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Abstract. Let {Gr,i} be a sequence of r-generator subgroups of U(1, n; �) and Gr be
its algebraic limit group. In this paper, two algebraic convergence theorems concerning
{Gr,i} and Gr are obtained. Our results are generalisations of their counterparts in the
n-dimensional sense-preserving Möbius group.
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1. Introduction. Let � be the n-dimensional sense-preserving Möbius group
M(�̄n) or the unitary group U(1, n; �).

DEFINITION 1.1. Let {Gr,i} be a sequence of subgroups in group � and each be
generated by g1,i, g2,i, . . . , gr,i, where r = 1, 2, . . . . If for each t (1 ≤ t ≤ r),

gt,i → gt ∈ � as i → ∞,

then we say that {Gr,i} algebraically converges to Gr = 〈g1, g2, . . . , gr〉.
If for each i, Gr,i is a Kleinian group, the problem that when Gr is still a Kleinian

group has been investigated by a number of authors.
When n = 2, Jørgensen and Klein [7] proved the following.

THEOREM JK. If each Gr,i is a r-generator Kleinian group, then the limit group Gr is
also a Kleinian group.

Examples in [12] show that the Theorem JK could not be extended to n-
dimensional cases (n ≥ 3) without any modifications. The reason for this phenomenon
is that there is a great difference in the fixed point set of elliptic elements between M(�̄2)
and M(�̄n) when n ≥ 3. Several authors have obtained their analogues in M(�̄n) when
n ≥ 3 by adding some condition(s) to control the fixed point set of elliptic elements.

Apanasov [1] proved the following.

THEOREM A. If for each Gr,i, its generators are of infinite order and Gr,i is discrete,
then for each t (1 ≤ t ≤ r), gt = limi→∞ gt,i is different from the identity. Furthermore, if
each Gr,i is a torsion-free Kleinian group, then Gr is also a torsion-free Kleinian group.

Martin [9] proved this.

∗Supported by NSFs of China (11071063,10801107) and NSF of Guangdong Province (S2011010000735).

https://doi.org/10.1017/S0017089512000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000304


2 WENSHENG CAO

THEOREM M. Let Gr be an algebraic limit group of a sequence of r-generator Kleinian
groups of M(�̄n) of uniformly bounded torsion. Then Gr is a Kleinian group.

Wang [11] proved this.

THEOREM W. Let r < ∞ and Gr be the algebraic limit group of a sequence of r-
generator Kleinian groups {Gr,i} of M(�̄n). If {Gr,i} satisfies EP-condition, then Gr is a
Kleinian group.

See details in [11] for the definitions of uniformly bounded torsion, EP-condition
and WY (Gr).

A complex hyperbolic space is more complicated than a real hyperbolic space. For
example, it has variable negative curvature, it is a Kähler manifold with biholomorphic
automorphisms and its boundary has a natural contact structure, which is locally
modelled on the Heisenberg geometry. Because of a closed connection between real
and complex hyperbolic geometry, the road map of analogy frequently points the
way towards potentially interesting questions. It is interesting to investigate analogous
results of a real hyperbolic space in the setting of a complex hyperbolic space.

The purpose of this paper is to find analogous results mentioned above in the
setting of a complex hyperbolic space. In order to state our main results, we first recall
some notations and facts about a complex hyperbolic space.

The complex hyperbolic n-space Hn
� may be identified with a unit ball in �n with the

Bergman metric [6, 8]. The group of its holomorphic isometries is the group U(1, n; �)
acting on Hn

� and on its boundary ∂Hn
�. For a non-trivial element g of U(1, n; �),

we say that g is parabolic if it has exactly one fixed point and this lies on ∂Hn
� ; g is

loxodromic if it has exactly two fixed points and they lie on ∂Hn
� and g is elliptic if it

has a fixed point in Hn
�.

