by value-based or type-based dispatch. An alternative is to make the shape

parameter an active participant in the computation – a higher-order function that

can be applied, rather than passive data that must be analyzed. In particular, the

Origami Programming (Gibbons 2003) approach to DGP is based around datatypes

represented as fixpoints of type functors, and programs expressed in terms of higher-

order recursion patterns shape-parametrized by those functors (Meijer et al. 1991). A

consequence of black-box application rather than white-box inspection of the shape

parameter is a kind of higher-order naturality property, guaranteeing coherence

between different instances of the generic function (Gibbons & Paterson 2009).

One can view the origami recursion patterns as functional programming equiv-

alents to (at least the code aspects of) some of the so-called Gang of Four design

patterns (Gamma et al. 1995). Gibbons (2006) argues that recursive datatypes

correspond to the Composite design pattern, maps to the Iterator pattern for

enumerating the elements of a collection, folds to the Visitor pattern for traversing

a hierarchical structure, and unfolds and builds to structured and unstructured

instances of the Builder pattern for generating structured data.

Moors et al. (2006) were the first to point out that Scala is expressive enough to

be a DGP language; they showed how to encode these origami patterns in Scala.

However, their encoding was done in an object-oriented style that introduced some

limitations that the original Haskell version did not have. We feel that this object-

oriented style, while perhaps more familiar to the object-oriented programmer that

Moors et al. were targeting, does not show the full potential of Scala from a generic

programmer’s perspective. In this section, we present an alternative encoding of the

origami patterns that is essentially a direct translation of the Haskell solution and

has the same extensibility properties.

9.1 A little Origami library

Figure 12 shows the Haskell implementation of the origami patterns, and Figure 13

shows a translation of this Haskell code into Scala. The key idea is to encode type
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Fig. 12. Origami in Haskell.

Fig. 13. Origami in Scala.

classes through implicit parameters (see Section 4.5) rather than using the object-

oriented style proposed by Moors et al.. The newtype Fix and its constructor In are

mapped into a case class Fix ; the type class BiFunctor maps into a trait; and the

origami operations map into Scala definitions with essentially the same signatures.

(In Scala, implicit parameters can only occur in the last parameter position)

There are two things to note in the Scala version. Firstly, because evaluation in

Scala is strict, we cannot just write the following in the definition of cata:

f ◦ ft .fmap2 (cata [a , r ,F ] (f )) ◦ ( .out)
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Fig. 14. Lists as a fixpoint.

(the syntax ( .m) is syntactic sugar for (x ⇒ x .m); in other words, ‘ ’ denotes an

‘anonymous’ lambda variable). Under strict evaluation, the above definition would

expand indefinitely; we have to write it less elegantly using application rather than

composition. Secondly, higher-ranked types are once again required; we have to

encode them in Scala – see Section 10.3 for more details.

9.2 Using the library

Figure 14 captures the shape of lists as a type constructor ListF ; the two possible

shapes for lists are defined with the case classes Nil and Cons . The BiFunctor object

biList defines the bimap operation for the list shape. Lists are obtained simply by

applying Fix to ListF .

The figure also shows functions nil and cons that play the role of the two

constructors for lists.

We can now define operations on lists using the origami operators. A simple

example is the function that sums all the elements of a list of integers:

def sumList = cata [Int , Int ,ListF ] {
case Nil () ⇒ 0

case Cons (x , n) ⇒ x + n

}

9.3 Evaluation of the approach

Figure 15 presents Moors et al.’s object-oriented encoding of the origami operators

(slightly adapted due to intervening changes in Scala syntax), and Figure 16 shows

the specialization to lists. Compared to this object-oriented (OO) encoding, our

more functional (FP) style has some advantages. The most significant difference

between the two is that the OO encoding favours representing operations as methods

attached to objects, and provided with a distinguished ‘self ’ parameter, whereas the

FP encoding favours representing operations as global functions, independent of any

object. In particular, in the OO encoding of the type class BiFunctor , the method

https://doi.org/10.1017/S0956796810000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000171


Scala for generic programmers 341

Fig. 15. Origami in Scala, after Moors et al.

