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Abstract

The integration of wearable smart garments with multiple sensors has gained momentum, enabling real-time
monitoring of users’ vital parameters across various domains. This study presents the development and validation
of an instrumented smart shirt for risk prevention in workplaces designed to enhance worker safety and well-being in
occupational settings. The proposed smart shirt is equipped with sensors for collecting electrocardiogram, respiratory
waveform, and acceleration data, with signal conditioning electronics and Bluetooth transmission to the mobile
application. The mobile application sends the data to the cloud platform for subsequent Preventive Risk Index (PRI)
extraction. The proposed SenseRisc system was validated with eight healthy participants during the execution of
different physically exerting activities to assess the capability of the system to capture physiological parameters and
estimate the PRI of the worker, and user subjective perception of the instrumented intelligent shirt.

1. Introduction

In the context of occupational environments, workers face various risks that can lead to injuries and
illnesses. According to the International LabourOrganisation (ILO), nearly 3million people are estimated to
have died from work-related injuries and illnesses in 2019, with the majority of cases being occupational
diseases (89%) and around 11% resulting from workplace accidents. Additionally, 395 million workers
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suffered non-fatal accidents, imposing a significant burden on families and society (Podgorski et al., 2017;
Maguire et al., 2023). This underscores the critical need for innovative technological solutions that focus
on enhancing the health and safety of workers in the workplace (Forat et al., 2021; Nnaji et al., 2021; Fanti
et al., 2022).

One of the key advancements in occupational health and safety is the development of intelligent
personal protective equipment (Basodan et al., 2021; Santos et al., 2022). This technology leverages
miniaturized electronics to monitor physiological parameters, offering innovative solutions across
healthcare, telemedicine, sports, and occupational safety sectors (Viegas et al., 2016). Notably, smart
shirts have emerged as a significant tool for health and fitness monitoring (Khundaqji et al., 2020). These
garments can collect multimodal data from users, including environmental, physiological, and motor
parameters, and transmit it to mobile devices or computers for comprehensive analysis (Ometov et al.,
2021; Yadav et al., 2023).

Numerous smart clothes have been developed for health monitoring, such as the PSYCHE project for
bipolar disorder (Paradiso et al., 2010), AccYouRate for detecting health conditions (Neri et al., 2023),
and Hexoskin for cardiac and respiratory monitoring (Montes et al., 2018). While many smart garments
like these have been tested for physiological monitoring in various activities (Farjadian et al., 2013; Tada
et al., 2015; D’Abbondanza et al., 2021; Nigusse et al., 2021), they are not specifically designed for
occupational health and safety, presenting a significant opportunity for targeted technological advance-
ments in this field.

In occupational settings, the continuous monitoring of key physiological parameters such as heart rate
and respiratory rate is increasingly recognized as a valuable strategy for preventing work-related risks
(Tamantini et al., 2023). These indicators reflect both the worker’s current health status and the
physiological load imposed by specific tasks. When combined with movement data, these parameters
enable a contextualized interpretation of physical strain, which is essential for assessing the real-time risk
associated with various job activities.

Several wearable systems have been proposed in the literature to address safety monitoring in
hazardous work environments. For instance, the prototypes presented in Lage et al. (2015) and Hinze
et al. (2022)were specifically developed for firefighters and forestry workers, integrating sensors for ECG
and galvanic skin response. While effective in capturing basic physiological signals, these systems lack
intelligent data processing or real-time feedback mechanisms for the user. A similar limitation is found in
the smart shirt introduced in Catarinucci et al. (2022); Šolić et al. (2022), which focuses on thermal stress
monitoring through integrated skin temperature sensors, photoplethysmography, and inertial measure-
ment units. These systems are designed for deployment in operational contexts and can provide thermal
warnings, yet they do not include respiratory monitoring—an essential parameter for more comprehen-
sive risk estimation.

In addition to textile-based solutions, wearable devices such as the multisensory bracelet proposed in
Márquez-Sánchez et al. (2021) allow the monitoring of heart rate and skin temperature in high-risk
environments. Likewise, the system developed inDe Fazio et al. (2022) extendsmonitoring capabilities to
environmental metrics, including gas concentrations and oxygen levels, making it suitable for hazardous
industrial contexts. Finally, efforts to integrate respiratory monitoring into wearable garments have been
explored in Mannée et al. (2020), where a fabric-based sensor was tested on an artificial torso. However,
this prototype has yet to be validated in real working scenarios, highlighting the gap that still exists
between laboratory feasibility and field applicability.

Although existing studies have demonstrated the viability of monitoring devices integrated into smart
garments, they have also revealed shortcomings in several crucial aspects. It is notable that there is a
dearth of experimental validation, including the use of different subjects, which would assess the smart
garment across a range of conditions. Furthermore, these studies do not explore user perception,
particularly how users feel about wearing these devices over time, which is crucial for their long-term
adoption in occupational settings. Additionally, the scope of monitoring in these studies is often limited to
a single derived parameter, for example, thermal stress, which does not provide a holistic view of a
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worker’s health or safety status. This narrow focus overlooks other potential risk factors that could be
critical for ensuring comprehensive occupational safety and health monitoring.

The objective of this contribution is to present the SenseRisc system, an innovative smart shirt
designed to enhance workplace safety through multimodal monitoring and intelligent processing. The
system incorporates a multitude of sensors for the comprehensive collection of data, including physio-
logical sensors for themonitoring of vital signs such as heart rate and respiratory rate, aswell as sensors for
the capture of the worker’s movement and activity levels. This combination enables a comprehensive and
detailed understanding of the worker’s state. The true intellectual capability of the SenseRisc system is
manifested in its onboard software, which processes the collected data in real-time. The intelligent
software platform is capable of analyzing and correlating the diverse data streams in order to identify
potential health and safety risks that may arise during work activities. The system introduces the
Preventive Risk Index (PRI), an innovative metric that synthesizes physiological and motion data to
evaluate the risk levels associated with different working conditions. This novel indicator represents a
significant advancement over previous studies, which typically focused on a singular aspect of health
monitoring.

The efficacy of the SenseRisc system was substantiated in a laboratory setting, wherein eight healthy
subjects engaged in a physical exercise protocol. This validation process evidenced the system’s capacity
to accuratelymonitor physiological andmotor parameters and to effectively determine the associated PRI.
The development and integration of intelligent software into the wearable platform distinguish the
SenseRisc system as a truly intelligent solution, providing a proactive approach to workplace safety
and health monitoring.

The paper is structured as follows: Section 2 presents the overall architecture of the developed smart
garment. Specifically, the instrumented shirt, the mobile application, and the intelligent software
developed to manage data and estimate the PRI of the user are discussed. Section 3 describes the
experiments carried out to test the smart garment’s performance. Section 4 discusses the obtained
results and Section 5 outlines the conclusions of the present work and future works.

