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Abstract. We study the analysis of a probability density K on a Lie group G,
where G is a semidirect product of a compact group M with a nilpotent group N. To
approximate analysis on G with analysis on N, it is natural to consider certain maps
(“realizations”) of G onto N. In this paper, we prove the existence of a realization of
G in N which is K-harmonic (modulo the commutator subgroup of N). By utilizing
this result and extending some ideas of Alexopoulos, we can prove the boundedness in
Lp spaces of some new Riesz transforms associated with K , and obtain new regularity
estimates for the convolution powers of K .
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1. Introduction. Consider a Lie group G which is a semidirect product of a
connected compact Lie group M acting on a connected, simply connected nilpotent
Lie group N. We will identify M and N with closed subgroups of G, so that

G = NM, N ∩ M = {e}, (1)

and N is a normal subgroup of G.
Since M is compact, it is natural to expect that analysis “at infinity” on G is

approximated by analysis on the nilpotent group N. This idea of approximating a given
group by a nilpotent group with simpler structure has been extensively developed, even
in a more general setting where G is replaced by any Lie group of polynomial growth:
see, for example, [1–3, 6] and references therein.

To compare analysis on G and N, one usually chooses a map �: G → N which
“realizes” G in N. In view of (1), it is natural to define � by �(xm) = x, for m ∈ M,
x ∈ N. Note that � is not a homomorphism, except when G is a direct product of M
and N.

More generally, let us say that a connected compact subgroup M′ of G is a compact
factor of G if G = NM′ and N ∩ M′ = {e}. For each such M′ we define a “realization”

�M′ : G → N, �M′(xm′) = x

for m′ ∈ M′, x ∈ N, and in general we could have �M′ �= �M . Our use of the term
“realization” is inspired by Kotani and Sunada [10], who studied a different setting of
realizations of lattice graphs in Euclidean spaces.

The motivation of this paper is that one can get better analytic results if one
chooses M′ so that �M′ is a harmonic or “almost-harmonic” map. We will develop
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this idea for analysis of a probability density K : G → � on G. Define K̃ : G → � by
K̃(g) = K(g−1). A function f : G → � is said to be harmonic with respect to K if
f = f ∗ K̃, or equivalently if Hf = 0, where H = H(K) is the discrete Laplacian defined
by

(Hf )(h) = f (h) − ( f ∗ K̃)(h) =
∫

G
dg K(g)[ f (h) − f (hg)], h ∈ G.

Here dg denotes a fixed Haar measure on G and the convolution of functions f1, f2 is
defined by ( f1 ∗ f2)(h) = ∫

G dg f1(g)f2(g−1h), h ∈ G.
More generally, a map F : G → V into a vector space V ∼= �d is said to be harmonic

if its components Fi = xi ◦ F : G → � are harmonic, where (x1, . . . , xd) is some basis
for V∗. This notion is clearly independent of basis.

In what follows, we will assume that the probability density K : G → �, with K ≥ 0
and

∫
G K = 1, is continuous, compactly supported, symmetric (that is, K̃ = K), and

that inf{K(g): g ∈ U0} > 0 for some neighborhood U0 of the identity of G.
Our basic theorem is the following. Note that the simply connected abelian Lie

group N/[N, N] ∼= �d can be identified with a vector space.

THEOREM 1.1. Fix a density K on G, as above. Let π : N → N/[N, N] be the canonical
homomorphism. There exists a compact factor M′ of G such that the map π ◦ �M′ : G →
N/[N, N] is harmonic with respect to K.

Theorem 1.1 will be obtained from its special case Theorem 1.2, where N is abelian.

THEOREM 1.2. Suppose N ∼= �d is abelian. Fix a density K on G, as above. Then
there exists a unique compact factor M′ of G such that �M′ : G → N is harmonic with
respect to K.

Note that some results broadly analogous to Theorems 1.2 and 1.1 were obtained
in [10] and [9], for realizations of lattice graphs in Euclidean spaces or in nilpotent
groups.

Before stating an application of Theorem 1.1 to analysis, we fix some notation. Let
K (n) = K ∗ K ∗ · · · ∗ K be the n-th convolution power of K , for n ∈ � = {1, 2, 3, . . .}.
Denote by ∂z the difference operator I − R(z), z ∈ G, where R = RG is the right regular
representation of G:

(R(h) f )(g) = f (gh), g, h ∈ G,

for a function f : G → �. Fix a compact neighborhood U = U−1 of the identity e of G
and define ρ = ρU : G → � by

ρ(g) = inf{n ∈ �: g ∈ Un},

where Un is the set of all products u1 · · · un with ui ∈ U . Note that G has polynomial
volume growth of some order D ∈ �: that is, c−1nD ≤ dg(Un) ≤ cnD for all n ∈ � (the
group N has polynomial growth of the same order D). In general, c, b, c′ and so on,
denote positive constants whose value may change from line to line when convenient.