Fig. 16. Lists as a fixpoint, after Moors et al.

bimap takes just two functions, whereas in the FP encoding it takes a data structure

too; the OO encoding of the cata operation is as a method of the class In , with

a recursive data structure as a ‘self ’ parameter, whereas the FP encoding is as a

global function, with the recursive data structure passed explicitly. The OO approach

requires more advanced language features, and leads to problems with extensibility,

as we shall discuss.

The dependence on the ‘self ’ parameter in the OO encoding requires explicit self

types. This is seen in the definition of the trait BiFunctor:

trait BiFunctor [S <: BiFunctor [S ]] . . . {self : S ⇒ . . .}
trait ListF extends BiFunctor [ListF ]
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Note that ListF is given a recursive type bound, and that the S parameter of

BiFunctor is given both an upper bound (namely BiFunctor [S ]) and a lower bound

(through the self clause, explicitly specifying the self type: an ‘instance of the type

class’ such as ListF cannot instantiate the S parameter to anything more specific than

ListF itself). Moors et al. (2006) explain the necessity of this elaborate construction

for guaranteeing type safety; it is not required at all in the FP encoding.

A second characteristic of the OO encoding is the way operations are attached

to objects as methods; for example, cata is a method of the case class In , rather

than a global function. This works smoothly for operations consuming a single

distinguished instance of the recursive datatype, such as cata . However, it does not

work for operations that produce rather than consume, and take no instance, such

as ana; these appear outside the case class instead. (And of course, it is well known

(Bruce et al. 1995) that it does not work well for binary methods such as ‘zip’ either.)

In addition to the awkward asymmetry introduced between cata and ana ,

the association of consumer methods with a class introduces an extensibility

problem: adding new consumers, such as monadic map (Meijer & Jeuring 1995),

paramorphism (Meertens 1992), or idiomatic traversal (Gibbons & Oliveira 2009),

requires modifications to existing code. Moors et al. (2006) address this second

problem through an ‘extensible encoding’, expressed in terms of virtual classes – that

is, nested classes in a superclass that are overridable in a subclass. Since Scala does

not provide such a construct, this virtual class encoding has itself to be encoded

in terms of type members of the enclosing class, which are overridable. No such

sophistication is needed in the FP approach: a new origami operator is a completely

separate function.

Restricting attention now to the FP approach we describe, how does the Scala

implementation compare with the Haskell one? Scala is syntactically rather more

noisy than Haskell, for a variety of reasons: the use of parentheses rather than

simple juxtaposition for function application; explicit binding of type variables, for

example in indicating that bimap is parametrized by the four types a , b, c, d ; the lack

of eta reduction because of call-by-value, as discussed above. However, the extra

noise is not too distracting – and indeed, the extra explicitness in precedence might

make this kind of higher-order datatype-generic programming more accessible to

those not fluent in the language.

On the positive side, the translation is quite direct, and the encoding rather

transparent; the code in Figure 13 is not that much more intimidating than that

in Figure 12. Scala even has some lessons to teach Haskell; for example, the

‘anonymous case analysis’, as used in the definitions of biList and sumList , would

be nice syntactic sugar for the Haskell idiom ‘λx → case x of . . .’.

10 Discussion

10.1 Haskell versus Scala

Scala differs significantly from Haskell, and we were curious to know what were its

advantages and disadvantages when implementing generic programming libraries.
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This work was done using the Glasgow Haskell Compiler version 6.10 and Scala

version 2.7, which were the latest official releases at the time of writing. However, the

languages will keep evolving, and in the future it is likely that both languages will

provide better support for generic programming. Indeed, the next version (2.8) of the

Scala compiler will support a few features that could have been useful for our work:

context bounds, which provide a compact syntax for implicits; prioratized overlapping

implicits, which provide an alternative to overlapping instances; and type-inference

for type constructors. However, for consistency with the results presented in this

paper, we shall not consider these features in the discussion that follows.