2. Materials and methods

The system architecture comprises three distinct subsystems: I. a physical shirt, that incorporates sensors
for monitoring respiratory and cardiac functions and measuring the amount of the worker motion, II. a
mobile application that is capable of collecting data locally and transferring it to a cloud platform, III. a
local server that enables a bio-operative algorithm to assess the user PRI estimation for prevention and
therefore identify potential health and safety hazards associated with occupational activities. Figure 1
provides an overview of the architectural configuration of the proposed system.

Each user is uniquely given an ID on the Mobile APP that unambiguously connects with the set of
sensors on the smart instrumented shirt to monitor multi-modal parameters. Monitoring takes place in
real-time duringwork activities via Bluetooth communication established between the application and the
instrumented shirt, allowing the smartphone to receive raw data directly from the embedded electronics.
The system is specifically designed so that the sensors communicate with the mobile phone using a
Bluetooth Low Energy (BLE) connection, which is well suited to wearable applications due to its low
power consumption and reliable short-range communication. In typical use, the distance between the shirt
and the smartphone remains within 1 m, ensuring a stable connection. However, BLE theoretically
supports ranges of up to 100 min open, unobstructed environments, while in real-world conditions that
may include walls, metal structures, or electromagnetic interference, the range is typically reduced to 10–
30 m. The use of BLE was primarily driven by the need for energy efficiency, as it minimizes battery
consumption and ensures the system can operate continuously throughout an 8-hour shift. This design
choice enables seamless, real-time data transmission without compromising the wearability or autonomy
of the smart garment.

The collected raw data, along with the identifier of the user, are transmitted to a centralized cloud
platform. This cloud-based approach offers scalability, accessibility, and data storage capabilities. It
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allows for secure data sharing and retrieval from anywhere, making it an excellent choice for a distributed
workforce or remote monitoring scenarios. All data, each associated with its timestamp, are securely
stored within the cloud platform, ensuring data integrity and easy access for authorized users.

The PRI associated with the worker is calculated by an intelligent algorithm that processes and fuses
data coming from the multimodal monitoring system stored in the cloud on a local server. A Fuzzy Logic
model is used to study the set of physiological andmovement parameters to assess the degree of fatigue of
the individual worker and return the baseline PRI. The use of the local server ensures timely computa-
tional operations, which reduce latency periods and provide real-time feedback to workers. The PRI is
then sent back to each worker and displayed on the smartphone application.

2.1. Instrumented shirt

The SenseRisc solution is based on a commercial T-shirt integrating different sensors monitoring
multimodal parameters. Figure 2 shows a representative user wearing the sensorized shirt detailing all
the integrated systems formonitoring.More in detail, the SenseRisc system integratesmonitoring systems
for respiration, electrocardiogram (ECG), and movement. The respiration monitoring system comprises a

Figure 1. Architecture of the proposed instrumented smart shirt system.

Figure 2. Representative user wearing the instrumented shirt and detail of each sensor system.

e20-4 Christian Tamantini et al.

https://doi.org/10.1017/wtc.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2025.10


Respiration Electronic Platform (REP) designed to receive raw signals collected from piezoresistive
sensors, see Figure 3. These sensors are developed using a polymeric paint loaded with graphene
nanoplates. The Seismote device was selected to acquire ECG signals, along with gel-free electrodes
integrated into the inner layer of the shirt (further details are provided in Section 2.1.2). Finally, movement
monitoring is achieved through the use of the SensorTile inertial platform. The following subsections will
give details of the individual modules integrated into the SenseRisc system (technical information can be
found in Section 2.1.3).

2.1.1. Respiration monitoring
The respiratory monitoring system consists of four piezoresistive sensors, developed using polymeric
paint loaded with graphene nanoplates. These sensors are printed on fabric employing a screen-printing
technique, functioning as the piezoresistive strain gauges, as illustrated inMarra et al. (2021). The system
is integrated with dedicated electronics, connected through a harness featuring conductive textile wires.
The Respiration Electronic Platform (REP), reported in Figure 3, employs a Bluetooth Low Energy
module (BLE, i.e., EZ-BLE 220124) that integrates an M0+ microcontroller (Lanata et al., 2020). This
module is equipped with SPI and I2C serial communication channels for sensor communication. The
Bluetooth module communicates in I2C with the Analog-to-Digital 16-bit ADC multichannel converter,
which converts to digital values the analog voltage of the 4 analog channels corresponding to the sensors
for respiratory signal monitoring. The textile strain gauges on the garment are connected to the electronic
device through the three-pin 2.5 Jack Connectors.

Each respiratory sensor is acquired through a dedicated Howland circuit configuration (Maundy et al.,
2019). It generates a constant current source passing through the respiratory sensor and providing a
voltage drop proportional to the strain applied by the body to the sensors. A 3.7 V LiPo battery powers the
electronic device. The respiratory sensors are acquired at a sampling frequency of 50 Hz.

2.1.2. Cardiac activity monitoring
The integration of the ECG device within the inner lining of the smart shirt, leveraging the SeisMote
platform and gel-free electrode embedded in the inner side of the smart shirt (Di Rienzo et al., 2020),
represents a seamless fusion of cutting-edge technology and wearable design. This innovative wearable
system, tailored for comprehensive cardiovascular monitoring in various settings, offers a unique
combination of versatility and real-time capabilities. SeisMote utilizes a tailored low-power transmission

Figure 3. Respiration electronic platform (REP).
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protocol, ensuring the simultaneous acquisition of detailed data from up to 12 nodes, providing a
comprehensive assessment of 36 signals at a high frequency of 200 Hz. This protocol guarantees precise
time synchronization among nodes, minimizing jitter to less than 0.2 ms, fostering reliable and accurate
data collection. For simplified applications requiring a single node, SeisMote supports Bluetooth Low
Energy (BLE) protocol. Moreover, the system accommodates offline data collection, enhancing its
flexibility. With an impressive battery life exceeding 16 hours on a single charge, SeisMote integration
into the smart shirt reinforces its potential for prolonged, uninterrupted cardiovascular monitoring,
making it an ideal choice for continuous health assessment in daily life.

2.1.3. Movement monitoring
A SensorTile multisensor platform, manufactured by STMicroelectronics, was included in the SenseRisc
system. Indeed, the SensorTile device includes amagneto-inertial measurement unit (Lapresa et al., 2022)
and sensing units for the assessment of the environmental temperature, pressure, and humidity. The
SensorTile platform lends itself well to the application of interest due to its small size, the presence of a
Bluetooth Low Energy (BLE) module that enables data logging, and setting the acquisition frequency.
This multisensor platform is placed in a dedicated pocket of the shirt on the chest of the worker (Di Tocco
et al., 2022). SensorTile gathers information at 100 Hz and sends it via Bluetooth to the smartphone
application.

