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Abstract
We introduce and study a fermionisation procedure for the cohomological Hall algebra H�Q

of representations of a
preprojective algebra, that selectively switches the cohomological parity of the BPS Lie algebra from even to odd.
We do so by determining the cohomological Donaldson–Thomas invariants of central extensions of preprojective
algebras studied in the work of Etingof and Rains, via deformed dimensional reduction. Via the same techniques,
we determine the Borel–Moore homology of the stack of representations of the μ-deformed preprojective algebra
introduced by Crawley–Boevey and Holland, for all dimension vectors. This provides a common generalisation
of the results of Crawley-Boevey and Van den Bergh on the cohomology of smooth moduli schemes of represen-
tations of deformed preprojective algebras and my earlier results on the Borel–Moore homology of the stack of
representations of the undeformed preprojective algebra.

1. Introduction

Given a quiver Q, in [26] Kontsevich and Soibelman define the cohomological Hall algebra

AQ =
⊕

d∈NQ0

H(Md(Q), Q)[−χQ(d, d)], (1.1)

which has as underlying vector space the singular cohomology of the stack of finite-dimensional complex
representations of Q, shifted in cohomological degree by the Euler form (see (2.1) for the definition).
As indicated by (1.1), this algebra is graded by the dimension vectors of representations of Q. The mul-
tiplication is defined by taking push-forward and pull-back of cohomology in the usual correspondence
diagram

(1.2)

In the diagram (1.2), M(Q) =∐
d∈NQ0 Md(Q) is the stack of finite-dimensional Q-representations,

Exact(Q) is the stack of short exact sequences of Q-representations, and πi is the morphism taking
a short exact sequence to its ith entry.

If Q is moreover symmetric (i.e. for every pair of vertices i,j, there are as many arrows from i to j as
from j to i), then the multiplication respects the cohomological degree, and a theorem of Efimov [15]
states that (a slight modification of) AQ is a free supercommutative algebra; the ‘super’ here means that
elements in odd cohomological degrees anti-commute with each other.

There are a couple of instances in which this result is possible to check by hand; indeed, it was
observed in [26, Section 2.5] that if Q(l) denotes the quiver with one vertex and l loops, then
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AQ(0) ∼= Sym((Q[u]) [−1]) (1.3)

AQ(1) ∼= Sym(Q[u]) , (1.4)

where [−1] denotes a cohomological shift, and ui is placed in cohomological degree 2i. Both algebras
are free supercommutative algebras generated by a countable set of symbols αi for i ≥ 0, with αi placed in
cohomological degree 1 + 2i in the zero-loop case, and in cohomological degree 2i in the one-loop case.
In other words, (1.3) states that AQ(0) is a free exterior algebra with countably many generators, while
(1.4) states thatAQ(1) is a free commutative algebra with the same generators. As observed in [26], the fact
that the underlying vector spaces of the two algebras are the same (since Mn(Q(l)) is homotopic to BGln,
regardless of l) can be seen as a consequence of the boson-fermion correspondence in representation
theory.

Now let Q be an arbitrary finite quiver. We form the tripled quiver Q̃, by adjoining to the quiver Q
an arrow a∗ with the opposite orientation to a, for each a an arrow of Q, and also adjoining a loop ωi at
each vertex i of Q. So for instance, Q̃(1) ∼= Q(3). The quiver Q̃ carries a canonical cubic potential

W̃ =
∑
a∈Q1

[a, a∗]
∑
i∈Q0

ωi, (1.5)

and one may define (again as in [26]) the critical cohomological Hall algebra AQ̃,W̃ . Again, the multi-
plication respects cohomological degree. The underlying vector space of this algebra is the vanishing
cycle cohomology of the function Tr(W̃) on the stack M

(
Q̃
)
. The multiplication is defined via pull-back

and push-forward of vanishing cycle cohomology along the same correspondence diagram (1.2). Via
dimensional reduction [8] the algebra AQ̃,W̃ is isomorphic [38, 45] to the cohomological Hall algebra
structure on the Borel–Moore homology of the stack of representations of the preprojective algebra�Q

constructed by Schiffmann and Vasserot in [40] and studied in [46].
In general, the algebra AQ̃,W̃ is not supercommutative; for example, AQ̃,W̃ contains the universal

enveloping algebra of the Kac–Moody Lie algebra associated with the quiver Q′ obtained by remov-
ing all vertices from Q that support 1-cycles [10]. On the other hand, via the cohomological integrality
theorem [11], the entire algebra AQ̃,W̃ satisfies a Poincaré–Birkhoff–Witt theorem, meaning that we have
an NQ0 -graded isomorphism of cohomologically graded vector spaces (but not of algebras):

AQ̃,W̃
∼= Sym

⎛⎝⊕
d∈NQ0

(
BPSQ̃,W̃,d ⊗Q[u]

)
[−1]

⎞⎠ . (1.6)

In the isomorphism (1.6), BPSQ̃,W̃,d is a cohomologically graded vector space, the whole of BPSQ̃,W̃,d ⊗
Q[u] is placed in NQ0-degree d, ui has cohomological degree 2i, and the symbol [−1] denotes the coho-
mological shift as before. Moreover by [9], the Poincaré polynomial of the cohomologically graded
vector space BPSQ̃,W̃,d satisfies the relation

p
(
BPSQ̃,W̃,d, q1/2

)
:=

∑
i∈Z

dim
(
BPSi

Q̃,W̃,d

)
qi/2 = q−1/2aQ,d

(
q−1
)

, (1.7)

where aQ,d(q) is the Kac polynomial [20], counting absolutely indecomposable d-dimensional
Q-representations over a field of order q. For example, we observe that Q(1) ∼= Q̃(0) and calculate

aQ(0),d(q) =
{

1 if d = 1

0 if d ≥ 2

recovering (1.4) from (1.6) and (1.7).
In particular, we see that for arbitrary finite Q, the algebra AQ̃,W̃ is bosonic, in the sense that it is

situated entirely in even cohomological degree. Having observed that AQ(1) =AQ̃(0),W̃ has a fermionic
counterpart AQ(0) , we may ask the following
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Question 1.1. For a finite quiver Q, is there a ‘fermionic’ version of AQ̃,W̃?

It is a consequence of the purity of the cohomological BPS invariants for the quiver with potential(
Q̃, W̃

)
(again, see [9]) that there is an equality

p
(
BPSQ̃,W̃,d, q1/2

)= χq1/2

(
BPSQ̃,W̃,d

)
(1.8)

between the Poincaré polynomial and the virtual Poincaré polynomial1 of BPSQ̃,W̃,d. The polynomials
χq1/2 (BPSQ̃,W̃,d) are essentially by definition the refined BPS invariants for the quiver Q̃ with potential
W̃. Expressed in the language of refined Donaldson–Thomas theory, the analogue of Question 1.1 is

Question 1.2. Is there quiver Q′ with potential W′ such that the refined BPS invariants satisfy

χq1/2

(
BPSQ′ ,W ′ ,d

)= q1/2χq1/2

(
BPSQ̃,W̃,d

)
?.

In this paper, we will answer these two questions in the affirmative.

1.1 Counting rational curves

At least in the case in which Q is an affine Dynkin quiver, there are strong hints from the McKay corre-
spondence that the answer to Question 1.2 should be at least a partial ‘yes’. We recall some geometric
background; see [3, 24] for more details.

Fix a finite subgroup G ⊂ SL2(C) and denote by X0 =C2/G the associated Kleinian singularity. We
denote by� the McKay graph of G, and by�′ the full ADE type sub-graph of� obtained by removing the
vertex corresponding to the trivial representation. We denote by p : Y0 → X0 the minimal resolution of
X0. The surface X0 contains an isolated singularity x, and the exceptional fibre p−1(x) consists of a chain
of rational curves, with incidence graph �′. The space Y0 has a universal deformation Y parametrised
by h, the Cartan subalgebra of the simple Lie algebra corresponding to �′, so that we have a Cartesian
diagram

The generic fibre of π contains no rational curves, while if h ∈ h lies in a root hyperplane corre-
sponding to a vertex i of �′, the rational curve Ci corresponding to i deforms along the line t · h for t ∈C

[3, Prop.2.2]. We pick h ∈ h and form the Cartesian diagram

(1.9)

For β ∈ H2(Yh, Z) and n ∈N, let Mβ,n

(
Yh
)

denote the moduli space of semistable coherent sheaves
F on Y ′, with fundamental class of the support of F equal to β, and with χ(F) = n.