Generally speaking, Haskell has a few advantages over Scala:

Laziness: Some approaches to generic programming rely, one way or another, on

laziness. While laziness comes without effort in Haskell, it does not in Scala,

and we need to pay more attention to evaluation order: we had to adapt the

origami definitions in Section 9, and introduce call-by-name arguments in the

RView constructor in Figure 5.

Type inference: Haskell has good support for type inference, which helps to reduce

the effort and clutter demanded by generic programming libraries. Scala’s support

for type inference is not as good, and this leads to additional verbosity and

complexity of use.

Syntactic clarity: While Scala’s syntax is more elegant than that of Java or C#, it

is still more verbose than Haskell’s. In particular, we have to declare more types

in Scala, and need to write extra type annotations. Also, the syntax for implicits

can be a bit unwieldy, and case classes can be slightly more cumbersome than

Haskell’s data declarations.

Purity: Some generic programming approaches have strong theoretical foundations

that provide a good framework for reasoning. However, in a language that does

not carefully control side effects, the properties that one would expect may not

hold. Haskell is a purely functional programming language, which means that

functions will not have silent side effects (except for non-termination); Scala

provides no such guarantees.

Higher-ranked types: Some implementations of Haskell provide support for higher-

ranked types, while in Scala they need to be encoded. Because higher-ranked

types play a role in some aspects of DGP, the additional overhead required by

the encoding can be a significant drawback.

On the other hand, Scala has its own advantages:

Open datatypes with case classes: As noted in Section 5, case classes support the

easy addition of new variants to a datatype. As a consequence, we can have an

extensible datatype of type representations, which allows the definition of generic

functions with ad-hoc cases.

Generalized type classes with implicit parameters: In Haskell, type class ‘dictionar-

ies’ are always implicitly passed to functions. However, it is sometimes convenient

to explicitly construct and pass a dictionary (Kahl & Scheffczyk 2001; Dijkstra &

Swierstra 2005). The ability to override implicit dictionaries is a desirable feature

for generic programming (Löh 2004, Chapter 8).
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Fig. 17. Evaluation of the Haskell mechanisms for DGP. Key: �=‘good’, �=‘sufficient’,

�=‘poor’ support. Notes: (1) generic functions need to be written using classes rather than

function definitions; (2) reuse can be achieved in Scala via inheritance with virtual types.

Inheritance: Another advantage of Scala is that we can easily reuse generic functions

via inheritance. In Haskell, although we can simulate this form of reuse in several

ways, there is no natural way to do so.

Expressive type system: The combination of subtyping, higher kinds, abstract types,

implicit parameters, traits and mixins (among other features) provides Scala with

an impressively powerful type system. Although we do not fully exploit the

expressivity in this paper, Oliveira (2007, Chapter 5) shows how Scala’s type

system can shine when implementing modularly extensible generic functions.

Minor conveniences: We found the support for anonymous case analysis (discussed

in Section 9.3) quite neat and useful. Although we seldom need to provide type

annotations in Haskell expressions, they can be quite tricky to get right when they

are needed; in Scala this is easier. Finally, Scala’s implicits can avoid the need for

some of the type classes and instances that would be needed in Haskell (see the

discussion in Section 7.7).

10.2 Support for DGP in Scala and Haskell

The most noticeable difference between the Haskell and Scala approaches to DGP is

that type classes and datatypes are essentially two separate mechanisms in Haskell;

in contrast, in Scala, the same mechanism – Scala’s object system – is used, albeit

in different ways, to define standard OO hierarchies and algebraic datatype-like

structures.

Figure 17 extends the table presented in Figure 2 to include the approaches

presented in Sections 5 and 6, which can be considered to be the equivalents of

the Haskell approaches in Scala. Specifically, case classes are used to implement the

datatype approach in Scala, while standard OO classes (with implicits) are used to

implement the type class approach. We discuss and summarize the results in the

table for the Scala approaches next.

Convenience. Defining and using generic functions with case classes is quite natural,

so this mechanism scores ‘good’ for both aspects of convenience. Compared to
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Haskell, in Scala there is an advantage of using datatypes of type representations

because the value of the type representation can be implicit, whereas in Haskell

(without resorting to type classes) it has to be explicit. Using standard classes and

implicits to implement the type class based approach confers no advantage over

Haskell in terms of convenience. Approaches based on both Haskell’s type classes

and Scala’s standard classes score only ‘sufficient’ for defining generic functions, since

there is additional overhead compared to using a datatype of type representations.