2.2. Signal analysis and intelligent software module

The Intelligent software is the module that is in charge of retrieving the raw data acquired by the
instrumented shirt, processing the raw data to obtain physiological and motion parameters of interest
(that is the RR, the HR, and AL), and estimating the user PRI.

The first action performed by the intelligent software is downloading the raw data stored in the cloud. A
query is designed to retrieve and parse documents uploaded by the app in the last 30 s to interpret the
raw data.

The four respiratory signals are sampled at a sampling rate of 50 Hz. A third-order Butterworth band-
pass filter is firstly applied to all the signals to exclude slow signal fluctuations not associated with
respiratory movements (low cut-off frequency at 0.05 Hz) and remove frequency components beyond the
respiration bandwidth (high cut-off frequency at 2 Hz) (Di Tocco et al., 2020). Given the availability of
four signals extracted from the four piezoresistive sensors, we adopted a frequency-based strategy to
determine a single respiratory rate (RR) value per instant (Massaroni et al., 2019). This method initially
involves segmenting the signals into windows of appropriate temporal duration (Massaroni et al., 2023),
then the selection of the sensor that provides the most relevant information in that time window, and
finally the estimation of the respiratory rate (RR) from the signal recorded by that sensor. Hence, the
filtered signals are segmented into 30 s length windows (w), without overlap. For each w, the power
spectral density (PSD) of the four signals is computed by using Welch’s overlapped segment averaging
estimator, with an overlap value of 50% between segments. The signal with the highest power spectrum is
the one selected for estimating RR in the w th window (Di Tocco et al., 2021). Considering that the
maximum frequency peak of the PSD spectrum identifies the periodicity of the signal, the highest peak of
the selected sensor PSD is considered to estimate the averageRR (in bpm) of the 30 s segment as presented
in Equation (1).

RR wð Þ¼ 60
1

f Pmax wð Þð Þ
(1)

f ðPmaxðwÞÞ is the frequency associatedwith the highest peak of the power spectrumof the selected sensor.
The ECG signal is sampled at a frame rate of 200 Hz. Starting from the raw signal, the Pan-Tompkins

algorithm is applied to detect the QRS complex (Fariha et al., 2020). It consists of a sequence of filters that
enhance the frequency content of the electrical activity of the heart and remove the background noise.
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Finally, the algorithm includes rectification of the signal to amplify the QRS complex to make it easy to
identify. When R-peaks are identified in the ECG signal, it is possible to compute the inter-beat interval
(IBIH ). The IBIH , commonly referred to as the tachogram, is the time duration between successive
R-peaks. Utilizing the IBIH signal as a foundation, it becomes feasible to derive the instantaneous heart
rate (HR) using Equation (2), measured in beats per minute [bpm].

HR ið Þ¼ 60
IBIH ið Þ (2)

where i indicates the ith detected R-peak.
The accelerations measured along the three axes of the accelerometer mounted inside the Seismote

device can provide synthetic information about an individual’s activity level (AL) as reported in
Equation (3)

AL¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x + a

2
y + a

2
z

q
(3)

ax, ay, and az are the acceleration computed along the x
!
, y
!
, and z! Cartesian axes, respectively. AL

represents the overall intensity of movement captured by the accelerometer, regardless of the direction of
the movement.

Given RR, HR, and AL, a Fuzzy Logic model was developed to handle variability inherent in
physiological and motion-related data and assess the PRI of the worker. The essential steps required in
the definition of Fuzzy Logic systems are the definition of the input and output Membership Functions
(MFs), and the definition of the fuzzy rules.

MFs were then modeled for each input parameter, that is, RR, HR, and AL, and for the output PRI to
translate the parameters extracted from the data monitored by the T-shirt and the returned indicator into
linguistic variables representing the amount of activation of the specific input and output (Tamantini et al.,
2024). In a Fuzzy Logic approach, linguistic variables translate complex, quantitative data into intuitive and
easily interpretable qualitative descriptions. Terms like “low,” “normal,” and “high” can be used to model
the variability of the physiological parameters. These terms correspond to numerical ranges defined byMFs,
indicating the degree to which a value belongs to each category. This enables the Fuzzy Logic system to
apply rules that emulate human reasoning. Specifically, the proposed model exploits three, four, and two
trapezoidalmembership functions for RR,HR, andAL, respectively. Among all the possible shapes that can
be used to design theMFs, trapezoidalmembership functionswere selected due to their flexibility and ability
to capture gradual transitions in linguistic variables. Furthermore, the shape of the trapezoid corresponds to a
clear linguistic interpretation, allowing a simpler understanding and interpretation of the membership
degrees associated with different input values. The general equation describing the trapezoidal MF is
reported in Equation (4).

f x,a,b,c,dð Þ¼ max min
x�a
b�a

,1,
d� x
d� c

� �
,0

� �
(4)

a and d locate the feet of the trapezoid, b and c locate the shoulders of the trapezoid MF, and x is the input
parameter.

Moreover, it is worth observing that a different number of MFs for each input parameter was used in
order to provide an adequate representation of the linguistic variables associated with the physiological
and motion parameters. More in detail, for each input and output, specific linguistic variables were
introduced.

For RR, the threeMFs reflect the general patterns observed in respiratory rates, considering the typical
ranges for low RR (L), normal (N), and high RR (H). The activation levels for respiratory rate (RR) were
defined based on clinical thresholds for abnormal breathing patterns, specifically bradypnea and
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tachypnea. A respiratory rate is considered normal when it falls between 12 and 16 breaths per minute.
Values below 12 bpm are classified as bradypnea, indicating abnormally slow breathing, while sustained
increases above the normal range characterize tachypnea, a condition associated with abnormally rapid
breathing and potential clinical concern (Hill and Annesley, 2020).

For HR, four activation levels, Low (L), Normal (N), Mid-High (MH), and High (H), were defined
using trapezoidal membership functions. These rangeswere selected to reflect both clinical thresholds and
physiological responses to physical exertion. Specifically, HR values below 60 bpm (L) may indicate
bradycardia, while values between 60 and 100 bpm (N) are generally considered normal resting ranges in
healthy adults. The Mid-High (MH) and High (H) categories capture progressive cardiovascular strain,
with HR exceeding 100 bpm reflecting increasing workload and values above 160 bpm indicating intense
physical effort (Cook et al., 2006; Nanchen, 2018).