Consider the case in which β = [Ci] for some i ∈ Q0, so that stability is equivalent to semistability.
Since a stable coherent sheaf F cannot split as a direct sum, it is supported on a single fibre of the
morphism π′. If Ci deforms along A1, with curve over t ∈A1 labelled Ci,t, then in each fibre π′(t) there
is a unique semistable coherent sheaf OCi,t (n − 1) with Euler characteristic n and

[
OCi,t (n − 1)

]= β. If
Ci does not deform, then there is a unique semistable coherent sheaf on the whole of Yh of class (β, n),
supported above 0 ∈A1. So

1 See [32] for the virtual Poincaré polynomial analogue of (1.7); any two of purity, (1.7), and the virtual analogue of (1.7) imply
the third.
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M[Ci],n

(
Yh
)=

{
pt if h /∈ i⊥

A1 if h ∈ i⊥.

The cohomological BPS invariants BPSβ,n of the 3-fold Yh are in general hard to define rigorously,
involving vanishing cycle cohomology, d-critical structures [19], orientation data, perverse filtrations,
etc. However, for simple classes like the ones we are considering here, the definition/calculation boils
down to something more straightforward:

BPS[Ci],n

(
Yh
)= H

(M[Ci],n

(
Yh
)

, Q
)

vir

∼=
{
Q if h /∈ i⊥

Q[1] if h ∈ i⊥.

The subscript vir denotes the cohomological shift [dim(M[Ci],n)] by the dimension of the space we are
taking the singular cohomology of and accounts for the shift in the h ∈ i⊥ case. So in both cases, the
cohomological BPS invariants for simple curve classes are one-dimensional vector spaces and are con-
centrated in even or odd cohomological degree, depending on whether the choice of h means that Ci is
rigid or not.

Similarly, the definition and calculation of the simplest degree zero cohomological BPS invariant
BPS0,1

(
Yh
)

is much easier than the general case, and we have
BPS0,1

(
Yh
)∼= H(Yh, Q)vir.

It is easy to verify that the singular cohomology of Yh does not depend on the choice of h at all. In general,
one expects BPS0,n

∼= BPS0,1 (compare with [2]), so it turns out that the degree zero2 cohomological DT
theory of Yh does not depend on h.

To put this geometric discussion in very leading language: for the most degenerate case h = 0, all
of the cohomological DT theory is bosonic, since the vanishing cycle cohomology ends up living in
even cohomological degree (taking into account the shift [−1] in (1.6)). On the other hand, modifying
the deforming family defined by h ∈ h to be more generic, a portion of the cohomological DT theory is
fermionised, depending on which root hyperplanes h avoids.

1.2 The noncommutative conifold and central extensions of the preprojective algebra

Let Q′ be the A1 quiver, and let Q be its affine extension, which we label as follows:

(1.10)

Then as a special case of [21], there is a derived equivalence between the category of finitely generated
modules for the preprojective algebra�Q of Q, and the category of coherent sheaves on Y0, the minimal
resolution of the type A1 singularity defined by the equation x2 + y2 = z2:

Db
fg

(
�Q − Mod

) ∼=−→Db(Coh(Y0)) .

We have that

2 By which we mean the Donaldson–Thomas theory of coherent sheaves with zero-dimensional support.
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The Kac polynomials of Q are possible to calculate by hand, so that we can calculate the cohomo-
logical BPS invariants for Jac

(
Q̃, W̃

)
via (1.7)

BPSQ̃,W̃,(m,n)
∼=

⎧⎪⎪⎨⎪⎪⎩
Q[3] ⊕Q[1] if m = n

Q[1] if m = n ± 1

0 otherwise.

(1.11)

There is an isomorphism Jac
(

Q̃, W̃
)∼=�Q[ω] =�Q ⊗C[ω], so that we have in addition a derived

equivalence (see e.g. [42])

Db
fg

(
Jac
(

Q̃, W̃
)

− Mod
) ∼=−→Db(Coh

(
Y0
))

,

where Y0 is defined via the construction in the previous subsection by setting h = 0 ∈ h, i.e. Y0 = Y0 ×A1.
For the A1-singularity, the Cartan subalgebra h is one-dimensional, so aside from 0 there is an essen-

tially unique choice of h ∈ h. Defining Ycon = Yh for a nonzero choice of h ∈ h in diagram (1.9), we obtain
the resolved conifold. As noted in the previous section, instead of having an A1-family of rational curves
giving rise to cohomological BPS invariants in odd degrees, the resolved conifold contains a unique rigid
curve. It follows that the cohomological BPS invariants corresponding to sheaves supported on the curve
flip parity and are supported in even cohomological degrees, so that they contribute to the fermionic part
of the cohomological DT theory of the resolved conifold (as ever, taking into account the shift defined
as in (1.6))

The resolved conifold also has a noncommutative model, studied in this context by Szendröi, which
we recall (see [41] for details on the noncommutative Donaldson–Thomas theory of the conifold, and
also [17, 27, 37] for more recent work on CoHAs related to toric 3-folds). We consider the double

Set WKW = aa∗bb∗ − a∗ab∗b to be the Klebanov–Witten potential [25]. Then (e.g. as a special case of a
result due to Van den Bergh [43]), there is a derived equivalence

Db
fg

(
Jac
(
Q, WKW

)− Mod
) ∼=−→Db(Coh(Ycon)) .

To interpolate between the two cases (h = 0, h 
= 0), it turns out to be more instructive to consider the
quiver Q̃ with the potential

W̃ (1,−1) = W̃ +ω2
0 −ω2

1.

As we recall in Section 2.1, the resulting Jacobi algebra has already been studied: it is a special case
of the central extensions of �Q introduced by Etingof and Rains in [16]. There is an isomorphism (see
Example 2.2)

Jac
(

Q̃, W̃ (1,−1)
)∼= Jac

(
Q, WKW

)
(1.12)

and the cohomological DT theory of the Jacobi algebras in (1.12) turns out to be the same. The cohomo-
logical BPS invariants for the noncommutative conifold can be deduced from [30] and purity (proved
as in [12, Thm.4.7]):

BPSQ̃,W̃(1,−1),m,n
∼=

⎧⎪⎪⎨⎪⎪⎩
H(Ycon, Q)[3] ∼=Q[3] ⊕Q[1] if m = n

Q if m = n ± 1

0 otherwise.

(1.13)
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Comparing (1.11) with (1.13), we see exactly the same pattern as in the commutative case of Section 1.1,
with the passage from trivial A1-deformations of Y0 to nontrivial ones replaced in the context of non-
commutative algebraic geometry by the passage from the trivial central extension of the algebra �Q to
the nontrivial ones constructed by Etingof and Rains; this change provokes a flip in the parity of some,
but not all, of the cohomological BPS invariants.

1.3 Main results

In the rest of the paper, we prove that the above discussion regarding the (noncommutative) conifold
forms part of a general procedure for (selectively) ‘fermionising’ the cohomological Hall algebras of
preprojective algebras. This culminates in the following theorem:

Theorem A. Let μ ∈CQ0 . Set W̃μ =∑
a∈Q1

[a, a∗]
∑

i∈Q0
ωi + 1

2

∑
i∈Q0

μiω
2
i . Then the cohomological

BPS invariants for the quiver Q̃ with potential W̃μ satisfy

p
(
BPSQ̃,W̃μ ,d, q1/2

)=
⎧⎨⎩aQ,d

(
q−1
)

if d · μ 
= 0

q−1/2aQ,d
(
q−1
)

if d · μ = 0,
(1.14)

where aQ,d(q) are the Kac polynomials for Q. In addition, the natural mixed Hodge structure on the
cohomological BPS invariants BPSQ̃,W̃μ ,d is pure, of Tate type, so that we have isomorphisms of Hodge
theoretic BPS invariants

BPShdg
Q̃,W̃μ ,d

∼=
⎧⎨⎩
⊕

i∈Z (L i)⊕aQ,d,−i if d · μ 
= 0⊕
i∈Z
(
L i−1/2

)⊕aQ,d,−i if d · μ = 0,
(1.15)

where L := Hc(A1, Q). By purity, the virtual Poincaré polynomials of the cohomological BPS invariants
agree with the above Poincaré polynomials, so that we have equalities for the refined BPS invariants

χq1/2

(
BPSQ̃,W̃μ ,d

)=
⎧⎨⎩aQ,d

(
q−1
)

if d · μ 
= 0

q−1/2aQ,d
(
q−1
)

if d · μ = 0.
(1.16)

Comparing with (1.7), we see that for dimension vectors d satisfying d · μ 
= 0 the cohomologi-
cal BPS invariants have switched parity. In particular, for generic choices of μ, the algebra AQ̃,W̃μ is a
fermionised version of AQ̃,W̃ , so (1.15) and (1.16) answer Questions 1.1 and (1.2) respectively in the
affirmative.