For elliptic element g, let �0 and �i, i = 1, 2, . . . , n be its negative and positive
classes of eigenvalues, respectively. Then the fixed point set of g in Hn

� contains only
one fixed point if �0 �= �i, i = 1, 2, . . . , n and is a totally geodesic sub-manifold,
which is equivalent to Hm

� (for some m ≤ n) if �0 coincides with exactly m of class
�i, i = 1, 2, . . . , n. We call an elliptic element g an irrational rotation if eiθ ∈ �t with
irrational θ for some t. We remark that U(1, n; �) has an elliptic element, which has no
fixed point in the boundary ∂Hn

�. Such elements are the counterparts of fixed-point-free
elements in M(�̄n).

For subgroup G ⊂ U(1, n; �), the limit set L(G) of G is defined as

L(G) = G(p) ∩ ∂Hn
�, p ∈ Hn

�.

As in [3], for subgroup G of U(1, n; �) containing a loxodromic element, let

W (G) = ∩f ∈h(G)Gf ix(f ),

where h(G) is a set of all loxodromic elements in G and Gf ix(f ) = {g ∈ G : f ix(f ) ⊂
f ix(g)}.

A subgroup G of U(1, n; �) is called non-elementary if it contains two non-elliptic
elements of infinite order with distinct fixed points that are not irrational rotations;
otherwise G is called elementary. We call a non-elementary and discrete subgroup G of
U(1, n; �) a complex Kleinian group.

https://doi.org/10.1017/S0017089512000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000304


ALGEBRAIC CONVERGENCE THEOREMS OF COMPLEX KLEINIAN GROUPS 3

As in [11], a subset H of U(1, n; �) is said to have uniformly bounded torsion if
there exists an integer M such that

ord(g) ≤ M or ord(g) = ∞ if g ∈ H.

We refer to [4–6, 8] for more details of these concepts and some properties of a
complex hyperbolic space.

When � = U(1, n; �) in Definition 1.1, we assume that r < ∞, and for {Gr,i} we
introduce the following conditions:

We say that {Gr,i} satisfies I-condition if any sequence {fik} (fik ∈ Gr,ik ) satisfying
that for each k, card[f ix(fik )] = ∞ and fik → the identity as k → ∞, has uniformly
bounded torsion. Here card(M) denotes the cardinality of set M.

We say that {Gr,i} satisfies IP-condition if {Gr,i} satisfies the following conditions: for
any sequence {fik} (fik ∈ Gr,ik ), if card(f ix(fik )) = ∞ for each k, and fik → f as k → ∞
with f being the identity or parabolic, then {fik} has uniformly bounded torsion.

As should be apparent, our exposition and results here owe a great deal to Martin’s
[9] and Wang’s papers [11]. Our main results are the following theorems.

THEOREM 1.1. Let {Gr,i} be a sequence of groups of U(1, n; �). If each Gr,i is discrete,
then the algebraic limit group Gr of {Gr,i} is either a complex Kleinian group, or it is
elementary, or W (Gr) is not finite.

THEOREM 1.2. Let Gr be the algebraic limit group of complex Kleinian groups {Gr,i}
of U(1, n; �). If {Gr,i} satisfies IP-condition, then Gr is a complex Kleinian group.

2. Several lemmas. The following lemma is crucial for us.

LEMMA 2.1. (cf. [5]). Suppose that f and g ∈ U(1, n; �) generate a discrete and
non-elementary group. Then

(1) if f is parabolic or loxodromic, we have

max{N(f ), N([f, g])} ≥ 2 −
√

3,

where [f, g] = fgf −1g−1 is a commutator of f and g, N(f ) = ‖f − In+1‖ and ‖.‖ is the
Hilbert–Schmidt norm;

(2) if f is elliptic, we have

max{N(f ), N([f, gi]) | i = 1, 2, . . . , n + 1} ≥ 2 −
√

3.

The following lemma is a classification of elementary subgroups of U(1, n; �).