Finally, two membership functions distinguished between low (L) and high (H) AL, providing a
concise representation of the level of physical activity of the participants.

On the output side of the Fuzzy Logic inference model, the PRI returned by the model was modeled as
four MFs resembling low (L), mid-low (ML), mid-high (MH), and high (H) conditions. Table 1 reports
the list of the trapezoidal coeffectives per MF adopted in the Fuzzy Logic model. A graphical represen-
tation of the Fuzzy Logic Model is depicted in Figure 4.

Given the linguistic representation of the input parameters provided by the MFs, a fuzzy rule set
composed of 23 rules was implemented, taking inspiration from literature pieces of evidence (Tamantini
et al., 2024).

Table 1. Parameters of the trapezoidal MFs adopted in the Fuzzy Logic Model

a b c d

RR [bpm] L 0 0 8 10
N 8 10 14 16
H 14 16 35 35

HR [bpm] L 0 0 40 60
N 40 60 100 120
MH 100 120 160 180
H 160 180 250 250

AL [mg] L 0 0 150 300
H 150 300 1,000 1,000

PRI [�] L 0 0 15 25
ML 15 25 45 55
MH 45 55 75 85
H 75 85 100 100

Figure 4.Fuzzy LogicModel implemented into the instrumented intelligent shirt for Preventive Risk Index
estimation.
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Each rule was developed by combining the activation levels of the monitored parameters, which were
defined based on physiological thresholds and known indicators of physical stress. The resulting
combinations were then associated with a specific PRI level. For example, conditions where RR and
HR remain within normal ranges typically correspond to low-risk scenarios, even with moderate activity.
Conversely, combinations of abnormal HR or RR values, such as bradycardia, tachycardia, or irregular
breathing, especially when combined with high activity, are mapped to higher risk levels. This approach
allows the system to provide an interpretable and physiologically consistent assessment of the worker’s
condition. The full set of rules implemented in the fuzzy logic model is shown visually in Figure 5,
supporting a continuous and real-time estimation of PRI based on multimodal physiological and motion
signals.

2.3. Mobile application

A smartphone Android application (App) is developed to perform local data viewing, cloud communi-
cation, and activation/deactivation of nodes (i.e., SensorTile, REP, and Seismote). Sensor data can be
stored both locally and in the cloud. The smartphone acts as the central node of the network, enabling
control of the external nodes. Through the App, users can manage data transmission for each node and
sensor individually, as well as start or stop the data acquisition process. Additionally, the App allows for
data synchronization across multiple mobile devices andmakes it accessible for back-end operations. The
App architecture is based on the communication among multiple GATT Servers, allowing simultaneous
node connection and individual control over the data streaming that theGATTServers expose to theClient
through the supported Bluetooth Low Energy Channels (BLE-Chs). During the process of data acqui-
sition, records are saved locally on the smartphone and in real time sent to the cloud. The mobile
application uniquely connects to the set of nodes that make up the system; these can be manually disabled
if necessary. On the graphical user interface (GUI) the status of each node “Device Info” is shown. Once
the connection is established, BLE in the “Characteristic Control” section displays the sensor feature and
data is streamed.

Figure 6 shows the sequence of updates to the UI that occurs when the user activates the notification on
the sensor feature. When streaming is activated, the graph within the section will be updated whenever
new data is notified to the node. Each section for streaming control contains two checkboxes, the former to
enable local data storage and the latter to enable cloud storage (see Figure 7).

Data is fully synchronized at the instant the last sensor starts streaming, and the application starts
collecting the data from the different sensors into separate data structures. Each structure has a length in
bytes (Lb) that can be computed as in Equation (5).

Lb ¼ f s �Rb �Nm �Tw (5)

Figure 5.Graphical representation of the rules implemented in the Fuzzy Logic model for PRI estimation.

Wearable Technologies e20-9

https://doi.org/10.1017/wtc.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2025.10


where f s is the sampling rate of the sensor,Rb is the size in bytes of the individual sensor sample, andNm is
the number of measurements in the characteristic acquired in a time window of Tw seconds.

The app receives a notification whenever a new file containing the PRI value is published to the cloud
(see Section 2.2 for PRI computation). Specifically, if the PRI has been published to the cloud in the last
Tw ¼ 30 s, the PRI is shown on the appUI, and a flag colored green, yellow, or red depending on the value
taken by the LdR, otherwise, only the flagpole is shown. Figure 8 shows the graphical section of the
Mobile App that displays the PRI.

3. Experimental validation

To assess the capabilities of the developed instrumented shirt in monitoring users’ physiological and
motion parameters and estimating the PRI, an experimental session was designed to measure the
performance of the developed smart garment in a laboratory setting, before moving to a workplace.
For this purpose, the experimental protocol was designed to generate relevant variations in the subject’s
physical conditions (up to physical stress) and assess whether the sensors integrated into the smart shirt are
able to detect different conditions of the subject. At the same time, the PRI should reflect the different
states of the participants during the administered protocol.

Eightmales (26:6 ± 3:6 y.o.) were enrolled in this experiment. All the participants were healthy and had
never suffered from any disease that might be contraindicated for the current experiment. They signed a
written consent to be enrolled in the study before participating and, afterward, theywere instructed towear
the instrumented shirt.

The participants were asked to perform three different activities during the experimental protocol:

• Lifting a load (LIFT): participants started exerting by repetitively lifting from the ground a 3 kg box
for 2 min. They were instructed to perform the lifting procedure in a standardized manner.

Figure 6. Sequence of UI updates when activating sensor notifications.
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Figure 8. Mobile App displaying the estimated Preventive Risk Index of the user.

Figure 7. Node selection mechanism.
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• Moving a load (MOVE): the participants were asked to manually carry the same 3 kg box while
walking at a speed of approximately 1 m/s. To ensure that the walking speed was consistent, a
metronome was used to regulate the cadence of their steps.

• Intense physical activity (PHYSICAL): participants performed jumping jacks for 2 minutes.
Exploiting this highly dynamic exercise, it was possible to induce an intense level of physical
exertion in the enrolled volunteers.

The physically stressful activities were administered to assess whether the shirt could capture different AL
and physiological responses in the participants. Each activity was performed for 2 minutes.

The complete protocol involved repeating the sequence LIFT-MOVE-PHYSICAL followed by a
second round of LIFT-MOVE. This repetition was designed to evaluate the recovery dynamics of
physiological parameters after intense activity, providing deeper insights into the shirt’s capability to
monitor changes over time and under varied physical demands.

A picture depicting a representative subject during the protocol execution is reported in Figure 9.
Moreover, the Mann–Whitney test was employed to determine whether significant differences exist in

monitored parameters and PRI between successive activities. This non-parametric test was selected due to
its capability to deal with non-normally distributed data. The significance level was set at p�value¼ 0:05.