Still fixing μ ∈CQ0 the deformed preprojective algebra, introduced by Crawley–Boevey and Holland
in [6], is defined by

�Q,μ := CQ/

〈∑
a∈Q1

[a, a∗] +
∑
i∈Q0

μiei

〉
,

where ei is the path of length zero beginning and ending at the vertex i. Via the methods used to prove
Theorem A, we are able to calculate the Borel–Moore homology (along with its mixed Hodge structure)
of all stacks of representations of deformed preprojective algebras, simultaneously generalising a result
of Crawley–Boevey and Van den Bergh [7] from the case of generic μ and indivisible dimension vector
d, and the result from [9] which deals with the case μ = 0 and arbitrary d:
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Theorem B. For arbitrary μ ∈ R and d ∈NQ0 there is an isomorphism of NQ0 -graded mixed Hodge
structures

⊕
d∈NQ0

Hc

(
Md(�Q,μ), Q

)⊗ L χQ(d,d) ∼= Sym

⎛⎜⎜⎝ ⊕
0
=d∈NQ0

d·μ=0

BPShdg,∨
Q̃,W̃,d ⊗ Hc(pt/C∗, Q)vir

⎞⎟⎟⎠ , (1.17)

where
BPShdg,∨

Q̃,W̃,d
∼=
⊕
i∈Z

(
L i+1/2

)⊕aQ,d,i

and
Hc(pt/C∗)vir =

⊕
i≥0

L−1/2−i.

In particular, the compactly supported cohomology of M(�Q,μ), the stack of representations of the
deformed preprojective algebra, is pure, of Tate type.

See Section 3.3 for the proof of Theorems A and B.

2. Cohomological DT theory for quivers with potential
2.1 Some algebras from quivers

A quiver is determined by a set of vertices Q0, a set of edges Q1, and two morphisms s, t : Q1 → Q0

taking an arrow to its source and target respectively. We always assume that Q0 and Q1 are finite. We
define the Euler form

χQ(·, ·) : ZQ0 ×ZQ0 →Z (2.1)

(d, e) �→
∑
a∈Q1

ds(a)dt(a) −
∑
i∈Q0

diei.

Where there is no possibility of confusion, we drop the quiver Q from the notation and just write χ(·, ·).
We denote by Q the doubled quiver of Q, obtained by adding an arrow a∗ for every arrow a ∈ Q1, where
a∗ has the opposite orientation to a. We denote by Q̃ the tripled quiver, obtained from Q by adding a
loop ωi at each vertex i ∈ Q0.

Given a ring A and a quiver Q, we denote by AQ the free path algebra of Q with coefficients in A.
We denote by R ⊂CQ the semisimple subalgebra spanned by length zero paths, so we may identify
R =CQ0 . We denote by �Q the preprojective algebra for Q, defined to be the quotient of the free path
algebra CQ by the two-sided ideal generated by the element

∑
a∈Q1

[a, a∗]. As in the introduction, we
denote by �Q[ω] the trivial extension obtained by adjoining a central element ω to the algebra �Q, i.e.
�Q[ω] =�Q ⊗C[ω].

Let μ ∈ R. We recall the central extension of �Q introduced by Etingof and Rains [16]:

�
μ

Q =C[ω]Q/

〈∑
a∈Q1

[a, a∗] + μω

〉
.

There is an obvious isomorphism
�0

Q
∼=�Q[ω]

and natural isomorphisms
�Q,μ

∼= �
μ

Q/〈ω− 1〉
�Q

∼= �
μ

Q/〈ω〉,
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where �Q,μ is the deformed preprojective algebra recalled in the introduction. The algebra �μ

Q pro-
vides an A1-family of algebras interpolating between the preprojective algebra �Q and the deformed
preprojective algebra �Q,μ.

Let Q be a quiver and let W ∈CQ/[CQ, CQ] be a potential, i.e. a linear combination of cyclic words,
where cyclic words are considered to be equivalent if they can be cyclically permuted to each other. We
will call the data of a quiver with potential (Q,W ) a QP. Given a ∈ Q1, if W = a1 . . . an is a single cyclic
word we define

∂W/∂a =
∑
am=a

am+1am+2 . . . ana1 . . . am−1

and define ∂W/∂a for general W by extending linearly. We define

Jac(Q, W) =CQ/〈∂W/∂a | a ∈ Q1〉.
In this paper, we will study Jacobi algebras obtained from the tripled QP

(
Q̃, W̃

)
defined in (1.5) by

adding polynomials in the extra loops ωi; we refer the reader to [18, Sect. 4] for general background on
this construction, [36, 42] for the noncommutative geometry background in type ADE, and [4] for the
physics perspective.

Proposition 2.1. [18, Ex. 4.3.5] Let μ =∑
i μiei. Set W̃μ = W̃ + 1

2

∑
i∈Q0

μiω
2
i . Then there is an

isomorphism

�
μ

Q
∼= Jac

(
Q̃, W̃μ

)
.

In particular, there is a natural isomorphism

�Q[ω] ∼= Jac
(

Q̃, W̃
)

.

Proof. This follows more or less from the definitions. The noncommutative derivatives of W̃μ with
respect to the arrows a impose the relation that ω commutes with the arrows a∗, and vice versa, while
the noncommutative derivatives with respect to the loops ωi impose the defining relations of �μ

Q as a
quotient of C[ω]Q.

Example 2.2. Let Q be defined as in (1.10), and set μ = e0 − e1. Then

W̃μ =ω0(a
∗a − bb∗)−ω1(aa∗ − b∗b)+ 1

2

(
ω2

0 −ω2
1

)
.

After the noncommutative change of variables

ω0 �→ω0 − a∗a + bb∗

ω1 �→ω1 − aa∗ + b∗b

the potential transforms to

W = 1

2

(
ω2

0 −ω2
1

)+ b∗baa∗ − bb∗a∗a.

Now the relations ∂W/∂ωi = ±ωi mean that in the Jacobi algebra we may simply remove the loops ωi.
Thus, there is a natural isomorphism

Jac
(

Q̃, W
)∼= Jac(Qcon, WKW) ,

giving the isomorphism (1.12). In particular, the noncommutative conifold is isomorphic to one of the
central extensions of �Q considered above, for Q as in (1.10).
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Later we will use the following elementary result.

Proposition 2.3. Let ρ be a d-dimensional simple Jac
(

Q̃, W̃μ

)
-module. Then, the operator ρ(ω) acts

on the underlying vector space of ρ by multiplication by some scalar λ ∈C, and if μ · d 
= 0 then λ= 0.

Proof. The first part follows from the fact that ω=∑
i∈Q0

ωi is central in Jac
(

Q̃, W̃μ

)
, so each

eigenspace of ρ(ω) is preserved by the action of Jac
(

Q̃, W̃μ

)
. For the second part, consider the relation

in Jac
(

Q̃, W̃μ

)
0 =

∑
i∈Q0

∂W̃μ/∂ωi =
∑
i∈Q0

μiωi +
∑
a∈Q1

[a, a∗] .

Applying ρ and taking the trace, the final sum vanishes, and we find

0 =
∑
i∈Q0

μiλTr
(
Iddi×di

)
= λμ · d

as required.

2.2 Moduli spaces of quiver representations

Given a quiver Q and a dimension vector d ∈NQ0 we set

Ad(Q) :=
∏
a∈Q1

Hom
(
Cds(a) , Cdt(a)

)
GLd :=

∏
i∈Q0

GLdi (C).

The group GLd acts on Ad(Q) via change of basis. We denote by Md(Q) the stack of d-dimensional
CQ-modules. There is an isomorphism of stacks

Md(Q) ∼=Ad(Q)/GLd.

We denote by Md(Q) the coarse moduli space of d-dimensional CQ-modules. Geometric K-points of
Md(Q) are in natural bijection with semisimple KQ-modules. There is an isomorphism

Md(Q) ∼= Spec
(
�(Ad(Q))GLd

)
.

We denote by JHd : Md(Q) →Md(Q) the affinisation morphism. Although this morphism is not projec-
tive, it is approximated by projective maps in the sense of [11], meaning that JH∗ and JH! commute with
vanishing cycle functors (introduced in the next section).

For spaces and morphisms involving a subscript d, if we omit the subscript, the union over all
dimension vectors is intended.

