This is a "preproof" accepted article for *Journal of Clinical and Translational Science*. This version may be subject to change during the production process. 10.1017/cts.2024.677

The role of social, economic, and medical marginalization in cancer clinical trial participation inequities: A systematic review

Grace Ann Hanvey, PhD¹, Hannah Johnson, BS¹, Gabriel Cartagena, PhD², Duane E. Dede, PhD¹, Janice L. Krieger, PhD³, Kathryn M. Ross, PhD, MPH¹, Deidre B Pereira, PhD, ABPP¹

¹University of Florida, Department of Clinical and Health Psychology ²Yale University, Department of Psychiatry ³Mayo Clinic Comprehensive Cancer Center, Florida

Corresponding Author: Deidre B. Pereira, PhD, ABPP, <u>dpereira@phhp.ufl.edu</u>, (352) 273-6039

Conflicts of Interest: There are no conflicts of interest to report for the present manuscript.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (<u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Abstract

Extant literature reveals how patients of marginalized social identities, socioeconomic status (SES), and medical experiences - especially patients of color and older adults - are underrepresented in cancer clinical trials (CCTs). Emerging evidence increasingly indicates CCT underrepresentation among patients of lower SES or rural origin, sexual and gender minorities, and patients with comorbid disability. This review applies an intersectional perspective to characterizing CCT representativeness across race and ethnicity, age, sexual and gender identity, SES, and disability. Four databases were systematically queried for articles addressing CCT participation inequities across these marginalizing indicators, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. One hundred one articles were included in a qualitative evaluation of CCT representativeness within each target population in context of their intersectional impacts on participation. Findings corroborate strong evidence of CCT underrepresentation among patients of color, older age, lower SES, rural origin, and comorbid disabling conditions, while highlighting systemic limitations in data available to characterize representativeness. Results emphasize how observed inequities interactively manifest through the compounding effects of minoritized social identity, inequitable economic conditions, and marginalizing medical experiences. Recommendations are discussed to more accurately quantify CCT participation inequities across underserved cancer populations and understand their underpinning mechanisms.

Keywords: cancer, clinical trials, health inequities, representation, underserved populations

Introduction

Despite the necessity of representative cancer clinical trials (CCTs) to optimize equitable progress in cancer outcomes, overall CCT participation is remarkably low.[1,2] Strong evidence reveals that these low rates of CCT participation are still further compromised among individuals experiencing social, economic, and/or medical marginalization, particularly among patients of color[3–7] and older adults.[1,8,9] Further research increasingly suggests potential underrepresentation in CCTs among other marginalized populations, including sexual and gender minority (SGM) patients,[10,11] patients of lower socioeconomic status (SES),[12,13] and patients experiencing greater disability in disease severity, comorbidity, or performance status.[1,14,15] However, systematic limitations in data collection and target variables addressed in prior literature render CCT inequities impacting these underserved groups more elusive, [11,16–18] necessitating further research regarding the effects of these marginalizing characteristics on CCT participation. Considering the disproportionate cancer burden imparted upon groups enduring these forms of marginalization, [9,10,15,16,19-23] representative CCTs that are generalizable to these populations is of the utmost importance for achieving equitable cancer care outcomes and associated progress across sociodemographic divides.

While prior investigations of CCT participation inequities have explored their effects on various underserved communities in cancer as previously described, these studies have primarily applied a singular perspective to marginalizing characteristics. Specifically, most existing CCT participation literature is limited by inadequate regard for the interactivity of overlapping forms of disadvantage, which serves a critical role in understanding CCT representativeness among the underserved. Intersectionality as a theoretical framework – in its focus on interlocking oppressive systems at the social-structural level and their manifestation in individual experiences –[24,25] is an apt scaffold through which these inequities may be interactively explained. However, despite increasing emphasis on the criticality of an intersectional approach to contextualizing public health outcomes,[26] this framework has yet to be directly applied to CCT participation inequities.

This systematic review aims to provide a more comprehensive, ecologically valid characterization of CCT participation inequities to date across social, economic, and medical vectors of marginalization. In examining their independent and multiplicative influences through an intersectional lens, the authors seek to illustrate how race and ethnicity, age, sex, SGM status, SES, and diverse ability indicators have contributed to inequities in CCT participation across time.

Materials and Methods

Search Methods

This review adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.[27] The first author developed and tailored a systematic search strategy to four databases, following general consultation with library sciences (Supplementary Table 1): 1) PubMed, 2) Web of Science, 3) PsycINFO, and 4) CINAHL. An initial search using this strategy was conducted on February 15, 2021, then :. replicated on April 8, 2024 for newly published articles given significant time passage since initial search. Covidence, a web-based collaboration software platform that streamlines the production of systematic and other literature reviews, was utilized to facilitate methodology.[28]

Eligibility Criteria

Inclusion for qualitative synthesis of results were: 1) original research; 2) focus on CCT participation inequities regarding age, race and/or ethnicity, SES or one of its specific indicators (e.g., income, education, insurance, employment status), sexual identity, sex and/or gender identity, or ability status or relevant indicators (e.g., performance status, comorbidities); 3) peer-reviewed; and 4) full-text availability in English. Exclusion criteria required removal of original protocols or reviews that: 1) address trial participation disparities unrelated or non-specific to individuals with cancer; 2) do not explicitly comment on CCT participation inequities; 3) encompass scope beyond the focus of this review, including papers exploring underlying barriers to identified inequities, developing solutions, and pediatric populations; 4) are case studies or reviews without quantitative analysis; or 5) are not peer-reviewed, full-text publications. Excluded papers per criterion four were scanned for eligible references unidentified by the search strategy.

Data Extraction Procedures

Data extraction was standardized across three domains: 1) study characteristics, 2) methodology, and 3) sociodemographic reporting. The first domain specified cancer population addressed, aims, sample size, intervention type(s), and target marginalizing indicators (Table 1). The second domain extracted information regarding study design, recruitment methods and databases, measures, and statistical procedures (Table 2). The third domain reported on available study information on sociodemographic characteristics relevant to the modes of marginalization addressed in this review (Table 3).

Quality and Bias Assessment

The Mixed-Methods Appraisal Tool (MMAT)[29] was applied across studies to ensure uniform quality ratings across while affording flexibility appropriate to specific article type. The MMAT includes five sets of five-item criteria, with one set applied to each article reviewed contingent on its specific study design. Fulfillment of each of the five criteria for a given study design yields one point. As such, scores range from "0" to "5," with higher ratings indicating stronger evidence quality. Case-control, cohort, cross-sectional, and meta-analytic studies were assessed using MMAT criteria directed towards non-intervention, descriptive analyses. While this iteration of the MMAT has not been applied to reviews specific to CCT representation, multiple versions of the MMAT have been utilized in recent reviews addressing cancer health disparities.[30–32]

Results

Article Selection

The combined search strategies yielded an initial 1,812 articles. Nine hundred ninetythree duplicates were removed, including articles from the 2021 search identified in the 2024 search. Eight hundred nineteen titles and abstracts were reviewed for relevance. Two hundred ninety-five articles underwent full-text screening, with 194 studies excluded as detailed in the PRISMA flow diagram (Figure 1). A resulting total of 101 articles were included in the review.

Study Information

Approximately 66% of included studies (n=67) primarily addressed tumor-directed, therapeutic trials, with 39.6% providing specific information on intervention types studied (n=40). Only 12.8% of studies (n=13) explicitly addressed trials with at least one supportive care, psychosocial, or behavioral component, with 5.0% of all studies (n=5) exclusively focused on such CCTs. Approximately 18.8% percent of studies provided minimal detail on trial type eligibility criteria (n=19). This information is summarized in Table 1.

Case-control studies – i.e., studies examining differences between participants and non-participants using patient data repositories – constituted 44.6% (n=45) of articles, with most utilizing population data to compare characteristics between CCT participants and corresponding oncologic populations. Nearly 29% of studies were conceptualized as cohort designs (n=29, i.e., using patient data to evaluate predictors of CCT enrollment over time), and 7.5% (n=7) were cross-sectional studies. Twenty-one studies were meta-analyses of aggregate demographic, socioeconomic, or medical characteristics across published trials (20.8%). Where classification according to these descriptions was ambiguous, our authors relied on self-identification of study design by the cited authors. This information is detailed in Table 2.

Approximately 81% (n=82) of studies included race and/or ethnicity as a primary focus. In comparison, 54.4% (n=55) addressed age, 35.6% (n=36) addressed at least one socioeconomic indicator, 30.7% addressed sex or gender (n=31), and 26.7% (n=27) addressed at least one indicator of disability as CCT inequity targets. Only one eligible study addressed SGM status (0.99%) even following several modifications of advanced search strategies (Supplementary Table 1). Availability of social, economic, and medical characteristics across studies are detailed in Table 3.

Quality Assessment

Across all 101 studies, the quality mean MMAT score calculated was 4.59, with a median of 5. Score distribution was as follows: 5: 65.3% (n=66), 4: 28.7% (n=29), 3: 5.9% (n=6), 2: 0.0% (n=0), 1: 0.0% (n=0). Quality ratings are summarized in Table 1.

Synthesis of Findings

Race and Ethnicity

Extant literature reflects robust evidence of CCT underrepresentation among patients of color, with mixed findings on representativeness across specific racial and ethnic minority groups. Early studies reflect lower enrollment among patients of color across multiple diagnostic sites, including in therapeutic lung, breast, colorectal, lymphoma, leukemia, and reproductive system CCTs,[33] with some revealing decreased participation among patients of color across time (e.g., Baquet: 8.9% annual decrease among Black patients).[34] Similar early trends are documented in surgical breast, colorectal, and thoracic CCTs.[35] Across the 50 largest National Cancer Institute (NCI) CCTs from 1996 to 2002, Black, Hispanic, and Asian American or Pacific Islander (AAPI) patients were all less likely to enroll in lung and colorectal CCTs, with Black and Hispanic women also less likely to enroll in breast trials.[36] These data indicated poorest representation among Hispanic patients overall, and lower prostate CCT enrollment – a disparity not observed among other minority groups. This case-control study also showed proportional decline in CCT enrollment among patients of color despite increased overall CCT participation from 1998 to 2002.[36] While other evidence supports attenuation of some of these inequities with clinical cooperative group efforts (e.g., Newman: % Black CCT participants vs. cancer population: 10.5% and 9.4%),[37] early research consistently reflects national CCT underrepresentation among patients of color across various cancers.

Studies from the following decade demonstrate continued CCT underrepresentation among patients of color, adjusting for other relevant characteristics.[38,39] Longitudinal data emphasize stagnant therapeutic lung CCT enrollment among Black, Hispanic, and AAPI patients from 1990 to 2012, even with NCI cooperative group support.[40] Similar studies indicate worsening representation of Black women in gynecologic CCTs up to 2013, demonstrating 4.5 to 15 times lower enrollment than expected. [41] A meta-analysis from this period suggests still poorer trends, reporting 6.5 and 18.5 times lower enrollment than expected for Black women in cervical and ovarian trials, respectively, with representation worse from 2015 to 2018 compared to the late 1990s.[4] Other studies corroborate underrepresentation among patients of color in prostate, breast, colorectal, pancreatic gastric, hematologic, myelodysplastic, and varied sample CCTs at the catchment area level, [42,43] in multi-site and -trial pharmacologic studies, [44,45] Food and Drug Administration (FDA) CCTs with pharmaceutical sponsors, [46] and in NIH CCTs from 1999 to 2019. [5] Metaanalytic studies corroborate persistence of these inequities, reflecting poorest representation among Black and Hispanic patients in various therapeutic breast, colorectal, lung, prostate, pancreatic, renal, melanoma, and multiple myeloma CCTs, with such data collectively spanning 1981 to 2017 (e.g., Guerrero et al.: Not Reported, White, Black, and Hispanic CCT enrollment fractions [EF], respectively: 66.95%, 25.94%, 1.08%, 0.16%).[47,48]. Other national gynecologic CCT data not only accentuate Black and Hispanic underrepresentation, but also larger disproportionate effects on Hispanic women with uterine and cervical cancers.[49] State-level studies reveal similar trends, with women of color less likely to enroll in early-stage breast radiotherapy CCTs overall, with Hispanic, then AAPI, then Black women, respectively, showing the lowest representation.[50] However, other findings during this period indicate highest relative underrepresentation among AAPI, then Hispanic, then Black patients across breast, prostate, colorectal, and lung CCTs in national databases.[6]

A few studies prior to 2021 suggest minimal inequities in CCT representation among patients of color with certain diagnoses, locations, and trial types. One national study reports no racial or ethnic differences in *opportunities* to participate in breast CCTs from 2013 to 2014,[51] with similar findings regarding prostate CCTs in earlier years.[33,35] A case-control analysis of FDA-approved therapies for breast, lung, colorectal, and prostate cancers showed persisting underrepresentation among patients of color relative to non-Hispanic White patients, though with recent improvements (% participants of color, 2008-2013: 20%; 2014-2017: 29%).[45] Other evidence emphasizes representative accrual to surgical breast, thoracic, and sarcoma CCTs among Black and Hispanic patients,[52] as is observed in NCI Community Cancer Centers Program CCTs overall.[53] Some findings during this period suggest equitable representation among patients of color in therapeutic lung CCTs, despite participation inequities in five other diagnostic sites.[5] Nonetheless, non-surgical breast

CCTs reliably demonstrate worsening representation among patients of color despite progress in other cancers (e.g., Zullig: 1996: <1% vs. 2009: 3.5% enrollment difference between White and minority women, p <.001).[54] Other studies reporting non-significant participation differences in some areas emphasize persisting *trends* towards underrepresentation among patients of color where typically observed.[33]

Studies published within the past three years corroborate the intractability of CCT underrepresentation among patients of color, while providing further nuance surrounding these inequities. State and national cohort, case-control, and meta-analytic studies of overall CCT representation evidence participation inequities that disproportionately impact Black[55–59] and/or Hispanic[47,48,56,57,59,60] patients in phase I,[57] II,[61] and III;[59] radiation; [56,61] drug; [55,58,59] brachytherapy; [62] and general CCTs [48,60] utilizing updated datasets and study repositories (e.g., Bero: Black proton participants vs. population 6.0% vs. 12.7%; Choradia: Hispanic participants vs. population: 7.1% vs. 13%;). While some studies note *mild* representative improvement among Black[60,63] and Hispanic patients (e.g., Saphner: no significant inequities in White, Black, and Hispanic accrual: 90.4%, 6.6%, 1.9%; p=.078),[63] others demonstrate worsened representation in common cancers over time (e.g., 2009 vs. 2011-2015).[47] Other case-control and meta-analyses emphasize underrepresentation among AAPI, Native Hawaiian, and American Indian/Alaska Native patients, in recent, CCTs for various prevalent cancers.[48,56,64] Still other findings evidence minimal underrepresentation among patients of color[63] and demonstrate even higher CCT participation among Asian patients, though such results have been primarily limited to singular institutions diagnostic sites, or trial types (e.g., Wagar: polymerase inhibitor CCT EF: White: 1.5%. Black: 0.47%, Hispanic: 0.33%, AAPI: 2.38%).[47,57,59,63]

Contemporary, cancer-specific studies reveal the importance of tumor site in dictating such inequities. Recent cohort, case-control, and meta-analytic studies of the most prevalent cancers continue to demonstrate underrepresentation among Black,[62,65–72] Hispanic,[62,65–70,72] Asian,[62,72,73] and American Indian and Alaskan Native[62,67,69] individuals in breast,[62,66–68,71,74] lung,[65,67–71] and prostate CCTs (e.g., Ajewole: FDA oral chemotherapy CCT enrollment composition, 2009-2019: White: 71.5%, Black: 2.5%, Hispanic: 2.3%; Ladbury.: brachytherapy CCTs, enrollment incident disparity: Asian: - 2.65%).[62,65,67,71,72,75–77] Similar patterns are observed in understudied cancers, with CCT underrepresentation among Black,[68,72,78–87] Hispanic,[68,72,78–80,82,83,86] and Asian[72,80,86] patients with gastrointestinal,[65,67,68,73,88] hepato-biliary,[78,79]

pancreatic, [68,78,89,90] gynecologic, [62,80,91] HPV-associated oropharyngeal, [92] renal and urologic, [72,87,93] hematologic, [68,81–85] and neurologic [86] malignancies. Some evidence suggests potential mitigation of such inequities for certain cancers in recent years, [65,80,86,94–97] particularly among Asian individuals (e.g., Javier-DesLoges: breast, colorectal, lung, and prostate participation odds ratios [OR], 2000-2004 vs. 2015-2019: Black: 2.19, 1.15, 1.54, 1.14; Hispanic: 3.32, 2.46, 2.21, 1.70; Asian: 1.94, 2.48, 3.88, 1.64). [47,65,67,85] Nonetheless, such findings are primarily limited to studies with strong infrastructural support or smaller, singular institutional studies, while other contemporary studies reveal stagnation or worsened disparities over time (e.g., Owens-Walton: unchanging representation quotients from 2000 to 2017). [72,74]

Limited data reflect mixed findings regarding representation among patients of color in psychosocial CCTs. Some such evidence suggests minimal enrollment inequities between non-Hispanic and Hispanic women; however, even these data reflect higher attrition risk for Hispanic and immigrant women.[98] An institutional study of all cancers identified no racial/ethnic participation inequities among patients who were eligible for two pain and symptom-focused CCTs; however, patients of color were more likely to be *ineligible*.[99] Recent analyses suggest that psychosocial CCT representation among patients of color may be particularly contingent on intervention type, target population, and funding. For example, national evidence indicates Black underrepresentation in prostate exercise, advanced disease, and non-governmental CCTs; adequate representation in dietary and multi-component trials; and disproportionately higher participation in pelvic floor muscle training, localized disease, and government-funded trials relative to their non-Black counterparts.[100] While observing poor representation among patients of color overall, a meta-analysis of integrated palliative CCTs suggests mitigated underrepresentation among Black patients compared to therapeutic CCTs (EF: 5.7% vs. 3.0%),[101] with similar, state-level results observed among Black men in behavioral CCTs.[94] Analyses of two psychosocial CCTs among women with gynecologic, gastrointestinal, and thoracic cancers demonstrate parallel trends, with even higher enrollment among Hispanic patients.[102] Nonetheless, other evidence investigating breast, lung, prostate, and colorectal CCTs reveals trends towards poorer representation among Black patients in supportive care trials compared to tumor-directed studies.[6]

Age

Strong evidence demonstrates CCT underrepresentation among older adults across time. Early such inequities are observed in NCI Cooperative Group trials in prevalent cancers, with patients 65 to 74 and patients older than 75 years old, respectively, exhibiting

progressively lower accrual to non-surgical, therapeutic trials compared to younger patients.[36] Such findings are replicated in later general CCT samples,[13,34] surgical CCTs,[35] and NCI, state-specific data further classifying older age subgroups.[33,34] Early large studies corroborate these trends across cancer types and within drug-specific trials, with underrepresentation among older adults relative to their incident populations[45,103–105] and lower likelihood of CCT enrollment with age,[53] with progressively greater underrepresentation (e.g., Talarico: participants vs. population, respectively: 65+: 25% vs. 60%; 75+: 4% vs. 31%).[105]

Contemporary literature corroborates these findings, reflecting continued CCT underrepresentation among older adults over time. Recent institutional, state, and national cohort, case-control, and meta-analytic studies reveal persisting underrepresentation among older adults in surgical, [106] drug, [42,66,107] brachytherapy, [62] and other trial types;[65,94,108] phase I,[57] II,[109] and III[110-112] trials; and multimodal[109] CCTs in general (e.g., Baldini: CCT referral vs. population 70+: 17.7% vs. 50%).[42,57,58,63,107,109,113,114] Such findings are replicated in specific cancers, breast, [42, 65, 66, 106, 110, 115] including gynecologic, [49,108] lung,[65,96,110] prostate, [65, 76, 94, 110] pancreatic,[89,90] hepatic,[79] gastroesophageal,[116] gastrointestinal, [42,65,73,110,117] renal, [87] skin, [111], head and neck, [118] other solid organ, [5,109] and hematologic cancers, [5,112,119] with further evidence of greater inequities among the oldest groups.[117]

Nonetheless, other recent studies report no age differences in CCT enrollment, especially controlling for relevant covariates (e.g., Dudipala: OR: 1.023).[44,50,92,97,120,121] However, these findings have primarily been exclusive to one institution, diagnosis, or state. Further, evidence of more equitable age representation overall are qualified in persistent inequities relative to the incident population for that specific cancer[40], or among patients initially referred to,[122] eligible for,[102,115] or discussed for such trials.[97,114] Furthermore, other longitudinal and population-based studies demonstrate stagnated or worsened age inequities in CCT participation over time, particularly among the oldest patients (e.g., Zhao et al. median age difference [DMA] between participant and incident disease median age: -8.15; US DMA before 2017 vs. after 2017: -5.90, -8.00).[49,110,113]

Socioeconomic Status (SES)

Early national case-control analyses reflect breast CCT underrepresentation among low-SES patients by multiple indicators, including area poverty, unemployment, income, education, and individual government insurance.[123] Other site-specific studies document similar findings in various cancers, with lower CCT participation associated with higher material deprivation and lower social class (e.g., Mohd Noor.: Index of Multiple Deprivation [IMD]=5 enrollment OR: 0.53, relative to least deprived IMD=1).[34,121] Another national, cross-sectional study revealed strongly prohibitive effects of low income on breast, colorectal, prostate, and lung CCT participation, controlling for other variables (<\$50,000 income vs. \$50,000+: OR: 0.73),[13] with progressively larger disparities among patients with the lowest incomes.[13,120] State analyses extend similar findings to area income in breast, genitourinary, gastrointestinal, and myelodysplastic CCT enrollment (e.g., Brierley et al.: average median income, participants vs. non-participants: \$68,896 vs. \$61,241).[43,124] Other earlier studies reveal how unemployment, lower educational attainment,[13,125] and governmental insurance[42,49] predict CCT underrepresentation in breast and other common cancers.