Under our assumptions on K , one has (see [8]) Gaussian estimates

K (n)(g) ≤ cn−D/2e−bρ(g)2/n,
∣∣(∂zK (n))(g)

∣∣ ≤ cn−(D+1)/2e−bρ(g)2/n (2)
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for all n ∈ �, g ∈ G, and z ∈ U . Moreover (see [3]) the first order Riesz transform
∂zH−1/2 is bounded in Lp := Lp(G; dg) for all z ∈ G and 1 < p < ∞. In general these
results do not extend to second or higher order difference operators: the estimate
‖∂z1∂z2 K (n)‖∞ = O(n−(D+2)/2), n ∈ �, may fail, and the transform ∂z1∂z2 H−1 may fail to
be bounded (cf. [3, p.122]; also see [1, 7] for related results).

This failure can occur when z1, z2 are elements of a compact factor M′′. But if the
compact factor is chosen as in Theorem 1.1 we have the following positive result.

THEOREM 1.3. Let G, K, and M′ be as in Theorem 1.1, so that π ◦ �M′ is harmonic.
Then one has an estimate∣∣∂mK (n)(g)

∣∣ + ∣∣∂z∂mK (n)(g)
∣∣ ≤ cn−(D+2)/2e−bρ(g)2/n

for all n ∈ �, g ∈ G, m ∈ M′, and z ∈ U. Moreover, for any m ∈ M′ and z ∈ G, the Riesz
transforms ∂mH−1 and ∂z∂mH−1 are bounded in Lp for 1 < p < ∞.

The proof of Theorem 1.3 will be an extension of the analysis of Alexopoulos [3].
He obtains precise Berry-Esseen estimates which show that the convolution powers K (n)

are asymptotically close, for large n, to the heat kernel pn of a sublaplacian operator
on N. We will improve these estimates when π ◦ �M′ is harmonic.

To state our final theorem, given a compact factor M′, we define a Lie group
GN = GN(M′) with underlying manifold G and group product ∗N such that

m1 ∗N m2 = m1m2, x1 ∗N x2 = x1x2, x1 ∗N m1 = m1 ∗N x1 = x1m1,

for all x1, x2 ∈ N and m1, m2 ∈ M′. Observe that GN is isomorphic to N × M′ ∼=
N × (G/N). To emphasize that the precise definition of GN depends on the choice of
compact factor M′, we write GN = GN(M′).

Define the difference operators ∂̃z = I − RGN (z), z ∈ G, where RGN denotes the
right regular representation of the group GN .

THEOREM 1.4. Adopt the hypotheses of Theorem 1.3, and consider GN = GN(M′)
where π ◦ �M′ is harmonic. Then one has an estimate∣∣̃∂g

z1
∂̃g

z2
K (n)(g−1h)

∣∣ ≤ cn−(D+2)/2e−bρ(g−1h)2/n

for all n ∈ �, g, h ∈ G and z1, z2 ∈ U (the superscript g indicates that ∂̃zi act with respect
to the variable g). Moreover, the transform ∂̃z1 ∂̃z2 H−1 is bounded in Lp, 1 < p < ∞, for
all z1, z2 ∈ G.

We finish this section with a number of remarks.
(a) Theorems 1.3 and 1.4 are not valid without the hypothesis that π ◦ �M′ is

harmonic.
More precisely, one can show, for example, that if M′′ is a compact factor such that

‖∂mK (n)‖∞ = O(n−(D+2)/2), n ∈ �, for each m ∈ M′′, then π ◦ �M′′ must be harmonic.
We will omit the proof (one can prove it by a straightforward extension of the analysis
of Section 4 below).

(b) See Theorem 4.4 in Section 4 below for a Berry-Esseen estimate involving the
differences ∂m and ∂̃z1 ∂̃z2 .

(c) The theorems in this paper could be generalized to any Lie group of polynomial
volume growth. In this more general setting, roughly speaking one has G = SM with
M a compact subgroup and S a solvable normal subgroup, and to approximate G with
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a nilpotent group one defines the nilshadow SN of the solvable group S (for details see
[2, 3, 6]). However, for simplicity, in this paper we restrict ourselves to groups G = NM.