There is a finite morphism [33]

⊕ : M(Q) ×M(Q) →M(Q)

which at the level of geometric points takes a pair of KQ-modules to their direct sum. Since this mor-
phism is invariant under swapping the two factors of M(Q) in the domain, and finite morphisms are
exact with respect to the perverse t structure, we obtain an induced symmetric monoidal product on
Perv(M(Q)), defined by

F ′ �⊕ F ′′ := ⊕∗
(F ′ �F ′′) .
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Given a potential W ∈CQ/[CQ, CQ], we form the function Tr(W)d on Ad(Q). This is well defined and
GLd-invariant by cyclic invariance of trace. As such, Tr(W)d induces functions on Md(Q) and Md(Q),
which we continue to denote by Tr(W)d, or just Tr(W ) if there is no risk of ambiguity.

2.3 Cohomological Donaldson–Thomas theory of quivers with potential

Given a function f on a smooth complex variety X, we define X0 = f −1(0) and consider the diagram

in which the square is Cartesian. Then, we define the nearby cycles functor ψf : Db(Perv(X)) →
Db(Perv(X)) via

ψf = κ∗κ
∗p∗p∗.

The vanishing cycles functor φf is defined so that for F ∈ Ob
(Db(Perv(X))

)
there is a distinguished

triangle

κ∗κ
∗F →ψfF → φfF .

Both pψf := ψf [−1] and pφf := φf [−1] send perverse sheaves to perverse sheaves [23, Cor. 10.3.13] and
(naturally) commute with Verdier duality [29].

We give a lightning account of the critical cohomological Hall algebra associated with a quiver with
potential. More details can be found in [11, 26]. For a stack M for which each connected component is
irreducible and generically smooth, we define the intersection complex

ICM :=
∐

N∈π0(M)

ICN(QNsm [dim(N)]) ,

i.e. it is the intermediate extension of the constant perverse sheaf from the smooth locus. We define

RAQ,W := JH∗
pφTr(W)ICM(Q).

The morphism π2 from (1.2) is proper, so that there is a natural integration map

αd′ ,d′′ : π2,∗QExactd′ ,d′′ (Q) →QMd′+d′′ (Q)

[−2χ
(
d′, d′′)]

(the shift is given by the relative dimension of π2). Composing appropriate shifts of the morphisms

⊕∗ JH∗
pφTr(W)

(
QM(Q)×M(Q) → (π1 × π3)∗QExact

)
and the sum of JH∗pφTr(W)αd′ ,d′′ over pairs (d′, d′′), and using commutativity of vanishing cycle functors
with proper and with smooth morphisms, we obtain the morphism

β : ⊕∗ (JH × JH)∗
pφTr(W)ICMd′ (Q)×Md′′ (Q) → JH∗

pφTr(W)ICMd(Q).

Finally, composing β with ⊕∗(JH × JH)∗TS, where TS is (a shift of) the Thom–Sebastiani isomorphism
[28]

TS : pφTr(W)QMd′ (Q) � pφTr(W)QMd′′ (Q)

∼=−→ pφTr(W)QMd′ (Q)×Md′′ (Q),

we define the (relative) Hall algebra multiplication

RAQ,W �⊕ RAQ,W →RAQ,W . (2.2)

The cohomology

AQ,W := H
(
M(Q), pφTr(W)ICM(Q)

)
∼= H

(M(Q), RAQ,W

)
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has a NQ0-grading by dimension vectors induced by the decomposition M(Q) =∐
d∈NQ0 Md(Q), and

the associative product induced by taking derived global sections of the morphism (2.2) respects this
grading.

Assume that Q is symmetric3. For d ∈NQ0 , we define

BPSQ,W,d :=
{

pφTr(W)ICMd(Q) if there is a d-dimensional simple CQ-module
0 otherwise.

(2.3)

According to our conventions, ICMd(Q) is the intermediate extension of the constant perverse sheaf
QMsimp

d (Q)[1 − χ(d, d)] on the (open, dense) subscheme of Md(Q) corresponding to simple modules.
Since ICMd(Q) is Verdier self-dual, and vanishing cycle functors commute with Verdier duality [29],
there are natural isomorphisms

DBPSQ,W,d ∼=BPSQ,W,d. (2.4)

We recall the following version of the cohomological integrality theorem from [11]

Theorem 2.4. There is an isomorphism of bounded above complexes of perverse sheaves

JH!
pφTr(W)ICM(Q)

∼= Sym�⊕

⎛⎝ ⊕
N

Q0 �d
=0

BPSQ,W,d ⊗ Hc(pt/C∗)vir

⎞⎠ ,

where

Hc(pt/C∗)vir
∼=
⊕
i∈Z≥0

Q[1 + 2i].

We define the cohomological BPS invariants

BPSQ,W,d := H(Md(Q), BPSQ,W,d).

Applying the compactly supported cohomology functor to Theorem 2.4, and using self-Verdier duality
(2.4) of BPSQ,W,d, yields

⊕
d∈NQ0

Hc(Md(Q), pφTr(W)ICMd(Q)) ∼= Sym

⎛⎝ ⊕
N

Q0 �d
=0

BPS∨
Q,W,d ⊗ Hc(pt/C∗)vir

⎞⎠ .

The BPS invariants of the Jacobi algebra Jac(Q,W ) are defined via

ωQ,W,d = χ
(
H
(Md(Q), BPSQ,W,d

))
:=

∑
i∈Z

( − 1)i dim
(
Hi
(Md(Q), BPSQ,W,d

))
= χ

(
Hc

(Md(Q), BPSQ,W,d
))

,

where the final identity again follows from Verdier self-duality of the BPS sheaf. Turning to Verdier
duals, we have instead

Theorem 2.5. [11] There is an isomorphism of unbounded complexes of perverse sheaves

RAQ,W
∼= Sym�⊕

⎛⎝ ⊕
N

Q0 �d
=0

BPSQ,W,d ⊗ H(pt/C∗)vir

⎞⎠ ,

3 There is a version of the integrality theorem for non-symmetric quivers, concerning vanishing cycle cohomology of stacks of
semistable CQ-modules, but we won’t need it in this paper. See [11, Thm. A Thm. C]
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where

H(pt/C∗)vir =
⊕
i∈Z≥0

Q[−1 − 2i],

so that
pH1

(RAQ,W

)= (
pτ≤1RAQ,W

)
[1] ∼=

⊕
N

Q0 �d
=0

BPSQ,W,d.

Applying the natural transformation pτ≤1 → id toRAQ,W and taking hypercohomology, there is a natural
inclusion

gQ,W := BPSQ,W[−1] = H
(M(Q), BPSQ,W

)
[−1] ↪→AQ,W .

The image of this inclusion is closed under the commutator4 Lie bracket induced by the associative
algebra structure on AQ,W .

The resulting Lie algebra gQ,W is called the BPS Lie algebra for the pair (Q,W ), see [11] for more
details.

2.4 Hodge theoretic BPS invariants

We give another lightning introduction, this time to Hodge theoretic DT theory, via monodromic mixed
Hodge modules. For more details, we refer the reader to [11, 26], and for a comparison with the treatment
of monodromic mixed Hodge modules in [39], we refer the reader to [11, Sec. 2]. Mixed Hodge structures
are important in the subject of refined DT theory, since the extra q-variable appearing in refined DT
theory keeps track of the weight filtration on certain mixed Hodge structures. On the other hand, our main
result states that all mixed Hodge structures appearing in this paper are pure, so that weight polynomials
can be replaced by Poincaré polynomials. The takeaway is that this section can be skimmed by the reader
that is happy to use the purity part of Theorem A to identify the refined BPS invariants of Jac

(
Q̃, W̃μ

)
with the Poincaré polynomials of the BPS cohomology.

For X a variety we denote by MHM(X) the category of mixed Hodge modules on X. There is an equiv-
alence of categories between MHM(pt) and the category of graded-polarisable mixed Hodge structures.
Let BX denote the full subcategory of MHM(X ×A1) containing those mixed Hodge modules F such
that for each x ∈ X and i ∈Z the mixed Hodge modules

Hi
(({x} ×A1 → X ×A1

)∗ F) (2.5)

are locally constant away from x × {0}. We denote by CX the full subcategory of BX containing those
F such that each (2.5) is constant. Equivalently, we may define CX as the essential image of π∗

X[1],
for πX : X ×A1 → X the projection. We denote by MMHM(X) the Serre quotient BX/CX . There is an
embedding of categories MHM(X) ↪→ MMHM(X) defined via(

X × {0} ↪→ X ×A1
)

∗ : MHM(X) → MHM
(
X ×A1

)
.

