ALGEBRAIC CONVERGENCE THEOREMS OF COMPLEX KLEINIAN GROUPS

WENSHENG CAO*

School of Mathematics and Computational Science, Wuyi University, Jiangmen, Guangdong 529020, P.R. China e-mail: wenscao@yahoo.com.cn

(Received 7 April 2009; revised 18 April 2012; accepted 4 May 2012; first published online 2 August 2012)

Abstract. Let $\{G_{r,i}\}$ be a sequence of r-generator subgroups of $U(1, n; \mathbb{C})$ and G_r be its algebraic limit group. In this paper, two algebraic convergence theorems concerning $\{G_{r,i}\}$ and G_r are obtained. Our results are generalisations of their counterparts in the n-dimensional sense-preserving Möbius group.

2000 Mathematics Subject Classification. 30F40, 20H10.

1. Introduction. Let \mathbb{G} be the n-dimensional sense-preserving Möbius group $M(\overline{\mathbb{R}}^n)$ or the unitary group $U(1, n; \mathbb{C})$.

DEFINITION 1.1. Let $\{G_{r,i}\}$ be a sequence of subgroups in group \mathbb{G} and each be generated by $g_{1,i}, g_{2,i}, \ldots, g_{r,i}$, where $r = 1, 2, \ldots$ If for each $t (1 \le t \le r)$,

$$g_{t,i} \to g_t \in \mathbb{G}$$
 as $i \to \infty$,

then we say that $\{G_{r,i}\}$ algebraically converges to $G_r = \langle g_1, g_2, \dots, g_r \rangle$.

If for each i, $G_{r,i}$ is a Kleinian group, the problem that when G_r is still a Kleinian group has been investigated by a number of authors.

When n = 2, Jørgensen and Klein [7] proved the following.

THEOREM JK. If each $G_{r,i}$ is a r-generator Kleinian group, then the limit group G_r is also a Kleinian group.

Examples in [12] show that the Theorem JK could not be extended to n-dimensional cases ($n \ge 3$) without any modifications. The reason for this phenomenon is that there is a great difference in the fixed point set of elliptic elements between $M(\bar{\mathbb{R}}^2)$ and $M(\bar{\mathbb{R}}^n)$ when $n \ge 3$. Several authors have obtained their analogues in $M(\bar{\mathbb{R}}^n)$ when $n \ge 3$ by adding some condition(s) to control the fixed point set of elliptic elements.

Apanasov [1] proved the following.

THEOREM A. If for each $G_{r,i}$, its generators are of infinite order and $G_{r,i}$ is discrete, then for each t ($1 \le t \le r$), $g_t = \lim_{i \to \infty} g_{t,i}$ is different from the identity. Furthermore, if each $G_{r,i}$ is a torsion-free Kleinian group, then G_r is also a torsion-free Kleinian group.

Martin [9] proved this.

^{*}Supported by NSFs of China (11071063,10801107) and NSF of Guangdong Province (S2011010000735).

THEOREM M. Let G_r be an algebraic limit group of a sequence of r-generator Kleinian groups of $M(\bar{\mathbb{R}}^n)$ of uniformly bounded torsion. Then G_r is a Kleinian group.

Wang [11] proved this.

THEOREM W. Let $r < \infty$ and G_r be the algebraic limit group of a sequence of r-generator Kleinian groups $\{G_{r,i}\}$ of $M(\bar{\mathbb{R}}^n)$. If $\{G_{r,i}\}$ satisfies EP-condition, then G_r is a Kleinian group.

See details in [11] for the definitions of uniformly bounded torsion, EP-condition and $WY(G_r)$.

A complex hyperbolic space is more complicated than a real hyperbolic space. For example, it has variable negative curvature, it is a $K\ddot{a}$ hler manifold with biholomorphic automorphisms and its boundary has a natural contact structure, which is locally modelled on the Heisenberg geometry. Because of a closed connection between real and complex hyperbolic geometry, the road map of analogy frequently points the way towards potentially interesting questions. It is interesting to investigate analogous results of a real hyperbolic space in the setting of a complex hyperbolic space.

The purpose of this paper is to find analogous results mentioned above in the setting of a complex hyperbolic space. In order to state our main results, we first recall some notations and facts about a complex hyperbolic space.