Contemporary studies within the past three years have increasingly focused on and further substantiated CCT underrepresentation among lower SES patients. Multilevel cohort, case-control, and meta-analytic studies evidence the effects of lower area income (e.g., Hue: stage IV participants vs. non-participants <\$40,227: 11.4% vs. ,19.1%),[63,87,89,114,126] education (e.g., Eskander: CCT participation, higher vs. lower high school attainment OR: 2.0),[73,78,80,87,89,90,94,114] insurance (e.g., Shinder: CCT participation, uninsured, Medicaid, or Medicare vs. private insurance ORs, respectively: 0.57, 0.43, 0.59),[70,73,78,87,90,96] or overall SES (e.g., Kwak: CCT participation, lowest [1] vs. median [4] SES group OR: 0.60)[63,70,82,96] on breast,[66] prostate,[77,94] lung,[70,96] gastrointestinal,[73] pancreatic,[78,89,90] hepatic,[73,78] gynecologic,[80] renal,[87] brain,[126] hematologic,[83] and mixed CCT underrepresentation.[57] Other meta-analyses emphasize how limited SES reporting in CCTs significantly compromises research regarding its effects on representation.[77,88]

Nonetheless, other studies present contrasting findings. data have shown higher breast CCT enrollment among Medicaid-eligible and lower education patients.[38] Other studies have reflected higher surgical breast CCT participation with higher area education, but lower income,[106] with similar income findings in gynecologic trials.[80] Some contemporary studies have observed no SES impact on CCT enrollment (e.g., Perni et al. participation OR, \$100,000 median income vs. <\$50,000: 1.28)[57] or attenuated effects in multivariate models,[63,87,89] though these studies only examined socioeconomic factors as covariates. While the most equivocal evidence appears in the relationship between income

and CCT participation, recent authors conceptualize such findings in reliance on area, rather than patient, indicators due to systemic data deficiencies.[80] Despite the nuances observed in these mixed findings, the literature provides growing evidence of socioeconomic CCT inequities by various indicators.

Sex

Mixed literature on sex-related CCT inequities suggests contingency of representation on cancer and trial type. For example, early national data suggest higher therapeutic CCT enrollment among men with colorectal and lung cancers (participation, men vs. women OR: colorectal, lung, respectively: 1.30, 1.23)[36] with similar results replicated in center-specific analyses.[127] However, other early evidence regarding surgical CCTs reflects reversal of this trend, with women five times more likely than men to enroll overall in a combined, national breast, colorectal, lung, and prostate sample.[35] Other data provide further insight into contrasting results, suggesting greater overall CCT participation among men, though lower enrollment compared to women when examining sex-specific cancers.[34]

More recent studies have observed more equitable CCT representativeness across sexes. National cohort and meta-analytic studies addressing various cancers, including sexspecific[44] and rare diagnoses,[119] reflect minimal sex differences in representation (e.g., Costa: observed-expected ratio, % male participants: 1.03). Similar evidence has emerged in psychosocial CCTs, revealing no sex differences in participation (e.g., Huang: % eligible enrolled in symptom CCT, within each sex: women: 75%, men: 78%).[99] Longitudinal analyses reveal improvement in lung CCT representation over time among women younger than 65 years old (overall enrollment disparity difference between sexes reduced 0.07 to 0.03, 1994-2012),[40] as is consistent with equitable sex representation among younger patients in earlier lung and other CCTs.[36] Some state-specific evidence reflects even higher therapeutic lung, colorectal, and sex-specific CCT enrollment among women relative to men,[54] as with the aforementioned surgical CCT findings.[35] Nonetheless, women's underrepresentation persists in certain rarer cancers, such as in myelodysplastic syndrome[43] or HPV-associated oropharyngeal CCTs (e.g., Gordis: % total female enrollees: 11.8%).[92] Conversely, other data reflect disadvantages for men for certain CCT types across cancers, such as eligibility for chemoradiation trials[128] and participation in sex-related CCTs.[34] FDA approvals between 2008 and 2017 similarly demonstrate attenuated inequities when including sex-related CCTs, while simultaneously revealing worsened women's representation over time when exclusively examining trials for cancers affecting all sexes (% women: 2008 to 2013: 47%, 2014 to 2017: 37%).[45]

Studies within the past three years continue to reveal minimal sex-related CCT inequities. Multiple institutional, state, and national cohort and case-control studies suggest equitable CCT participation across sexes in colorectal, [68] lung, [68–70] pancreatic, [68,89] neurologic, [126] hematologic, [68, 83, 85] and mixed samples, [63] with some analyses suggesting higher representation among women (e.g., Saphner: participation OR, men vs. women: 0.70).[63,70] However, some of these findings are restricted to specific institutions, with their results challenged by more nationally representative analyses suggesting persistent underrepresentation among women in colorectal, [65,88] lung, [65] neurologic, [86] and hematologic CCTs.[84] Additional studies document lower participation among women in hepatic, [79] head and neck, [95] and renal CCTs, [87] in addition to women's underrepresentation in overall therapeutic, [60] radiation, [56] phase II and III, [57] non-sex-,[63] and sex-specific diagnostic CCTs.[60] Though recent evidence of improved representation among women is qualified by these contrasting findings, contemporary results suggest partial mitigation of such inequities over time for certain diagnostic sites (e.g., Javier-DesLoges: women's participation OR, 2015-2019 vs. 2000-2014: 1.38, with remaining inequities relative to men [OR: 0.89]).[65,86]

Ability, Staging, and Functional Status

Until the past three years, few studies had examined indicators of ability status as direct contributors to CCT participation, typically focusing on staging (i.e., measured by tumor size, lymph node presence, and/or metastases),[129] comorbidity, and more rarely, status ratings. Earlier findings evidence performance higher participation in breast[50,108,115,130], colorectal, lung, prostate,[13] and multiple myeloma CCTs[119] among patients with lower staging or fewer comorbidities (e.g., Unger: participation OR, comorbidity score: 0.81), though primarily examine such indicators as covariates. Some institutional analyses characterize exclusionary comorbidities as restrictive to CCT participation across multiple cancers, [125] while other data document positive relationships between symptom risk and therapeutic CCT enrollment in rarer cancers (e.g., Brierley: participation OR, high- vs. very low-risk: 1.88).[43] Still other investigators report no association between disease characteristics, comorbidities, and CCT participation,[33] though these early studies still conceptualize such ability proxies as covariates, rather than key predictors.

While evidence remains scarce compared to other marginalizing indicators, contemporary studies have increasingly documented relationships among comorbidity, functional impairment, and CCT participation. National cohort, case-control, and meta-

analytic studies reveal the potentially restrictive impact of comorbidity burden or associated lower performance status on pancreatic, [78,89,90], breast, [66] lung, [131] hepatic, [78] gynecologic, [80] other gastrointestinal and genitourinary, [131] renal, [87] head and neck, [118] solid organ, [132] and overall CCT representativeness (e.g., Green: % comorbidity score=0, participants vs. non-participants: 69.2% vs. 51.6%). [58,114] Other analyses, while not directly centering ability proxies as enrollment predictors, evidence the covarying impact of performance status on CCT participation (e.g., Bruno: lung participation OR, Eastern Cooperative Oncology Group [ECOG] score, 2 vs. 0: 0.27). [133] Still other recent results evidence *positive* relationships between comorbidity burden and CCT participation, though these findings are exclusive to one state and disease site. [95]

Intersectionality in CCT Participation Inequities

The above summarized data provide robust evidence of persistent CCT underrepresentation among patients of color and older adults, with mixed evidence of changing representativeness over time across diagnostic sites and trial types. Recent evidence reveals similar relationships between SES and CCT participation, demonstrating how lower education, inadequate insurance, and to a smaller extent, lower income, may further stifle CCT representativeness. While sex disparities have negatively impacted CCT participation depending upon cancer type, some contemporary studies evidence more equitable CCT representation in common cancers. While the singular impacts of such factors quantitatively vary, the interactivity among these social, economic, and medical marginalizing indicators further complexifies CCT representativeness.

This review characterizes the nexus among race, ethnicity, and SES as one of the most intricate intersections in determining CCT representation. Early breast CCTs have revealed diminishing underrepresentation among Black patients after considering area poverty, unemployment, and Medicaid coverage (participation OR, Black vs. White: 0.99).[123] Later population data corroborate such findings, illustrating partial attenuation of Black and Hispanic underrepresentation in surgical breast CCTs when accounting for income and education, [106] as well as insurance. [¹³⁴] Institutional analyses of multiple cancers have demonstrated resolution in CCT underrepresentation among patients of color after accounting for and deprivation index.[121] However, other evidence reveals age, sex. underrepresentation among higher income and privately insured Black and Hispanic women compared to their less affluent counterparts in gynecologic[49,98] and breast CCTs (e.g., Fayanju: participation OR, Black and Hispanic, respectively, median income \$63,000+ vs. <\$38,000: 0.45, 0.19).[106] These findings constitute a reversal of typically observed relationships, wherein racial, ethnic, and socioeconomic marginalization multiplicatively serve to restrict CCT participation with concurrent marginalization, rather than poorer participation among *higher* SES women of color. A meta-analysis of FDA approvals, regardless of SES, emphasizes the intersection among sex and minoritized identity, with the greatest underrepresentation observed among women of color in prevalent cancers (i.e., % Black participants breast sample: 2%).[45]

Studies within the last three years have increased explicit efforts to explore the interactive influences of racial, ethnic, and socioeconomic marginalizing indicators on CCT participation, while similarly indicating nuanced results across diagnostic sites. Multilevel cohort, case-control, and meta-analytic studies demonstrate the simultaneous impact of minoritized race/ethnicity, lower area SES, and inadequate insurance coverage in limiting breast,[66] gynecologic,[80] pancreatic,[90] and renal[87] CCT participation (e.g., Khadraoui: participation ORs, racial/ethnic minority vs. White: Black: 0.70, Hispanic: 0.53, Asian: 0.44, Other: 0.48; education, 15.3%+ vs. <5.0% without high school education: 0.41). Similar studies demonstrate partial contingency of hematologic CCT underrepresentation among people of color on lower area income or insurance coverage.[82] Still other recent studies corroborate persistent CCT inequities that disproportionately affect among women of color regardless of income, in gastrointestinal trials,[73] as is consistent with earlier breast and gynecologic CCTs.[49,106]

Studies investigating relationships among race, ethnicity, and SES in determining CCT representation have increasingly revealed potential contributions of disease characteristics, comorbidity burden, and performance status. For instance, early analyses demonstrate how controlling for advanced disease diminishes otherwise observed racial CCT inequities.[37,50] Similar interactive relationships have been observed in early case-control studies regarding lung CCTs, interpreting underrepresentation among Black and other patients of color within the intersections among race, SES, insurance, comorbidity, and performance status.[127] Other national data corroborate higher comorbidity among Black patients considered for CCTs (medical comorbidity presence, OR: 1.53).[53] More recent analyses directly explore how ability indicators color the intersectional effects of race, ethnicity, and SES on CCT representation.[66,80,87,94,132] While some such studies reveal how higher staging and comorbidity may further limit CCT participation among minoritized or lower SES patients (e.g., Yekeduz: % Black participants vs. population: 2.1% vs. 9.8%, with 82% total sample with ECOG 0-1),[66,72,80,87,132] others offer opposing evidence among certain underserved populations. Specifically, some studies indicate increased CCT

participation among patients of color with higher comorbidity burden and staging, such as Hispanic men with prostate cancer.[94] Still others indirectly examine complex, intersectional influences of comorbidity, illness characteristics, and ability on CCT representativeness, suggesting poorer overall CCT participation due to the COVID-19 pandemic, though with unexpected impacts on participation inequities (e.g., Choradia et al.: participation ORs, 2005-2020, each vs. White patients: Hispanic: 0.52, American Indian: 0.41, AAPI: 0.81; peak participation among these underserved in 2020, despite lowest year of enrollment across population).[60,68]

Such patterns are further influenced by age and sex, especially among older adults of color with increased comorbidity burden. Early analyses demonstrate how older age compromises breast, colorectal, thoracic, and prostate CCT participation across racial and ethnic groups, though drives underrepresentation otherwise unobserved in younger patients among women of color.[36] Other investigators demonstrate how older age heightens gynecologic CCT attrition risk for Hispanic, but not for non-Hispanic, women.[98] Recent national cohort, case-control, and meta-analytic studies strengthen evidence of simultaneous underrepresentation regarding older age, comorbidity, performance status, and other marginalizing factors underpinning CCT underrepresentation (e.g., Kaanders: % participants with World Health Organization [WHO] 0-1 or Karnofsky performance score 90-100: 70%; median age, participant vs. population: 57, 64,[58,109,111,114,118] with some evidence emphasizing how *trial* characteristics themselves may limit participation among older adults with higher disease burden.[109]

Regarding intersecting sex influences, some early state studies indicate elevated racial disparities among men relative to women in therapeutic trials for common cancers,[34,54] with recent studies similarly accentuating how cancer sex-specificity may underpin racial and ethnic representativeness in radiation CCTs (i.e., Black underrepresentation observed in all CCT types *except* sex-specific female [13.1% sample] and male [18.4% sample] US trials).[56] While quantitatively unexamined to date, contemporary studies have *begun* to comment on how relationships among these marginalizing factors may be furthermore impacted by sexual minoritization, through its influence on preexisting health and CCT eligibility.[66] Overall, relationships among social, economic, and medical marginalizing indicators in underpinning CCT inequities have gained increasing attention in recent years, with more investigators explicitly exploring the structural, intersectional context of such factors when interpreting their findings regarding CCT representativeness.[72,106]

Discussion

This review sought to describe CCT participation inequities via multiple modes of social, economic, and medical marginalization, including race, ethnicity, age, sex, SGM identity, SES, and ability. Its findings contribute novel insights regarding the impact of such factors on CCT inequities, including strengthened evidence for national CCT underrepresentation among racial and ethnic minority groups and older adults across various cancers and trial types. To a lesser, albeit increasing extent, these results reveal compromised CCT participation among lower SES patients across various metrics, especially education and insurance; however, these findings are dependent on aggregate, rather than individual, SES indicators. This review further offers insights into the effects of ability status on CCT participation, with a growing focus on comorbidity burden in recent years.

These findings reflect minimal to modest evidence of improvement in representativeness across the past several decades. While exhibiting some progress in racial, ethnic, and sex representativeness in certain intervention types, CCT inequities are observed across most cancers and study designs in recent large-scale analyses. Studies focused on CCT representation among the underserved have more than doubled within the past three years, while accentuating a persisting absence of data investigating such inequities among SGM patients. Nonetheless, while bolstering evidence of intractable CCT inequities across various other marginalizing indicators and cancers, contemporary investigations have increasingly provided more nuanced insights into their complex interplay in determining CCT representativeness.

More important than enduring inequities observed in singular examination of each marginalizing indicator, however, is the intersection among these social, economic, and medical characteristics and their effects on CCT inequities. These results demonstrate the partial underpinning of CCT underrepresentation among patients of color by parallel preexisting socioeconomic and health disparities. Further, the literature illustrates how the intersection among racial/ethnic minority status, SES, and other marginalizing indicators may interactively predispose individuals with cancer to more aggressive disease, higher comorbidity, or poorer performance status, thus compromising CCT participation among the underserved. These conditions are further influenced by the strong relationship between age and higher ineligibility risk due to similar preexisting health inequities, and their heightened impact on CCT representation in their intersectional context with other marginalizing indicators. Despite an increased focus on these relationships in recent CCT literature, few

articles explicitly allude to their intersectional, structural nature, with most studies addressing multiple marginalizing indicators as potential confounding covariates at best.

This review is the first to conceptualize existing CCT inequities across several modes of social, economic, and medical marginalization through an intersectional perspective. These findings accentuate how numerous marginalizing indicators limit CCT representativeness with multiplicative implications, further preventing equitable participation among those with overlapping experiences of social, economic, and medical oppression. Further, this review is uniquely underpinned by central recognition of social inequality, context, power, and justice using intersectionality as a theoretical scaffold for understanding public health.[25,26]

Limitations

This review is limited in its absence of articles addressing CCT participation among SGM individuals, yielding only one study that transiently mentioned SGM identity as one factor affecting CCT participation while interpreting its results. While this may indicate limitation in the search strategies applied to this review, this absence of SGM studies persisted with extensive adjustments, thus likely reflecting large deficits in the literature itself. Another limitation is a lack of explicit investigation regarding the impacts of rurality on CCT participation – a crescent area of research important to understanding CCT representation through an intersectional perspective.

Other limitations consist in a low number of articles that specifically address 1) supportive care, psychosocial, behavioral, or quality of life interventions and 2) longitudinal retention in studies. Further, few included articles directly investigate relationships between social, economic, and medical marginalization through an explicitly intersectional perspective, primarily examining such interactive influences through reductive, additive models that merely control for covarying factors. These results are also qualified by the limitations in article quality evaluation. While use of the MMAT for quality assessment accommodated the diversity of articles included, this flexibility inversely limits standardization of ratings across various article types. Further, while intersectionality constitutes a necessary lens through which investigators must accurately view health inequities, optimal practices for quantification of such outcomes through this theoretical paradigm remains tenuous.