The direct image functor

� := (
X ×C∗ ↪→ X ×A1

)
∗

induces an equivalence of categories between the category of mixed Hodge modules on X ×C∗ with
locally constant cohomology sheaves after restriction to each {x} ×C∗ and the category of monodromic

4 Strictly speaking, for this part of the theorem to be true, we need to twist the symmetric monoidal structure on NQ0 -graded,
cohomologically graded vector spaces by a sign, over and above the Koszul sign rule (see [11, Sects. 1.6, 6.1]). Thankfully for the
quiver Q̃ this sign is always + (see [10, Rem. 2.3]).
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mixed Hodge modules on X. Denoting by �−1 an inverse equivalence, there is a faithful forgetful
functor

rat ◦
(

X
x �→(x,1)−−−→ X ×C∗

)∗ ◦�−1[−1]

taking a monodromic mixed Hodge module to its underlying perverse sheaf on X. We abuse notation by
denoting this functor also by rat. For X a variety, we denote by Q

X
the lift of the constant sheaf QX to a

complex of mixed Hodge modules on X. For f a regular function on X, we define the vanishing cycles
functor

φmon
f : MHM(X) → MMHM(X)

F �→�φ
u·f

(
F �Q

C∗

)
[1],

where u is the coordinate on C∗ and φ
u·f is the lift of pφu·f to the categories of mixed Hodge modules.

There is a natural isomorphism ratφmon
f

∼= pφf rat.
An object F ∈ Ob(MMHM(X)) inherits a weight filtration from the weight filtration on objects of

MHM(X ×A1). We say that F is pure of weight n if the associated graded object with respect to this
filtration is concentrated in degree n. We say that an object F ∈ Ob

(Db(MMHM(X))
)

is pure if each
Hi(F) is pure of weight i.

The cohomologically graded mixed Hodge structure L = Hc

(
A1, Q

)
is pure: it is concentrated

in cohomological degree two and is pure of weight two. This object has a tensor square root in
Db(MMHM(pt)) provided by

L 1/2 := cone
(
Q

A1
→ d∗Q

A1

)
,

where d : A1 →A1 is the morphism z �→ z2. We say a monodromic mixed Hodge structure is of Tate
type if it is a direct sum of (possibly negative) tensor powers of the monodromic mixed Hodge structure
L 1/2[1].

For X an irreducible variety, we denote by

IChdg
X := ICX

(
Q

Xsm [dimX]
)

⊗ L− dim (X)/2[− dim X]

the natural lift of ICX to a pure weight zero monodromic mixed Hodge module.
We define

BPShdg
Q,W,d :=

{
φmon

Tr(W)IChdg
Md(Q) if there is a d-dimensional simple CQ-module

0 otherwise.
(2.6)

This is the natural lift of the BPS sheaf to a monodromic mixed Hodge module, i.e. rat
(BPShdg

Q,W,d
)∼=

BPSQ,W,d. Similarly, we define the monodromic mixed Hodge structure

BPShdg
Q,W,d := H

(Md(Q), BPShdg
Q,W,d

)
satisfying rat

(
BPShdg

Q,W,d
)∼= BPSQ,W,d. We define5

RAhdg
Q,W = JH∗φ

mon
Tr(W)IChdg

M(Q).

Since all of the natural transformations defining the multiplication on the Hall algebra AQ,W lift to cat-
egories of monodromic mixed Hodge modules [8, 11, 26], as does the Thom–Sebastiani theorem [39],
we may define a multiplication on RAhdg

Q,W that recovers the multiplication on RAQ,W after applying
the functor rat. Likewise, taking derived direct image to a point we obtain the algebra object Ahdg

Q,W

in monodromic mixed Hodge structures. Then by [11], Theorems 2.3 and 2.4 lift to the categories of

5 Since there is not a fully developed theory of mixed Hodge modules for stacks, some care has to be taken care with this definition.
See [11] for the details.
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monodromic mixed Hodge modules and monodromic mixed Hodge structures. In particular, the BPS
Lie algebra gQ,W = BPSQ,W[−1] lifts to a Lie algebra object

ghdg
Q,W := BPShdg

Q,W ⊗ L 1/2

inside Db(MMHM(pt)). This is a Lie subalgebra of Ahdg
Q,W , considered as a Lie algebra in the category

of NQ0-graded, cohomologically graded monodromic mixed Hodge structures, via the commutator Lie
bracket. See [8, 11] for full details.

2.5 Cohomological Donaldson–Thomas theory for preprojective algebras

In this section, we restrict our attention to ‘tripled’ QPs of the form
(

Q̃, W̃
)
, as in the introduction.

Firstly, we recall the following purity result on the BPS cohomology of the Jacobi algebra Jac
(

Q̃, W̃
)
:

Theorem 2.6. [9] For an arbitrary quiver Q and dimension vector d ∈NQ0 , the mixed Hodge structure
BPShdg

Q̃,W̃,d is pure, of Tate type. In addition (or as a consequence of the cohomological integrality theorem),
the mixed Hodge structure on

Hc

(
Md

(
Q̃
)

, φmon
Tr(W̃)IChdg

Md(Q̃)

)
is pure, of Tate type.

We denote by

ẽ : M(
�Q

)×A1 →M
(

Q̃
)

(2.7)

the closed embedding that sends a pair (ρ, t) to the CQ̃-module ρ ′ for which the action of the arrows
a, a∗ ∈ Q are the same as for ρ, and the action of each ρ ′(ωi) is given by multiplication by t.

We will need the following result on the support and equivariance of the BPS sheaf itself:

Lemma 2.7. [9] For a quiver Q and dimension vector d ∈NQ0 , there is a perverse sheaf

BPS�Q ,d ∈ Perv
(Md

(
�Q

))
such that there is an isomorphism

BPS Q̃,W̃,d
∼= ẽ!

(BPS�Q ,d � ICA1

)
.

The same result holds at the level of monodromic mixed Hodge modules.

In words, the theorem says that the BPS sheaf is supported on the subspace of CQ̃-modules for
which all of the generalised eigenvalues of the operators ρ(ωi) are the same, and the sheaf is moreover
equivariant for the A1-action that acts by adding scalar multiples of the identity to all of the operators
ρ(ωi) simultaneously.

We recall from [9] the description of the BPS cohomology of the Jacobi algebra Jac
(

Q̃, W̃
)

in terms
of Kac polynomials:

Theorem 2.8. The Poincaré polynomials of the cohomological BPS invariants for the QP
(

Q̃, W̃
)

satisfy

p
(
BPSQ̃,W̃,d, q1/2

)= q−1/2aQ,d
(
q−1
)

, (2.8)

https://doi.org/10.1017/S001708952200009X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952200009X


S42 Ben Davison

where

aQ,d(q) =
∑
i∈Z≥0

aQ,d,i qi

is the Kac polynomial, counting the number of isomorphism classes of absolutely6 indecomposable FqQ-
modules for Fq a field of order q. Furthermore, the natural mixed Hodge structure on BPSQ̃,W̃,d is pure,
of Tate type, so that we can write

BPShdg
Q̃,W̃,d

∼=
⊕
i∈Z≥0

(
L i−1/2

)⊕aQ,d,−i (2.9)

and so

ghdg
Q̃,W̃,d

∼=
⊕
i∈Z≥0

(L i)⊕aQ,d,−i . (2.10)

3. Deformed dimensional reduction and proofs of main results
3.1 Deformed dimensional reduction

The main tool in proving Theorem A will be deformed dimensional reduction, as introduced in joint
work with Tudor Pădurariu [13]. This is a geometric result about vanishing cycle functors for functions
satisfying certain C∗-equivariance properties. We state the version that we need below.

Theorem 3.1. [13, Thm. 1.3] Let the algebraic group G act on a variety X and affine space An. Assume
that An is also given a C∗-action, with non-negative weights, which commutes with the G-action. Let
C∗ act on X = X ×An via the product of the given action on An with the trivial action on X. Let g be a
function on X that is G-invariant and C∗-semi-invariant, with strictly positive weight. Assume that we
are given a G ×C∗-equivariant decomposition An =Am ×An−m and that we can write

g = g0 +
∑

1≤j≤m

gjtj,

where the functions g0, . . . gm are pulled back from X ×An−m and t1, . . . , tm are a system of coordinates
for Am. Let Z ⊂ X ×An−m be the vanishing locus of the functions g1, . . . , gm. Then, Z is G-invariant. Set
Z = Z ×Am ⊂ X. We denote by

π : X → X

q : X ×An−m → X

the natural projections. Then, the natural transformation

π!
pφgQX/G → π!

pφg0QZ/G
∼= q!

pφg0QZ/G[−2m] (3.1)

is an isomorphism.
Since the functor rat is faithful, the same statement is true at the level of (monodromic) mixed Hodge

modules: the natural transformation

π!φ
mon
g Q

X/G
→ π!φ

mon
g0

Q
Z/G

∼= q!φ
mon
g0

Q
Z/G

⊗ Lm

is an isomorphism in7 Db(MMHM(X/G)).