LEMMA 2.2. (cf. [2]).
(1) If G contains a parabolic element but no loxodromic element, then G is elementary

if and only if it fixes a point in ∂Hn
�;

(2) If G contains a loxodromic element, then G is elementary if and only if it fixes a
point in ∂Hn

� or a point-pair {x, y} ⊂ ∂Hn
�;

(3) G is purely elliptic, i.e. each non-trivial element of G is elliptic, then G is elementary
and fixes a point in Hn

�.

LEMMA 2.3. (cf. [10]). Let G be a discrete subgroup of U(1, n; �) such that every
element has finite order, then G is finite.
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LEMMA 2.4. Let f ∈ U(1, n; �) be an elliptic element of order m. If 2 ≤ m < M,
then there is a constant δ(M) such that

N(f ) > δ(M).

Proof. Let the eigenvalues of f be λj = eiθj (j = 1, . . . , n + 1). By Schur’s unitary
triangularization theorem, there is a matrix U ∈ U(n + 1; �) such that

Uf ŪT =

⎛
⎜⎜⎜⎝

λ1 ∗ ∗ ∗
0 λ2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 λn+1

⎞
⎟⎟⎟⎠.

Hence, ‖f − In+1‖2 ≥ ∑n+1
j=1 |λj − 1|2 = 2(n + 1) − 2

∑n+1
j=1 cos θj. It follows from f m =

In+1 that there is a j such that | cos θj| �= 1 and θj = 2pπ

m (here p and m are prime). Hence,

1 − cos θj ≥ 1 − | cos θj| > 1 −
∣∣∣cos

π

m

∣∣∣.
Set δ(M) = √

1 − | cos π
m |. Then δ(M) is the desired number. �

From Lemma 2.4, we have the following.

COROLLARY 2.1. If fj → In+1 as j → ∞ and fj are elliptic elements with ord(fj) < m,
then for all large enough j, fj = In+1.

COROLLARY 2.2. If fj are elliptic elements with ord(fj) ≤ M and fj → f as j → ∞,
then f is an elliptic element with order m (2 ≤ m ≤ M), and for all large enough j,
order(fj) = m.

Proof. By the Pigeonhole Principle, we can choose a subsequence fjk such that each
element with order m (2 ≤ m ≤ M). Then f m

jk → f m, i.e. f is an elliptic element with
order m. �

LEMMA 2.5. (cf. [9, Lemma 2.8]). Let x and y be two distinct points in Hn
�. If

f ∈ U(1, n; �) interchanges x and y, then

N(f ) ≥
√

2.

Proof. Since f interchanges x, y ∈ Hn
�, we can find λi �= 0 (i = 1, 2) such that

f
(

1
x

)
= λ1

(
1
y

)
, f

(
1
y

)
= λ2

(
1
x

)
. (2.1)

By the linear algebra theory, we can find U ∈ U(n + 1; �) such that

U
(

1
x

)
=

(
t1

0

)
, U

(
1
y

)
=

⎛
⎝ c1

c2

0

⎞
⎠, (2.2)

where t1, c1, c2 ∈ � and |t1|2 = 1 + ‖x‖2, |c1|2 + |c2|2 = 1 + ‖y‖2. Since x �= y, we have
that c2 �= 0.
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Let g = (bij)i,j=1,...,n+1 = Uf ŪT . It follows from (2.1) and (2.2) that

b11t1 = c1λ1, b21t1 = c2λ1 and b21c1 + b22c2 = 0,

which implies that b11 = −b22.

Thus,

‖f − In+1‖2 = ‖g − In+1‖2 ≥ |b11 − 1|2 + |b22 − 1|2

≥ 1
2

|b11 + b22 − 2|2 = 2,

i.e. N(f ) ≥ √
2. �

LEMMA 2.6. Let {fi} and {gi} be two sequences of U(1, n; �), which converge to f and
g, respectively. Suppose that each group 〈fi, gi〉 is a complex Kleinian group and each fi

is of infinite order. Then f is of infinite order and 〈f, g〉 is a complex Kleinian group if
{〈fi, gi〉} satisfies I-condition.