Implications and Future Directions

This review characterizes the current state of the literature quantifying CCT participation inequities that disproportionately impact the underserved in cancer care. Its description of such inequities reveals little ambiguity in CCT underrepresentation among

certain marginalized groups, especially among older adults, racial/ethnic minorities, and by some indicators, patients originating in lower SES areas or with greater disability. This review thus constitutes a strong foundation to further investigate underpinning barriers that sustain these inequities and potential solutions to dismantle them. Its findings accentuate the necessity of future research focused on 1) mixed evidence regarding specific social, economic, and medical indicators in determining CCT participation, 2) the role of intersectionality and underlying mechanisms in explaining such inequities, and 3) persistently understudied marginalized populations in the investigation of CCT representation, especially patients who are SGMs, of lower SES or rural origin, or live with comorbid disabilities. Additional research is necessary to understand the generalizability of such findings to CCTs beyond those which are tumor-directed and longitudinal participation patterns.

This review accentuates the persistence of CCT participation inequities across various vectors of social, economic, and medical marginalization through an intersectional perspective across the past four decades. As such, these findings emphasize the urgency of identifying and dismantling barriers that sustain these inequities. Through such efforts, investigators and clinicians may strive towards the eradication of inequities in cancer outcomes and equitable benefits from advancements in cancer care among the underserved.

Author Contributions

Dr. Grace Ann Hanvey takes responsibility for the manuscript, including the conception and design of the work, data collection, conduct and interpretation of analyses, and drafting of the manuscript. Ms. Hannah Johnson served as the secondary rater for article quality assessment, thus making significant contributions to data analysis and interpretation. Drs. Gabriel Cartagena, Duane Dede, Kathryn Ross, and Janice Krieger contributed to the review and revision of initial conception and design of the work. Dr. Deidre Pereira served as the supervisory and corresponding of the author of the work, thus providing foundational intellectual and infrastructural support for all aspects of publication including conception; data collection, analysis, and interpretation; and drafting the manuscript.

Acknowledgements

The authors thank Covidence - a web-based collaboration software platform that streamlines the production of systematic and other literature reviews - for facilitating article screening, organization, and data extraction of the review process.

Funding Statement

The authors have no financial support to report for the present work.

References

- Unger JM, Cook E, Tai E, Bleyer A. The Role of Clinical Trial Participation in Cancer Research: Barriers, Evidence, and Strategies. *Am Soc Clin Oncol Educ Book*. Published online 2016. doi:10.1200/edbk_156686
- Byrne MM, Tannenbaum SL, Glück S, Hurley J, Antoni M. Participation in cancer clinical trials: Why are patients not participating? *Med Decis Making*. Published online 2014. doi:10.1177/0272989X13497264
- Chen MS, Lara PN, Dang JHT, Paterniti DA, Kelly K. Twenty years post-NIH Revitalization Act: enhancing minority participation in clinical trials (EMPaCT): laying the groundwork for improving minority clinical trial accrual: renewing the case for enhancing minority participation in cancer clinical trials. *Cancer*. Published online 2014. doi:10.1002/cncr.28575
- Awad E, Paladugu R, Jones N, et al. Minority participation in phase 1 gynecologic oncology clinical trials: Three decades of inequity. *Gynecol Oncol.* 2020;157(3 PG-729-732):729-732. doi:10.1016/j.ygyno.2020.03.002
- 5. Gopishetty S, Kota V, AK G. Age and race distribution in patients in phase III oncology clinical trials. *Am J Transl Res.* 2020;12(9 PG-5977-5983):5977-5983.
- Grant SR, Lin TA, Miller AB, et al. Racial and Ethnic Disparities Among Participants in US-Based Phase 3 Randomized Cancer Clinical Trials. *JNCI Cancer Spectr*. 2020;4(5 PG-pkaa060):pkaa060. doi:10.1093/jncics/pkaa060
- Ahaghotu C, Tyler R, Sartor O. African American Participation in Oncology Clinical Trials--Focus on Prostate Cancer: Implications, Barriers, and Potential Solutions. *Clin Genitourin Cancer*. 2016;14(2 PG-105-16):105-116. doi:10.1016/j.clgc.2015.12.003
- Ford JG, Howerton MW, Lai GY, et al. Barriers to recruiting underrepresented populations to cancer clinical trials: A systematic review. *Cancer*. Published online 2008. doi:10.1002/cncr.23157
- Ludmir E, Mainwaring W, Lin T, et al. Factors Associated With Age Disparities Among Cancer Clinical Trial Participants. *JAMA Oncol.* 2019;5(12):1769-1773. doi:10.1001/jamaoncol.2019.2055

- Matthews AK, Breen E, Kittiteerasack P. Social Determinants of LGBT Cancer Health Inequities. *Semin Oncol Nurs*. 2018;34(1):12-20. doi:10.1016/j.soncn.2017.11.001
- Bowen DJ, Boehmer U. The lack of cancer surveillance data on sexual minorities and strategies for change. *Cancer Causes Control*. 2007;18(4):343-349. doi:10.1007/s10552-007-0115-1
- Nipp R, Lee H, Gorton E, et al. Addressing the Financial Burden of Cancer Clinical Trial Participation: Longitudinal Effects of an Equity Intervention. *Oncologist*. 2019;24(8 PG-1048-1055):1048-1055. doi:10.1634/theoncologist.2019-0146
- Unger JM, Hershman DL, Albain KS, et al. Patient income level and cancer clinical trial participation. *J Clin Oncol*. Published online 2013. doi:10.1200/JCO.2012.45.4553
- Ludmir E, Subbiah I, Mainwaring W, et al. Decreasing incidence of upper age restriction enrollment criteria among cancer clinical trials. *J Geriatr Oncol.* 2020;11(3 PG-451-454):451-454. doi:10.1016/j.jgo.2019.11.001
- Townsley CA, Selby R, Siu LL. Systematic review of barriers to the recruitment of older patients with cancer onto clinical trials. *J Clin Oncol*. Published online 2005. doi:10.1200/JCO.2005.00.141
- Kish JK, Yu M, Percy-Laurry A, Altekruse SF. Racial and ethnic disparities in cancer survival by neighborhood socioeconomic status in Surveillance, Epidemiology, and End Results (SEER) registries. J Natl Cancer Inst - Monogr. 2014;2014(49):236-243. doi:10.1093/jncimonographs/lgu020
- Yu M, Tatlovich Z, Gibson JT, Cronin KA. Using a composite index of socioeconomic status to investigate health disparities while protecting the confidentiality of cancer registry data. *Cancer Causes Control.* 2014;25(1):81-92.
- Gomez SL, Duffy C, Griggs JJ, John EM. Surveillance of cancer among sexual and gender minority populations: Where are we and where do we need to go? *Cancer*. 2019;125(24):4360-4362.
- 19. Kendrick MW, Redman MW, Baker KK, et al. Racial disparity in oncologic and patientreported quality of life (PROs) outcomes in patients with locally advanced head and neck

squamous cell carcinomas (HNSCC) enrolled in a randomized phase II trial. *J Clin Oncol.* 2016;34(15, S). doi:10.1200/JCO.2016.34.15_suppl.6048

- Plascak JJ, Llanos AA, Pennell ML, Weier RC, Paskett ED. Neighborhood Factors Associated with Time to Resolution Following an Abnormal Breast or Cervical Cancer Screening Test. *Cancer Epidemiol Biomarkers Prev.* 2014;23(12):2819-2828. doi:10.1158/1055-9965.EPI-14-0348
- 21. Shariff-Marco S, Yang S, Yang J, et al. Impact of neighborhood and individual socioeconomic status on survival after breast cancer varies by race/ethnicity: the Neighborhood and Breast Cancer Study. *Cancer Epidemiol Biomarkers Prev.* 2014;23(5):793-811.
- 22. American Cancer Society. Facts & Figures 2019. Am Cancer Soc. Published online 2019.
- 23. Guerriero MK, Redman MW, Baker KK, et al. Racial disparity in oncologic and qualityof-life outcomes in patients with locally advanced head and neck squamous cell carcinomas enrolled in a randomized phase 2 trial. *CANCER*. 2018;124(13):2841-2849. doi:10.1002/cncr.31407
- 24. Crenshaw K. Mapping the margins: Intersectionality, identity politics, and violence against women of color. *Stan Rev.* 1990;43:1241.
- Bowleg L. The problem with the phrase women and minorities: Intersectionality- an important theoretical framework for public health. *Am J Public Health*. 2012;102(7):1267-1273.
- 26. Agénor M. Future directions for incorporating intersectionality into quantitative population health research. *Am J Public Health*. 2020;110(6):803-806.
- Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Med.* Published online 2009. doi:10.1371/journal.pmed.1000097
- 28. Covidence systematic review software.

- 29. Hong QN, Fàbregues S, Bartlett G, et al. The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. *Educ Inf.* 2018;34(4):285-291. doi:10.3233/EFI-180221
- 30. Edwards DJ, Sakellariou D, Anstey S. Barriers to, and facilitators of, access to cancer services and experiences of cancer care for adults with a physical disability: A mixed methods systematic review. *Disabil Health J.* 2020;13(1):100844. doi:10.1016/j.dhjo.2019.100844
- 31. Clifford BK, Mizrahi D, Sandler CX, et al. Barriers and facilitators of exercise experienced by cancer survivors: a mixed methods systematic review. Support Care Cancer. 2018;26(3):685-700. doi:10.1007/s00520-017-3964-5
- 32. Wang T, Molassiotis A, Chung BPM, Tan JY. Unmet care needs of advanced cancer patients and their informal caregivers: a systematic review. *BMC Palliat Care*. 2018;17(1):96. doi:10.1186/s12904-018-0346-9
- Craig BM, Gilbert SM, Herndon JB, Vogel B, Quinn GP. Participation of Older Patients With Prostate Cancer in Medicare Eligible Trials. J Urol. 2010;184(3):901-906. doi:10.1016/j.juro.2010.04.076
- Baquet CR, Ellison GL, Mishra SI. Analysis of Maryland cancer patient participation in National Cancer Institute-supported cancer treatment clinical trials. J Health Care Poor Underserved. 2009;20(2 Suppl PG-120-34):120-134. doi:10.1353/hpu.0.0162
- 35. Stewart JH, Bertoni AG, Staten JL, Levine EA, Gross CP. Participation in surgical oncology clinical trials: Gender-, race/ethnicity-, and age-based disparities. *Ann Surg Oncol.* Published online 2007. doi:10.1245/s10434-007-9500-y
- Murthy VH, Krumholz HM, Gross CP. Participation in cancer clinical trials: Race-, sex-, and age-based disparities. J Am Med Assoc. Published online 2004. doi:10.1001/jama.291.22.2720
- 37. LA N, Hurd T, Leitch M, et al. A report on accrual rates for elderly and minorityethnicity cancer patients to clinical trials of the American College of Surgeons Oncology Group. J Am Coll Surg. 2004;199(4 PG-644-51):644-651. doi:10.1016/j.jamcollsurg.2004.05.282

- Behrendt CE, Hurria A, Tumyan L, Niland JC, Mortimer JE. Socioeconomic and clinical factors are key to uncovering disparity in accrual onto therapeutic trials for breast cancer. *J Natl Compr Canc Netw.* 2014;12(11 PG-1579-85):1579-1585. doi:10.6004/jnccn.2014.0158
- Fayanju OM, Ren Y, Thomas SM, et al. A Case-Control Study Examining Disparities in Clinical Trial Participation Among Breast Surgical Oncology Patients. JNCI CANCER Spectr. 2020;4(2). doi:10.1093/jncics/pkz103
- HH P, Wang X, TE S, et al. Enrollment Trends and Disparity Among Patients With Lung Cancer in National Clinical Trials, 1990 to 2012. *J Clin Oncol.* 2016;34(33 PG-3992-3999):3992-3999. doi:10.1200/JCO.2016.67.7088
- 41. Scalici J, MA F, Black J, et al. Minority participation in Gynecologic Oncology Group (GOG) Studies. *Gynecol Oncol.* 2015;138(2 PG-441-4):441-444. doi:10.1016/j.ygyno.2015.05.014
- 42. Borno HT, Small EJ, Zhang L, et al. How current reporting practices may mask differences: A call for examining cancer-specific demographic enrollment patterns in cancer treatment clinical trials. *Contemp Clin TRIALS Commun.* 2019;16. doi:10.1016/j.conctc.2019.100476
- Brierley CK, Zabor EC, Komrokji RS, et al. Low participation rates and disparities in participation in interventional clinical trials for myelodysplastic syndromes. *CANCER*. 2020;126(21):4735-4743. doi:10.1002/cncr.33105
- Dressler LG, Deal AM, Owzar K, et al. Participation in Cancer Pharmacogenomic Studies: A Study of 8456 Patients Registered to Clinical Trials in the Cancer and Leukemia Group B (Alliance). J Natl Cancer Inst. 2015;107(10 PG-). doi:10.1093/jnci/djv188
- 45. Ramamoorthy A, Knepper TC, Merenda C, et al. Demographic Composition of Select Oncologic New Molecular Entities Approved by the FDA Between 2008 and 2017. *Clin Pharmacol Ther.* 2018;104(5):940-948. doi:10.1002/cpt.1180
- 46. Unger JM, Hershman DL, Osarogiagbon RU, et al. Representativeness of Black Patients in Cancer Clinical Trials Sponsored by the National Cancer Institute Compared With

Pharmaceutical Companies. *JNCI Cancer Spectr.* 2020;4(4):pkaa034. doi:10.1093/jncics/pkaa034

- 47. Duma N, Vera Aguilera J, Paludo J, et al. Representation of Minorities and Women in Oncology Clinical Trials: Review of the Past 14 Years. J Oncol Pract. 2018;14(1):e1e10. doi:10.1200/JOP.2017.025288
- 48. Guerrero S, López-Cortés A, Indacochea A, et al. Analysis of Racial/Ethnic Representation in Select Basic and Applied Cancer Research Studies. *Sci Rep.* 2018;8(1):13978. doi:10.1038/s41598-018-32264-x
- Mishkin G, LM M, EC K, AM N, SM T. The generalizability of NCI-sponsored clinical trials accrual among women with gynecologic malignancies. *Gynecol Oncol.* 2016;143(3 PG-611-616):611-616. doi:10.1016/j.ygyno.2016.09.026
- 50. Housri N, Khan AJ, Taunk N, et al. Racial Disparities in Hypofractionated Radiotherapy Breast Cancer Clinical Trials. *BREAST J*. 2015;21(4):387-394. doi:10.1111/tbj.12419
- 51. Patel MA, Shah JL, Abrahamse PH, et al. A population-based study of invitation to and participation in clinical trials among women with early-stage breast cancer. BREAST CANCER Res Treat. 2020;184(2):507-518. doi:10.1007/s10549-020-05844-7
- 52. Diehl KM, Green EM, Weinberg A, et al. Features Associated with Successful Recruitment of Diverse Patients onto Cancer Clinical Trials: Report from the American College of Surgeons Oncology Group. Ann Surg Oncol. 2011;18(13):3544-3550. doi:10.1245/s10434-011-1818-9
- 53. Langford AT, Resnicow K, Dimond EP, et al. Racial/ethnic differences in clinical trial enrollment, refusal rates, ineligibility, and reasons for decline among patients at sites in the National Cancer Institute's Community Cancer Centers Program. *Cancer*. 2014;120(6):877-884. doi:10.1002/cncr.28483
- Zullig LL, AG FB, Rao S, SD T, PA G, WR C. Enrollment and Racial Disparities in Cancer Treatment Clinical Trials in North Carolina. *N C Med J*. 2016;77(1 PG-52-8):52-58. doi:10.18043/ncm.77.1.52

- 55. Tharakan S, Zhong X, Galsky MD. The impact of the globalization of cancer clinical trials on the enrollment of Black patients. *Cancer*. 2021;127(13):2294-2301. doi:10.1002/cncr.33463
- 56. Bero EH, Rein LE, Banerjee A, et al. Characterization of Underrepresented Populations in Modern Era Clinical Trials Involving Radiation Therapy. *Pr Radiat Oncol.* 2021;11(6):453-459. doi:10.1016/j.prro.2021.03.012
- Perni S, Moy B, Nipp RD. Disparities in phase 1 cancer clinical trial enrollment. *Cancer*. 2021;127(23):4464-4469. doi:10.1002/cncr.33853
- Green AK, Tabatabai SM, Aghajanian C, et al. Clinical Trial Participation Among Older Adult Medicare Fee-for-Service Beneficiaries With Cancer. JAMA Oncol. 2022;8(12):1786-1792. doi:10.1001/jamaoncol.2022.5020
- 59. Wagar MK, Mojdehbakhsh RP, Godecker A, Rice LW, Barroilhet L. Racial and ethnic enrollment disparities in clinical trials of poly(ADP-ribose) polymerase inhibitors for gynecologic cancers. *Gynecol Oncol.* 2022;165(1):49-52. doi:10.1016/j.ygyno.2022.01.032
- 60. Choradia N, Karzai F, Nipp R, Naqash AR, Gulley JL, Floudas CS. Increasing diversity in clinical trials: Demographic trends at the national cancer institute, 2005-2020. J Natl Cancer Inst. Published online 2024. doi:10.1093/jnci/djae018
- Fakhry JS, Pena MJ, Pomputius A, Giap F, Vega RBM. Racial and Ethnic Demographic Reporting in Phase 2 Proton Therapy Clinical Trials: A Review. *Int J Part Ther.* 2023;10(1):51-58. doi:10.14338/IJPT-22-00042.1
- Ladbury C, Liu J, Novak J, Amini A, Glaser S. Age, racial, and ethnic disparities in reported clinical studies involving brachytherapy. *Brachytherapy*. 2022;21(1):33-42. doi:10.1016/j.brachy.2021.06.150
- 63. Saphner T, Marek A, Homa JK, Robinson L, Glandt N. Clinical trial participation assessed by age, sex, race, ethnicity, and socioeconomic status. *Contemp Clin Trials*. 2021;103:106315. doi:10.1016/j.cct.2021.106315

- 64. Acoba JD, Sumida K, Berenberg J. Overcoming racial disparities in cancer clinical trial enrollment of Asians and Native Hawaiians. *Contemp Clin Trials Commun.* 2022;28:100933. doi:10.1016/j.conctc.2022.100933
- 65. Javier-DesLoges J, Nelson TJ, Murphy JD, et al. Disparities and trends in the participation of minorities, women, and the elderly in breast, colorectal, lung, and prostate cancer clinical trials. *Cancer*. 2022;128(4):770-777. doi:10.1002/cncr.33991
- 66. Moloney C, Shiely F. Underserved groups remain underserved as eligibility criteria routinely exclude them from breast cancer trials. *J Clin Epidemiol*. 2022;147:132-141. doi:10.1016/j.jclinepi.2022.03.011
- 67. Aldrighetti CM, Niemierko A, Van Allen E, Willers H, Kamran SC. Racial and Ethnic Disparities Among Participants in Precision Oncology Clinical Studies. *JAMA Netw Open.* 2021;4(11):e2133205. doi:10.1001/jamanetworkopen.2021.33205
- Pittell H, Calip GS, Pierre A, et al. Racial and Ethnic Inequities in US Oncology Clinical Trial Participation From 2017 to 2022. *JAMA Netw Open*. 2023;6(7):e2322515. doi:10.1001/jamanetworkopen.2023.22515
- 69. Kilic S, Zhao J, Okut H, et al. Disparities in US Lung Cancer Clinical Trial Enrollment. *J Racial Ethn Health Disparities*. Published online 2023. doi:10.1007/s40615-023-01776-2
- 70. Kwak M, Bassiri A, Jiang B, et al. National enrollment of lung cancer clinical trials is disproportionate based on race and health care access. *J Thorac Cardiovasc Surg*. Published online 2023. doi:10.1016/j.jtcvs.2023.12.012
- 71. Ajewole VB, Akindele O, Abajue U, Ndulue O, Marshall JJ, Mossi YT. Cancer Disparities and Black American Representation in Clinical Trials Leading to the Approval of Oral Chemotherapy Drugs in the United States Between 2009 and 2019. *JCO Oncol Pract.* 2021;17(5):e623-e628. doi:10.1200/OP.20.01108
- 72. Owens-Walton J, Williams C, Rompré-Brodeur A, Pinto PA, Ball MW. Minority Enrollment in Phase II and III Clinical Trials in Urologic Oncology. J Clin Oncol. 2022;40(14):1583-1589. doi:10.1200/JCO.21.01885