(d) For a sublaplacian on a Lie group of polynomial growth, the author [5] has
obtained results comparable with Theorems 1.3 and 1.4. For the results of [5] one needs
to choose a harmonic realization (in a sense analogous to Theorem 1.1), though the
relationship with harmonic maps is not explicitly stated in [5].

Let us state the analogue for a sublaplacian of Theorem 1.1. The proof is omitted,
but is actually essentially contained in the arguments of [6, pp. 139–140].

THEOREM 1.5. Let H̃ = −∑d ′
i=1 A2

i be a sublaplacian on G = NM, where
A1, . . . , Ad ′ is a list of left invariant vector fields on G which satisfy the Hörmander
condition ( for background, see [12] for instance). Then, there exists a compact factor
M′ such that π ◦ �M′ is harmonic with respect to H̃; that is, given linear coordinates
{xi}d

i=1 on N/[N, N] ∼= �d , one has H̃(xi ◦ π ◦ �M′) = 0 for all i ∈ {1, . . . , d}.
(e) Observe that the results of Theorem 1.3 for ∂z∂m follow trivially from the results

for ∂m.
(f ) The compact factor M′ in Theorem 1.2 is unique. But M′ in Theorem 1.1 is

not necessarily unique; indeed, it is easy to see that

π ◦ �M′ = π ◦ �yM′y−1 , for any y ∈ [N, N].

Conversely, one can prove (we will omit the details) that if M′, M′′ are any compact
factors such that π ◦ �M′ and π ◦ �M′′ are harmonic, then there exists y ∈ [N, N] with
M′′ = yM′y−1.

(g) The following Gaussian estimate for higher order differences is proved in [4],
and can also be obtained by applying difference operators to the Taylor expansions of
[3]. Given any k ∈ �, one has an estimate

∣∣∂x1 . . . ∂xk∂zK (n)(g)
∣∣ ≤ cn−(k+1)/2n−D/2e−bρ(g)2/n (3)

for all n ∈ �, x1, . . . , xk ∈ U ∩ N and z ∈ U .
Then we can explain the situation for second-order differences as follows.

Choose M′ with π ◦ �M′ harmonic, and suppose m1, m2 ∈ M′, x1, x2 ∈ N. Then by
Theorem 1.3 and (3), the functions ‖∂m1∂m2 K (n)‖∞, ‖∂x1∂x2 K (n)‖∞ and ‖∂x1∂m1 K (n)‖∞
are of order O(n−(D+2)/2). (This assertion can also be derived from Theorem 1.4.)

On the other hand, in general ‖∂m1∂x1 K (n)‖∞ is only O(n−(D+1)/2). To see this, write

∂m1∂x1 = ∂x1∂m1 + R(m1x1)∂y, with y = x−1
1 m−1

1 x1m1,

and note that if M′ acts non-trivially on N then ‖∂yK (n)‖∞ is only O(n−(D+1)/2) in
general.

This problem does not arise for GN-invariant difference operators, since ∂̃m1 = ∂m1

commutes with ∂̃x1 for all m1 ∈ M′ and x1 ∈ N.
Theorems 1.2 and 1.1 will be proved in Sections 2 and 3 respectively; Theorems 1.3

and 1.4 are proved in Section 4.

2. Proof of Theorem 1.2. To prove Theorem 1.2, in this section we consider
G = NM where M is a fixed compact factor and N ∼= �d .
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To motivate the proof, suppose temporarily that N = �d and write �M =
(x1, . . . , xd) where xi: G → �. In general the “coordinates” xi are not harmonic. But
it turns out that one can solve the d equations

Hχi = Hxi (4)

for some functions χi: G → � which are constant in the direction of N, that is, they
are lifts of functions on G/N ∼= M. Then zi := xi − χi is harmonic. To show that
(z1, . . . , zd) = �M′ for some compact factor M′, we will essentially rewrite (4) as an
abstract linear equation in the vector space N (see (8) below).

Let us fix some notation. The action T : M → Aut(N) = GL(N), T(m)x := mxm−1,
m ∈ M, x ∈ N, is a representation of M in the vector space N. The group product of
G is given by

g1g2 = (x1m1)(x2m2) = (x1 + T(m1)x2)(m1m2) (5)

for gi = ximi ∈ G, mi ∈ M, xi ∈ N, i = 1, 2. (We often use + to denote the product
within N.) It is convenient to extend T to a representation T : G → Aut(N) of G, by
setting T(xm) = T(m) for m ∈ M, x ∈ N.