To assess the subjective perception of the intelligent shirt, the participants were asked to evaluate the
usability of the system. In particular, the System Usability Scale (SUS) provides a quick and reliable
measure of the usability of any device. Scores ranging from 0 to 5 collected from 10 different statements
were combined and transformed into a single usability score, ranging from 0 to 100. The higher the score,
the higher the perceived usability. Any system has a satisfactory usability score if it achieves a SUS score
≥ 68 (Bangor et al., 2009).

Moreover, weight (W), breathability (BR), shape and size (SS), skin sensitivity (SE), adjustment (AD),
andmobility (M) represent other factors that are paramount duringwearable systems evaluation.Weight is
crucial for comfort, as a heavy device can cause discomfort during prolonged use. The breathability of the
fabric is important to prevent excessive sweating and discomfort. The shape and size should fit the body
without causing pressure or compression. Skin sensitivity is vital, as materials can potentially cause
irritation or allergies. Adjustability ensures a personalized fit, contributing to overall comfort. Finally,
good mobility allows the wearable device to move with the body, enhancing comfort during use. These
were assessed employing an ad hoc questionnaire on a Likert scale ranging from 1 to 7 representing
“strongly disagree” to “strongly agree,” respectively. The list of administered questions is reported in the
following:

• W1: The instrumented shirt was light and comfortable to wear.
• W2: The instrumented shirt was heavy and bulky.
• BR1: The instrumented shirt was breathable and promoted ventilation.

Figure 9. A representative participant performing the three activities included in the experimental
protocol.

e20-12 Christian Tamantini et al.

https://doi.org/10.1017/wtc.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2025.10


• BR2: The instrumented shirt caused excessive sweating and a lack of ventilation.
• SS1: The instrumented shirt fit my body shape well.
• SS2: The instrumented shirt was either too tight or too loose.
• SE1: The instrumented shirt did not irritate my skin.
• SE2: The instrumented shirt caused irritation or discomfort to my skin.
• AD1: It was possible to adjust the sensor T-shirt to suit my needs.
• AD2: The sensor T-shirt did not allow adequate adjustment.
• M1: The instrumented shirt allowed fluid and unrestricted movements.
• M2: The instrumented shirt restricted my freedom of movement.

As evident, out of the 12 questions, the even-numbered questions are reverse-scored. This means that to
combine the results per factor, the scores for these questions need to be inverted. The items related to the
same factors were averaged per participant to provide a synthetic representation of the score obtained.

4. Results and discussions

Figure 10 displays the raw physiological signals, that is, the respiration waveform (Resp) and the ECG,
along with the norm of the acceleration (Acc) captured by the intelligent shirt of a representative subject
in 10 s.

It is worth observing that the fabric-printed sensor for respiratory signal monitoring is capable of
capturing both the expansions and compressions of the rib cage during the lung ventilation process. The
ECG signal measured by the wearable system is also very clear and readable, especially its R complex,
fundamental for calculating the HR of the users.

Figure 11 depicts the distribution of the PRI (PRI) and othermonitored parameters, that is, RR,HR, and
AL, across various activities obtained from the eight enrolled subjects. The boxplot compares the central
tendency, variability, and outliers in the PRI and related parameters across activities. The median value is
shown by the central line, the interquartile range (IQR) is indicated by the box edges, and whiskers extend
to 1.5 times the IQR. Points beyond the whiskers are outliers of the distribution.

As the physical activities performed by the enrolled subjects varied, the monitored physiological and
motion parameters showed changes over time. The RR showed an increasing trend in the early stages of
physical fatigue during the first repetition of the LIFT and MOVE tasks, where peaks of 33:40 ± 22:92

Figure 10. The raw signals of physiological parameters and the norm of the acceleration collected with
the instrumented smart shirt of a representative subject during the execution of the lifting task are
presented. From top to bottom, the respiration waveform (Resp), the ECG, and the norm of the

acceleration (Acc) collected from the REP, the Seismote, and the SensorTile are reported.

Wearable Technologies e20-13

https://doi.org/10.1017/wtc.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2025.10


bpmwere reached. As the intensity of the physical activity increases, during the execution of the jumping
jacks, physical fatigue becomes evident, reflected in a decrease in the respiratory rate (Meng et al., 2014;
Tamantini et al., 2021). During the second series of LIFT and MOVE exercises, the RR stabilizes around
14:84 ± 1:50 bpm without showing any other significant changes.

Conversely, cardiac activity reflects the phenomena of fatigue and relaxation towards less strenuous
activities. Increasing the intensity of the physical activity shows how the HR goes from 75:61 ± 8:65 bpm,
at the beginning of the experimental protocol, to 127:77 ± 8:95 bpm at the end of the execution of the
PHYSICAL task. When subjects start again with the LIFT and MOVE, less physically demanding than
jumping jacks, a physiological recovery of HR is observed.

AL parameter, calculated from the information of the accelerometer integrated into the smart shirt,
reflects the intensity of the activities performed: 155:12 ± 58:82, 198:90 ± 54:13, and 851:94 ± 120:64mg
are the AL calculated for lifting, moving, and physical tasks, respectively.

Finally, the PRI reflects the overall state of the user taking into account the activity he or she is
performing. At the beginning of the protocol, during the LIFTactivity, the PRI is 0:28 ± 0:13. Continuing
the execution of the activities administered to the participants, the altered physiological state (in terms of
an increasedRR) andmotor condition are reflected in the PRI proposed in the SenseRisc system becoming
0:74 ± 0:05 at the end of the MOVE activity. When the physical activity becomes significantly more
intense, PRI drops again to 0:42 ± 0:23. During physically demanding activities, if the SenseRisc user is in
good health, the intelligent algorithm assigns a low PRI value. Subsequently, when the user returns to
perform low-impacting activities, the PRI is higher with respect to the one observed in the first repetition.
During the execution of low-impact activities, the physiological state of the user is expected to be
comparable to a resting condition. Conversely, the experimental protocol allows observing the unwinding

Figure 11. Boxplot of monitored physiological parameters, that is, the Respiratory Rate (RR) and the
Heart Rate (HR), along with the amount of movement expressed as Activity Level (AS) and estimated
Preventive Risk Index (PRI), averaged across the 8 enrolled participants, stratified for each performed

activity. The statistical test was applied between one activity and the subsequent one. * denotes a
statistical difference (p-value < 0:05).
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of activities at low physical loadwith the participant in a condition of high physiological stress reflected in
a PRI of 0:76 ± 0:07 at the beginning of the second LIFT activity.