- 73. Abbas A, Diaz A, Obeng-Gyasi S, et al. Disparity in Clinical Trial Participation Among Patients with Gastrointestinal Cancer. J Am Coll Surg. 2022;234(4):589-598. doi:10.1097/XCS.00000000000129
- 74. Keegan G, Crown A, DiMaggio C, Joseph KA. Insufficient Reporting of Race and Ethnicity in Breast Cancer Clinical Trials. Ann Surg Oncol. 2023;30(12):7008-7014. doi:10.1245/s10434-023-14201-z
- 75. Lythgoe MP, Krell J, Savage P, Prasad V. Race reporting and diversity in US food and drug administration (FDA) registration trials for prostate cancer; 2006-2020. *Prostate Cancer Prostatic Dis.* 2021;24(4):1208-1211. doi:10.1038/s41391-021-00361-0
- 76. Riaz IB, Islam M, Ikram W, et al. Disparities in the Inclusion of Racial and Ethnic Minority Groups and Older Adults in Prostate Cancer Clinical Trials: A Meta-analysis. JAMA Oncol. 2023;9(2):180-187. doi:10.1001/jamaoncol.2022.5511
- 77. Patki S, Aquilina J, Thorne R, et al. A Systematic Review of Patient Race, Ethnicity, Socioeconomic Status, and Educational Attainment in Prostate Cancer Treatment Randomised Trials-Is the Evidence Base Applicable to the General Patient Population? *Eur Urol Open Sci.* 2023;54:56-64. doi:10.1016/j.euros.2023.05.015
- 78. Elshami M, Hue JJ, Hoehn RS, et al. A nationwide analysis of clinical trial participation for common hepato-pancreato-biliary malignancies demonstrates survival advantages for subsets of trial patients but disparities in and infrequency of enrollment. *HPB*. 2022;24(8):1280-1290. doi:10.1016/j.hpb.2021.12.022
- 79. Jan J, Osho A, Murphy CC, Mazure CM, Singal AG, Rich NE. Gender, Age, Racial and Ethnic Disparities in Clinical Trial Enrollment for Primary Liver Cancer. *Gastroenterology*. 2022;163(1):14-20.e2. doi:10.1053/j.gastro.2022.03.015
- Khadraoui W, Meade CE, Backes FJ, Felix AS. Racial and Ethnic Disparities in Clinical Trial Enrollment Among Women With Gynecologic Cancer. JAMA Netw Open. 2023;6(12):e2346494. doi:10.1001/jamanetworkopen.2023.46494
- 81. Al Hadidi S, Schinke C, Thanendrarajan S, Zangari M, van Rhee F. Enrollment of Black Participants in Pivotal Clinical Trials Supporting US Food and Drug Administration Approval of Chimeric Antigen Receptor-T Cell Therapy for Hematological Malignant

 Neoplasms.
 JAMA
 Netw
 Open.
 2022;5(4):e228161.

 doi:10.1001/jamanetworkopen.2022.8161

- 82. Hantel A, Brunner AM, Plascak JJ, et al. Race/ethnic associations with comprehensive cancer center access and clinical trial enrollment for acute leukemia. *J Natl Cancer Inst.* Published online 2024. doi:10.1093/jnci/djae067
- Hantel A, Kohlschmidt J, Eisfeld AK, et al. Inequities in Alliance Acute Leukemia Clinical Trial and Biobank Participation: Defining Targets for Intervention. *J Clin Oncol*. 2022;40(32):3709-3718. doi:10.1200/JCO.22.00307
- Casey M, Odhiambo L, Aggarwal N, Shoukier M, Islam KM, Cortes J. Representation of the population in need for pivotal clinical trials in lymphomas. *Blood*. 2023;142(9):846-855. doi:10.1182/blood.2023020052
- 85. Kanapuru B, Fernandes LL, Baines A, et al. Eligibility criteria and enrollment of a diverse racial and ethnic population in multiple myeloma clinical trials. *Blood*. 2023;142(3):235-243. doi:10.1182/blood.2022018657
- 86. Reihl SJ, Patil N, Morshed RA, et al. A population study of clinical trial accrual for women and minorities in neuro-oncology following the NIH Revitalization Act. *Neuro Oncol.* 2022;24(8):1341-1349. doi:10.1093/neuonc/noac011
- Shinder BM, Kim S, Srivastava A, et al. Factors associated with clinical trial participation for patients with renal cell carcinoma. *Urol Oncol.* 2023;41(4):208.e1-208.e8. doi:10.1016/j.urolonc.2023.01.022
- 88. Sawaf T, Gudipudi R, Ofshteyn A, et al. Disparities in Clinical Trial Enrollment and Reporting in Rectal Cancer: A Systematic Review and Demographic Comparison to the National Cancer Database. *Am Surg.* 2024;90(1):130-139. doi:10.1177/00031348231191175
- Hue JJ, Katayama ES, Markt SC, et al. A nationwide analysis of pancreatic cancer trial enrollment reveals disparities and participation problems. *Surgery*. 2022;172(1):257-264. doi:10.1016/j.surg.2021.10.023

- 90. Eskander MF, Gil L, Beal EW, et al. Access Denied: Inequities in Clinical Trial Enrollment for Pancreatic Cancer. Ann Surg Oncol. 2022;29(2):1271-1277. doi:10.1245/s10434-021-10868-4
- 91. Steventon L, Nicum S, Man K, Chaichana U, Wei L, Chambers P. A systematic review of ethnic minority participation in randomised controlled trials of systemic therapies for gynecological cancers. *Gynecol Oncol.* 2024;184:178-189. doi:10.1016/j.ygyno.2024.01.052
- 92. Gordis TM, Cagle JL, Nguyen SA, Newman JG. Human Papillomavirus-Associated Oropharyngeal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis of Clinical Trial Demographics. *Cancers*. 2022;14(16):4061. doi:10.3390/cancers14164061
- 93. Freudenburg E, Bagheri I, Srinivas S, et al. Race reporting and disparities regarding clinical trials in bladder cancer: a systematic review. *Cancer Causes Control*. 2022;33(8):1071-1081. doi:10.1007/s10552-022-01593-8
- 94. Palmer NR, Borno HT, Gregorich SE, Livaudais-Toman J, Kaplan CP. Prostate cancer patients' self-reported participation in research: an examination of racial/ethnic disparities. *Cancer Causes Control.* 2021;32(10):1161-1172. doi:10.1007/s10552-021-01463-9
- 95. Patel MA, Shah JL, Brinley FJ 4th, Abrahamse PH, Veenstra CM, Schott AF. Investigating potential disparities in clinical trial eligibility and enrollment at an NCIdesignated comprehensive cancer center. *Cancer Med.* 2023;12(11):12802-12812. doi:10.1002/cam4.5933
- 96. Bruno DS, Li X, Hess LM. Biomarker Testing, Targeted Therapy and Clinical Trial Participation by Race Among Patients With Lung Cancer: A Real-World Medicaid Database Study. JTO Clin Res Rep. 2024;5(3):100643. doi:10.1016/j.jtocrr.2024.100643
- 97. Dudipala H, Burns L, Jani CT, et al. Disparities in Lung Cancer Clinical Trial Discussion and Enrollment at a Safety Net Hospital. *Community Health Equity Res Policy*. Published online 2023:2752535X231221394. doi:10.1177/2752535X231221394

- Osann K, Wenzel L, Dogan A, et al. Recruitment and retention results for a populationbased cervical cancer biobehavioral clinical trial. *Gynecol Oncol*. Published online 2011. doi:10.1016/j.ygyno.2011.02.007
- 99. HY H, MO E, DJ W, MK J. ResearchTracking: Monitoring gender and ethnic minority recruitment and retention in cancer symptom studies. *Cancer Nurs.* 2013;36(3 PG-E1-6):E1-6. doi:10.1097/NCC.0b013e31826909a8
- 100. Zuniga K, Borno H, Chan J, et al. The Problem of Underrepresentation: Black Participants in Lifestyle Trials Among Patients with Prostate Cancer. J Racial Ethn Health Disparities. 2020;7(5 PG-996-1002):996-1002. doi:10.1007/s40615-020-00724-8
- Pirl WF, Saez-Flores E, Schlumbrecht M, Nipp R, Traeger LN, Kobetz E. Race and Ethnicity in the Evidence for Integrating Palliative Care Into Oncology. *J Oncol Pract*. 2018;14(6):e346-e356. doi:10.1200/JOP.17.00016
- 102. Hanvey GA, Padron A, Kacel EL, et al. Accrual and retention of diverse patients in psychosocial cancer clinical trials. *J Clin Transl Sci*. Published online 2022.
- 103. Yonemori K, Hirakawa A, Komiyama N, et al. Participation of elderly patients in registration trials for oncology drug applications in Japan. *Ann Oncol.* 2010;21(10 PG-2112-2118):2112-2118. doi:10.1093/annonc/mdq070
- 104. Hori A, Shibata T, Kami M, et al. Age disparity between a cancer population and participants in clinical trials submitted as a new drug application of anticancer drugs in Japan. *Cancer*. 2007;109(12 PG-2541-6):2541-2546. doi:10.1002/cncr.22721
- 105. Talarico L, Chen G, Pazdur R. Enrollment of Elderly Patients in Clinical Trials for Cancer Drug Registration: A 7-Year Experience by the US Food and Drug Administration. J Clin Oncol. 2004;22(22):4626-4631. doi:10.1200/JCO.2004.02.175
- 106. Fayanju OM, Ren Y, Thomas SM, et al. A Case-Control Study Examining Disparities in Clinical Trial Participation Among Breast Surgical Oncology Patients. JNCI CANCER Spectr. 2020;4(2). doi:10.1093/jncics/pkz103

- 107. Jayakrishnan T, Aulakh S, Baksh M, et al. Landmark Cancer Clinical Trials and Real-World Patient Populations: Examining Race and Age Reporting. *Cancers Basel*. 2021;13(22). doi:10.3390/cancers13225770
- 108. Patel MA, Shah JL, Abrahamse PH, et al. A population-based study of invitation to and participation in clinical trials among women with early-stage breast cancer. *BREAST CANCER Res Treat*. 2020;184(2):507-518. doi:10.1007/s10549-020-05844-7
- 109. VanderWalde NA, Dockter T, Wakefield DV, et al. Disparities in older adult accrual to cancer trials: Analysis from the alliance for clinical trials in oncology (A151736). J Geriatr Oncol. 2022;13(1):20-26. doi:10.1016/j.jgo.2021.07.008
- 110. Zhao S, Miao M, Wang Q, Zhao H, Yang H, Wang X. The current status of clinical trials on cancer and age disparities among the most common cancer trial participants. *BMC Cancer*. 2024;24(1):30. doi:10.1186/s12885-023-11690-9
- 111. Shah R, Patel N, Patel Y, Toscani M, Barone J, Weber PF. Age Demographics of Subjects Enrolled in Global, Interventional Phase 3 Melanoma Clinical Trials. *Ther Innov Regul Sci.* 2022;56(2):184-190. doi:10.1007/s43441-021-00362-0
- 112. Borad A, Saeed H, Toscani M, Barone J, Weber P. Age demographics of subjects enrolled in interventional phase 3 multiple myeloma clinical trials. *J Oncol Pharm Pract*. 2020;26(6):1475-1481. doi:10.1177/1078155220934162
- 113. Baldini C, Charton E, Schultz E, et al. Access to early-phase clinical trials in older patients with cancer in France: the EGALICAN-2 study. *ESMO Open*. 2022;7(3):100468. doi:10.1016/j.esmoop.2022.100468
- 114. Sedrak MS, Jingran Ji, Tiwari A, Mohile SG, Dale W, Le-Rademacher JG. Clinical Trial Enrollment, Ineligibility, and Reasons for Decline in Older vs Younger Patients With Cancer in the National Cancer Institute Community Oncology Research Program. JAMA Netw Open. 2022;5(10):1-5. doi:10.1001/jamanetworkopen.2022.35714
- 115. Javid SH, Unger JM, Gralow JR, et al. A Prospective Analysis of the Influence of Older Age on Physician and Patient Decision-Making When Considering Enrollment in Breast Cancer Clinical Trials (SWOG S0316). *Oncologist*. 2012;17(9):1180-1190. doi:10.1634/theoncologist.2011-0384

- 116. Hennessy MA, Hamid M, Keegan NM, et al. Metastatic gastroesophageal cancer in older patients is this patient cohort represented in clinical trials? *BMC Cancer*. 2022;22(1):1-9. doi:10.1186/s12885-021-09103-w
- Canouï-Poitrine F, Lièvre A, Dayde F, et al. Inclusion of Older Patients with Cancer in Clinical Trials: The SAGE Prospective Multicenter Cohort Survey. *Oncologist*. 2019;24(12):e1351-e1359. doi:10.1634/theoncologist.2019-0166
- 118. Kaanders JHAM, van den Bosch S, Kleijnen J. Comparison of Patients With Head and Neck Cancer in Randomized Clinical Trials and Clinical Practice: A Systematic Review. JAMA Otolaryngol-Head Neck Surg. 2022;148(7):670-676. doi:10.1001/jamaoto.2022.0890
- 119. Costa LJ, Hari PN, Kumar SK. Differences between unselected patients and participants in multiple myeloma clinical trials in US: a threat to external validity. *Leuk Lymphoma*. 2016;57(12 PG-2827-2832):2827-2832. doi:10.3109/10428194.2016.1170828
- 120. Unger JM, Gralow JR, Albain KS, Ramsey SD, Hershman DL. Patient Income Level and Cancer Clinical Trial Participation: A Prospective Survey Study. JAMA Oncol. 2016;2(1 PG-137-9):137-139. doi:10.1001/jamaoncol.2015.3924
- 121. Mohd Noor A, Sarker D, Vizor S, et al. Effect of patient socioeconomic status on access to early-phase cancer trials. J Clin Oncol. 2013;31(2 PG-224-30):224-230. doi:10.1200/JCO.2012.45.0999
- Pang HH, Wang X, Stinchcombe TE, et al. Enrollment Trends and Disparity Among Patients With Lung Cancer in National Clinical Trials, 1990 to 2012. *J Clin Oncol.* 2016;34(33):3992-3999. doi:10.1200/JCO.2016.67.7088
- 123. Gross CP, Filardo G, Mayne ST, Krumholz HM. The impact of socioeconomic status and race on trial participation for older women with breast cancer. *Cancer*. 2005;103(3):483-491. doi:10.1002/cncr.20792
- 124. Borno HT, Zhang L, Siegel A, Chang E, Ryan CJ. At What Cost to Clinical Trial Enrollment? A Retrospective Study of Patient Travel Burden in Cancer Clinical Trials. ONCOLOGIST. 2018;23(10):1242-1249. doi:10.1634/theoncologist.2017-0628

- 125. Ko NY, Fu JL, Lane SC, et al. Cancer clinical trial enrollment of diverse and underserved patients within an urban safety net hospital. *J Community Support Oncol.* 2015;13(12 PG-429-35):429-435. doi:10.12788/jcso.0181
- 126. Earl ER, Colman H, Mendez J, Jensen RL, Karsy M. An evaluation of biobanking and therapeutic clinical trial representation among adult glioma patients from rural and urban Utah. *Neurooncol Pr.* 2023;10(5):472-481. doi:10.1093/nop/npad026
- Du W, Gadgeel SM, Simon MS. Predictors of enrollment in lung cancer clinical trials. CANCER. 2006;106(2):420-425. doi:10.1002/cncr.21638
- 128. Hosoya K, Fujimoto D, Kawachi H, et al. Ineligibility for the PACIFIC trial in unresectable stage III non-small cell lung cancer patients. *Cancer Chemother Pharmacol*. 2019;84(2 PG-275-280):275-280. doi:10.1007/s00280-019-03885-4
- 129. National Cancer Institute (NCI). Cancer Staging. NCI. October 14, 2022. Accessed September 13, 2024. https://www.cancer.gov/about-cancer/diagnosis-staging/staging
- Zafar SF, Heilbrun LK, Vishnu P, et al. Participation and survival of geriatric patients in Phase I clinical trials: the Karmanos Cancer Institute (KCI) experience. J Geriatr Oncol. 2011;2(1 PG-18-24):18-24. doi:10.1016/j.jgo.2010.09.004
- 131. Abi Jaoude J, Kouzy R, Mainwaring W, et al. Performance Status Restriction in Phase III Cancer Clinical Trials. *J Natl Compr Canc Netw.* 2020;18(10):1322-1326. doi:10.6004/jnccn.2020.7578
- 132. Yekedüz E, Trapani D, Xu W, et al. Assessing population diversity in phase III trials of cancer drugs supporting Food and Drug Administration approval in solid tumors. *Int J Cancer*. 2021;149(7):1455-1462. doi:10.1002/ijc.33708
- 133. Bruno DS, Hess LM, Li X, Su EW, Patel M. Disparities in Biomarker Testing and Clinical Trial Enrollment Among Patients With Lung, Breast, or Colorectal Cancers in the United States. JCO Precis Oncol. 2022;6:e2100427. doi:10.1200/PO.21.00427
- 134. Penberthy L, Brown R, Wilson-Genderson M, Dahman B, Ginder G, Siminoff LA. Barriers to therapeutic clinical trials enrollment: Differences between African-American and white cancer patients identified at the time of eligibility assessment. *Clin TRIALS*. 2012;9(6):788-797. doi:10.1177/1740774512458992

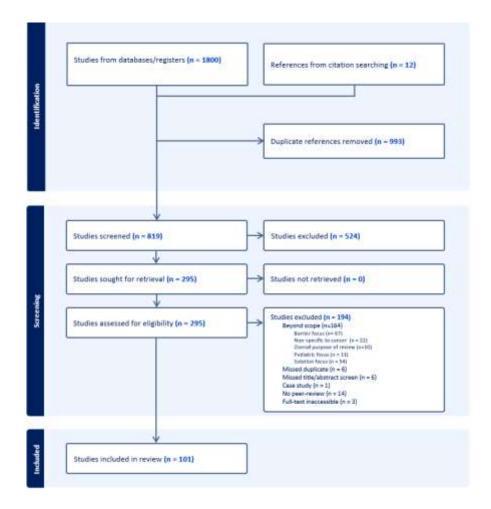


Figure 1. PRISMA Flow Diagram of Selected Articles

 Table 1. Basic Study Characteristics***

Authors	Year	Cancer Site	Stage	Sample Size	Aim of study	Trial type addressed	Primary Target(s) o Disparity	fStudy Quality
Abbas et al.	2022	Gastrointestinal, hepato-pancreato- biliary	Any	10,518CCTparticipants(36CCTs)2,255,730eligiblenon-participants		Surgical	Age Race/Ethnicity SES	5
Abi Jaoude et al.	2020	Any	Any		Evaluate 1) characteristics of phase III CCTs that use performance status exclusionary criteria, 2) use of such exclusionary criteria over time, and 3) trial representativeness by performance status.	Phase III, multi-arm, explicit supportive care	Ability & Comorbidity	5
Acoba, Sumida & Berenberg	2022	Any	Any		Examine CCT enrollment at a center prioritizing Asian and Native Hawaiian enrollment	Therapeutic, non- therapeutic	Race	5
Al Hadidi et al.	2022	Hematologic	Any	1057 tota participants (7 CCTs)	Evaluate representativeness of Black individuals with hematologic malignancies in CCTs for CAR-T therapies	CAR-T	Race	5
Aldrighetti et al.	2021	Breast Prostate Lung Colorectal	Any	5867 participants (93 studies)	Assess representativeness of breast, prostate, lung, and colorectal CCTs studying precision medicine		Race/ethnicity	4
Ajewole et al.	2021	Lung, breast, prostate	Any	142CCTstota74CCTs(totareportingrace35,933participants)	Black Americans in oral chemotherapy	Chemotherapeutic, oral	Race/ethnicity	5
Awad et al.	2020	Gynecologic (cervical, endometrial, multiple, ovarian)	Any	 357 publications 9,492 patients 84 publications reporting race 2,483 patients 	Describe longitudinal representation of minority women in phase I, GYN oncology trials	Therapeutic, unspecified	Race	5