6 A module is called absolutely indecomposable if it remains indecomposable after extending scalars to the algebraic closure Fq.
7 The derived category of monodromic mixed Hodge modules on this global quotient stack is defined following, for example, [1].
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3.2 Proof of Theorem A

We proceed by applying deformed dimensional reduction to the function Tr
(
W̃μ
)
.

Proof of Theorem A. Given a quiver Q, we denote by Q+ the quiver obtained by adding a loop
ωi at each vertex i ∈ Q0, or equivalently the quiver obtained by removing all of the arrows a∗ from
Q̃. We denote by I(Q) the stack of pairs (ρ, f ), consisting of a CQ-module ρ and an endomorphism
f ∈ HomCQ(ρ, ρ). Then, we consider the commutative diagram

In the above diagram, i is the natural embedding of stacks, sending a pair (ρ, f ) to the CQ+-module
ρ ′ for which the underlying CQ-module is ρ, and the action of the loops ωi is given by f . All of the
horizontal arrows are the natural forgetful maps. We set

π = qp

π′ = q′p′.

We denote by� the quiver containing the same vertices as Q and for which the only arrows are the loops
ωi. We denote by Qop the quiver containing the same vertices as Q, and only the arrows a∗ for a ∈ Q1,
i.e. Qop is the opposite quiver to Q. In the notation of Theorem 3.1, we set

X =Ad(Q) (3.2)
Am =Ad(Q

op)

An−m =Ad(�)

G = GLd.

We let C∗ act on Am and An−m with weight one.
We set

Lμ = 1

2

∑
i∈Q0

μiω
2
i

so W̃μ = W̃ + Lμ. Then Tr
(
W̃ + Lμ

)
satisfies the conditions of Theorem 3.1; for example, it is C∗

semi-invariant with weight two. In the notation of that theorem Z ⊂ X ×An−m =Ad(Q+) is the locus
containing those CQ+-modules ρ such that the endomorphisms ρ(ωi) determine an endomorphism of
the underlying CQ-module of ρ. It follows that Z/G = Z(G). By Theorem 3.1, there is an isomorphism8

π!
pφTr(W̃μ)ICM(Q̃)

∼= q!
pφTr(Lμ)QZ(Q). (3.3)

If instead we set
X =Ad(Q+)

Am =Ad(�)

8 Note that the shift 2
∑

a∈Q1
ds(a)dt(a) appearing in the definition of the intersection complex is equal to the 2m appearing in (3.1).
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set n = m, and again letC∗ act onAm with weight one, then the function Tr(W̃) still satisfies the conditions
of Theorem 3.1 (now it is semi-invariant with weight one). So instead we arrive at the isomorphism

p!
pφTr(W̃)ICM(Q̃)

∼=QI(Q). (3.4)

Since JH+ is approximated by proper maps, there is a natural isomorphism (see [11, Sec. 4.1])

JH+
!
pφTr(Lμ)QI(Q)

∼= pφTr(Lμ)JH+
! QI(Q). (3.5)

Combining all of the above, we can write9

π′
!J̃H!

pφTr(W̃μ)ICM(Q̃)
∼= JH!π!

pφTr(W̃μ)ICM(Q̃)
∼= JH!q!

pφTr(Lμ)QI(Q) by (3.3)

∼= JH!q!
pφTr(Lμ)p!

pφTr(W̃)ICM(Q̃) by (3.4)

∼= q′
!JH+

!
pφTr(Lμ)p!

pφTr(W̃)ICM(Q̃)
∼= q′

!
pφTr(Lμ)JH+

! p!
pφTr(W̃)ICM(Q̃) by (3.5)

∼= q′
!
pφTr(Lμ)p

′
!J̃H!

pφTr(W̃)ICM(Q̃)

∼= q′
!
pφTr(Lμ)p

′
!Sym⊕

⎛⎝ ⊕
d∈NQ0 \0

BPS Q̃,W̃,d ⊗ Hc(pt/C∗)vir

⎞⎠ by Theorem (2.4)

∼= q′
!
pφTr(Lμ)Sym⊕

⎛⎝ ⊕
d∈NQ0 \0

p′
!BPS Q̃,W̃,d ⊗ Hc(pt/C∗)vir

⎞⎠ since p′ is a monoid map

∼= q′
!Sym⊕

⎛⎝ ⊕
d∈NQ0 \0

pφTr(Lμ)p
′
!BPS Q̃,W̃,d ⊗ Hc(pt/C∗)vir

⎞⎠ by Thom–Sebastiani.

By Lemma 2.7, we can write

p′
!BPS Q̃,W̃,d

∼= e! (F � ICA1) , (3.6)

where

F = (M(�Q) →M(Q))!BPS�Q ,d.

Writing f = Tr
(
Lμ

) |Md(Q)×A1 , we have

f : Md(Q) ×A1 →C

(ρ, t) �→ 1

2
(μ · d)t2.

It follows from (3.6) that

pφTr(Lμ)p
′
!BPS Q̃,W̃,d

∼=
⎧⎨⎩e!(F �Q0) if μ · d 
= 0

e! (F � ICA1) if μ · d = 0,

so that

Hc(Md(Q+), pφTr(Lμ)p
′
!BPS Q̃,W̃,d) ∼= Hc(Md(�Q), BPS�Q ,d)[−g(d)],

where we define

g(d) =
⎧⎨⎩1 if μ · d = 0

0 if μ · d 
= 0.

9 For the final isomorphism, see [11, Prop. 3.11] for the required compatibility with the symmetrising morphism.
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Finally, we deduce that

Hc

(
M
(

Q̃
)

, pφTr(W̃μ)ICM(Q̃)

)
= τ!π

′
!J̃H!

pφTr(W̃μ)ICM(Q̃)

∼= Sym

⎛⎝ ⊕
d∈NQ0 \0

(
Hc(Md(�Q), BPS�Q ,d) ⊗ Hc(pt/C∗)vir

)
[−g(d)]

⎞⎠ .

(3.7)
On the other hand, by Theorem 2.4 again, we have

Hc(M
(

Q̃
)

, pφTr(W̃μ)ICM(Q̃))
∼= Sym

⎛⎝ ⊕
d∈NQ0 \0

BPS∨
Q̃,W̃μ ,d ⊗ Hc(pt/C∗)vir

⎞⎠ . (3.8)

Comparing (3.7) and (3.8), we find

BPSQ̃,W̃μ ,d
∼= (

Hc

(Md
(
�Q

)
, BPS�Q ,d

))∨
[g(d)]

∼=
(
Hc

(
Md

(
Q̃
)

, BPS Q̃,W̃,d

)
[1]
)∨

[g(d)] by Theorem 2.7

∼= Hc

(
Md

(
Q̃
)

, BPS Q̃,W̃,d

)∨
[g(d) − 1]

∼= BPSQ̃,W̃,d[g(d) − 1]

and now (2.8) follows from Theorem 2.8.
Performing the same calculations in the category of monodromic mixed Hodge structures, isomor-

phisms (3.7) and (3.8) yield the isomorphism of NQ0-graded complexes of monodromic mixed Hodge
structures

Sym

⎛⎝ ⊕
d∈NQ0 \0

BPShdg,∨
Q̃,W̃,d ⊗ L (g(d)−1)/2 ⊗ Hc(pt/C∗)vir

⎞⎠∼= Sym

⎛⎝ ⊕
d∈NQ0 \0

BPShdg,∨
Q̃,W̃μ ,d ⊗ Hc(pt/C∗)vir

⎞⎠ ,

(3.9)
where

Hc(pt/C∗)vir =
⊕
i≥0

L−1/2−i.

On the other hand, by Theorem 2.6 the mixed Hodge structure BPShdg
�Q ,d is pure, so that BPShdg,∨

�Q ,d ⊗ L n/2

is pure for all n ∈Z. It follows that both sides of (3.9) are pure. The isomorphism

BPShdg
Q̃,W̃,d ⊗ L (g(d)−1)/2 ∼= BPShdg

Q̃,W̃μ ,d

then follows from (3.9) and semisimplicity of the category of pure monodromic mixed Hodge structures
as in [13, Cor. 7.1].