From a subjective perspective, the intelligent shirt achieved a SUS score of 91:25 ± 5:33. This score
represents a strong vote of confidence from the participants regarding the usability of the SenseRisc
system. This favorable usability assessment ensures good usability in operative scenarios. Moreover,
Figure 12 shows the scores obtained from the administration of the 7-point Likert scale specifically
assessing the other usability aspects of the intelligent shirt.

The participants rated the weight of the smart shirt with an average score of 6:12 ± 1:02. Participants
found the weight of the shirt to be relatively comfortable. The breathability of the fabric used in the smart
shirt received an average rating of 4:50 ± 1:46. This score suggests that some participants found the
wearable system to bemore breathable than others. The SS received an average rating of s, suggesting that,
on average, participants were generally satisfied with its fit and dimensions. Providing customization
options for fit could enhance user comfort further. Participants rated skin sensitivity concerning the smart
shirt with an average score of 4:50 ± 1:15. This suggests that, on average, participants had moderate
perceptions of skin sensitivity. Ensuring that the materials used in the shirt are hypoallergenic and
comfortable for a broad range of users is essential. The AD feature received a lower average rating of
2:43 ± 1:20, suggesting that participants found the shirt adjustment less satisfactory on average. Improv-
ing the ease of adjustment could enhance overall comfort and usability. The mobility of the smart shirt
received a favorable average rating of 6:12 ± 1:02 indicating that participants perceived the shirt as
providing good mobility during use. This is a positive aspect as it contributes to the overall user
experience.

In summary, the smart knit showed strengths in terms of weight and mobility. However, there is room
for improvement in terms of perceived BR, AD, and SS. These results highlight the importance of
considering user feedback and comfort when designing wearable technology. Indeed, it is necessary to
adapt the smart knit to different body types, both for comfort and acceptability of the SenseRisc system,
but also to ensure the correct detection of physiological parameters to be monitored by the sensors
integrated into the intelligent shirt. It is of crucial importance to adapt this technology to different sizes in
order to meet the builds of the target users.

The intelligent shirt has proven itself as a reliable tool for capturing physiological processes andmotion
data, even in physically challenging tasks. Thanks to the intelligent software, this raw data is processed,
allowing for real-time PRI assessment. Moreover, the data exchanged by the platform are always labeled
with the specific identifier of the user. Thismeans that the system can process data frommultiple operators
and return its estimated PRI to each. This aspect is paramount to understanding the power of the scalability
of such a personal device. Finally, subjective evaluations have offered valuable insights into the
acceptability and usability of the system. This approach underscores the potential of the SenseRisc
system to significantly enhance workplace safety and the overall experience of users.

The specific physiological signals monitored by SenseRisc and the possibility of implementing addi-
tional on-board processing functions open the possibility of exploring the application of this system in other
health-related monitoring scenarios, such as during hospital-based cardiorespiratory rehabilitation and/or

Figure 12. Lickert scores assessing the intelligent shirt weight (W), breathability (BR), shape and size
(SS), skin sensitivity (SE), adjustment (AD), and mobility (M).
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home telerehabilitation. Furthermore, thanks to the modular nature of the system, it is possible to integrate
additional sensors depending on the specific needs of the application scenario. This flexibility enables the
platform to be adapted to monitor different types of risk factors beyond those related to physical exertion.

For example, in occupational settings involving chemical exposure or work in low-oxygen environ-
ments, additional modules, such as gas detectors or pulse oximeters, could be integrated into the smart
garment. While the current version of SenseRisc focuses on monitoring risk factors associated with
physiological overload (e.g., elevated heart and respiratory rate during physical activity), the architecture
of the system is designed to support future expansions. This adaptability makes it suitable for a wide
variety of use cases, allowing for tailored configurations that respond to the specific risks associated with
different job roles or work environments.

It is important to note that, although the PRI proposed in this work is not a clinically validated metric,
the system itself is not intended as a medical device. Rather, it serves as a technological solution aimed at
improving workplace safety. Its primary goal is to provide a practical and interpretable indicator of
physical strain, enabling the early identification of potentially risky conditions during work tasks,
especially those involving fatigue or physiological overload that might go undetected by conventional
safety assessments. The fuzzy logic-based PRI model maps multimodal physiological andmotion signals
into discrete risk levels using a rule-based framework derived from prior literature and physiological
knowledge, ensuring both transparency and relevance in risk estimation.

Finally, to enable the transition of the SenseRisc system into real occupational settings, several steps
are required. First, it is necessary to extend testing to a larger and more heterogeneous population of
users, capturing inter-individual variability and the influence of different job roles and physical
demands. Second, the system must be adapted for long-term wear, ensuring comfort, durability, and
sensor stability over full work shifts and in diverse environmental conditions. Third, it will be essential
to engage with health and safety officers and companies to define deployment protocols that integrate
seamlessly with existing workflows. Finally, additional testing may be needed to verify safety, data
privacy compliance, and effectiveness in detecting high-risk situations before full-scale deployment in
industrial scenarios.

5. Conclusion

This paper presented the SenseRisc system, an instrumented intelligent shirt designed to prevent risks in
workplaces. The proposed system represents a significant advancement in the field of wearable technol-
ogy, showcasing its potential to integrate a diverse array of sensors directly inside the garments of the
worker. Respiratory waveforms, ECG, and user acceleration are constantly monitored by the SenseRisc
shirt. Moreover, the smartphone application, presented in this paper, eases the data collection and sharing
with a cloud system and provides the PRI of the user on feedback. With the presence of an intelligent
algorithm, this system can monitor and process in real-time the physiological and motor parameters of
workers undergoing physically stressful activities.

The results presented in this work highlight the capability of the intelligent shirt to measure physio-
logical signals with a high degree of fidelity even during the execution of physically demanding tasks. The
intelligent software then processes the raw data collected to retrieve the PRI of the user in real time. The
experiment carried out enrolling eight healthy participants showcased the capability of the proposed
software to map imprecise and highly variable physiological parameters into a target variable estimating
the risk condition inwhich theworker is. The intelligent shirt was also evaluated from a subjective point of
view, providing a comprehensive view of the acceptability and usability of such a system.

Future work will focus on the optimization and scaling of the SenseRisc system for deployment in real
construction sites, where we plan to carry out a broader validation and usability assessment under actual
working conditions with several users simultaneously. In parallel, efforts will also be dedicated to the
development of different shirt sizes to accommodate a range of body types better and ensure comfort and
wearability across diverse user populations.

e20-16 Christian Tamantini et al.

https://doi.org/10.1017/wtc.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2025.10


Data availability statement. The data that support the findings of this study are available from the corresponding author, C.T.,
upon reasonable request.