Baldini et al.	2022	Gastrointestinal, hematologic, thoracic	Any		Evaluate representativeness of older adults (70+) in referrals to early-phase CCTs	Systemic, early-phase	Age	4
Baquet, Ellison, & Mishra	2009	Breast, colorectal, lung, lymphoma, leukemia, reproductive (sex- specific)	Any	2,240 CCT accruals	.	Therapeutic, unspecified	Age Race Sex SES	5
Behrendt, Hurria, Tumyan, Niland, & Mortimer	2014	Breast	I-IV	1482 total patients 446 accruals	Examine degree to which SES and clinical factors confound disparities in CCT accrual	Adjuvant, neoadjuvant, non-adjuvant therapies	SES Race/ethnicity	5
Bero et al.	2021	Any (including sex- specific)	Any	122 CCTs total	Evaluate racial representativeness of radiation therapy CCTs	Radiation	Race/ethnicity Sex	4
Borad et al.	2020	Multiple myeloma	Any		Evaluate age representativeness of phase III, therapeutic multiple myeloma trials	Therapeutic, phase III	Age	4
Borno et al.	2019	Breast, colorectal, prostate	Any	20,305 incident CCC cases 341,114 incident		Therapeutic, unspecified	Age Race/ethnicity SES	5
Brierley et al.	2020	Myelodysplastic syndromes	Any		Evaluate baseline characteristics of patients with myelodysplastic syndromes accrued to CCTs	1 ·	Age SES Sex Ability	5
Bruno et al.	2022	NSCLC, colorectal, breast	Advanced/metastatic	Total patients: NSCLC: 14,768 Colorectal: 7,879 Breast: 5,276	Evaluate racial representativeness of lung, breast, and colorectal CCTs and biomarker testing in US	Any, unspecified	Race/Ethnicity	3
Bruno, Li, & Hess	2024	Lung	Advanced/ metastatic	3,845 total patients	Evaluate racial representativeness of CCTs and biomarker testing among individuals with metastatic lung cancer	Any, unspecified	Race SES	4

					and Medicaid coverage			
Canoui-Poitrine et al.	2019	Colorectal	Any	577	Evaluate CCT availability, eligibility, invitation, enrollment, and associated reasons among older adults with colorectal cancer	diagnostic, or monitoring	Ability & Comorbidity	5
Casey et al.	2023	Lymphoma	Any/all	33 RCTs	Assess demographic and geographic representation of US lymphoma RCTs	Drug, therapeutic	Race/ethnicity Sex SES	5
Choradia et al.	2024	Any/all	Any/all	38,527 total patients	Evaluate inequities in demographic representativeness of NCI NIH Clinical Center CCTs	Therapeutic, unspecified	Race/ethnicity Age Sex	5
Costa, Hari, & Kumar	2016	Multiple myeloma	I-III	128 CCTs 8,869 accruals	Examine representativeness of multiple myeloma CCTs in US	Therapeutic, any	Age Race/ethnicity Sex Ability	5
Craig, Gilbery, Herndon, Vogel, & Quinn	2010	Prostate	Any	211 accruals 37,216 patients	Assess proportion of older adults with prostate cancer enrolled in Medicare who participated in CCTs Compare characteristics of non-CCT and CCT participants within older adult Medicare prostate cancer population	Any, unspecified	Age Race/ethnicity Sex SES Ability	5
Diehl et al.	2011	Breast, thoracic, sarcoma	I-IV	10 trials	Examine sociodemographic accrual patterns across 10 surgical CCTs Compare characteristics of surgical CCTs successful and unsuccessful at recruiting minority patients	Surgical	Race/ethnicity	4
Dressler et al.	2015	Breast, Hodgkin's lymphoma, gastric, colorectal, pancreatic, prostate	Any	7 CCTs 8,456 accruals	Examine patient- and institution-level factors contributing to participation in pharmacogenomic CCTs	Therapeutic, pharmacogenomic	Race/ethnicity	5
Du, Gadgeel, & Simon	2006	Lung	II-IV	91 accruals 427 total patients	Assess factors associated with CCT enrollment among lung cancer patients	I nerapeutic,	Age Race/ethnicity Sex SES Ability	5

Dudipala et al.	2023	Any/all	Any	1121 total patients	Examine sociodemographic predictors of clinical trial discussion and enrollment among individuals with lung cancer at Boston Medical Center	Therapeutic, primary	Age Race/ethnicity	5
Duma et al.	2018	Breast, colorectal, lung, pancreas, prostate, renal, melanoma		1,012 CCTs tota 210 (CCTs tota reporting race/ethnicity)	Evaluate sex-related, racial, and ethnic		Race/ethnicity Sex	5
Earl et al.	2023	Glioma	Any	570 CCT enrollees	Evaluate impact of social determinants of health on CCT participation and their impact on geographical disparities	Therapeutic, biobanking	SES Geography	4
Elshami et al.	2022	Hepato-pancreato- biliary	I-IV	511,639 tota patients	Evaluate sociodemographic and clinical predictors of CCT enrollment	Any	Race/ethnicity Age SES Ability & Comorbidity	5
Eskander et al.	2022	Pancreatic	I-IV	1,127 enrollees 301,240 non- enrollees	Evaluate impact of social determinants of health on CCT enrollment	Any	Age Race/Ethnicity SES (and rurality) Ability & Comorbidity	5
Fakhry et al.	2023	Any	Any	38 studies to review reporting 15 studies eligible for pt analysis (1,284 pts)	representativeness and associated	Proton therapy	Race/ethnicity	5
Fayanju et al.	2019	Breast	Any		Compare cohort of current breast surgical oncology patients enrolled in CCTs and NCDB eligible patient non- accruals	Surgical	Race/ethnicity SES	5
Freudenburg al.	et ₂₀₂₂	Bladder	Any	544 studies total 24 studies reporting race	Evaluate racial and ethnic representativeness of and associated reporting in bladder CCTs	Therapeutic, phase I- III	Race/ethnicity	5

r		1		1			1	
Gopishetty, Kota, & Guddati	2020	Breast, colon, lung, DLBCL, AML, ALL	Any		Investigate age, race, and ethnicity distribution in phase III drug trials for most common solid organ tumors and hematological cancers	Draw theremoutie	Age Race/ethnicity	5
Gordis et al.	2022	HPV-associated OPSCC	Any		Evaluate representativeness of HPV- associated OPSCC trials relative to U.S. national database	Any, unspecified	Age Race Sex Ability & Comorbidity	4
Grant et al.	2020	Breast, colorectal, lung, prostate	Any	race/ethnicity)	Examine recent phase III US CCT enrollment inequities across race and	Targeted systemic therapy, cytotoxic chemotherapy, radiation or surgery	Race/ethnicity	5
Green et al.	2022	Any/all	Any/all		Evaluate representativeness older adults with cancer and Medicare FFS coverage in CCTs	Therapeutic, unspecified	Age SES Race/ethnicity Ability & comorbidity	5
Grette et al.	2021	Breast, gynecologic	Any	8820 CCT participants (53 trials)	Evaluate racial representation in breast and gynecologic immunotherapy CCTs	Immunotherapy	Race	5
Gross, Filardo, Mayne, & Krumholz	2005	Breast	Any	737 accruals	Examine impact of SES on CCT enrollment among older breast cancer patients		SES	4
Guerrero et al.	2018	Melanoma, breast, lung	Any	208 trials total (reporting race/ethnicity)	Evaluate racial and ethnic representativeness and associated reporting practices of various types of cancer research		Race/ethnicity	4
Hantel et al.	2022	Acute leukemia	Any	3,734 CCT enrollees	Evaluate racial representativeness of CCTs, including companion biobank participation, conducted in Cancer and Leukemia Group B (CALGB/Alliance Cooperative Group		Race/ethnicity SES	4
Hantel et al.	2024	Acute leukemia	Any/all	3,698 total patients	Evaluate racial and ethnic inequities in access to and enrollment in CCTs conducted at a comprehensive cancer center	Therapeutic,	Race/ethnicity SES	5

Hanvey et al.	2022	Gynecologic, gastrointestinal, thoracic	Any		Evaluate demographic and socioeconomic inequities in psychosocial CCT interest, eligibility, decline, enrollment, and retention	Psychosocial/ behavioral	Age Race/ethnicity SES	5
Hennessy et al.	2022	Gastro-esophageal	Metastatic	66 trials	Evaluate age-related representativeness and associated exclusion criteria in metastatic gastroesophageal CCTs from 1995 to 2020	Therapeutic, systemic, phase III	Age	5
Hori et al.	2007	Leukemia, lymphoma, esophageal, stomach, intestinal, liver, pancreatic, lung, breast, prostate, head and neck, uterus	Any	68 trials	Evaluate inequities in age between Japanese cancer population and patients enrolled in NDA clinical trials	Drug, therapeutic	Age	5
Housri et al.	2015	Breast	In situ - II	264 total patients	Identify patient and tumor traits predicting HBRT enrollment among breast cancer patients	Radiotherapy	Race/ethnicity Sex Ability	5
Huang, Ezenwa, Wilkie, & Judge	2013	Any	Any		Assess sex and racial/ethnic differences in referral, eligibility, enrollment and retention in 2 CCTs focused on pain and/or fatigue		Race/ethnicity Sex	4
Hue et al.	2022	Pancreatic	Any	261,483 total	Evaluate demographic and clinical representativeness of pancreatic CCTs and associated survival		Race/ethnicity Age SES Sex Ability & Comorbidity	5
Jan et al.	2022	Primary liver	Any	participants (05	To describe racial, ethnic, sex, and age representativeness of primary liver CCTs across the globe	Therapeutic, unspecified	Race/ethnicity Age Sex	5
Javid et al.	2012	Breast	I-IV	1,079 patients	Evaluate 1) age-related differences in CCT availability, eligibility, and enrollment and 2) patient- and physician- perceived barriers and facilitators in breast CCTs	Therapeutic, systemic	Age Ability & Comorbidity	5

Javier-DesLoges et al.	2022	Breast, colorectal, lung, prostate	Any	242,720 CCT participants	Examine racial, ethnic, sex, and age representativeness of NCI CCTs and Any associated change across time	Race/ethnicity Sex Age	5
Jayakrishnan et al.	2021	Any	Any	261 (total CCTs) 223 (CCTs reporting race)	Evaluate age and racial/ethnic representativeness and reporting patternsDrug, therapeutic of FDA CCTs	Race/ethnicity Age	4
Kaanders et al.	2022	Head/neck	Any	87 RCTs	Evaluate representativeness of head andSystemic, neck cancer RCTs relative to theradiotherapy, surgic clinically treated population hypothermic	al, Age Ability & Comorbidity	5
Kanapuru et al.	2023	Multiple myeloma	Any		Evaluate racial and ethnic disparities in eligibility and enrollment for multipleDrug, therapeutic myeloma drug CCTs	Race/ethnicity	4
Kanarek et al.	2010	Brain, breast, gastrointestinal, hematopoietic, prostate, upper aerodigestive, viral/other	Any	5,068 accruals 17,637 total patients	Examined race/ethnicity and geographic location of residence on CCT enrollment therapeutic at JH-SKCCC	n-Race/ethnicity Geography	5
Keegan	2023	breast	Any	98 CCTs	Evaluate longitudinal change in racial reporting and representation in breastAny, unspecified CCTs	Race/ethnicity (reporting)	5
Khadraoui et al.	2023	Endometrial, ovarian, cervical	Any	562,592 (total patients)	representativeness of gynecologic CCTs accounting for other demographic and Any, unspecified	Race/ethnicity Age SES Ability & Comorbidity	4
Kilic et al.	2023	Lung	Any	311 (total CCTs) 9,869 participants for analysis (136 CCTs reporting race/ethnicity)	representativeness of lung CCTs inclusion	citRace/ethnicity reSex Age	5
Ko et al.	2015	CNS, breast, GI, genitourinary, head and neck, lung, other	Any	99 trials 847 total screens	Identify characteristics of baseline Therapeutic, no eligibility, enrollment rates, reasons for therapeutic (expli- ineligibility, and reasons for non-inclusion of support enrollment across CCTs care)	citRace/ethnicity	4
Kwak et al.	2023	Lung	Any	1924 CCT enrollees 1.6 million total patients	Evaluate racial, ethnic, and	Race/ethnicity SES	3
Ladbury et al.	2022	Breast, cervical, prostate, uterine	Any	77 trials (13,580 participants)	Evaluate age, racial, and ethnicTherapeutic, representation in CCTs involvingbrachytherapy	Age Race/ethnicity	5

					brachytherapy			
Langford et al.	2014	Any (primary: breast, colorectal, genitourinary)	Any	4509 patient logs	CCT enrollment, refusal, eligibility, and	supportive care (i.e., symptom	Race/ethnicity Age Sex Ability & Comorbidity	5
Lythgoe, Savage, & Prasad	2021	Prostate	Any	18,455 CCT participants (17 CCTs, 9 reporting race)	Evaluate racial representativeness and associated reporting in FDA drug approvals for prostate CCTs		Race/ethnicity	5
Mishkin, Minasian, Kohn Noone, & Temkin	2016	Gynecologic (cervical, ovarian, uterine)	Any	156 trials 18,913 accruals	Examine sociodemographic differences between NCI gynecologic CCT enrollees and incident gynecologic cancer population in US	Therepoutie	Age Race/ethnicity SES	4
Moloney & Shiely	2022	Breast	Any	40 CCTs	Assess demographic and socioeconomic inequities in breast CCT participation due to direct and indirect impact of eligibility criteria	Drug, therapeutic, phase III	Race/ethnicity Age SGM SES Geography Ability & Comorbidity	3
Murthy, Krumholz, & Gross	2004	Breast, lung, colorectal, prostate	Any		Compare CCT enrollees with population-based incidence data on age, sex, race, and ethnicity Determine whether size of sociodemographic inequities varied by age group or cancer type Determine whether racial/ethnic minority representation in CCTs has changed over time (1996-1998 compared to 2000-2002)	Therapeutic, non- surgical	Age Race/ethnicity Sex	5
Newman et al.	2004	Breast, thoracic, gastrointestinal	All		Evaluate sociodemographic accrual trends in ACOSOG CCTs	Surgical	Age Race/ethnicity	4
Noor et al.	2013	Any	Any		enrollment	Any, unspecified, phase I	SES	5

Osann et al.	2011	Cervical	I-III	letters 50 accruals	Use population-based data to identify disparities in accrual and retention of minority and/or low-income patients in a biobehavioral CCT	Psychosocial/	Ethnicity SES Sex	3
Owens-Walton et al.	2022	Prostate, kidney, bladder/urothelial	Any	341 CCTs 49,202 CCT enrollees (of 169 CCTs reporting race)	Evaluate minority representativeness of urologic CCTs	Therapeutic, phase II and III	Race/ethnicity	4
Palmer et al.	2021	Prostate	I-1I	855 total patients	Evaluate demographic and socioeconomic representativeness of various types of prostate CCTs based on self-report	Any, explici	Race/ethnicity tAge SES Ability & comorbidity	3
Pang et al.	2016	Lung (NSCLC, SCLC)	Any	131 trials 23,006 accruals 578,476 population controls		Therapeutic, unspecified	Age Race/ethnicity Sex	5
Patel et al.	2020	Breast	0-II	2,472 invited patients	Investigate predictors of invitation to and participation in CCTs	Surgical, hormonal systemic chemotherapy, radiation	Age 'Race/ethnicity Sex SES Ability	4
Patel et al.	2023	Gastrointestinal, head/neck	Any	1,446 total	Evaluate sociodemographic disparities in CCT eligibility and enrollment	Any	Race/ethnicity Sex Age SES Ability & Comorbidity	5
Patki et al.	2023	Prostate	Any/all	54 full-text studies reporting on EDI	Evaluate racial, ethnic, educational, and socioeconomic representativeness of treatment prostrate CCTs and associated reporting in manuscripts	Therapeutic,	Race/ethnicity SES	5
Perni, Moy, o Nipp	^{&} 2021	Any	Any	2657 CCTs	Evaluate sociodemographic and clinical representativeness of phase I CCTs, relative to that of phase II and III CCTs		Race/ethnicity Sex Age SES	4

Pirl et al.	2018	Any	Any	10 patient CCTs reporting	Evaluate racial and ethnic representativeness of and associatedSi reporting practices for integratedca palliative care CCTs	upportive (palliative) are oncology	Race/ethnicity	5
Pittel et al.	2023	Lung, colorectal breast, pancreatic multiple myeloma	Advanced/metastatic	50,411 patients total (800 care sites)	Evaluate recent racial and ethnic representativeness of US CCTs in context of pre- and per-COVID-19 pandemic conditions	brug, therapeutic	Race/ethnicity Age Sex Ability & Comorbidity	4
Ramamoorthy e al.	2018	Breast, colorectal lung, prostate	Any		Evaluate age, sex, racial, and ethnic representativeness of new oncologicD FDA-approved products		Race/ethnicity Age Sex	5
Reihl et al.	2022	Glioma	Any	participants (662	Evaluate racial, ethnic, and sex representativeness of CNS CCTs since NIH Revitalization Act	herapeutic, phase I- V	Race/ethnicity Sex Race and sex reporting	5
Riaz et al.	2023	Prostate	Any		Evaluate age, racial, and ethnic _A representativeness of prostate CCTs	ny, unspecified	Age Race/ethnicity Age, race, and ethnicity reporting	5
Saphner et al.	2021	Any	Any	39,968 total patients	Evaluate demographic and socioeconomic representativeness ofA CCTs	ny, unspecified	Race/ethnicity SES Age Sex	5
Sawaf et al.	2023	Rectal	Any	50 CCTs	Assess demographic and socioeconomic representativeness of US colorectalT CCTs	nerapeutic, varied	Age Race/ethnicity Sex SES	5