Example 3.2. To recover the example that we started the paper with, consider the quiver Q(0) with one
vertex and no arrows. We label the unique arrow of the one-loop quiver Q(1) = Q̃(0) by ω0. For μ = μ0e0

to be generic, we just have to pick μ0 
= 0. Then, we find

Jac
(
Q(1), W̃μ

)= Jac
(
Q(1),ω2

0

)
∼=CQ(0)

and so the fermionic version of AQ̃(0),W̃ =AQ(1) is indeed AQ(0) .

Example 3.3. We return once more to the noncommutative conifold. As observed in Example 2.2, this
algebra is obtained by setting μ = (1, −1) for the quiver (1.10) and considering Jac

(
Q̃, W̃μ

)
. The

cohomological BPS invariants of the QP
(

Q̃, W̃
)

are given in (1.11), while the cohomological BPS
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invariants of the noncommutative conifold are given in (1.13). Comparing the two, there is a coho-
mological shift between the respective (m,n)th cohomological BPS invariants precisely if m 
= n, i.e.
precisely if μ · (m, n) 
= 0.

Recall from the introduction that the BPS invariants for the resolved conifold are only a partially
fermionised version of the BPS invariants of Y0 ×A1. In view of the main result, we see that the generic
deformation in the commutative algebraic geometry context corresponds to the deformation μ = (1, −1).
To fully fermionise the DT theory, we are obliged to work in the fully noncommutative10 context pro-
vided by generic μ. Note that deformations within algebraic geometry of the Kleinian singularity were
parameterised by h, the Cartan subalgebra of the (reduced) McKay graph �′, whereas noncommutative
deformations are parameterised by the Cartan subalgebra of the full McKay graph.

Remark 3.4. Along the course of the proof of Theorem A, we have shown that

π′
∗BPS Q̃,W̃μ ,d

∼=
{

π′
∗BPS Q̃,W̃[−1] if μ · d 
= 0

π′
∗BPS Q̃,W̃ otherwise.

With a little effort, one may lift this statement to the level of monodromic mixed Hodge module complexes.

3.3 Proof of Theorem B

Given a quiver Q, an element μ ∈ R, and a number n ∈Z≥1, define

W̃μ

n = W̃ + 1

n
μωn.

Then in the decomposition (3.2), we let C∗ act with weight 1 on Ad(�), weight n − 1 on Ad(Qop), and
trivially on Ad(Q), so Tr(W̃μ

d ) satisfies the conditions of Theorem 3.1 (now it is a weight n function).
Then, the argument of Section 3.2 gives that

BPShdg
Q̃,W̃μ

n ,d
∼= BPShdg

Q̃,W̃,d ⊗ L 1/2 ⊗ H
(
A1, φmon

(μ·d)xnICA1

)
. (3.10)

Theorem A follows from the special case n = 2 and Theorem 2.8, observing that H
(
A1, φmon

x2 Q
A1

)
=

L 1/2.
In this section, we consider instead the special case n = 1;, i.e., we consider the quiver Q̃ with the

potential

W̃μ

1 =
∑
a∈Q1

[a, a∗] + μω.

This potential is linear in the loops ωi, so that the following proposition is a straightforward application
of (undeformed) dimensional reduction:

Proposition 3.5. There is an isomorphism in the derived category of complexes of mixed Hodge modules

π!φ
mon
Tr(W̃μ

1 )QMd(Q̃)
→Q

Md(�Q,μ)
⊗ L d·d.

Proof. In the setup of Theorem 3.1, we put X =Ad(Q), n = m, Am =Ad(�) and G = GLd. Then, g0 is
the zero function, so that there is a natural isomorphism φmon

g0
→ id, and the result follows from Theorem

3.1 and dim (Ad(�)) = d · d.

10 I.e. with a Jacobi algebra that is not derived equivalent to a threefold.
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Proof of Theorem B. We have isomorphisms of NQ0-graded mixed Hodge structures

⊕
d∈NQ0

Hc

(
Md(�Q,μ), Q

)⊗ L χQ(d,d) ∼=
⊕

d∈NQ0

Hc

(
Md

(
Q̃
)

, φmon
Tr(Wμ

1 )ICMd(Q̃)

)

∼=Sym

⎛⎝ ⊕
N

Q0 �d
=0

BPShdg,∨
Q̃,Wμ

1 ,d ⊗ Hc(pt/C∗)vir

⎞⎠ ,

where the first isomorphism is dimensional reduction (as in Proposition 3.5) and the second is the
cohomological integrality theorem. So the theorem follows from (2.9) and the claim that

BPShdg
Q̃,Wμ

1 ,d
∼=
{

BPShdg
Q̃,W̃,d if d · μ = 0

0 otherwise.

This follows from (3.10) and the observation that for λ ∈C

H
(
A1, φmon

λx ICA1

)∼=
{

L−1/2 if λ= 0

0 if λ 
= 0.
�

Assume that the dimension vector d is indivisible, meaning that there is no n ∈Z≥2 such that 1
n
d ∈NQ0 .

Assume also that μ is chosen to be generic, subject to the constraint that d · μ = 0. Equivalently, d and
μ are chosen so that d′ · μ = 0 implies that d′ is an integer multiple of d. Then (1.17) simplifies to

⊕
n∈Z≥0

Hc

(
Mnd(�Q,μ), Q

)⊗ L n2χQ(d,d) ∼= Sym
(⊕

n∈Z>0

BPShdg,∨
Q̃,W̃,nd ⊗ Hc(pt/C∗, Q)vir

)
. (3.11)

Our assumptions imply that Md(�Q) is a fine moduli scheme, and Md(�Q) is a trivial BC∗-gerbe over
it, meaning that

Hc

(
Md(�Q,μ), Q

)∼= Hc(Md(�Q), Q) ⊗ Hc(pt/C∗, Q).

Recall that there is an isomorphism

Hc(pt/C∗, Q) ∼=
⊕
i≥0

L−i−1.

From the n = 1 piece of (3.11), we deduce the following slightly stronger version of a result of Crawley–
Boevey and Van den Bergh [7]:

Corollary 3.6. Let d be indivisible, and μ be generic. Then, there is an isomorphism of mixed Hodge
structures

Hc(Md(�Q,μ), Q) ∼=
⊕
i≥0

(L 1+i−χQ(d,d))⊕aQ,d,i .

In particular, Hc(Md(�Q,μ), Q) is pure of Tate type.
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4. Further directions
4.1 Calculating the BPS sheaves

While our main theorem gives a way to calculate the BPS cohomology BPSQ̃,W̃μ ,d for arbitrary Q, d ∈NQ0

and μ ∈ R, the actual BPS sheaf BPS Q̃,W̃μ ,d remains a little mysterious. We can at least generalise (part
of) the support lemma (Lemma 2.7) from the case μ = 0.

Lemma 4.1. For a quiver Q, and dimension vector d ∈NQ0 , we have

supp(BPS�
μ
Q ,d) ⊂

⎧⎨⎩ẽ(Md(�Q) ×A1) if μ · d = 0

ẽ(Md(�Q) × {0}) if μ · d 
= 0,

where ẽ is defined in (2.7).

Proof. The proof is very similar to [9, Lem. 4.1]. Let ρ be a Jac
(

Q̃, W̃μ

)
-module lying in the support

of BPS Q̃,W̃μ ,d. By definition, ρ is semisimple, and so since ρ
(∑

i∈Q0
ωi

)
is central, it acts via a diagonal

matrix. Arguing as in [9, Lem. 4.1] and using centrality of ρ
(∑

i∈Q0
ωi

)
along with the cohomological

integrality theorem, we deduce that the generalised eigenvalues of ρ(ω) are all the same, i.e. ρ(ω) acts
via scalar multiplication, establishing the lemma in the case μ · d 
= 0. Arguing as in Proposition 2.3, if
μ · d 
= 0, we must have λ= 0. This establishes the lemma in the case μ · d 
= 0.

Even in the case μ · d = 0, this is a slightly weaker statement than Lemma 2.7; it is harder to show
that BPS Q̃,W̃μ ,d is A1-equivariant (where A1 acts by adding a scalar multiple of the identity matrix to
ρ(ω)) since the function Tr(W̃μ) is not A1-invariant unless μ = 0.

It would be interesting to compare BPS Q̃,W̃μ ,d with BPS Q̃,W̃,d
∼= ẽ!