Proof. We first prove that 〈f, g〉 is discrete.
Suppose that 〈f, g〉 is not discrete. Then there is a sequence {hj} of 〈f, g〉 such that

hj → In+1 as j → ∞. Let hj,i be the corresponding elements in 〈fi, gi〉 such that

hj,i → hj as i → ∞.

These elements form a sequence hjk,ik ∈ 〈fik , gik〉 satisfying

hjk,ik → In+1 as k → ∞.

Since 〈fik , gik〉 is a complex Kleinian and {〈fi, gi〉} satisfies I-condition, by Lemma 2.4,
we conclude that hjk,ik is parabolic or loxodromic.

Let q1,ik and q2,ik be two loxodromic elements of 〈fik , gik〉 having no common fixed
point. Since hjk,ik → In+1 , there is a positive M such that for all k > M,

max{N(hjk,ik ), N([hjk,ik , qt,ik ])} < 2 −
√

3, (t = 1, 2).

By Lemma 2.1 and the discreteness of 〈qt,ik , hjk,ik〉, we know that 〈qt,ik , hjk,ik〉 is
elementary, which is a contradiction to Lemma 2.2. The above shows that 〈f, g〉 is
discrete.

We now come to prove that 〈f, g〉 is non-elementary.
We first show that f is parabolic or loxodromic. Since 〈f, g〉 is discrete, f cannot be

an irrational rotation. Suppose that there is a positive M such that f M = In+1. Then
f M
i �= In+1 and

f M
i → In+1 as i → ∞.

Hence, for sufficiently large i,

max
{
N

(
f M
i

)
, N

([
f M
i , gt

i

]) | t = 1, 2, . . . , n + 1
}

< 2 −
√

3.

By Lemma 2.1, 〈f M
i , gi〉, which are subgroups of discrete group 〈fi, gi〉, are elementary

for sufficiently large i. This implies that 〈fi, gi〉 is elementary. This is a contradiction.
We then show that 〈f, g〉 is non-elementary.
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Suppose that 〈f, g〉 is elementary. As in [9, Proposition 2.7], we can show that 〈f, g〉
is virtually abelian. Thus, there exist two integers t and s such that

[f t, gf sg−1] = In+1.

Let hi = [f t
i , gif s

i g−1
i ]. Then,

hi ∈ 〈fi, gi〉, hi �= In+1 and hi → In+1 as i → ∞.

As in the proof of discreteness of 〈f, g〉, we can get a contradiction. Thus, 〈f, g〉 is
non-elementary. �

3. Proofs of convergence theorems.

Proof of Theorem 1.1. Assume that Gr is non-elementary and W (Gr) is finite. We
need to prove that Gr is discrete.

Suppose that Gr is not discrete. Then there is a sequence {gj} of Gr such that

gj → In+1 as j → ∞.

We will get a contradiction by showing that each gj belongs to W (Gr) for large
enough j.

Since Gr is non-elementary, Gr contains two loxodromic elements f1 and f2 sharing
no common fixed point. Then for large enough j,

N(gj) +
n+1∑
k=1

N
([

gj, f k
m

])
< 2 −

√
3 (m = 1, 2).

Let gj,t and fm,t be the corresponding entries in Gr,t. That is gj,t → gj and fm,t → fm as
t → ∞. Then for large enough t and j,

N(gj,t) +
n+1∑
k=1

N
([

gj,t, f k
m,t

])
< 2 −

√
3 (m = 1, 2).