Since M is compact, we may choose a positive-definite inner product 〈·, ·〉 on N
which is T-invariant, that is, 〈T(g)x, T(g)y〉 = 〈x, y〉 for all g ∈ G, x, y ∈ N. Defining
V1 as the orthogonal complement in N of V0 := {x ∈ N: T(g)x = x for all g ∈ G}, we
have

N = V0 ⊕ V1, (6)

where the vector subspaces Vi are invariant under T . Note that V0, V1 are normal
subgroups of G and V0 is contained in the centre of G; moreover, G ∼= V0 × (V1M).

For each y ∈ N, we define a compact factor My := yMy−1 and set �(y) :=
�My : G → N. In view of (6) we can write

�(y)(g) = �
(y)
0 (g) + �

(y)
1 (g),

where �
(y)
i : G → Vi, i = 0, 1. In case y = e we have Me = M, and to simplify the

notation we will write �(e) = � and �
(e)
i = �i.

THEOREM 2.1. Fix the density K on G. There exists a unique element y ∈ V1 such
that the map �(y) is harmonic with respect to K.

Theorem 2.1 yields the existence statement of Theorem 1.2. To get the uniqueness
statement of Theorem 1.2, we also need the following lemma.

LEMMA 2.2. Any two compact factors of G are conjugate via N; that is, for any
compact factor M′, there is z ∈ N with M′ = zMz−1.

One can prove Lemma 2.2 using standard Lie algebra results about the conjugacy
of Levi subalgebras and Cartan subalgebras. We omit the details (but see, for example,
[6, p. 81] for a similar proof).

To prove uniqueness in Theorem 1.2, let M′ be any compact factor such that �M′ is
harmonic. By Lemma 2.2, M′ = Mz for some z ∈ N. Writing z = z0 + z1, zi ∈ Vi, then
clearly Mz = Mz1 . Theorem 2.1 implies that z1 = y, so that M′ = My and uniqueness
is proved.

https://doi.org/10.1017/S0017089505002508 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002508


296 NICK DUNGEY

It remains to prove Theorem 2.1. In what follows, y will denote an arbitrary
element of N.

Abusing notation slightly, we regard the right regular representation R = RG as
acting also on functions F : G → N, and denote also by H the operator defined by
HF = ∫

G dg K(g)(I − R(g))F . Then F : G → N is harmonic if and only if HF = 0.
We first derive the “change-of-coordinates” formulae relating �(y) to � = �(e).

For g = xm, m ∈ M, x ∈ N, observe that

g = x(mym−1)y−1(ymy−1) = (x − y + T(m)y)(ymy−1),

which implies that

�(y)(g) = x − y + T(m)y = �(g) − y + T(g)y (7)

for all g ∈ G. Taking components in V0 and V1, and observing that y − T(g)y ∈ V1,
we find that

�
(y)
0 = �0, �

(y)
1 (g) = �1(g) − y + T(g)y

for all y ∈ N, g ∈ G.
We claim that �

(y)
0 = �0 is harmonic. Indeed, note from (5) that �0: G → N is a

group homomorphism, and apply the following lemma.

LEMMA 2.3. A smooth homomorphism χ of G into a vector space W ∼= �s is
harmonic. In particular, �

(y)
0 = �0 is harmonic.

Proof. By a change of variable g → g−1 and the symmetry K(g−1) = K(g), we have∫
dg K(g)χ (g) =

∫
dg K(g−1)χ (g−1) = −

∫
dg K(g)χ (g),

so that
∫

dg K(g)χ (g) = 0. Then
∫

dg K(g)(χ (h) − χ (hg)) = − ∫
dg K(g)χ (g) = 0 for

all h ∈ G, and χ is harmonic. �
The next lemma establishes that �(y) is harmonic if and only if it is harmonic at

the identity e, that is, if and only if (H�(y))(e) = 0.

LEMMA 2.4. For all h ∈ G and y ∈ N,

(
H�(y))(h) = −T(h)

[∫
dg K(g)�(y)(g)

]
∈ V1.

In particular, �(y) is harmonic if and only if
∫

dg K(g)�(y)(g) = 0.