(BPS�Q ,d � ICA1

)
in the case

μ · d = 0, and with ẽ!
(BPS�Q ,d �Q0

)
in the case μ · d 
= 0. In particular, we may ask the following

question:

Question 4.2. Is the monodromic mixed Hodge module BPS Q̃,W̃μ ,d pure?

By [10, Thm. A], we know that BPS Q̃,W̃,d is a pure monodromic mixed Hodge module, i.e. we know
that for μ = 0 the answer to Question 4.2 is yes.

4.2 The BPS algebra

Identifying the BPS cohomology of the Jacobi algebra C

(
Q̃, W̃μ

)
is only part of understanding its

cohomological DT theory; it tells us the size of the graded pieces of AQ̃,W̃μ , but nothing about the algebra
structure above what we already know from [11] regarding general quivers with potential (e.g. the PBW
theorem). At least for μ = 0, the algebra AQ̃,W̃μ has been studied from various points of view (see e.g.
[14, 22, 31, 35, 44]) while for the μ 
= 0 case, it would be interesting (at least for noncommutative
resolutions of toric CY3s) to relate these algebras to the Yangians defined in terms of (generalised)
McMahon modules and crystal melting in [17, 27].

For general Q and μ, the shifted BPS cohomology gQ̃,W̃μ := BPSQ̃,W̃μ [−1] carries a Lie algebra struc-
ture (by Theorem 2.5). Even in the case μ = 0, we do not yet fully understand this Lie algebra for general
Q. We can at least try to relate the case of general μ to the case μ = 0, via the following construction:
Fix Q and μ, and define

geven :=
⊕

d∈NQ0 | d·μ=0

gQ̃,W̃,d

godd :=
⊕

d∈NQ0 | d·μ 
=0

gQ̃,W̃,d.
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Then, geven is a Lie subalgebra of gQ̃,W̃ , and godd is a Lie module for it, and we consider the extension

gμ = geven ⊕ godd[−1],

with the Lie bracket

[(α, β), (α′, β′)] = ([α, α′], [α, β′] − [α′, β]).

Question 4.3. Is there is an isomorphism of Lie algebras

gμ ∼= gQ̃,W̃μ?

Proposition 4.4. The answer to Question 4.3 is yes in the case μ = 0, and for generic μ.

Proof. The case μ = 0 is trivial, since then

gμ = geven

= gQ̃,W̃

and W̃μ = W̃. In the case of generic μ, Theorem A tells us that there is an isomorphism

gQ̃,W̃μ
∼= gQ̃,W̃[−1] (4.1)

as cohomologically graded vector spaces, and so it is sufficient to show that the Lie bracket on gQ̃,W̃μ

vanishes, since the Lie bracket on gμ := godd[−1] does by definition. Combining (4.1) and (2.10), we
deduce that gQ̃,W̃μ lies entirely in odd cohomological degree. Since the Hall algebra multiplication,
and hence the commutator Lie bracket, preserves cohomological degree, the Lie bracket vanishes as
required.

In this paper, we have ignored completely the question of whether there is a natural double to the
Lie algebra gQ̃,W̃μ . Despite Proposition 4.4 the expected answer to Question 4.3, once extended to the
double of gQ̃,W̃μ is no; one of the motivations for this paper is work of Kevin Costello [5], in which he
conjectures that in the case of, for example, the resolved conifold, the Lie bracket does not vanish on
the fermionic part of the (doubled) BPS Lie algebra. As we saw in Section 1.2, and Example 3.3 the
(noncommutative) resolved conifold is a partial fermionisation of the QP

(
Q̃, W̃

)
where Q̃ is the affine

A1 quiver; so the conifold is precisely the kind of case that Proposition 4.4 does not cover.

4.3 Representation theory

The boson-fermion correspondence is typically considered (by mathematicians) to be a part of represen-
tation theory, and so it would be remiss to finish the paper without saying anything about representations
of AQ̃,W̃μ .

Fix a quiver Q, and a framing dimension vector f ∈NQ0 . We form the quiver Qf by adding one extra
vertex (labelled ∞) to Q0, and fi arrows from ∞ to i for each i ∈ Q0. Set Q = Q̃f. In other words, this
is the usual doubled framed quiver that one uses to define Nakajima quiver varieties, but with an extra
loop at every vertex (including a loop ω∞ at the framing vertex).

For μ =∑
i∈Q0

μiei we define

W̃μ

f =
(∑

i∈Q0

ωi

)(∑
a∈(Qf)1

[a, a∗]

)
+
∑
i∈Q0

μiω
2
i .

We write dimension vectors for Q as e = (d, n) where d ∈NQ0 and n = e∞ ∈N. We define

Ast
(d,1)(Q) ⊂A(d,1)(Q)
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to be the subvariety containing those ρ such that ρ∞ generates ρ as a CQ-module. We call such
CQ-modules stable. Then, we define

Nf,d(Q) := Ast
(d,1)(Q)/GLd.

This is a smooth variety and is naturally isomorphic to the stack of stable (d, 1)-dimensional
CQ-modules along with a trivialisation ρ∞ ∼=C. We define

F l(d,1),d′ (Q)

to be the stack of pairs of a stable (d, 1)-dimensional CQ-module ρ, along with a (d′, 0)-dimensional
submodule ρ ′ ⊂ ρ and a trivialisation ρ∞ ∼=C. Set d′′ = d − d′. In the correspondence diagram,

the morphism π2 is proper, and so via push-forward and pull-back in vanishing cycle cohomology, we
obtain an action of AQ̃,W̃μ on

Mμ

f (Q) :=
⊕

d∈NQ0

H
(
Nf,d′′(Q), φmon

Tr(W̃μ
f )QNf,d′′ (Q)

)
⊗ L χQ((1,d),(1,d))/2.

Given a quiver Q, we denote by

μQ,d : Ad(Q) → gld

ρ �→
∑
a∈Q1

[ρ(a), ρ(a∗)].

the usual moment map. We define

Z(f, d) ⊂Ast
(d,1)

(
Qf
)

the vanishing locus of the composition of μQf ,(d,1) with the natural projection gl(d,1) → gld. Here, the
stability condition is the same as above: we restrict to the open locus of those ρ such that ρ∞ generates.
Then, the Nakajima quiver variety is defined to be the smooth variety

X(f, d) = Z(f, d)/GLd.

Proposition 4.5. Denote by g the restriction of the function Tr
(
W̃μ

f
)

to Nf,d(Q), then

crit(g) ∼=
{

X(f, d) if μ · d 
= 0

X(f, d) ×A1 if μ · d = 0.

Moreover, the monodromic mixed Hodge module

φmon
g Q

Nf,d(Q)
⊗ L χQ((d,1),(d,1))/2

is analytically locally isomorphic to the constant mixed Hodge module on the critical locus of g.

Proof. The second part follows from the first: the holomorphic Bott–Morse lemma tells us that since
the critical locus of g is scheme-theoretically smooth, g can be written analytically locally around crit(g)
in the form

g = x2
1 + . . .+ x2

c ,

where c is the codimension of crit(g) inside Nf,d(Q). The first part follows by the same argument as
Proposition 2.3.
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In the special case μ = 0, it is possible to show that the monodromy of the rank one local system
pφgQNf,d′′ (Q)

is trivial [10, Prop. 6.3], and we conjecture that this is always true. Assuming the conjecture,
Proposition 4.5 implies that there are isomorphisms

Mμ

f (Q) ∼=

⎛⎜⎝⊕
d∈NQ0
μ·d
=0

H(X(f, d), Q)vir

⎞⎟⎠⊕
⎛⎜⎝⊕

d∈NQ0
μ·d=0

H(X(f, d), Q)vir ⊗ L−1/2

⎞⎟⎠ . (4.2)

Note that the vacuum vector, spanning H(X(f, 0), Q), lies in the second summand.
Let Q′ be the full subquiver of Q obtained by removing all vertices that support loops, as well as

arrows to or from them, and let n−
Q′ be the negative piece of the Kac–Moody Lie algebra associated with

Q′. By [10, Thm. 6.6], there is an inclusion of Lie algebras

n−
Q′ ↪→ gQ̃,W̃

as the part of the BPS Lie algebra lying in cohomological degree zero, so that (4.2) in case μ = 0 allows
us to reconstruct (one half of) Nakajima’s action of gQ′ on the cohomology of quiver varieties [34].
The conjecture suggests that the cohomology of Nakajima quiver varieties should be as crucial to the
representation theory of partially fermionised BPS Lie algebras as they are to the representation theory
of their bosonic counterparts.
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