The complex hyperbolic n-space $H^n_{\mathbb{C}}$ may be identified with a unit ball in \mathbb{C}^n with the Bergman metric $[\mathbf{6},\mathbf{8}]$. The group of its holomorphic isometries is the group $U(1,n;\mathbb{C})$ acting on $H^n_{\mathbb{C}}$ and on its boundary $\partial H^n_{\mathbb{C}}$. For a non-trivial element g of $U(1,n;\mathbb{C})$, we say that g is *parabolic* if it has exactly one fixed point and this lies on $\partial H^n_{\mathbb{C}}$; g is *loxodromic* if it has exactly two fixed points and they lie on $\partial H^n_{\mathbb{C}}$ and g is *elliptic* if it has a fixed point in $H^n_{\mathbb{C}}$.

For elliptic element g, let Λ_0 and Λ_i , $i=1,2,\ldots,n$ be its negative and positive classes of eigenvalues, respectively. Then the fixed point set of g in $H^n_{\mathbb{C}}$ contains only one fixed point if $\Lambda_0 \neq \Lambda_i$, $i=1,2,\ldots,n$ and is a totally geodesic sub-manifold, which is equivalent to $H^m_{\mathbb{C}}$ (for some $m \leq n$) if Λ_0 coincides with exactly m of class Λ_i , $i=1,2,\ldots,n$. We call an elliptic element g an irrational rotation if $e^{\mathbf{i}\theta} \in \Lambda_t$ with irrational θ for some t. We remark that $U(1,n;\mathbb{C})$ has an elliptic element, which has no fixed point in the boundary $\partial H^n_{\mathbb{C}}$. Such elements are the counterparts of *fixed-point-free* elements in $M(\mathbb{R}^n)$.

For subgroup $G \subset U(1, n; \mathbb{C})$, the *limit set* L(G) of G is defined as

$$L(G) = \overline{G(p)} \cap \partial H_{\mathbb{C}}^n, \quad p \in H_{\mathbb{C}}^n.$$

As in [3], for subgroup G of $U(1, n; \mathbb{C})$ containing a loxodromic element, let

$$W(G) = \bigcap_{f \in h(G)} G_{fix(f)},$$

where h(G) is a set of all loxodromic elements in G and $G_{fix(f)} = \{g \in G : fix(f) \subset fix(g)\}.$

A subgroup G of $U(1, n; \mathbb{C})$ is called *non-elementary* if it contains two non-elliptic elements of infinite order with distinct fixed points that are not irrational rotations; otherwise G is called *elementary*. We call a non-elementary and discrete subgroup G of $U(1, n; \mathbb{C})$ a complex Kleinian group.

As in [11], a subset H of $U(1, n; \mathbb{C})$ is said to have *uniformly bounded torsion* if there exists an integer M such that

$$ord(g) \le M$$
 or $ord(g) = \infty$ if $g \in H$.

We refer to [4–6, 8] for more details of these concepts and some properties of a complex hyperbolic space.

When $\mathbb{G} = U(1, n; \mathbb{C})$ in Definition 1.1, we assume that $r < \infty$, and for $\{G_{r,i}\}$ we introduce the following conditions:

We say that $\{G_{r,i}\}$ satisfies I-condition if any sequence $\{f_{i_k}\}$ $(f_{i_k} \in G_{r,i_k})$ satisfying that for each k, $card[fix(f_{i_k})] = \infty$ and $f_{i_k} \to the$ identity as $k \to \infty$, has uniformly bounded torsion. Here card(M) denotes the cardinality of set M.

We say that $\{G_{r,i}\}$ satisfies IP-condition if $\{G_{r,i}\}$ satisfies the following conditions: for any sequence $\{f_{i_k}\}$ $(f_{i_k} \in G_{r,i_k})$, if $card(fix(f_{i_k})) = \infty$ for each k, and $f_{i_k} \to f$ as $k \to \infty$ with f being the identity or parabolic, then $\{f_{i_k}\}$ has uniformly bounded torsion.

As should be apparent, our exposition and results here owe a great deal to Martin's [9] and Wang's papers [11]. Our main results are the following theorems.

THEOREM 1.1. Let $\{G_{r,i}\}$ be a sequence of groups of $U(1, n; \mathbb{C})$. If each $G_{r,i}$ is discrete, then the algebraic limit group G_r of $\{G_{r,i}\}$ is either a complex Kleinian group, or it is elementary, or $W(G_r)$ is not finite.

THEOREM 1.2. Let G_r be the algebraic limit group of complex Kleinian groups $\{G_{r,i}\}$ of $U(1, n; \mathbb{C})$. If $\{G_{r,i}\}$ satisfies IP-condition, then G_r is a complex Kleinian group.