Acknowledgments. The Authors would like to thank the memory of Eng. Marco Di Rienzo, who, although no longer alive at the
time of writing this paper, participated in the design and operational phases of the SenseRisc project. Part of his research activity, in
the last two decades, has been devoted to the development of wearable systems for cardiovascular and respiratorymonitoring, and to
seeking and maintaining constant collaborations for the application of these in multiple clinical, rehabilitative, ergonomic, and
aerospace research fields.

Authorship contribution. C.T. and F.M. equally contributed to the study design and manuscript writing, being responsible for
defining the research objectives and validating the experimental results. J.D.T. conducted data collection and analysis, supporting
the experimental setup, while S.D.M. managed the IT systems required for data processing and analysis. A.L. provided support in
interpreting results and critically reviewing the manuscript. F.C. assisted in designing the experimental intervention and evaluating
the tools used. M.F., F.R., M.S., M.P., and C.D.S. contributed by verifying data reliability and managing technical resources.
A.T. collaborated in drafting and reviewing the manuscript. C.M. and E.S. analyzed the instrumentation for data collection and
processing. M.S.S. is the project manager of SenseRisc. L.Z. andM.S.S. equally contributed to the overall supervision of the project
and the final review of the manuscript.

Funding statement. This work was supported by the Italian Institute for Labour Accidents (INAIL) with the SENSE-RISC project
(CUP: B56C18004200005).

Competing interests. The authors declare no competing interests exist.

Ethical standard. The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant
national and institutional guides on the care and use of laboratory animals.

References
Bangor A, Kortum P and Miller J (2009) Determining what individual SUS scores mean: Adding an adjective rating scale.

Journal of Usability Studies 4(3), 114–123.
Basodan RA, Park B and Chung H-J (2021) Smart personal protective equipment (PPE): Current PPE needs, opportunities for

nanotechnology and e-textiles. Flexible and Printed Electronics 6(4), 043004.
Catarinucci L, Colella R, Corcione CE, Ingrosso C,Greco A, Ferrari F, Curri ML, Leo CG,Mandriota G,Molinaro Vand

Montanaro T (2022) Smart iot system empowered by customized energy-aware wireless sensors integrated in graphene-based
tissues to improve workers thermal comfort. Journal of Cleaner Production 360, 132132.

Cook S,TogniM, SchaubMC,Wenaweser P andHessOM (2006) High heart rate: A cardiovascular risk factor? EuropeanHeart
Journal 27(20), 2387–2393.

D’Abbondanza N, Ferrazza M, Lucangeli L, Piuzzi E and Pallotti A (2021) Sensorized t-shirt for cardiological patients in
telemonitoring. Engineering Proceedings 11(1), 48.

De Fazio R, Al-Hinnawi A-R, De Vittorio M and Visconti P (2022) An energy-autonomous smart shirt employing wearable
sensors for users’ safety and protection in hazardous workplaces. Applied Sciences 12(6), 2926.

Di Rienzo M, Rizzo G, Iilay ZM and Lombardi P (2020) Seismote: A multi-sensor wireless platform for cardiovascular
monitoring in laboratory, daily life, and telemedicine. Sensors 20(3), 680.

Di Tocco J, Massaroni C, Schena E, Marra F, Tamburrano A, Minutillo S and Sarto MS (2022) Feasibility assessment of a
piezoresistive sensor based on graphene nanoplatelets for respiratory monitoring. In 2022 IEEE International Workshop on
Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT). IEEE, pp. 267–271

Di Tocco J, Presti DL,Zaltieri M,D’Alesio G, FilosaM,Massari L,Aliperta A,Di RienzoM,CarrozzaMC, FerrarinM and
Massaroni C (2020) A wearable system based on flexible sensors for unobtrusive respiratory monitoring in occupational
settings. IEEE Sensors Journal 21(13), 14369–14378.

Di Tocco J, Raiano L, Sabbadini R, Massaroni C, Formica D and Schena E (2021) A wearable system with embedded
conductive textiles and an IMU for unobtrusive cardio-respiratory monitoring. Sensors 21(9), 3018.

Fanti G, Spinazzè A,Borghi F,Rovelli S,Campagnolo D,KellerM,Borghi A,Cattaneo A,Cauda E and Cavallo DM (2022)
Evolution and applications of recent sensing technology for occupational risk assessment: A rapid review of the literature.
Sensors 22(13), 4841.

Fariha M, Ikeura R, Hayakawa S and Tsutsumi S (2020) Analysis of pan-Tompkins algorithm performance with noisy ECG
signals. Journal of Physics: Conference Series 1532, 012022.

Farjadian AB, SivakML andMavroidis C (2013) Squid: Sensorized shirt with smartphone interface for exercise monitoring and
home rehabilitation. In 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), IEEE, pp. 1–6.

Forat A-S, Przegalińska A and Krzemiński M (2021) Risk assessment on the construction site with the use of wearable
technologies. Ain Shams Engineering Journal 12(4), 3411–3417.

Wearable Technologies e20-17

https://doi.org/10.1017/wtc.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2025.10


Hill B and Annesley SH (2020) Monitoring respiratory rate in adults. British Journal of Nursing 29(1), 12–16.
Hinze A, Bowen J and König JL (2022) Wearable technology for hazardous remote environments: Smart shirt and rugged iot

network for forestry worker health. Smart Health 23, 100225.
Khundaqji H,HingW, Furness J andClimsteinM (2020) Smart shirts for monitoring physiological parameters: Scoping review.

JMIR Mhealth and Uhealth 8(5), e18092.
Lage J, Catarino AP, Carvalho H and Rocha A (2015). Smart shirt with embedded vital sign and moisture sensing. In

Proceedings of the First International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices
and Systems. International Academy, Research, and Industry Association (IARI).

Lanata A, Greco A, Di Modica S, Niccolini F, Vivaldi F, Di Francesco F, Tamantini C, Cordella F, Zollo L, Di Rienzo M,
Massaroni C, Schena E, Sarto MS and Scilingo EP (2020) A new smart-fabric based body area sensor network for work risk
assessment. In 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT. Rome, Italy: IEEE, pp. 187–190

Lapresa M, Tamantini C, di Luzio FS, Ferlazzo M, Sorrenti G, Corpina F and Zollo L (2022) Validation of magneto-inertial
measurement units for upper-limb motion analysis through an anthropomorphic robot. IEEE Sensors Journal 22(17),
16920–16928.

Maguire BJ andO’Neill BJ (2023) Occupational injuries and illnesses among paramedicine clinicians: Analyses of us department
of labor data (2010–2020). Prehospital and Disaster Medicine 38(5), 581–588.