Proof. Suppose g = x1m1, h = x2m2, where m1, m2 ∈ My and x1, x2 ∈ N. Since
hg = (x2 + (m2x1m−1

2 ))(m2m1), we calculate that

�(y)(h) − �(y)(hg) = x2 − (
x2 + (

m2x1m−1
2

))
= −(

m2x1m−1
2

)
= −T(h)

(
�(y)(g)

)
.

Therefore

(
H�(y))(h) =

∫
dg K(g)

[
�(y)(h) − �(y)(hg)

] = −
∫

dg K(g)T(h)�(y)(g),
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which proves the first equality of the lemma. Since �
(y)
0 is harmonic, H�(y) = H�

(y)
1

takes values in V1, and the lemma follows. �
From Lemma 2.4, together with (7), we obtain the following criterion.

LEMMA 2.5. Let y ∈ N. The map �(y) is harmonic if and only if y satisfies∫
dg K(g)(I − T(g))y =

∫
dg K(g)�(g). (8)

By Lemma 2.4, the right side of equation (8) is in V1. To complete the proof of
Theorem 2.1 a final lemma is needed.

LEMMA 2.6. The linear transformation HT := ∫
dg K(g)(I − T(g)) of N restricts to

a bijection HT : V1 → V1. Hence there is a unique y ∈ V1 satisfying equation (8).

Proof. We show that the restriction of HT to V1 is injective. Let x ∈ V1 with
HT x = 0. Observe (using K(g−1) = K(g)) that

HT = 2−1
∫

dg K(g)(I − T(g−1))(I − T(g)),

so that

0 = 〈HT x, x〉 = 2−1
∫

dg K(g)〈(I − T(g))x, (I − T(g))x〉.

Since K is strictly positive in a neighborhood of the identity of G, it follows that
x = T(g)x for all g in some neighborhood of the identity. Because T is a representation
of G, then T(g)x = x for all g ∈ G, in other words, x ∈ V0 ∩ V1 = {0}. This proves the
lemma and completes the proof of Theorems 2.1 and 1.2. �

3. Proof of Theorem 1.1 from Theorem 1.2. In this section we derive Theorem 1.1
from Theorem 1.2.

Let G be as in Theorem 1.1. Define G = G/[N, N], N = N/[N, N] ⊆ G, and let
π : G → G be the canonical map. Observe that N ∼= �d is abelian.

Let dg be a Haar measure on G, and consider the probability density
K := π (K): G → � satisfying

∫
G dg K(g)f (π (g)) = ∫

G dg K(g)f (g) for all continuous
functions f : G → �. The discrete Laplacians H, H, corresponding respectively to K
and K, are related by

(Hf ) ◦ π = H( f ◦ π ). (9)

Let M be a compact factor of G, and observe that π (M) is a compact factor of G, that
is, G = N(π (M)).

Applying Theorem 1.2 to G yields a compact factor M′′ of G such that �M′′ : G → N
is harmonic with respect to K . By Lemma 2.2 applied to G, there is a z ∈ N such that
M′′ = z(π (M))z−1.

Choose y ∈ N with π (y) = z, and consider the compact factor M′ = yMy−1.
Clearly π (M′) = M′′. Now let xi: N → �, for i ∈ {1, . . . , d}, be some linear coordinates
on N. By applying (9) with f = xi ◦ �M′′ , we find that

xi ◦ �M′′ ◦ π = xi ◦ π ◦ �M′ : G → �
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is harmonic with respect to K . Thus π ◦ �M′ is harmonic, and Theorem 1.1
follows. �

4. Proofs of Theorems 1.3 and 1.4. For the proofs of Theorems 1.3 and 1.4, in this
section we fix a compact factor M′ of G such that π ◦ �M′ : G → N/[N, N] is harmonic
with respect to K .

Our analysis is an extension of the analysis of Alexopoulos [3], and we will need
to refer to [3] at some points.

Let us fix Haar measures dm and dx on the groups M′ and N respectively, such
that dm(M′) = 1 and

∫
G dg f (g) = ∫

M′ dm
∫

N dx f (xm) for all f ∈ Cc(G).
Let g be the Lie algebra of G and let n and m′ be the subalgebras of g corresponding

to the subgroups N and M′. The lower central series ni, i ∈ �, of n is given by by n1 = n,
ni+1 = [n, ni] ⊆ ni, and since n is nilpotent there is an r ≥ 1 such that nr+1 = {0} and
nr �= {0}.