2. Several lemmas. The following lemma is crucial for us.

LEMMA 2.1. (cf. [5]). Suppose that f and $g \in U(1, n; \mathbb{C})$ generate a discrete and non-elementary group. Then

(1) *if f is parabolic or loxodromic, we have*

$$max{N(f), N([f, g])} \ge 2 - \sqrt{3},$$

where $[f,g] = fgf^{-1}g^{-1}$ is a commutator of f and g, $N(f) = ||f - I_{n+1}||$ and ||.|| is the Hilbert–Schmidt norm;

(2) if f is elliptic, we have

$$max{N(f), N([f, g^i]) | i = 1, 2, ..., n + 1} \ge 2 - \sqrt{3}.$$

The following lemma is a classification of elementary subgroups of $U(1, n; \mathbb{C})$.

LEMMA 2.2. (cf. [2]).

- (1) If G contains a parabolic element but no loxodromic element, then G is elementary if and only if it fixes a point in $\partial H_{\mathbb{C}}^n$;
- (2) If G contains a loxodromic element, then G is elementary if and only if it fixes a point in $\partial H^n_{\mathbb{C}}$ or a point-pair $\{x, y\} \subset \partial H^n_{\mathbb{C}}$;
- (3) G is purely elliptic, i.e. each non-trivial element of G is elliptic, then G is elementary and fixes a point in $\overline{H_{\mathbb{C}}^n}$.

LEMMA 2.3. (cf. [10]). Let G be a discrete subgroup of $U(1, n; \mathbb{C})$ such that every element has finite order, then G is finite.

LEMMA 2.4. Let $f \in U(1, n; \mathbb{C})$ be an elliptic element of order m. If $2 \le m < M$, then there is a constant $\delta(M)$ such that

$$N(f) > \delta(M)$$
.

Proof. Let the eigenvalues of f be $\lambda_j = e^{i\theta_j}$ (j = 1, ..., n + 1). By Schur's unitary triangularization theorem, there is a matrix $U \in U(n + 1; \mathbb{C})$ such that

$$Uf \, \bar{U}^T = \begin{pmatrix} \lambda_1 & * & * & * \\ 0 & \lambda_2 & * & * \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \lambda_{n+1} \end{pmatrix}.$$

Hence, $||f - I_{n+1}||^2 \ge \sum_{j=1}^{n+1} |\lambda_j - 1|^2 = 2(n+1) - 2\sum_{j=1}^{n+1} \cos \theta_j$. It follows from $f^m = I_{n+1}$ that there is a j such that $|\cos \theta_j| \ne 1$ and $\theta_j = \frac{2p\pi}{m}$ (here p and m are prime). Hence,

$$1 - \cos \theta_j \ge 1 - |\cos \theta_j| > 1 - \left|\cos \frac{\pi}{m}\right|.$$

Set $\delta(M) = \sqrt{1 - |\cos \frac{\pi}{m}|}$. Then $\delta(M)$ is the desired number.

From Lemma 2.4, we have the following.

COROLLARY 2.1. If $f_j \to I_{n+1}$ as $j \to \infty$ and f_j are elliptic elements with ord $(f_j) < m$, then for all large enough j, $f_j = I_{n+1}$.

COROLLARY 2.2. If f_j are elliptic elements with $ord(f_j) \leq M$ and $f_j \to f$ as $j \to \infty$, then f is an elliptic element with order m $(2 \leq m \leq M)$, and for all large enough j, $order(f_j) = m$.

Proof. By the Pigeonhole Principle, we can choose a subsequence f_{jk} such that each element with order m $(2 \le m \le M)$. Then $f_{jk}^m \to f^m$, i.e. f is an elliptic element with order m.

LEMMA 2.5. (cf. [9, Lemma 2.8]). Let x and y be two distinct points in $\overline{H^n_{\mathbb{C}}}$. If $f \in U(1, n; \mathbb{C})$ interchanges x and y, then

$$N(f) \ge \sqrt{2}$$
.