Mannée D,VanHelvoort H andDe Jongh F (2020) The feasibility of measuring lung hyperinflation with a smart shirt: An in vitro
study. IEEE Sensors Journal 20(24) ,15154–15162.

Márquez-Sánchez S, Campero-JuradoI, Robles-Camarillo D, Rodríguez S and Corchado-Rodríguez JM (2021) Besafe b2.
0 smart multisensory platform for safety in workplaces. Sensors 21(10), 3372.

Marra F,Minutillo S, Tamburrano A and Sabrina Sarto M (2021) Production and characterization of graphene nanoplatelets-
based ink for smart textile strain sensors via screen printing technique. Material and Design 198, 109306

Massaroni C, Di Tocco J, Bravi M, Carnevale A, Presti DL, Sabbadini R, Miccinilli S, Sterzi S, Formica D and Schena E
(2019) Respiratorymonitoring during physical activities with amulti-sensor smart garment and related algorithms. IEEE Sensors
Journal 20(4), 2173–2180.

Massaroni C, Sacchetti M, Romano C, Schena E, Innocenti L and Nicolò A (2023) The effects of different algorithms on the
performance of a strain-based wearable device estimating respiratory rate during cycling exercise. In 2023 IEEE International
Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT). Bologna, Italy: IEEE, pp. 142–147.

MaundyBJ,Elwakil AS andGift SJ (2019) Enhancing the improved howland circuit. International Journal of Circuit Theory and
Applications 47(4), 532–541.

Meng J, Zhao B, Ma Y, Ji Y and Nie B (2014) Effects of fatigue on the physiological parameters of labor employees. Natural
Hazards 74, 1127–1140.

Montes J,Young JC, Tandy R and Navalta JW (2018) Reliability and validation of the hexoskin wearable bio-collection device
during walking conditions. International Journal of Exercise Science 11(7), 806.

Nanchen D (2018) Resting heart rate: What is normal? Heart 104 (13), 1048–1049
Neri L, Oberdier MT, Augello A, Suzuki M, Tumarkin E, Jaipalli S, Geminiani GA, Halperin HR and Borghi C (2023)

Algorithm for mobile platform-based real-time QRS detection. Sensors 23(3), 1625.
Nigusse AB, Mengistie DA, Malengier B, Tseghai GB and Langenhove LV (2021) Wearable smart textiles for long-term

electrocardiography monitoring—A review. Sensors 21(12), 4174.
Nnaji C,Awolusi I, Park J andAlbert A (2021)Wearable sensing devices: Towards the development of a personalized system for

construction safety and health risk mitigation. Sensors 21(3), 682.
OmetovA, ShubinaV,Klus L, Skibińska J, Saafi S,Pascacio P,Flueratoru L,GaiborDQ,ChukhnoN,ChukhnoOandAli A

(2021) A survey on wearable technology: History, state-of-the-art and current challenges. Computer Networks 193, 108074.
Paradiso R, Bianchi A, Lau K and Scilingo E (2010) Psyche: Personalised monitoring systems for care in mental health. In 2010

Annual International Conference of the IEEE Engineering in Medicine and Biology, Buonos Aires, Argentina: IEEE,
pp. 3602–3605.

Podgorski D,Majchrzycka K,Dąbrowska A,Gralewicz G andOkrasaM (2017) Towards a conceptual framework of OSH risk
management in smart working environments based on smart PPE, ambient intelligence and the Internet of Things technologies.
International Journal of Occupational Safety and Ergonomics 23(1), 1–20.

SantosG,MarquesR,Ribeiro J,MoreiraA,Fernandes P,SilvaM,FonsecaA,Miranda JM,Campos JB andNeves SF (2022)
Firefighting: Challenges of smart PPE. Forests 13(8), 1319.

Šolić P, Perković T, Čulić A and Pleština V (2022) Toward smart shirt for sensing thermal comfort. Energy Sources, Part A:
Recovery, Utilization, and Environmental Effects 44(2), 4141–4148.

Tada Y, Amano Y, Sato T, Saito S and Inoue M (2015) A smart shirt made with conductive ink and conductive foam for the
measurement of electrocardiogram signals with unipolar precordial leads. Fibers 3(4), 463–477.

Tamantini C,Cordella F,Tagliamonte NL, Pecoraro I, Pisotta I,Bigioni A,Tamburella F,LorussoM,Molinari M and Zollo
L (2024) A data-driven fuzzy logic method for psychophysiological assessment: An application to exoskeleton-assisted walking.
IEEE Transactions on Medical Robotics and Bionics. 6(2), 695–705. https://doi.org/10.1109/TMRB.2024.3377453

Tamantini C,LapresaM, di Luzio FS,Cordella F and Zollo L (2021) Analysis of physiological parameters andworkload during
working tasks in covid-19 pandemic conditions. In 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT
(MetroInd4. 0&IoT), Rome, Italy: IEEE, pp. 423–428.

e20-18 Christian Tamantini et al.

https://doi.org/10.1017/wtc.2025.10 Published online by Cambridge University Press

https://doi.org/10.1109/TMRB.2024.3377453
https://doi.org/10.1017/wtc.2025.10


Tamantini C, Rondoni C, Cordella F, Guglielmelli E and Zollo L (2023) A classification method for workers’ physical risk.
Sensors 23(3), 1575.

Viegas A, Abreu MM and Pedrosa I (2016) State-of-the-art in wearable technology: Medical area applications. In 2016 11th
Iberian Conference on Information Systems and Technologies (CISTI). IEEE, pp. 1–6.

Yadav A, Yadav N, Wu Y, RamaKrishna S and Hongyu Z (2023) Wearable strain sensors: State-of-the-art and future
applications. Materials Advances 4(6), 1444–1459.

Cite this article: Tamantini C, Marra F, Di Tocco J, Di Modica S, Lanata A, Cordella F, Ferrarin M, Rizzo F, Stefanelli M,
PapacchiniM,Delle Site C, TamburranoA,Massaroni C, Schena E, Zollo L and SartoMS (2025) SenseRisc: An instrumented smart
shirt for risk prevention in the workplace. Wearable Technologies, 6, e20. doi:https://doi.org/10.1017/wtc.2025.10

Wearable Technologies e20-19

https://doi.org/10.1017/wtc.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2025.10
https://doi.org/10.1017/wtc.2025.10

	SenseRisc: An instrumented smart shirt for risk prevention in the workplace
	Introduction
	Materials and methods
	Instrumented shirt
	Respiration monitoring
	Cardiac activity monitoring
	Movement monitoring

	Signal analysis and intelligent software module
	Mobile application

	Experimental validation
	Results and discussions
	Conclusion
	Data availability statement
	Acknowledgments
	Authorship contribution
	Funding statement
	Competing interests
	Ethical standard
	References