Because n is an ideal of g, then [m′, ni] ⊆ ni for all i. We can then choose subspaces
ai ⊆ n such that [m′, ai] ⊆ ai and ni = ai ⊕ ni+1 for each i ∈ {1, . . . , r}. In particular,
n = a1 ⊕ · · · ⊕ ar. Moreover, for each i we can decompose ai = a0

i ⊕ a1
i , where a0

i =
{x ∈ ai: [m′, x] = {0}} and a1

i = span{[m′, x]: m′ ∈ m′, x ∈ ai}.
Set d = dim(n) and di = dim(a1 ⊕ · · · ⊕ ai) = d − dim(ni+1) for i ∈ {0, 1, . . . , r}.

Now fix a basis x1, . . . , xd of n such that ai is the linear span of {xj: di−1 < j ≤ di} for
all i ∈ {1, . . . , r}, and such that a0

i and a1
i are linearly spanned by the xj’s which they

contain. If j ∈ {1, . . . , d} with di−1 < j ≤ di, then we set σ (j) = i. Denote by Xj the left
invariant vector field on N corresponding to xj.

As in [3], one defines the homogenized sublaplacian associated with K : it is a left
invariant sublaplacian on the nilpotent group N, of the form

L = −
∑

1≤ j,k≤d1

qjkXjXk

with (qjk) a real, positive-definite matrix of constants. Let pt = pt(x, y), t > 0, x, y ∈ N,
be the heat kernel of L, that is, the kernel of the semigroup e−tL.

Given a kernel S on N, that is, S: N × N → �, and an operator P acting on
functions on N, then PS will denote the kernel (PS)(x, y) := PxS(x, y) where P acts
with respect to the first variable x. We use a similar convention for kernels and operators
on G.

Also, given S : N × N → � we define S�: G × G → � by S�(g, h) = S(�M′g, �M′h),
g, h ∈ G.

Define the Gaussian Gb,t: G × G → � by Gb,t(g, h) = t−D/2e−bρ(g−1h)2/t, for b, t > 0.
The Gaussian estimates for heat kernels on nilpotent Lie groups (see [12, Chapter IV]
or [2]) yield, for any n ≥ 0 and j1, . . . , jn ∈ {1, . . . , d}, an estimate∣∣(Xj1 Xj2 . . . Xjn pt

)�
(g, h)

∣∣ ≤ ct−(σ (j1)+···+σ (jn))/2Gb,t(g, h) (10)

for all t ≥ 1, g, h ∈ G.
Define an operator � := ∫

dg K(g)R(g) acting on functions on G, so that H =
I − �. Observe that �n acts by

(�nf )(g) =
∫

G
dh Kn(g, h)f (h),

for g ∈ G, n ∈ �, where we have set Kn(g, h) := K (n)(g−1h), g, h ∈ G.
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The Berry-Esseen estimate [3, Theorem 1.9.1] states that

‖Kn − p�
n‖∞ ≤ cn−(D+1)/2

for all n ∈ � (where ‖ · ‖∞ denotes the norm in L∞(G × G)). Consider the kernel Ut

defined by

Ut(g, h) = p�
t (g, h) +

∑
1≤ j≤d2

χj(g)(Xjpt)�(g, h) +
∑

1≤ j,k≤d1

χjk(g)(XjXkpt)�(g, h) (11)

for g, h ∈ G, where the smooth, bounded functions χj, χjk: G → � are the correctors
as defined in [3, Section 10.2]. Note that, because of estimates (10), the Berry-Esseen
estimate is equivalent to an estimate ‖Kn − Un‖∞ ≤ cn−(D+1)/2, n ∈ �.

In this section, by a difference operator of order k, k ∈ �, we mean an operator
of the form P = ∂z1 . . . ∂zk or of the form P = ∂̃z1 . . . ∂̃zk for some z1, . . . , zk ∈ G (the
GN-invariant operators ∂̃z are defined as in Section 1). If A ⊆ G and z1, . . . , zk ∈ A, we
will say that P has support in A. If D is a set of difference operators, all having support
in a common compact set A ⊆ G, and all of order less than l for some l ∈ �, then we
call D a bounded family (of difference operators).

The following result is essentially a generalization of Theorem 1.9.5 and
Corollary 1.9.6 of [3].