Lemma 2.1 implies that < fm,t, gj,t > (m = 1, 2) are elementary for large enough t and
j. Since fm,t is a loxodromic element and gj,t cannot interchange the two fixed points of
fm,t for large enough t and j, it follows from Lemma 2.2 that f ix(fm,t) ⊂ f ix(gj,t) holds
for each m = 1, 2 and sufficiently large t and j. Hence, there is an integer k1 such that
for all j ≥ k1, f ix(fm) ⊂ f ix(gj) holds for each m = 1, 2.

Let T(k1) = ⋂
j≥k1

f ix(gj). Then T(k1) contains the linear span of fixed points of
fm and so has dimension of at least 1 for large positive integer k1. Thus, by passing to
a subsequence of {gj} (denoted by the same manner), we have

T(k1) �= ∅ and 1 ≤ dim[T(k1)] ≤ n − 1.

Suppose that there exists a loxodromic element h ∈ Gr such that

f ix(h) ∩ T(k1) = ∅.
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As an above reasoning (if needed, passing to a subsequence), there exists k2 (> k1)
such that

f ix(h) ⊂ T(k2) and dim[T(k1)] + 1 ≤ dim[T(k2)] ≤ n − 1.

By repeating this step finite times, we can find k such that

f ix(g) ⊂ T(k)

holds for any loxodromic element g ∈ Gr. Then gj ∈ W (Gr) for all j > k. This is a
contradiction to the fact that W (Gr) is finite.

The proof is complete. �
Proof of Theorem 1.2. We divide our proof into three parts.

(1) First we prove that Gr is discrete.
Suppose that Gr is not discrete. Then there is a sequence {gj} of Gr such that

gj → In+1 as j → ∞,

and we can find a corresponding sequence {gjk,ik} such that

gjk,ik ∈ Gr,ik and gjk,ik → In+1 as k → ∞. (3.1)

Since {Gr,i} satisfies IP-condition and Gr,i is discrete for each i, we may assume that
for each k, gjk,ik is parabolic or loxodromic. For each k, there is at least one generator
of Gr,ik , say f1,ik , such that 〈f1,ik , gjk,ik〉 is non-elementary, which is a contradiction to
Lemma 2.1. The above proves the discreteness of Gr.

(2) Then we prove that Gr is infinite.
Suppose that Gr is finite. As in the proof of part (1) in [9, Proposition 5.8], we can find
a sequence {hi} such that {hi} ∈ Gr,i and hi → In+1 as i → ∞. Similar discussions as in
the proof of part (1) show that this is impossible. Hence, Gr is infinite.

(3) We prove that Gr is non-elementary.
Suppose that Gr is elementary. It follows from the infiniteness of Gr and Lemma 2.3

that Gr contains some element h of infinite order, i.e. h is parabolic or loxodromic. Let
{hi} be the corresponding elements in {Gr,i}. Then

hi → h as i → ∞.

Suppose that h is loxodromic. Then hi is loxodromic for all sufficiently large i. For
each generator fs (s = 1, 2, . . . , r) of Gr, as 〈fs, h〉 is discrete and elementary, there exist
ks and ps such that [hks , fshps f −1

s ] = In+1. Since {Gr,i} satisfies IP-condition and Gr,i is
discrete, we have

[
hks

i , fs,ihps
i f −1

s,i

] �= In+1 and
[
hks

i , fs,ihps
i f −1

s,i

] → In+1 as i → ∞.

Let gi = [hks
i , fs,ih

ps
i f −1

s,i ] → In+1 as i → ∞. Then, as in the proof of part (1), we get a
contradiction.

Thus, we may assume that h is parabolic. Since {Gr,i} satisfies IP-condition, by
Corollary 2.2, we know that hi is parabolic or loxodromic.

Suppose that there is a subsequence of {hi} such that each hi is parabolic
or loxodromic. Then for i, there is a generator, say f1,i, such that the group 〈f1,i, hi〉 is
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non-elementary. By Lemma 2.6, the limit group of the sequence {〈f1,i, hi〉} is non-
elementary. This implies that Gr is non-elementary. This is a contradiction.

The proof is complete. �
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