Proof. Since f interchanges $x, y \in \overline{H_{\mathbb{C}}^n}$, we can find $\lambda_i \neq 0$ (i = 1, 2) such that

$$f\begin{pmatrix} 1\\ x \end{pmatrix} = \lambda_1 \begin{pmatrix} 1\\ y \end{pmatrix}, \ f\begin{pmatrix} 1\\ y \end{pmatrix} = \lambda_2 \begin{pmatrix} 1\\ x \end{pmatrix}.$$
 (2.1)

By the linear algebra theory, we can find $U \in U(n+1;\mathbb{C})$ such that

$$U\begin{pmatrix} 1\\ x \end{pmatrix} = \begin{pmatrix} t_1\\ 0 \end{pmatrix}, \quad U\begin{pmatrix} 1\\ y \end{pmatrix} = \begin{pmatrix} c_1\\ c_2\\ 0 \end{pmatrix}, \tag{2.2}$$

where $t_1, c_1, c_2 \in \mathbb{C}$ and $|t_1|^2 = 1 + ||x||^2, |c_1|^2 + |c_2|^2 = 1 + ||y||^2$. Since $x \neq y$, we have that $c_2 \neq 0$.

Let $g = (b_{ij})_{i,j=1,\dots,n+1} = Uf \bar{U}^T$. It follows from (2.1) and (2.2) that

$$b_{11}t_1 = c_1\lambda_1$$
, $b_{21}t_1 = c_2\lambda_1$ and $b_{21}c_1 + b_{22}c_2 = 0$,

which implies that $b_{11} = -b_{22}$.

Thus,

$$||f - I_{n+1}||^2 = ||g - I_{n+1}||^2 \ge |b_{11} - 1|^2 + |b_{22} - 1|^2$$

$$\ge \frac{1}{2} |b_{11} + b_{22} - 2|^2 = 2,$$

i.e.
$$N(f) > \sqrt{2}$$
.

LEMMA 2.6. Let $\{f_i\}$ and $\{g_i\}$ be two sequences of $U(1, n; \mathbb{C})$, which converge to f and g, respectively. Suppose that each group $\langle f_i, g_i \rangle$ is a complex Kleinian group and each f_i is of infinite order. Then f is of infinite order and $\langle f, g \rangle$ is a complex Kleinian group if $\{\langle f_i, g_i \rangle\}$ satisfies I-condition.

Proof. We first prove that $\langle f, g \rangle$ is discrete.

Suppose that $\langle f, g \rangle$ is not discrete. Then there is a sequence $\{h_j\}$ of $\langle f, g \rangle$ such that $h_j \to I_{n+1}$ as $j \to \infty$. Let $h_{j,i}$ be the corresponding elements in $\langle f_i, g_i \rangle$ such that

$$h_{i,i} \to h_i$$
 as $i \to \infty$.

These elements form a sequence $h_{j_k,i_k} \in \langle f_{i_k}, g_{i_k} \rangle$ satisfying

$$h_{i_k,i_k} \to I_{n+1}$$
 as $k \to \infty$.

Since $\langle f_{i_k}, g_{i_k} \rangle$ is a complex Kleinian and $\{\langle f_i, g_i \rangle\}$ satisfies I-condition, by Lemma 2.4, we conclude that h_{j_k, i_k} is parabolic or loxodromic.

Let q_{1,i_k} and q_{2,i_k} be two loxodromic elements of $\langle f_{i_k}, g_{i_k} \rangle$ having no common fixed point. Since $h_{i_k,i_k} \to I_{n+1}$, there is a positive M such that for all k > M,

$$max\{N(h_{i_1,i_2}), N([h_{i_1,i_2}, q_{t,i_2}])\} < 2 - \sqrt{3}, \ (t = 1, 2).$$

By Lemma 2.1 and the discreteness of $\langle q_{t,i_k}, h_{j_k,i_k} \rangle$, we know that $\langle q_{t,i_k}, h_{j_k,i_k} \rangle$ is elementary, which is a contradiction to Lemma 2.2. The above shows that $\langle f, g \rangle$ is discrete.

We now come to prove that $\langle f, g \rangle$ is non-elementary.

We first show that f is parabolic or loxodromic. Since $\langle f, g \rangle$ is discrete, f cannot be an irrational rotation. Suppose that there is a positive M such that $f^M = I_{n+1}$. Then $f_i^M \neq I_{n+1}$ and

$$f_i^M \to I_{n+1}$$
 as $i \to \infty$.

Hence, for sufficiently large i,

$$max\{N(f_i^M), N([f_i^M, g_i^t]) \mid t = 1, 2, ..., n+1\} < 2 - \sqrt{3}.$$

By Lemma 2.1, $\langle f_i^M, g_i \rangle$, which are subgroups of discrete group $\langle f_i, g_i \rangle$, are elementary for sufficiently large *i*. This implies that $\langle f_i, g_i \rangle$ is elementary. This is a contradiction.

We then show that $\langle f, g \rangle$ is non-elementary.