PROPOSITION 4.1. Let D be a bounded family and suppose δ ∈ [1/2, 1) is such that,
for some b, c > 0,

|PKn| ≤ cn−δGb,n

for all n ∈ �, P ∈ D. Then there exists c′ > 0 with

‖PKn − PUn‖∞ ≤ c′n−1/2n−δn−D/2

for all n ∈ � and P ∈ D. Moreover, given any ε > 0, there exist c′′, b′′ > 0 such that

|PKn − PUn| ≤ c′′n−(1/2)+εn−δGb′′,n

for all n ∈ �, P ∈ D.

Proof. This result follows from [3, p. 146] in the case where δ = 1/2 and D =
{∂z: z ∈ A} where A ⊆ G is compact. The general case is proved similarly, with obvious
changes. In particular, note that the estimate∑

1≤i<[n/2]

i−1/2(n − i − 1)−(D+3)/2 ≤ cn−1n−D/2, n ∈ �,

generalizes to ∑
1≤i<[n/2]

i−δ(n − i − 1)−(D+3)/2 ≤ cδ n−1/2n−δn−D/2, n ∈ �.

�
So far in this section, we have not utilized the assumption that π ◦ �M′ is harmonic.

However, this assumption is crucial for the next part of the analysis. As in [3], define
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“polynomials” Pi: G → � on G by setting

Pi(exp(tdxd) . . . exp(t2x2) exp(t1x1)m) = ti

for all t1, . . . , td ∈ � and m ∈ M′, where i ∈ {1, . . . , d1}.
LEMMA 4.2. The function Pi is harmonic with respect to K, for each i ∈ {1, . . . , d1}.

Therefore, the correctors χi satisfy χi = 0 for all i ∈ {1, . . . , d1}.
Proof. Consider the group N := N/[N, N] ∼= �d1 and note that the elements yj :=

π∗(xj), j ∈ {1, . . . , d1}, form a basis for the Lie algebra of N. Because π ◦ �M′ : G → N
is harmonic, the first statement of the lemma follows from the equality

Pi = yi ◦ π ◦ �M′ , for i ∈ {1, . . . , d1},
where yi: N → � are the linear coordinates on N defined by yi(exp(td1 yd1 ) . . .

exp(t1y1)) = ti, for t1, . . . , td1 ∈ �.
The first statement of the lemma implies that

∫
G dgPi(g)K(g) = 0, and then the

definition of the correctors in [3, p. 140] implies that χi = 0 for i ∈ {1, . . . , d1}. �
REMARK. Conversely, one may show from the definitions in [3], that if the

correctors χi vanish for all i ∈ {1, . . . , d1}, then Pi is harmonic for such i and π ◦ �M′

is harmonic. We omit the details.

THEOREM 4.3. Suppose D is a bounded family such that |P(p�
t )| ≤ ct−1Gb,t for all

t ≥ 1 and P ∈ D. Then

|PKn| ≤ c′n−1Gb′,n

for all n ∈ �, P ∈ D, and for each ε > 0 there exist c′′, b′′ > 0 with

|PKn − PUn| ≤ c′′n−(3/2)+εGb′′,n (12)

for all n ∈ �, P ∈ D.

Proof. Estimates in this proof are understood to hold uniformly for all P ∈ D.
Since χi = 0 for i ∈ {1, . . . , d1}, it follows from the hypothesis, the definition (11) of
Ut, and the estimates (10), that

|PUt| ≤ ct−1Gb,t

for all t ≥ 1. Also, because D is a bounded family, the bounds (2) imply that |PKn| ≤
cn−1/2Gb,n, n ∈ �.

Now suppose we have proved, for some δ ∈ [1/2, 1), an estimate of form |PKn| ≤
cn−δGb,n, n ∈ �. Then setting δ′ = min{δ + (1/4), 1} and using Proposition 4.1, we get

|PKn| ≤ |PUn| + |PKn − PUn| ≤ c′n−δ′
Gb′,n

for n ∈ �. By applying this argument with δ = 1/2, then again with δ = 3/4, we find
that |PKn| ≤ cn−1Gb,n. Applying Proposition 4.1 again, with δ = 1 − (ε/2), yields the
desired estimate of PKn − PUn. �

Proof of Theorem 1.3. It follows from the definition of � that ∂mp�
t = 0 for all m ∈

M′. Then applying Theorem 4.3 to the family D = {∂m, ∂z∂m: m ∈ M′, z ∈ U} yields
the Gaussian estimates of Theorem 1.3.
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Next, let P = ∂m where m ∈ M′. Formally, we have H−1 − I = (I − �)−1 − I =∑∞
n=1 �n. Therefore, the operator PH−1 − P = P(H−1 − I) has integral kernel K ′

given by

K ′(g, h) =
∞∑

n=1

PKn(g, h)