Scalici et al.	2015	Cervical, endometrial, ovarian, sarcoma	Any	1 0	Determine minority participation proportions in GYN Oncology Group (GOG) CCTs		Race/ethnicity	4
Sedrak et al.	2022	Any		offored CCT	Evaluate age-related enrollment, ineligibility, and decline patterns in CCT relative to community cancer population	Any, explicit "non- therapeutic" inclusion	Age Ability & Comorbidity	5
Shah et al.	2022	Melanoma		20,912 CCT participants (35 CCTs)	Evaluate sociodemographic representativeness of melanoma CCTs conducted in Europe, New Zealand, and Australian, with a focus on age	Therepoutie phase III	Age	5
Shinder et al.	2023	Renal		681 CCT participants 3,405 matched controls	Evaluate predictors of renal CCT participation	Any, unspecified	Age Race/ethnicity SES Sex Ability & Comorbidity	5
Steventon et al.	2024	Gynecologic	Any	participants (26	Evaluate racial and ethnic representativeness of gynecologic CCTs on US and global scale		Race/ethnicity (and reporting) Continental origin	5
Stewart, Bertoni, Staten, Levine, & Gross		Breast, colon, lung, prostate	Any	13,991 accruals	Examine demographic characteristics of surgical CCT enrollment		Age Race/ethnicity Sex	4
Talarico, Chen, & Pazdur	2004	Breast, lung, colorectal, ovarian, pancreatic, CNS, leukemia, lymphoma	Any	55 registration trials (28,766 patients)	Evaluate age representativeness of CCTs registering new cancer drugs approved by the FDA from 1995 to 2002.		Age	4

Tharakan, Zhong, & Galsky	2021		Any		Evaluate relationships between racial representativeness of US and globalDrug, therapeutic CCTs	Race Race reporting	4
Unger et al.	2020	Bladder, breast, colorectal, gastroesophageal, gynecologic, head and neck, leukemia, liver, lung, lymphoma, melanoma, myeloma, pancreas, prostate, renal	Any	company trials (46,513 patients) 273 SWOG trials	Evaluate racial representativeness of pharmaceutical company-sponsored drug CCTs relative to those sponsored by the NCI National Clinical Trials Network (NCTN) and to the US oncologic population	Race	5
Unger, Gralow, Albain, Ramsey, & Hershman	2016	Breast, colorectal, lung	Any	1,581 patients 1,262 patients with income data	Examine effect of income and other sociodemographic covariates in predicting prospective enrollment in CCTs	SES	5
Unger et al.	2013	Breast, colorectal, lung, prostate	Any	respondents	Evaluate socioeconomic and other demographic predictors of CCT enrollment, attitudes, and reasons for decline	SES Age Race/ethnicity Ability & Comorbidity	5
VanderWalde et al.	2022	Any	Any	66,708 CCT enrollees (237 CCTs)	Evaluate underrepresentation of older adults in CCTs in context of trialTherapeutic, any characteristics	Age	5
Wagar et al.	2022	Ovarian, fallopian, peritoneal	Any/all	enrollees)	inhibitor CCTs for ovarian cancer	Race/ethnicity	4
Yekedūz et al.	2021	Solid tumors	Any/all	enrollees (142	Evaluate sociodemographic inequities in CCT participation for solid organ tumorDrug, therapeutic drug trials	Ability & comorbidity	5

Yonemori et al.	2010	CNS, oral/pharyngeal, lung, gastric, liver, gallbladder, colon, kidney, bladder, pancreas, skin, breast, uterine, ovarian, prostate, lymphoma, myeloma, leukemia		234 trials	Evaluate older adult CCT participation for new drug applications (NDA) or extension of indications (EI) for oncology drugs or supportive care	Drug, therapeutic explicit supportive care inclusion, phase I	Age Ability	5
Zafar et al.	2011	Any	Any	216 patients	Describe sociodemographic, disease, treatment characteristics of older patients presenting to Phase I Clinical Trial service	Drug, therapeutic	Age Ability	3
Zhao et al.	2024	Breast, prostate, colorectal, lung	Any	7747 total CCTs	Evaluate sociodemographic representativeness of common CCTs, with a focus on older adults		Age	5
Zullig et al.	2016	Lung, colorectal, breast, prostate	Any	13,795 accruals 588,317 incident cases	Evaluate sociodemographic characteristics of CCT enrollment in North Carolina	Therapeutic, unspecified	Race/ethnicity	4
Zuniga et al.	2020	Prostate	Localized, Advanced	26trials2316accruals608,006incident		Psychosocial/ behavioral	Race Sex	4
chimeric antiger	recept	or T-cell; CCC: con	nprehensive cancer	center; CCT: cancer	ACOSOG: Alliance for Clinical Trials i clinical trial; EDI: Equity, Diversity, a Johns Honkins Sidney Kimmel Compreh	and Inclusion; FDA: I	Food and Drug Administrat	tion; HBRT

chimeric antigen receptor T-cell; CCC: comprehensive cancer center; CCT: cancer clinical trial; EDI: Equity, Diversity, and Inclusion; FDA: Food and Drug Administration; HBRT: hypofractionated breast radiotherapy trials; HPV: Human Papillomavirus; JH-SKCCC: Johns Hopkins Sidney Kimmel Comprehensive Cancer Center; NCDB: National Cancer Database; NCI: National Cancer Institute; NIH: National Institutes of Health; NR: not reported; NSCLC: non-small cell lung carcinoma; OPSCC: oropharyngeal squamous cell carcinoma; SES: socioeconomic status; US: United States

Table 2. Methodology of Studies

Authors	Year	Study design	Recruitment	Databases	Measures	Analysis
Abbas et al.	2022	Case-control study	Archival database	ClinicalTrials.gov, NCI Cancer Therapy Evaluation Program (CTEP, 2000-2019) National Cancer Database (NCDB, 2004- 2017)	Patient: Dichotomized age (@65) Race/Ethnicity (NHW, NHB, AAPI, H) Insurance coverage Cancer site Residential ZIP code (median household income, HS educational attainment) Institutional: CCT slot Facility location Enrollment Fraction (EF)	Preliminary chi-square and t- tests Multivariate logistic regression
Abi Jaoude et al.	2020	Meta-analysis	Archival database	ClinicalTrials.gov	Presence of exclusionary criteria Performance status: ECOG score	Chi-square tests Binary logistic regression
Acoba, Sumida, & Berenberg	2022	Case-control study	Archival database	UHCC OnCore Hawaii Tumor Registry	Race (White, Chinese, Filipino, Japanese, Native Hawaiian) EF	Non-parametric descriptive inferential testing
Ajewole et al.	2021	Cohort study	Archival database	FDA Hematology/Oncology Approvals (2009-2019)	Race reporting Race (& ethnicity): White, Asian, Black, Hispanic	Descriptive statistics
Al Hadidi et al.	2022	Case-control study	Archival database	drugs@fda (CAR-T therapies 2017-2021)	Enrollment proportion Prevalence statistics (from DeSantis et al. (2019))	Participant-to-prevalence ratios
Aldrighetti et al.	2021	Meta-analysis	Archival database	ClinicalTrials.gov (through April 2021) Surveillance, Epidemiology, and End Results (SEER) U.S. Census	Race/ethnicity (NHW, B, AAPI, AI/AN, H) O:E ratios for enrollment relative to incident population	Meta-Analysis of O:E enrollment ratios

Awad et al.	2020	Meta-analysis	Literature search,	PubMed (1985-2018), US CDC (1999-2015) CDC age-adjusted incidence	Age Race Tumor type Publication year Age-adjusted incidence by type (US CDC) Expected enrollment ratio (White [W]:Black [B]) Expected:Observed ratios	T-tests Chi-square tests ANOVAs
Baldini et al.	2022	Case-control study	Archival database, internal clinical infrastructure	EGALICAN-2 survey (11 early-phase units) GLOBOCAN	Population-based incidence rates (2020)	Preliminary chi-square and Fisher's exact tests One sample z-test Logistic regression
Baquet, Ellison, & Mishra	2009	Case-control study	Archival database	Cancer Therapy Evaluation Program (NCI CTGC, 1999-2002) Maryland Cancer Registry (1999-2002)	Patient level : Cancer site 10-year age group, Race (W, B, Other) Sex Residential ZIP code Insurance status (private, Medicaid or Medicare, self-pay, military) County-level: Material deprivation (%poverty, households w/o car, 16+ unemployed, owner- unoccupied housing) Social class (% 25+ HS graduates, grad/professional degrees, white-collar occupations, median household income, population composition) Urban/rural (Beale classification system)	Preliminary chi-square tests Logistic regression
Behrendt, Hurria, Tumyan, Niland, & Mortimer	2014		Internal treatment center, archival database	City of Hope Comprehensive Care Center (2004-2009) US Census Bureau American Community Survey (2007-2011)	Primary: birthplace/race/ethnicity (African, Asian, Latin American, Eastern European, Middle Eastern, Other Caucasian) Accrual status Covariates Patient-level Primary language Tumor (stage, HR status, HER2/neu status, year of first visit, time since Dx) Oncologist-level PI status	Preliminary bivariate correlation Logistic regression

					Duration of practice Linguistic fluency ZIP code level Median household income (12 months) % w/o HS education among 25+ women	
Bero et al.	2021	Case-control study	Archival database	ClinicalTrials.gov (1996-2019) U.S. Census (2018)	EF	Chi-square analysis
Borad et al.	2020	Cohort study	Archival database	ClinicalTrials.gov (8/2000-2/2020)	Mean and median age Trial treatment type Trial country	Descriptive statistics
Borno et al.	2019	Case-control study	Internal treatment center, archival database	CTMS, UCSF, Helen Diller Family CCC California Cancer Registry, UCSF catchment area (2010-2014)	Dichotomized age (@65) Race/ethnicity (W, B, AAPI, Latino, Other)	Chi-square tests
Brierley et al.	2020	Case-control study	Archival database	US MDS CRC (1991-2017, data from 5/6 institutions) SEER-Medicare International Working Group for Prognosis in MDS	Age Sex Race/ethnicity Distance to treatment center Blood counts & creatinine MDS subtype ECOG PS Therapy-related disease Zip-code (income proxy: total income/# inhabitants)	Preliminary Kruskal-Wallis tests, Chi-square or Fisher's exact test Logistic regression
Bruno, Li, & Hess	2024	Cohort study	Archival database	Merative MarketScan Medicaid claims database (2017-2019)	Race (W, B, Other) Age Sex Staging CCT participation likelihood	Preliminary chi-square and t- tests Logistic regression
Bruno et al.	2022	Cohort study	Archival database	Flatiron Health Electronic Health Record (2011-2017)	Age Race (W, B, Asian, Other, Unknown) Ethnicity (NH, H) Stage Insurance Functional status (ECOG) Cancer covariates Institutional covariates	Preliminary chi-square analyses Stepwise linear regression

					CCT participation (use of clinical trial drug	
Canoui-Poitrine et al.	2019	Cohort study	Archival database	Sujets AGes dans les Essais Cliniques (SAGE; Older Subjects in Clinical Trials, 2012-2016)	during period of observation) Age: 65-69, 70-74, 75-79, 80+ Sex Disease site and stage Performance status Comorbidity MMSE, NCD history, ADL score, mini- GDS, polymedication, incontinence, mini- Nutritional Assessment Test Trial sponsor, phase, treatment CCT eligibility, invitation, reasons for ineligibility, non-invitation, non-inclusion	Chi-square, Fischer, and Kruskal-Wallis tests Multivariate logistic regression
Casey et al.	2023	Case-control study	Archival database	FDA "Oncology/Hematologic Malignancies approval notifications" (2011-2021) FDA "Novel Drug Approvals" (2011-2021) SEER Explorer (2014-2018) County Health Rankings and Roadmaps Small Area Health Insurance Estimates (2020)		Chi-square and Fisher's exact tests
Choradia et al.	2024	Case-control study	Archival database	Biomedical Translational Research System (BTRIS, 2005-2020) SEER (2018) Cancer in North America (CiNA) database (2018) North American Association of Central Cancer Registries (NAACCR)	Dichotomized age (@65) Race (W, B, AAPI, AI/AN, multiracial, unknown) Ethnicity (NH, H) Sex State Country Enrollment fraction	Preliminary chi-square tests Logistic regression
Costa, Hari, & Kumar	2016	Meta-analysis	Literature search, archival database	PubMed (2007-2014) SEER-18 ISS (1981-2002) Mayo (2001-2010)	Study-level : Study phase Tx status Study size Sponsor type Patient-level: Age Sex Stage Race/ethnicity (dichotomized NHW vs. racial and/or ethnic minority)	Preliminary chi-square and Fisher's exact tests, Mann- Whitney tests Byar approximations for ratios

Craig, Gilbery, Herndon, Vogel, & Quinn	2010	Case-control study	Archival database		SES: Median income using IQR of zip code to categorize neighborhoods into low, middle, high; ZIP codes US Dept. Agricultural rural-urban continuum Census region: Northeast, South, Midwest, West Tumor characteristic: grade, PSA status, stage Race/ethnicity: W, B, Hispanic, Other Education: < HS, HS, some college, college graduate	Preliminary Wilcoxon-Mann- Whitney U, chi-square tests Logistic regression
Diehl et al.	2011	Cross-sectional study	Archival database	ACOSOG trials (1999-2009)	Race/ethnicity via patient report at trial registration Predictors: randomization, staging (early vs. advanced), design (drug vs. surgical) Success level: successful, modestly successful, unsuccessful measured by proportion of AA and HA participants based on general and oncologic population characteristic ASOSOG recommendations for accrual targets: early-stage breast: AA 11+%. HA 5+% regionally advanced breast: AA 14+%, HA 5+% Non-metastatic lung: AA 10+%, HA 2+%	Proportions relative to general population and oncologic population
Dressler et al.	2015	Cohort study	Archival database	Cancer and Leukemia Group B (Alliance for Clinical Trials in Oncology, after 2003) Alliance Statistics and Data Center Clinical Trials Support Unit (CTSU)	Patient characteristics: Age Sex Race (dichotomized) Cancer type	Preliminary chi-square and Wilcoxon-rank-sum tests Logistic regression

Du, Gadgeel, & Simon	2006	Cohort study	Internal treatment center, archival database	Karmanos Cancer Institute (Jan 1, 1994-Dec 31, 1998) SEER (MDCSS)	Sex Age at Dx Race dichotomized Insurance coverage (commercial, Medicaid, Medicare-only, Medicare plus) SES rank Stage Histology SWOG PS Comorbidities	Preliminary chi-square and t- tests Logistic regression
Dudipala et al.	2023	Cohort study	Archival database	EMRs (1/2015-12/2020)	Age Race Ethnicity Sex City Primary language Median household income Insurance Education Stratified proportion CCT discussed Stratified proportion CCT enrolled	Preliminary chi-square and Fisher's exact tests Multivariate logistic regression
Duma et al.	2018	Meta-analysis	Archival database	ClinicalTrials.gov (2003-2016) SEER (2013)	Race/ethnicity Sex EF Race/ethnicity reporting Time period (1996-2002, 2003-2016)	Chi-square tests
Earl et al.	2023	Case-control study	Archival database	Huntsman Cancer Institute (HCI) Research Informatics Shared Resource (May 2012- May 2022) HCI Clinical Trial Office Utah Cancer Registry (Jan 2010-Dec 2019)	Rurality (county: frontier, rural, urban) Household per capita income (2019) County % HS education+ County glioma incidence estimates Enrollment fraction	One-way ANOVA (Tukey post- hoc) Chi-square analysis

Elshami et al.	2022	Cohort study	Archival database	NCDB (2004-2017)	Age Sex Race Ethnicity Education Median income Insurance (primary) Facility type, distance Staging Comorbidity score Histology Rate of CCT enrollment	Preliminary chi-square tests Multivariate logistic regression
Eskander et al.	2022	Cohort study	Archival database	NCDB	Age Race Ethnicity ZIP-code median income and %HS edu Insurance coverage Facility distance, type, and location Charlson-Deyo comorbidity score	Preliminary chi-square and Wilcoxon rank sum tests Multivariate logistic regression
Fakhry et al.	2023	Meta-analysis	Archival database	PubMed, Embase, World of Science, Cochrane (through 7/27/2021); US Census Data (2020)	Race/ethnicity report Race/ethnicity representation (W, B, AI/AN, Asian, NH/PI, Multi, H) Population-based incident estimates	Descriptive proportions
Fayanju et al.	2019	Case-control study	Archival database	NCI Cancer Therapy Evaluation Program (CTEP) National Cancer Database (1998-2012) ClinicalTrials.gov (2000-2012)	Age at Dx (<40, 40-64, 65+) Year of enrollment Race/ethnicity (NHW, NHW, API, Hispanic, Native American, Other) ZIP-code level Median household income % HS graduates Enrollment decision	Preliminary chi-square and t- tests Logistic regression
Freudenburg et al.	2022	Meta-analysis	Archival database	MEDLINE (1/1/1970-2/29/2020) Clinicaltrials.gov (1997-2020)	Race reporting (C, AA, Other, Asian, H, NA)	Descriptive proportions Qualitative synthesis
Gopishetty, Kota, & Guddati	2020	Case-control study	Archival database	NIH trials (Jan 1, 1999-Jan 1, 2019) US Cancer Statistics	Age- and race-adjusted incidence by type CCT enrollment	Chi-square tests

Gordis et al.	2022	Meta-analysis	Archival database	PubMed, Scopus, CINAHL, Cochrane Library (through 2/2/2022) NCDB	Age Sex Race Cancer history Tumor site Behavioral health history (smoking, alcohol)	Meta-analysis with Freeman- Tukey weighted-summary proportion
Grant et al.	2020	Case-control study	Archival database	ClinicalTrials.gov SEER (dates unspecified, 5-year increments)	Difference in incidence by race/ethnicity between CCT and SEER incident cases Ratio of incidence by race/ethnicity via median ratio of CCT and SEER incident cases	Preliminary Mann-Whitney U and Kruskal-Wallis ANOVAs Wilcoxon signed-rank test for comparing D-IRE to 0 and R- IRE to 1
Green et al.	2022	Cohort study	Archival database	Medicare FFS claims data Clinicaltrials.gov (1/1/2015-6/30/2020)	Dichotomized age (@65) ZIP code (median income) CCT enrollment	Descriptive proportions
Grette et al.	2021	Case-control study	Archival database	Clinicaltrials.gov CDC (age-adjusted rates)	Race reporting Participant race (W, B, Asian, Other) Tumor site Age-adjusted incidence rates	Chi-square analyses
Gross, Filardo, Mayne, & Krumholz	2005	Case-control study	Archival database	NCI CTEP (1996-2001) SEER-Medicare	SES: % below poverty level (zip), % unemployed (county), insurance (private, Medicare, Medicaid, Medicare + private, Medicare + Medicaid, VA, self-pay, uninsured, other) Age: 65-59, 70-74, 75-79, 80-84, 85+ Race/ethnicity: W, NHB, Hispanic, API Distance between home and site	Preliminary chi-square and t- tests Logistic regression
Guerrero et al.	2018	Meta-analysis	Archival database	PubMed	Presence of race/ethnicity reporting Race/ethnicity	Descriptive statistics
Hantel et al.	2024	Cohort study	Archival database	Dana-Farber/Harvard Cancer Center (DF- HCC) cancer and clinical trials registries Massachusetts Cancer Registry (MCR) 1/1/2010-12/31/2019	Race/ethnicity (NHW, NHB, NHA, HW, Other) Insurance Marital status Driving distance State Yost Index (sYI) Age Sex Subtype Access (treatment at a DF-HCC hospital) CCT enrollment	Preliminary chi-square, Fisher's exact, and Kruskal-Wallis tests Multivariate logistic regression