Implicit explicit parametrization. The Scala approaches do well in this respect

because of the implicits mechanism, which allows values to be passed implic-

itly or explicitly. In Haskell, the choice of mechanism determines the choice of

parametrization: datatypes require explicitly passed values, whereas type classes

require implicitly passed dictionaries. In other words, unlike in Haskell, implicit or

explicit parametrization in Scala is independent of the particular mechanism chosen

for implementing the DGP library.

Extensibility. This is another area in which Scala does well. As with the Haskell type

class approach, using Scala classes to define generic functions provides extensibility

by default. However, unlike Haskell, the datatype of type representations in Scala

can also be extensible, since case classes are open. Furthermore, the case class

mechanism provides a safer alternative to open datatypes and functions, preserving

the advantages of static typing and avoiding pattern match failures by using sealed

classes.

First-class generic functions. In this area, the results are mixed. On the one hand,

Scala does support first-class generic functions, and it is possible to abstract over the

type of the generic function directly in a type-class-based approach. On the other

hand, Scala does not provide native support for higher-ranked types, which adds

complexity and verbosity to generic functions. For this reason, Scala only scores

‘sufficient’.

Reuse of generic functions. Scala does well here in comparison to Haskell: inheritance

supports reuse of generic functions quite naturally. In the case-class approach, this

support is quite direct, and can be used effectively to define new generic functions

by inheriting from existing ones. A small inconvenience, though, is that we need to

write function definitions using classes in order to be able to exploit inheritance. It is

also possible to use inheritance to achieve reuse using the standard classes approach,

but nested types and virtual types are required. Such a solution is not presented

here, but is shown by Oliveira (2007, Chapter 5). However, this latter solution is

rather involved and heavyweight, which hinders usability. Ultimately, we think that

support for inheritance is helpful for generic programming, and that Scala is worthy

of full marks for the case class approach.

Exotic types. This is an area in which Haskell is, for the most part, better than

Scala. The two main reasons are Haskell’s better support for type inference and
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for higher-ranked types. Because of that support, exotic types can be used cleanly

with the datatype of type representations approach. In contrast, Scala’s solution

is hindered by the additional verbosity required due to the lack of native support

for higher-ranked types and the less complete type inference. The standard classes

approach in Scala has the merit of directly supporting the solution proposed by

Hinze and Peyton Jones (2000), but like the other Scala solution the cost in terms

of usability is quite high. Therefore, in this area, Scala only scores ‘sufficient’.

10.3 Idiomatic Scala

Throughout this paper, we have been using a functional programming style heavily

influenced by Haskell and somewhat different from conventional Scala. What are

the key techniques in this programming style?

Making the most of type inference. Scala does not support type inference in the

same way that Haskell does. As explained in Section 3.5, in a definition like

def power (x : Int) : Int = twice ((y : Int) ⇒ y ∗ y , x )

the return type of power and type of the lambda-bound y can be inferred, but

the type of the parameter x cannot. Although in this particular case the type

annotations are not too daunting, for some definitions taking several arguments

while possibly being implemented or redefined in subclasses, this can become a

burden. A simple trick can help the compiler (at least to try) to infer argument

types: use lambda expressions rather than passing parameters. That is, transform a

parametrized method:

def f (x1 : t1, . . . , xn : tn ) : tn+1 = e

into a parameterless method with a higher-order value:

def fT : t1 ⇒ . . . ⇒ tn ⇒ tn+1 = x1 ⇒ . . . ⇒ xn ⇒ e

Then the type t1 ⇒ . . . ⇒ tn ⇒ tn+1 can possibly be inferred, allowing a definition

without type annotations:

def fT = x1 ⇒ . . . ⇒ xn ⇒ e

The main difference between f and fT is that the former can be (name) overloaded,

while the latter cannot. As discussed in Section 3.5, name-overloaded definitions

pose a challenge to type-inference. This transformation is used a few times to

make the most of type inference, avoiding cluttering definitions with redundant type

annotations; see for example the methods of Generic in Figure 8, and bimap in

Figure 13.