= S(g, h) +
∞∑

n=1

(Pp�
n)(g, h) +

∑
d1<j≤d2

P{χj(g)Qj(g, h)}

+
∑

1≤j,k≤d1

P{χjk(g)Qjk(g, h)}, (13)

where we have defined kernels

S :=
∞∑

n=1

(PKn − PUn), Qj :=
∞∑

n=1

(Xjpn)�, Qjk :=
∞∑

n=1

(XjXkpn)�,

and used the fact that χj = 0 for j ∈ {1, . . . , d1}. Now Pp�
n = 0. Also, one deduces from

(12) that there exists σ > 0 such that

|S(g, h)| ≤ cρ(g−1h)−(D+σ ), g, h ∈ G,

and hence the operator acting with integral kernel S is bounded in Lp for all p ∈ [1,∞].
Next, we claim that the operators acting with integral kernel Qj, d1 < j ≤ d2, or Qjk,

1 ≤ j, k ≤ d1, are bounded in Lp, 1 < p < ∞. Indeed, it follows straightforwardly from
(10) that these kernels satisfy standard Calderon-Zygmund estimates on G. One can use
an almost-orthogonality argument to establish the boundedness of the operators in L2,
and then Calderon-Zygmund theory yields the boundedness in Lp (see, for example,
[3, Section 17] and [11, pp. 623–625] for arguments of this type).

The operator P, and the operators of multiplication by χj, χjk, are trivially bounded
in Lp. From (13) we now see that PH−1 − P, hence also PH−1, is bounded in Lp,
1 < p < ∞.

The boundedness of ∂z∂mH−1 follows from that of ∂mH−1, and the proof of
Theorem 1.3 is complete. �

REMARK. In general, the kernel K ′ of the operator ∂mH−1 − ∂m (m ∈ M′) does
not satisfy Calderon-Zygmund estimates on G, so one cannot apply the Calderon-
Zygmund theory directly to this kernel. A similar problem occurs for the first order
Riesz transforms ∂zH−1/2 − ∂z considered in [3].

Proof of Theorem 1.4. Define GN = GN(M′) and consider the bounded family D=
{̃∂z1 ∂̃z2 : z1, z2 ∈ U} of GN-invariant difference operators. If zi = wimi (i = 1, 2) with
wi ∈ N and mi ∈ M′, then

∂̃z1 ∂̃z2 (p�
t ) = ∂̃w1 ∂̃w2 (p�

t ) = {(I − RN(w1))(I − RN(w2))pt}�,
where RN denotes the right regular representation of N. It easily follows, by using (10),
that |Pp�

t | ≤ ct−1Gb,t for all t ≥ 1 and P ∈ D. Therefore, Theorem 4.3 applies and yields
|PKn| ≤ c′n−1Gb′,n for all n ∈ �, P ∈ D, which is the desired Gaussian estimate.

Next, fix z1, z2 ∈ G and let P = ∂̃z1 ∂̃z2 . Since one has an estimate |Pp�
t | ≤ ct−1Gb,t,

t ≥ 1, we can apply Theorem 4.3 to P.
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Then a repetition of the proof of Theorem 1.3 shows that PH−1 is bounded in Lp,
1 < p < ∞. The only new step is to show that the operator T with integral kernel

K ′′(g, h) :=
∞∑

n=1

(Pp�
n)(g, h)

is bounded in Lp, 1 < p < ∞. But since K ′′ satisfies standard Calderon-Zygmund
estimates (use again (10)), the boundedness of T can be established by the same
reasoning used to prove the boundedness for the kernels Qj, Qjk in the proof of
Theorem 1.3. Then the proof of Theorem 1.4 is complete. �

Finally, the following Berry-Esseen estimate is of some interest. It follows from
Theorem 4.3 and the proofs of Theorems 1.3 and 1.4.

THEOREM 4.4. Assume that π ◦ �M′ is harmonic. Then for each ε > 0, there exist
c, b > 0 such that∣∣̃∂z1 ∂̃z2 Kn − ∂̃z1 ∂̃z2 Un

∣∣ + |∂mKn − ∂mUn| ≤ cn−(3/2)+εGb,n

for all n ∈ �, z1, z2 ∈ U and m ∈ M′.

By refining our arguments one could probably obtain this estimate also for ε = 0,
but we do not need this improvement.
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