Hantel et al.	2022	Cohort study	Archival database	CALGB/Alliance Statistics and Data Management Center (through 8/26/2021; enrollment 1998-2013) SEER and 2010 US Census data	Sex ZIP-code Consent forms Enrollment fraction Incidence estimates	Preliminary chi square, Fisher's exact, and Wilcoxon rank-sum tests Multivariate logistic regression
Hanvey et al.	2022	Cohort study		CBTi.p. intervention (2009-2017) Yoga intervention (2017-present)	Psychosocial symptom scores: BDI-II,	Preliminary chi square tests Logistic regression Survival analysis with GDTMs
Hennessy et al.	2022	Meta-analysis	Archival database	Embase, PubMed, Cochrane Library (1/1/1995-11/18/2020)	Age Age restriction Study location Time (10-year period)	Binary logistic regression
Hori et al.	2007	Case-control study	Archival database	Review reports submitted as NDA trials from Pharmaceuticals and Medical Devices Agency (Sep 1999–Apr 2005) Cancer Statistics in Japan (2003)	calculated	Comparisons of median ages between patient population and CCT accruals by type (unspecified)
Housri et al.	2015	Cohort study	Internal treatment center, archival database	Rutgers Cancer Institute of New Jersey (Jun 2009-Dec 2012)	Demographics, stage, grade, receptor status, family history of breast cancer in 1st degree relative, radiation dose, concurrent Tx, site of initial consultation	Preliminary chi-square or Fisher's Exact Logistic regression

Huang, Ezenwa, Wilkie, & Judge	2013	Cohort study	Internal treatment center, ongoing database	"ResearchTracking" (University of Washington Cancer Center, Seattle Cancer Care Alliance)	Age Sex Eligibility status Reasons for ineligibility Enrollment status Completion status Withdrawal reasons	ANOVAs, Fisher's exact tests
Hue et al.	2022	Case-control study	Archival database	NCDB (2004-2016)	Insurance primary Charlson-Deyo score Stage	Preliminary chi-square and Wilcoxon rank-sum tests Multivariable logistic regression Kaplan-Meier & Cox regression survival analyses
Jan et al.	2022	Meta-analysis	Archival database	Clinicaltrials.gov (through 7/19/2019) US Cancer Statistics database GLOBOCAN	Race (W, B, AAPI, AI/AN, multi, unknown) Ethnicity (NH, H) Dichotomized age (@65) Sex EF	Chi square and Fisher's exact tests
Javid et al.	2012	Cross-sectional study	Multiple	NR (survey administration)	Demographics: marital status, education, travel, transportation, income Patient Participation/Refusal Questionnaires (reasons) Reasons for ineligibility Trial availability, eligibility, and enrollment	Chi-square tests Logistic regression
Javier-DesLoges et al.	2022	Cohort study	Archival database	NCI Clinical Data Update System (2000- 2019) Cancer Incidence Data (CDC US Cancer Statistics, 2000-2017)	Race/ethnicity (W, B, H, AAPI) Sex Age Diagnostic site Incident population values	Multivariate logistic regression
Jayakrishnan et al.	2021	Case-control study	Archival database	FDA drug approvals (7/2007-6/2019) cancer.org, seer.cancer.org (8/1/2020)	Age Race (reporting)	Chi square tests, t-tests, MANOVAs
Kaanders et al.	2022	Meta-analysis	Archival database	MEDLINE, Epub Ahead of Print, Embase, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov (2009-2019)	Age Performance status Recruitment rate	Chi-square and Mann-Whitney U
Kanapuru et al.	2023	Case-control study	Archival database	FDA drug approvals (2006-2019)	Race (W, B, Asian, NH/PI, AI/AN, Other, Unknown) Ethnicity (NH, H, Unknown) Age (<65, 65-75, 75+ Sex Country	Pooled descriptive statistics

					Eligibility Reasons for eligibility	
Kanarek et al.	2010	Case-control study	Internal treatment center, archival database	Johns Hopkins Cancer Registry JH-SKCCC Clinical Research Office (2005- 2007)	non-catchment area Race: White, Black, other (including Hispanic individuals)	Preliminary ANOVAs Poisson regression VIF statistic (multicollinearity SES, race)
Keegan et al.	2023	Cohort study	Archival database	Clinicaltrials.gov	Year Reporting quarter Race reporting Quarterly trend in race reporting proportion	Frequencies and proportion with SE & CIs Linear regression
Khadraoui et al.	2023	Cohort study	Archival database	SEER, NCDB (2004-2019)	Race/ethnicity (W, B, H, Asian, NH/PI, AI/AN) Age Insurance Charlson-Deyo comorbidity Area SES (income, % without HS	Multivariate logistic regression
Kilic et al.	2023	Case-control study	Archival database		Race/ethnicity (& reporting; NHW, NHB, NHAPI, NHAIAN, NHUR, Hispanic) Dichotomized age (@65) Sex Enrollment	t-tests, Kruskal-Wallis tests Multivariate logistic regression

Ko et al.	2015	Cohort study	Internal treatment center, archival database	Boston Medical Center Clinical Trials Office: BMC Cancer Center (Jan 1, 2010- Dec 31, 2010)	Sociodemographic (EMR): age, race/ethnicity, sex, employment, primary spoken language, country of birth, primary insurance, highest education level, marital status Eligibility: dichotomized Ineligibility reason further dichotomized: no open trial vs. not eligible for open trial Enrollment: dichotomized Non-enrollment reason further dichotomized (patient vs. provider decline)	
Kwak et al.	2023	Case-control study	Archival database	NCDB (2004-2018)	Race/ethnicity (NHW, NHB, H) Facility type Insurance coverage	Preliminary chi-square and Wilcoxon rank sum Multivariate logistic regression Kaplan-Meier survival and Cox regression
Ladbury et al.	2022	Case-control study	Archival database	ClinicalTrials.gov (through 1/4/2020) SEER (2000-2016)	Age Race Ethnicity Cancer type Age reporting Race/ethnicity reporting Enrollment incidence disparity (EID) Enrollment incidence ratio (EIR)	T- and chi-square tests
Langford et al.	2014	Cohort study	Archival database	NCI Community Cancer Centers Program (NCCCP) Clinical Trial Screening and Accrual Log (3/2009-5/2012)	Demographic: race/ethnicity, age, sex, country region Consent length, readability CCT refusal, lack of desire to participate, enrollment, physical/medical conditions	Preliminary chi-square tests Binary logistic regression
Lythgoe, Savage, & Prasad	2021	Case-control study	Archival database	FDA licensing (1/2006-7/2020)	Race (W, B, Asian, AI/AN, Other/multiracial, unknown/missing) Race reporting	Descriptive proportions
Mishkin, Minasian, Kohn, Noone, & Temkin	2016	Case-control study	Archival detabase	CTEP Clinical Data Update Service (2003- 2012) SEER (2003-2012) US Census (2010)	Demographic variables: race (American Indian, API, Black, White, unknown); ethnicity (Hispanic, non-Hispanic, unknown), age (time of trial registration), insurance (private, Medicaid, uninsured, unknown, 2007-2012; 65+ excluded due to	Did not use inferential statistics due to use of complete accrual population Relative differences within subgroups assessed (5%+

					Medicare)	differences considered clinically important)
					Population-based incidence: SEER incidence rates * 2010 Census population within each category	
Moloney & Shiely	2022	Meta-analysis	Archival database	MEDLINE (2010-2020)	Eligibility criteria imposed Clinical/scientific rationale for criteria imposed	Descriptive proportions Qualitative synthesis
Murthy, Krumholz, & Gross	2004	Case-control study		CDUS (1996-2002) NCI PDQ Database of Clinical Trials (50 largest trials) SEER (1995-1999)	EF: # CCT enrollees/estimated # US cases (adjusted for age and racial/ethnic group) Race/ethnicity: Enrollees Cancer Therapy Evaluation Program categories (1996-2001)- White, Black, API, AI/AN, Hispanic; 2002- Hispanic ethnicity as separate category for Population Data NHW, NHB, NH-API, NH-AI/AN, Hispanic Cancer incidence: rates determined for each 5-yer age range, race, sex è # SEER cases/population SEER county è rates applied to US population	Chi-square tests Crude odds ratios Polytomous logistic regression Huber-White robust variance
Newman et al.	2004	Case-control study	Archival database	ACOSOG, SWOG, NCI (Oct, Nov 2003) SEER	Proportion by race, by age dichotomized @ 65	Descriptive statistics (otherwise NR)
Noor et al.	2013	Case-control study	internal treatment	Thames Cancer Registry Guy's Hospital phase I clinic	Patient data from referrals, notes, Rx records: age at referral, primary tumor, sex, ethnicity, postal code, dichotomized enrollment Population incident cases: TCR SES: Index of Multiple Deprivation: calculated from income, employment, health, education, crime, access, living environment scores assigned to geographic areas; patients assigned scores based on postal code	Preliminary crude odds ratios Logistic regression
Osann et al.	2011	Cross-sectional study	Community outreach	CSPOC, LACCSP cancer registries	Race/ethnicity: cancer registry; all non- Hispanic individuals grouped as 1	Chi-square tests

					Enrollment/refusal rates	Logistic regression
						MANOVAs
Owens-Walton et al.	2022	Cohort study	Archival database	-	Race/ethnicity (W, B, AAPI, AI/AN, H, multi, unknown/NR) Representation quotient	Descriptive representation quotients
Palmer et al.	2021	Cross-sectional study	Archival database, mail, phone		Race (African American, Asian American, Latino, White) Age (50-54, 55-64, 65+) Marital status Education Region Language Insurance Health literacy Health status Comorbidities endorsed Treatment history CCT participation (any, behavioral, bio/clinical, none)	Multivariate logistic regression
Pang et al.	2016	Case-control study	Archival database	NCI-sponsored cooperative groups trials (1990-2012) SEER (1990-2012)	Elderly = 70+ Enrollment disparity difference (EDD): absolute difference between est. group proportion in US lung cancer population and that of trial participants Enrollment disparity ratio: group proportion in US lung cancer population divided by that of trial participants Annual percentage of change (APC) in subgroup enrollment	APC Joinpoint regression
Patel et al.	2023	Cohort study	Archival database	University of Michigan Health Rogel Cancer Center clinical trials database EMR	Age Sex rRace Marital/family status Employment Insurance Charlson Comorbidity Index Clinical factors: type, stage, histology	Preliminary chi square tests Multivariate logistic regression

					CCT Eligibility	
					Offered CCT	
Patel et al.	2020	Cross-sectional study	Archival database	iCanCare Study <u>ClinicalTrials.gov</u> SEER (Georgia, Louisiana, 2013-2014)	CCT enrollment Age: -50, 51-65, >65 Comorbidities: 0 vs. 1+ Surgeries, chemo, radiation Stage (0-II) White, Black, Latina, Asian, Other/unknown Acculturation: high vs. low Marital status Education: -HS, some college, technical vs. college+ Income: <\$40,000 vs. \$40,000+ Insurance: none, Medicaid, other public, Medicare, private Geographic site Distance from treatment center: -30, 31+ Employment and flexibility (dichotomized) Decision-making style: 5-point Likert scale (intuitive to rational) Outcomes dichotomized	Preliminary chi-square tests Logistic regression
Patki et al.	2023	Meta-analysis	Archival database	CENTRAL, MEDLINE, Embase (through 2010-4/24/2020)	Race, ethnicity, SES, and educational attainment reporting Descriptive proportions of CCT participant race, ethnicity, SES Additional outcomes where reported: Age Stage SES group Education Eligibility criteria Study outcomes	Descriptive statistics & qualitative synthesis
Perni, Moy, & Nipp	2021	Cohort study	Archival database	Massachusetts General Hospital Cancer Center EHRs (10/1/2011-11/30/2014)	Race/ethnicity Sex Age Insurance status Marital status Income (median ZIP-code) CCT phase I, II, & III enrollment	Preliminary chi-square and Wilcoxon rank-sum tests Multivariate logistic regression
Pirl et al.	2018	Meta-analysis	Archival database	2012, 2017 ASCO statements on palliative care in oncology	Race/ethnicity Race/ethnicity reporting	Descriptive statistics

				PubMed	Other demographic data reporting: age, sex, marital status, education, income, religion Trial setting Language eligibility requirements	
Pittell et al.	2023	Cohort study	Archival database	Age Race/ethnicity (W, B, L) Cancer type Pre/post-COVID ECOC		Stratified hazard models
Ramamoorthy et al.	2018	Case-control study	Archival database	CDER, FDA (Drugs@FDA)	Race/ethnicity Age Sex Time period (2008-2013; 2014-2017)	Descriptive statistics (proportions)
Reihl et al.	2022	Meta-analysis	Archival database	PubMed (1/1/2000-12/31/2019) ClinicalTrials.gov Central Brain Tumor Registry of the US (CBTRUS (2000-2017) SEER-18 (2000-2017)	Sex Race/ethnicity (W, Asian, B, H) CCT enrollment Survival Stratified, population-based incidence and mortality rates	Chi-square and Fisher's exact tests
Riaz et al.	2023	Meta-analysis	Archival database	MEDLINE (through 2/2021) Global Burden of Disease SEER-21 (2000-2018)	Dichotomized age (@65) Race/ethnicity (AA/B, AAPI, W) Outcomes using population-based incident estimates: Enrollment incidence ratios Demographic trial proportions	Meta-regression with random effects

Saphner et al.	2021	Case-control study	Archival database	Aurora Health Care Cancer Registry (8/1/2013-7/31/2019) American Community Survey (2014-2018)	1 2	Preliminary chi-square and Mann-Whitney tests Multivariate logistic regression
Sawaf et al.	2023	Meta-analysis	Archival database	PubMed (through 12/2019) NCDB (2010-2019)	Age Sex Race/ethnicity Rurality Facility type, location Demographic and socioeconomic reporting	Qualitative synthesis Chi-square and one-sample t- tests where quantification possible

Scalici et al.	2015	Case-control study	Archival database	GOG website (1985-2013 publications) CDC	Type of study CDC age-adjusted incidence for comparison between expected and observed cases by race (ratio W:B) Race/ethnicity: B, W Tumor site: ovary, endometrium, cervix, sarcoma Year published: 1993 and lower, 1994-2002, 2003-2008, & 2009-2013)	Chi-square and t-tests ANOVAs
Sedrak et al.	2022	Cohort study	Archival database	NCI Community Oncology Research Program (NCORP, 1/1/2016-12/31/2019)	Sociodemographic covariates: sex, marital status, ethnicity, SES indicators, comorbidity types	Chi-square analyses
Shah et al.	2022	Meta-analysis	Archival database	ClinicalTrials.gov	Weighted mean/median age	Weight mean/median calculation
Shinder et al.	2023	Case-control study	Archival database	NCDB (2004-2014)	Age Race/ethnicity Sex Insurance Stage Charlson-Deyo comorbidity Area median income Area % HS education Facility location, type CCT participation	Multivariate logistic regression
Steventon et al.	2024	Meta-analysis	Archival database	icensed systemic anti-cancer therapies //11/2012-1/11/2022) Race/ethnicity Continent		Descriptive statistics

Stewart, Bertoni, Staten, Levine, & Gross	2007	Case-control study	Archival database	NCI CDUS, NCI CTEP (2000-2002) SEER (2000-2002) US Census (2000)	Age: 5-year intervals 20-74, 75+ from Census (2000)	
Talarico, Chen, & Pazdur	2004	Case-control study	Archival database	FDA (1995-2002) SEER-11 (1995-1999)	Age: %65+, %70+, %75+	Chi-square tests
Tharakan, Zhong, & Galsky	2021	Case-control study	Archival database	FDA cancer drug approvals (2015-2018) American Cancer Society (2012-2016)	Racial enrollment distribution per CCT Geographic location per CCT Disparity score per CCT (#Black enrollees/US incidence per cancer)	Pearson correlation
Unger et al.	2020	Case-control study	Archival database	FDA drug approvals (2008-2018) NCTN data (SWOG Cancer Research Network) SEER	% Black race Trial sponsorship: pharmaceutical company, SWOG Cancer type	Tests of proportions
Unger, Gralow, Albain, Ramsey, & Hershman	2016	Cohort study	Internal treatment centers (8), archival database	NR	Age Race/ethnicity Sex Income (@ \$50k) Education Distance from clinic Disease status	
Unger et al.	2013	Cross-sectional study	Community outreach	JexCura treatment decision tool Discussion of CCT with provider CCT beliefs and attitudes		Multivariate logistic regression

					CCT enrollment	
VanderWalde et al.	2022	Case-control study	Archival database	Alliance for Clinical Trials in Oncology SEER	Age Trial characteristics: disease site, trial phase, # trial modalities Enrollment disparity difference	Linear regression
Wagar et al.	2022	Case-control study	Archival database	ClinicalTrials.gov SEER (1992-2018)	Age	Enrollment fractions with odds ratios
Yekedūz et al.	2021	Case-control study	Archival database	FDA drug approvals (1/1/2006-6/30/2020) ClinicalTrials.gov SEER	Organ dysfunction Brain metastases	FDA phase III CCTs/MEDLINE (1/1/2006- 6/30/2020) SEER
Yonemori et al.	2010	Case-control study	Archival database	NDA trials (1999-2008) Ministry of Health, Labor, Welfare) SEER (2002-2006)	Median age of enrollees and proportion of those > 65 by cancer site, drug, and application Age-specific incidence from Cancer Statistics in Japan (2013) * age-specific population (MHLW) to estimate age-specific new cases	Comparison of age median in US and Japanese populations to that of enrollees Comparison of proportion >65 in US and Japanese populations to that of enrollees

Zafar et al.	2011	Cohort study	Internal treatment center, archival database	KCI Phase I clinical trial service (1995-	Via retrospective medical review: Demographics: age, gender, race Tumor type, PS, Tx status, enrollment status, Tx details, referring physician 3 orthogonal groups: considered not enrolled (PC), enrolled but not treated (PE), treated (PT)	Fisher's exact test
Zhao et al.	2024	Meta-analysis	Archival database		Age reporting	Joinpoint regression Mann-Whitney U and Kruskal- Wallis test
Zullig et al.	2016	Case-control study	Archival database	CTEP (1996-2009) NCCCR (1996-2009)	Area Health Resource Files for certain	Preliminary chi-square tests Logistic regression
Zuniga et al.	2020	Case-control study	Archival database	<u>ClinicalTrials.gov</u> (Feb 2000-Feb 2019) SEER (2001-2015) American Joint Committee on Cancer (6e) TNM staging data (2004-2015)	Study representation proportion Identification of targets	One-sample proportion tests

NB: Abbreviations included in this table are utilized as follows, listed alphabetically: AA: African American; ACOSOG: American College of Surgeons Oncology Group; AI/AN: American Indian/Alaska Native; ANOVA: analysis of variances; APC: annual percentage of change; API: Asian or Pacific Islander; B: Black; BMC: Boston Medical Center; CBTRUS: Central Brain Tumor Registry of the United States; CCC: comprehensive cancer center; CCT: cancer clinical trial; CCR: California Cancer Registry; CCSG: Cancer Center Support Grant; CDC: Centers for Disease Control and Prevention; CDUS: Clinical Data Update Service; CI: confidence interval; CINAHL: Cumulative Index of Nursing and Allied Health Literature; CSPOC: Cancer Surveillance Program of Orange County; CTED: Clinical Trials on Chronic Thromboembolic Disease; CTEP: Clinical Trial Evaluation Program; CTMS: Clinical Trials Management System; DF/HCC: Dana-Farber/Harvard Cancer Center; ECOG = Eastern Cooperative Oncology Group; EDD: enrollment disparity difference; EF: enrollment fraction; EMPacT: Enhancing Minority Participation in Cancer Clinical Trials; EH/MR: electronic health/medical record; FDA = Food and Drug Administration; FFS: fee-for-service; GLOBOCAN: Global Cancer Observatory; GOG: Gynecology Group; H: Hispanic; HS: high school; HCI: Huntsman Cancer Institute; JH-SKCCC: Johns Hopkins Sidney Kimmel Comprehensive Cancer Center; ISS: International Staging System; MDS: myelodysplastic syndromes; MHLW: Ministry of Health and Labor, Welfare; NCDB: National Cancer Database; NCI: National Cancer Registry; MDCSS: Metropolitan Detroit Cancer Registry; NDA: New Drug Application; NH: non-Hispanic; NH: National Institutes of Health; O:E: observed: pected; NR: not reported; PDQ: Physician Data Query; PS: performance status; SEER: Surveillance, Epidemiology, and End Results; SE: standard error; SES: socioeconomic status; SWOG: Southwest Oncology Group; TCR: Thames Cancer Registry; TNM: Tumor Nodes Metastases; UCSF: University of California – San Francisco; W: White