Suppose that $\langle f, g \rangle$ is elementary. As in [9, Proposition 2.7], we can show that $\langle f, g \rangle$ is virtually abelian. Thus, there exist two integers t and s such that

$$[f^t, gf^sg^{-1}] = I_{n+1}.$$

Let $h_i = [f_i^t, g_i f_i^s g_i^{-1}]$. Then,

$$h_i \in \langle f_i, g_i \rangle, h_i \neq I_{n+1} \text{ and } h_i \to I_{n+1} \text{ as } i \to \infty.$$

As in the proof of discreteness of $\langle f, g \rangle$, we can get a contradiction. Thus, $\langle f, g \rangle$ is non-elementary.

3. Proofs of convergence theorems.

Proof of Theorem 1.1. Assume that G_r is non-elementary and $W(G_r)$ is finite. We need to prove that G_r is discrete.

Suppose that G_r is not discrete. Then there is a sequence $\{g_i\}$ of G_r such that

$$g_j \to I_{n+1}$$
 as $j \to \infty$.

We will get a contradiction by showing that each g_j belongs to $W(G_r)$ for large enough j.

Since G_r is non-elementary, G_r contains two loxodromic elements f_1 and f_2 sharing no common fixed point. Then for large enough j,

$$N(g_j) + \sum_{k=1}^{n+1} N([g_j, f_m^k]) < 2 - \sqrt{3} \ (m = 1, 2).$$

Let $g_{j,t}$ and $f_{m,t}$ be the corresponding entries in $G_{r,t}$. That is $g_{j,t} \to g_j$ and $f_{m,t} \to f_m$ as $t \to \infty$. Then for large enough t and j,

$$N(g_{j,t}) + \sum_{k=1}^{n+1} N([g_{j,t}, f_{m,t}^k]) < 2 - \sqrt{3} \quad (m = 1, 2).$$

Lemma 2.1 implies that $\langle f_{m,t}, g_{j,t} \rangle$ (m=1,2) are elementary for large enough t and j. Since $f_{m,t}$ is a loxodromic element and $g_{j,t}$ cannot interchange the two fixed points of $f_{m,t}$ for large enough t and j, it follows from Lemma 2.2 that $fix(f_{m,t}) \subset fix(g_{j,t})$ holds for each m=1,2 and sufficiently large t and j. Hence, there is an integer k_1 such that for all $j \geq k_1$, $fix(f_m) \subset fix(g_j)$ holds for each m=1,2.

Let $T(k_1) = \bigcap_{j \ge k_1} fix(g_j)$. Then $T(k_1)$ contains the linear span of fixed points of f_m and so has dimension of at least 1 for large positive integer k_1 . Thus, by passing to a subsequence of $\{g_i\}$ (denoted by the same manner), we have

$$T(k_1) \neq \emptyset$$
 and $1 \leq dim[T(k_1)] \leq n - 1$.

Suppose that there exists a loxodromic element $h \in G_r$ such that

$$fix(h) \cap T(k_1) = \emptyset$$
.

ALGEBRAIC CONVERGENCE THEOREMS OF COMPLEX KLEINIAN GROUPS 7

As an above reasoning (if needed, passing to a subsequence), there exists k_2 (> k_1) such that

$$fix(h) \subset T(k_2)$$
 and $dim[T(k_1)] + 1 \le dim[T(k_2)] \le n - 1$.

By repeating this step finite times, we can find k such that

$$fix(g) \subset T(k)$$

holds for any loxodromic element $g \in G_r$. Then $g_j \in W(G_r)$ for all j > k. This is a contradiction to the fact that $W(G_r)$ is finite.

The proof is complete.
$$\Box$$

Proof of Theorem 1.2. We divide our proof into three parts.

(1) First we prove that G_r is discrete.

Suppose that G_r is not discrete. Then there is a sequence $\{g_i\}$ of G_r such that

$$g_i \to I_{n+1}$$
 as $j \to \infty$,

and we can find a corresponding sequence $\{g_{j_k,i_k}\}$ such that

$$g_{i_k,i_k} \in G_{r,i_k}$$
 and $g_{i_k,i_k} \to I_{n+1}$ as $k \to \infty$. (3.1)

Since $\{G_{r,i}\}$ satisfies *IP-condition* and $G_{r,i}$ is discrete for each i, we may assume that for each k, g_{j_k,i_k} is parabolic or loxodromic. For each k, there is at least one generator of G_{r,i_k} , say f_{1,i_k} , such that $\langle f_{1,i_k}, g_{j_k,i_k} \rangle$ is non-elementary, which is a contradiction to Lemma 2.1. The above proves the discreteness of G_r .