Type class programming. As we have seen, type classes can be encoded with implicit

parameters. However, object-oriented classes are more general than type classes,

because they can contain data. It is possible to mix ideas from traditional OO

programming with ideas inspired by type classes. For example, Moors et al. (2008)

define the trait
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trait Ord [T ] {
def � (other : T ) : Boolean

}
in order to encode the Haskell type class Ord

class Ord t where

(�) :: t → t → Bool

There is a significant difference between the two approaches: an instance of the trait

Ord [T ] will contain data, since the self variable plays the role of the first argument;

whereas an instance of the type class Ord is essentially a dictionary containing a

binary operation, with no value of type t . In this paper, we use the classic Haskell

type class approach instead of the OO approach. As we saw in Section 9, sometimes

merging the ‘type class’ with the data can lead to extensibility problems that can be

avoided by keeping the two concepts separate.

Encoding higher-ranked types. Some more advanced Haskell libraries exploit higher-

ranked types (Odersky & Läufer 1996). Scala does not support higher-ranked types

directly, but these can be easily encoded using a class with a single method that has

some local type arguments. However, this encoding requires a new (named) class,

which can significantly obscure the intent of the code. In this paper, we make use

of Scala’s structural types to avoid most of the clutter of the encoding. The idea is

simple: the Haskell definition

func :: ∀a .(∀b.b → b) → a → a

is encoded in Scala as:

def func [a ] : {def apply [b ] : b ⇒ b } ⇒ a ⇒ a

The type {def apply [b ]:b ⇒ b } stands for some class with a method apply [b ]:b ⇒ b.

Structural types allow a definition that is nearly as short as the Haskell one. As a

final remark, we note that this encoding makes it very easy to use parameter bounds.

For example, to enforce b <: a it suffices to write

def func [a ] : {def apply [b <: a ] : b ⇒ b } ⇒ a ⇒ a

If we had used a separate named class, we would have had to parametrize that class

with the extra type bound arguments (Washburn 2008).

To our knowledge, this is the first time such an encoding for higher-ranked types

has been observed in the literature. We believe that providing primitive support

for higher-ranked types in Scala using this encoding as a basis should be fairly

simple.

Functional inheritance. In Scala, all functions are objects and, as such, are amenable

to inheritance when it comes to reuse. Unfortunately, while Scala does support

the conventional notation of function definition, this notation does not support

inheritance. A definition like:

def func (x : Int) : Int = e

(where e is an expression that may depend on x ) needs to be rewritten as:
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case class Func extends (Int ⇒ Int) {
def apply (x : Int) = e

}
Provided that functions are written in this style, then inheritance allows the reuse of

function definitions, as demonstrated in Section 5.3.

10.4 Porting generic programming libraries to Scala

There has been a flurry of recent proposals for generic programming libraries

in Haskell (Cheney & Hinze 2002; Lämmel & Peyton Jones 2005; Hinze 2006;

Hinze et al. 2006; Oliveira et al. 2006; Weirich 2006; Hinze & Löh 2007; Mitchell

& Runciman 2007; Brown & Sampson 2009), all having interesting aspects but

none emerging as clearly the best option. An international committee has been

set up to develop a standard generic programming library in Haskell. Their first

effort (Rodriguez et al. 2008) is a detailed comparison of most of the current library

proposals, identifying the implementation mechanisms and the compiler extensions

needed.

The majority of the features required by those libraries translate well into Scala;

the approaches investigated in this paper are quite representative of the mechanisms

required by most generic programming libraries. There are, however, some questions

about some of the Haskell features. For example, certain approaches use type class

extensions such as undecidable instances, overlapping instances, and abstraction over

type classes, which rely on sophisticated instance selection algorithms implemented

in the latest Haskell compilers; one example is the approach discussed in Section 8.