(2) Then we prove that G_r is infinite.

Suppose that G_r is finite. As in the proof of part (1) in [9, Proposition 5.8], we can find a sequence $\{h_i\}$ such that $\{h_i\} \in G_{r,i}$ and $h_i \to I_{n+1}$ as $i \to \infty$. Similar discussions as in the proof of part (1) show that this is impossible. Hence, G_r is infinite.

(3) We prove that G_r is non-elementary.

Suppose that G_r is elementary. It follows from the infiniteness of G_r and Lemma 2.3 that G_r contains some element h of infinite order, i.e. h is parabolic or loxodromic. Let $\{h_i\}$ be the corresponding elements in $\{G_{r,i}\}$. Then

$$h_i \to h$$
 as $i \to \infty$.

Suppose that h is loxodromic. Then h_i is loxodromic for all sufficiently large i. For each generator f_s (s = 1, 2, ..., r) of G_r , as $\langle f_s, h \rangle$ is discrete and elementary, there exist k_s and p_s such that $[h^{k_s}, f_s h^{p_s} f_s^{-1}] = I_{n+1}$. Since $\{G_{r,i}\}$ satisfies IP-condition and $G_{r,i}$ is discrete, we have

$$[h_i^{k_s}, f_{s,i}h_i^{p_s}f_{s,i}^{-1}] \neq I_{n+1} \text{ and } [h_i^{k_s}, f_{s,i}h_i^{p_s}f_{s,i}^{-1}] \to I_{n+1} \text{ as } i \to \infty.$$

Let $g_i = [h_i^{k_s}, f_{s,i}h_i^{p_s}f_{s,i}^{-1}] \to I_{n+1}$ as $i \to \infty$. Then, as in the proof of part (1), we get a contradiction.

Thus, we may assume that h is parabolic. Since $\{G_{r,i}\}$ satisfies *IP-condition*, by Corollary 2.2, we know that h_i is parabolic or loxodromic.

Suppose that there is a subsequence of $\{h_i\}$ such that each h_i is parabolic or loxodromic. Then for i, there is a generator, say $f_{1,i}$, such that the group $\langle f_{1,i}, h_i \rangle$ is

non-elementary. By Lemma 2.6, the limit group of the sequence $\{\langle f_{1,i}, h_i \rangle\}$ is non-elementary. This implies that G_t is non-elementary. This is a contradiction.

The proof is complete. \Box

ACKNOWLEDGMENT. The author would like to express much gratitude to the referee for careful reading of this paper as well as many useful suggestions.

REFERENCES

- 1. B. N. Apanasov, *Conformal geometry of discrete groups and manifolds* (Walter de Gruyter, Berlin, Germany, 2000).
- **2.** W. Cao, Discrete and dense subgroups acting on complex hyperbolic space, *Bull. Aust. Math. Soc.* **82** (2008), 211–224.
- **3.** W. Cao and X. Wang, Discreteness criteria and algebraic convergence theorem for subgroups in $PU(1, n; \mathbb{C})$, *Proc. Japan Acad.* **82** (2006), 49–52.
- **4.** S. Chen and L. Greenberg, *Hyperbolic spaces, in Contributions to analysis* (Academic Press, New York, 1974), 49–87.
- **5.** B. Dai, A. Fang and B. Nai, Discreteness criteria for subgroups in complex hyperbolic space, *Proc. Japan Acad.* **77** (2001), 168–172.
- **6.** W. M. Goldman, *Complex hyperbolic geometry* (Oxford University Press, New York, 1999).
- 7. T. Jørgensen and P. Klein, Algebraic convergence of finitely generated Kleinian groups, *Quart. J. Math.* 33 (1982), 325–332.
 - **8.** S. Kamiya, Notes on elements of $U(1, n; \mathbb{C})$, Hiroshima Math. J. **21** (1991), 23–45.
- 9. G. J. Martin, On discrete Möbius groups in all dimensions, *Acta Math.* 163 (1989), 253–289.
- **10.** J. P. Navarrete, On the limit set of discrete subgroups of PU(2, 1), *Geometriae Dedicata* **122** (2006), 1–13.
- 11. X. Wang, Algebraic convergence theorems of n-dimensional Kleinian groups, *Isr. J. Math.* 162 (2007), 221–233.
- 12. X. Wang and W. Yang, Discreteness criteria of Möbius groups of high dimensions and convergence theorem of Kleinian groups, *Adv. Math.* 159 (2001), 68–82.