As we have seen, it is possible to implement such an approach in Scala, but the

lack of support for type inference for higher kinds and something like overlapping

instances means that additional explicitness and effort is required in Scala. Therefore,

approaches that make intensive use of advanced type class features can be ported,

but they may lose some usability in Scala.

Something that Scala does not have is a meta-programming facility. Some of the

generic programming libraries use Template Haskell (Sheard & Peyton Jones 2002)

to automatically generate the code necessary for type representations. In Scala, those

would need to be generated manually, or a code generation tool would need to be

developed. The Scrap your Boilerplate approach (Lämmel & Peyton Jones 2003)

relies on the ability to automatically derive instances of Data and Typeable; in Scala

there is no deriving mechanism, so this would entail defining instances manually.

11 Conclusions

The goal of this paper was not to promote a particular approach to generic

programming. Instead, we were more interested in investigating how the language

mechanisms of Haskell used in various generic programming techniques could be

adapted to Scala. We hope that this work can serve as a foundation for future

development of generic programming libraries in Scala: all of the approaches

discussed in this paper could serve as good starting points for more complete
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libraries. Moreover, other approaches can still benefit from the discussions we

present.

As we have argued, Scala has some features that are very useful in a datatype-

generic programming language. We expect that other programming languages (in

particular, Haskell) can learn some lessons from Scala by borrowing these features.

Conversely, Haskell has some features useful for DGP that are not available in Scala,

but which would be nice to have. Ultimately, we believe that we have pinpointed

limitations of some general-purpose language mechanisms for implementing DGP

libraries; hopefully, this will motivate the development of improved mechanisms

or programming languages. Oliveira and Sulzmann (2008) have already done some

preliminary work in that direction by proposing a generalized class system for a

Haskell-like language that is partly inspired by Scala, and which allows both implicit

and explicit passing of dictionaries.
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Löh, A. (2004) Exploring Generic Haskell. Ph.D. thesis, Utrecht University.
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Oliveira, B. C. D. S., Hinze, R. & Löh, A. (April 2006) Extensible and modular generics for

the masses. In Trends in Functional Programming, pp. 109–138.

Oliveira, B. C. D. S., Moors, A. & Odersky, M. (October 2010) Type classes as objects and

implicits. In Systems, Programming, Languages and Applications: Software for Humanity

(SPLASH), Rinard, M. (ed).

Peyton Jones, S., Vytiniotis, D., Weirich, S. & Washburn, G. (2006) Simple unification-based

type inference for GADTs. In International Conference on Functional Programming, pp.

50–61.

Rodriguez, A., Jeuring, J., Jansson, P., Gerdes, A., Kiselyov, O. & Oliveira, B. C. D. S. (2008)

Comparing libraries for generic programming in Haskell. In Haskell Symposium.

Schärli, N., Ducasse, S., Nierstrasz, O. & Black, A. (July 2003) Traits: Composable units

of behavior. In LNCS 2743: European Conference on Object-Oriented Programming. pp.

248–274.

Schinz, M. (May 2007) A Scala Tutorial for Java Programmers [online]. Available at: http:

//scala.epfl.ch/docu/files/ScalaTutorial.pdf

Sheard, T. & Peyton Jones, S. (2002) Template meta-programming for Haskell. In Haskell

Workshop.

Sulzmann, M. & Wang, M. (2006) Modular generic programming with extensible superclasses.

In Workshop on Generic Programming. New York, NY, USA: ACM, pp. 55–65.

Wadler, P. (1993) Monads for functional programming. Program Design Calculi. Springer-

Verlag.

Wadler, P. (November 1998) The Expression Problem. Java Genericity Mailing list [online].

Available at: http://www.cse.ohio-state.edu/~gb/cis888.07g/java-genericity/20

Washburn, G. (May 2008) Revisiting Higher-Rank Impredicative Polymorphism in Scala

[online]. Available at: http://existentialtype.net/2008/05/26/revisiting-higher-

rank-impredicat%ive-polymorphism-in-scala/

Weirich, S. (2006) RepLib: a library for derivable type classes. In Haskell Workshop, pp. 1–12.

https://doi.org/10.1017/S0956796810000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000171