Authors	Year	Age	Race/Ethnicity	Sex	SGM status	SES	Ability & Comorbiditie
			Among accruals:				
			NHW: 80.9%			Among accruals:	
			NHB: 7.6%			Income <\$40k: 15.7%	
			AAPI: 3.3%			Private insurance: 57.5%	
		Among accruals:	H: 5.5%			ZIP HS edu <79%:	
		65+: 32.1%	Other: 2.8%			16.2%	
Abbas et al.	2022	Among population	Among population	NR	NR	Among population	NR
		controls:	controls:			controls:	
		65+: 59.1%	NHW: 77.5%			Income <\$40k: 19.6%	
			NHB: 11.9%			Private insurance: 34.3%	
			AAPI: 3.2%			ZIP HS edu <79%:	
			H: 5.6%			21.8%	
			Other: 1.7%				
							All tria
Abi Jaoude et al.	2020	NR	NR	NR	NR	NR	ECOG 0-1: 96
							ECOG 2-4: 3.6%
			Of accruals:				
			White: 35%				
Acoba Sumida &			Chinese: 6%				
Acoba, Sumida, & Berenberg	2022	NR	Filipino: 16%	NR	NR	NR	NR
			Japanese: 27%				
			Native Hawaiian: 16%				

Table 3. Social, Economic, and Medical Indicators of Marginalization

			Of population controls:				
			White: 31%				
			Chinese: 7%				
			Filipino: 11%				
			Japanese: 29%				
			Native Hawaiian: 22%				
			Of all participants:				
			White: 71.5%				
Ajewole et al.	2021	NR	Asian: 16.9%	NR	NR	NR	NR
			Black: 2.5%				
			Hispanic: 2.3%				
Al Hadidi et al.	2022	NR	2-5% (per study)	NR	NR	NR	NR
			Of accruals:				
			NHW: 82.3%				
Aldrighetti et al.	2021	Used age-adjusted	B: 10.0%	NR	NR	NR	NR
Aldrighetti et al.	2021	incidence rates	AAPI: 4.1%	INIX	INK	INK	INK
			H: 3.4%				
			AI/AN: 0.3%				
			CCT participants (1995-				
		Address via age-adjusted	2018)			Briefly address potential	
Awad et al.	2020	incidence	W: 79%	Women	NR	role of SES	NR
		Incidence	B: 6%				
			Other: 16%				
		Of participants:		Of <70 survey		Of <70 survey	
Baldini et al. 2022		NID	participants:	NR	participants:	NR	
Daiulill et al.	2022	<70: 82.3% 70+: 17.7%	NR	F: 55.5	TNIX	<hs: 60.4%<="" td=""><td>INK</td></hs:>	INK
		/0+. 1/./%				FDI: -0.4	

			Of 70+ survey			
			participants:		Of 70+ survey	
			F: 47.6%		participants:	
					<hs: 46.9%<="" td=""><td></td></hs:>	
					FDI: -0.3	
					% of accrued patients	
					among age-adjusted	
					incidence within each	
					category	
					Lowest quartile material	
					deprivation: 2.91% (F),	
		Among accruals: (1999-			1.48% (M)	
		2002, by sex)			Highest quartile material	
					deprivation: 1.58% (F),	
	Among accruals:	WM: 29.5%			1.62% (M)	Briefly discuss potential
Baquet, Ellison, & 200	0-19: 13.8%	BM: 9.6%	Among accruals:	NR		role of comorbidity in
Mishra	20-59: 48.3%	WF: 45.6%	F: 59.2%	INK	Lowest quartile social	compromising diverse
	60+: 37.9%	BF: 10.3%			class: 1.67% (F), 1.46%	representation
		OM: 2.4%			(M)	
		OF: 4.2%			Highest quartile social	
					class: 3.15% (F), 1.85%	
					(M)	
					Insurance comparisons	
					within accruals and	
					incidence population	
					% uninsured	

						Accruals: 3.4%	
						Population: 13.4%	
						% Medicaid Accruals: 3.2% Population: 6.5% % Private Accruals: 65.4%	
						Population: 77%	
						Of total patients:	
						ZIP-code median	
						income: <\$45,000: 14.4%	
			Of total patients:			\$45,500-\$65,499: 37.4%	
			Other Caucasian: 42.2%			\$65,500-\$85,499: 32.9%	
Behrendt, Hurria,			African: 5.3%			\$85,000+: 15.3%	
	2014	Of total patients:	Asian: 16.3%	Women	NR		NR, comment on lack of
& Mortimer		M=55.7	Eastern European: 1.3%			Zip-code	availability in limitations
			Latin American: 28.3%			%racial/ethnicity-	
			Middle Eastern: 6.5%			matched women 25+	
						without HS edu	
						<5%: 20.9%	
						5-30%: 60.3%	
						30+%:18.8%	

Bero et al.	2021	NR	B : 12.7%	Of US CCT participants: F: 41.5%	NR	NR	NR
Borad et al.	2020	Mean: 65.8 Average Median: 63.3	NR	NR	NR	NR	NR

Borno et al.		Of accruals: 0-64: 70% 65+: 30%	Of accruals: NHW: 72% NHB: 4% Asian: 12% Hispanic: 10% Other: 2%	Of accruals: F: 46%	NR	Of accruals: Medicaid: 8% Medicare: 31% Private: 40% Other: 1% Missing: 20% Uninsured: 0%	NR
Brierley et al.	2020	Of non-accruals: Median: 69 (IQR: 61-76) Of accruals: Median: 68 (IQR: 61-73 years)	Of non-accruals: W: 87% B: 5.2% Asian: 1% Other: 6.9% Hispanic: 5.4% Of accruals: W: 88% B: 4.2% Asian: 1.6% Other: 6.2% Hispanic: 3.8%	Of accruals: F: 29%	NR	\$90,412+: 23.5% Of accruals: <\$48,138: 19.6% \$48,138-\$63,083: 23.5% \$63,083-\$90,412: 27.4% \$90,412+: 29.5%	Report on comorbidity, functional status, and underrepresented disease as focus
Bruno, Li, & Hess	2024	Mean: 59.5	% Black (total): 25.2%	Total: F: 47.3%	NR	Applied to Medicaid- exclusive population	Report on disease characteristics
Bruno et al.	2022	NSCLC: 68.9 NS-NSCLC: 68.3 CRC: 63.1	% of White participants (relative to all White patients):: NSCLC: 3.9% NS-NSCLC: 3.9%	Total % F: NSCLC: 48.1% NS-NSCLC: 52.6% CRC: 43.5% Breast: 99.0%	NR	across patients, clinic practice volume, and practice type stratified by	Reported staging and ECOG stratified by diagnostic site and dichotomized race

			CRC: 2.9% Breast: 5.8% % of Black participants (relative to all Black patients): NSCLC: 1.9% NS-NSCLC: 1.2% CRC: 2.9% Breast: 4.4%			dichotomized race	
Canoui-Poitrine et al.	2019	% group CCT invited: 65-69: 39% 70-74: 30% 75-79: 24% 80+: 7% Of SAGE population: 65-69: 27% 70-74: 23% 75-79: 23% 80+: 27%	NR	% group CCT invited: M: 55% Of SAGE population: M: 56%	NR	Of SAGE population: Higher education: 34%	% group CCT invited: Comorbidity: 67% Performance status 2+: 8% Of SAGE population: Comorbidity: 73% Performance status 3-4: 4%
Casey et al.	2023	Of RCT participants: Mean: 57.3		Of RCT participants: F: 40.5%		of RCTs and intersection	Briefly address impact of staging and comorbidities

Costa, Hari, & Kumar	2016	Of non-accruals: Median = 69 Of accruals: Median = 61	Expected: %minority accruals: 36.7% Observed: %minority accruals: 19.1%	Expected male% accruals: 58.4% Observed male% accruals: 56.9%	NR	NR	Reported on higher enrollment of lower risk patients by stage I: 37.1% II: 39% III: 24.8%
Choradia et al.	2024	Of participants: 65+: 22.9%	Of participants: W: 76.1% B: 12.0 AAPI: 4.6% AI/AN: 0.3% H: 7.1%	Of participants: F: 41.7%	NR	NR	NR
Craig, Gilbery, Herndon, Vogel, & Quinn	2010	Of non-accruals: Median (IQR): 73 (69- 78) Of accruals: Median (IQR): 72 (68- 76)	Of non-accruals: White: 80% Black: 9% Hispanic: 4% Other: 6% Of accruals: White: 85% Black: 6% Hispanic: 4% Other: 5%	Men	NR	Of non-accruals: Median income (IQR): \$46,273 (\$35,351- \$61,363) Of accruals: Median income (IQR): \$51,656 (\$38,763- \$69,754)	Of non-accruals: Comorbidity index 0: 75% Of accruals: Comorbidity index 0: 78%
Diehl et al.	2011	NR	Range of proportions, of accruals:	NR	NR	Briefly report on SES in introduction, scarcely	Briefly report on early- stage eligibility criteria

			early-stage breast:			address in discussion	prohibiting	diverse
			AA 6.4-14.0%				representation	
			HA 2.7-4.0%					
			regionally advanced					
			breast:					
			AA 14.0-15.2%					
			HA 4.2-4.8%					
			non-metastatic lung:					
			AA 8.0-11.0%					
			HA 2.7-2.3%					
			metastatic lung:					
			AA 11.3%					
			HA 2.6%					
			Of accruals:					
			White: 83.0%					
			AA: 11.1%					
		Of accruals:	Asian: 2.5%	Of accruals:				
Dressler et al.	2015	Age median (range): 58.3	Other: 1.0%	F: 59.3%	NR	NR	NR	
		(18.8-93.5)	Unknown: 2.4%	1. 59.570				
			White: 85.1%					
			non-White: 14.9%					
		Of non-accruals:	Of non-accruals:	Of non-accruals:		Of non-accruals:	Of non-	accruals:
Du, Gadgeel, &	2006	70+: 24%	AA: 45%	F: 43%	NID	Low: 52%	PS=0:	31%
Simon	2006		non-AA: 55%		NR	Medium: 28%	Heart disease	: 18%
		Of accruals:		Of accruals:		High: 21%	Diabetes:	13%

		70+: 10%	Of accruals:	F: 32%		non-commercial	COPD: 16%
			AA: 25%			insurance: 63%	Comorbidities >0: 39%
			non-AA: 75%				
						Of accruals:	Of accruals:
						Low: 37%	PS=0: 36%
						Medium: 30%	Heart disease: 16%
						High: 33%	Diabetes: 9%
						non-Commercial	COPD: 13%
						insurance: 45%	Comorbidities >0: 31%
							Accounted for
							staging/subtype (25%)
			Of total cohort assessed:			Of total patients:	comorbidities/low
Dudinala at al	2023	Of total cohort assessed:	B: 35.1%	Of total cohort assessed:	NR	HS edu or <: 77.9%	functional status (17.6%)
Dudipala et al.	2025	M: 70	W: 47.5%	F: 47.5%	INK	<\$84k median household	as potential limiting
			H: 9.9%			income: 70.6%	factor for enrollment
							among CCT discussed
							subsample
			Of current trial				
			participants:				
		Of current trial	NHW: 83.4%	Of current trial			
		participants:	AA: 6.0%	participants:			
Duma et al.	2018	65+: 36.0%	H: 2.6%	F: 41.0%	NR	NR	NR
Duilla et al.	2018		AAPI: 5.3%		INK	INK	INK
		2013 SEER:	AI/AN: 0.3%	2013 SEER:			
		65+: 60.0%	Other: 2.4%	F: 50.0%			
			2013 SEER:				

			NHW: 79.0% AA: 10.0% H: 7.0% AAPI: 3.3% AI/AN: 0.3% Other: NR				
Earl et al.	2023	NR	Of enrollees: W: 93.2% B: 0.9% Asian: 1.2% NH/PI: 0.4% AI/AN: 0.0% O: 2.8%	Of enrollees: F: 42.6%	NR	Sex, race, and ethnicity outcomes stratified by county classification County income and edu utilized as secondary analysis predictors	NR
Elshami et al.	2022	Of total patients: 70+: 41.0%	Of total patients: NHW: 70.0% NHB: 12.4% H: 7.8% O: 9.8%	Of total patients: F: 41.5%	NR	Of total patients: <\$53,353: 40.0% "Less educated": 46.5% Private insurance: 31.5% Distance 11.6 mi+: 47.4%	Of total patients: Charlson-Deyo score 2+: 14.7% Stage 4: 40.1%
Eskander et al.	2022	Of enrollees: M: 64.0 Of non-enrollees: M: 69.0	Of enrollees: W: 90.1% NW: 9.9% Of non-enrollees: W: 83.2% NW: 16.8%	Of enrollees: %F: 46.0% Of non-enrollees: %F: 48.9%	NR	Of enrollees: Private insurance: 49.4% Median income <\$38k: 11.8% <hs 21%+:="" 9.3%<br="">Non-metropolitan: 14.5% Of non-enrollees:</hs>	Of enrollees: Charlson-Deyo 1+:22.5% Stage 4: 65.8% Of non-enrollees: Charlson-Deyo 1+: 34.7% Stage 4: 52.0%

						Private insurance: 30.9% Median income <\$38k: 17.7% <hs 16.9%<br="" 21%+:="">Non-metropolitan: 15.5%</hs>	
Fakhry et al.	2023	NR	AI/AN: 0.0%	Briefly address	NR	Addresses intersectionality between racial/ethnic representation and low socioeconomic strain	NR
Fayanju et al.	2019	Non-accruals: <40: 5% 40-64: 67.1% 65+: 27.9% Accruals: <40: 5.6% 40-64: 56.3% 65+: 38.1%%	Non-accruals: NHW: 73.7% NHB: 10.7% API: 3% Native American: 0.3% Hispanic: 5% Other: 6.4% Accruals: NHW: 83.5% NHB: 7.3%	Women	NR	Non-accruals: <\$38,000: 15.4% \$38,000-47,999: 21.1% \$48,000-62,999: 26.2% \$63,000+: 35.6% >93% of area HS grad: 27.4% Accruals: <\$38,000: 12.9% \$38,000-47,999: 19.8%	Briefly discuss comorbidities and effects of ECOG performance status on age and racial underrepresentation

			API: 2.4%			\$48,000-62,999: 24.8%	
			Native American: 0.2%			\$63,000+: 33%	
			Hispanic: 4%			>93% of area HS grad:	
			Other: 2.6%			32.5%	
						Explicitly reported on	
						race/ethnicity*SES	
						intersection	
			Of study participants:				
Freudenburg et al	1 2022	Reported per study	W: 81-98%	Reported per study	NR	NR	NR
i reddenburg et al	1. 2022	included	AA: 2-8%	included			
			H: 2-5%				
		Of accruals:	Of accruals:				
		Colon	Colon				
		%65+:28.8%	Asian: 21.2%				
			AA: 2.6%				
		Lung	W: 74.3%				
		%65+: 38.8%	Other: 2.0%				
Gopishetty, Kota,							Contextualize age-related
& Guddati	2020	Breast	Lung	NR	NR	NR	disparities in comorbidity
a Guudan		%65+: 14.7%	Asian: 26.1%				risk and ineligibility
			AA: 30.6%				
		DLBCL	W: 39.7%				
		%65+: 39.2%	Other: 3.7%				
		AML	Breast				
		%65+:29.0%	Asian: 17.4%				

			AA: 3.6%				
		ALL	W: 73.8%				
		%65+:9.6%	Other: 5.2%				
			DLBCL				
			Asian: 16.6%				
			AA: 1.5%				
			W: 77.7%				
			Other: 4.2%				
			AML				
			Asian: 2.3%				
			AA: 2.3%				
			W: 92.9%				
			Other: 2.5%				
			ALL				
			Asian: 5.9%				
			AA: 6.7%				
			W: 77.5%				
			Other: 9.9%				
		Participants:	Participants:	Participants:			Participants:
		M: 59 years	W: 88.2%	F: 11.8%			No smoking Hx: 50%
Gordis et al.		wi: 39 years	AA: 4.8%		NR	NCDB only:	No alcohol use: 28.7%
Gordis et al.	2022	NCDB:	H: 1.8%	NCDB:	INK	High SES: 65.2%	Primary tongue site:
			AAPI: 0.3%				41.4%
		M: 58.4 years	Other: 2.5%	F: 32.1%			

Grant et al.	2020	Briefly mention possible	NCDB: W: 67.7% Report explicitly on racial/ethnic representativeness of CCTs	NR	NR	Briefly mention possible effects of SES factors in disparities	NCDB: Primary tongue site: 65.2% NR
Green et al.	2022	CCT participants: 75+: 85+: Non-participants: 75+: 85+:	CCT participants: Asian: 1.5% B: 5.8% W: 86.7% Oth: 6.0% Non-participants: Asian: 1.5% B: 8.0% W: 86.0% Oth: 4.5%	CCT participants: M: 55.3% Non-participants: M: 49.5%	NR	CCT participants: Median income \$60,430+: 57.0% Metro: 87.2% Non-participants: Median income \$60,430+: 47.4% Metro: 81.7%	CCT participants: Charlson score 2+: 13.1% Non-participants: Charlson score 2+: 26.1%
Grette et al.	2021	Accounted for age- adjustment in comparisons	Of CCT participants: W: 70% B: 5% Asian: 20% Other: 6%	Primarily AFAB (i.e., breast, GYN)		NR	NR
Gross, Filardo, Mayne, & Krumholz	2005	Of accruals:	Of accruals: White: 86.7% AA: 4.9% Asian: 5.4%	Women	NR	Of accruals: %Medicaid: 2% 0.13%+ below poverty level: 20.9%	Speculate on relationships between SES and later staging

		70-74: 29.2%	Hispanic: 3.0%			% unemployment 5.6+:	
		75-79: 21.0%				18.7%	
		80+: 6.4%	Of non-accruals:				
			White: 88.3%			Of non-accruals:	
		Of non-accruals:	AA: 7.0%			%Medicaid: 10%	
		65-69: 25.4%	Asian: 3.0%			0.13%+ below poverty	
		70-74: 26.5%	Hispanic: 1.7%			level: 24.9%	
		75-79: 23.0%				% unemployment 5.6+:	
		80+: 25.1%				25.1%	
			NR: 67.0%				
			W: 25.9%				
Cuarrana at al	2018	ND	Asian: 5.0%	NR	NR	NR	NR
Guerrero et al.	2018	INK	AA: 1.1%	INK	INK	INK	INK
			H: 0.2%				
			Other: 0.9%				
			Total:				
			NHW: 85.9%			Total:	Briefly comment on
Hantel et al.	2024	Total:	NHB: 4.3%	Total:	NR	sYI: 6/10	limited availability of
namer et al.	2024	Median: 67	NHA: 3.7%	F: 45%	INK	Distance: 50 km	such data and potential
			HW: 4.5%			Private insurance: 30.6%	role
			Oth: 1.3%				
			Of enrollees:			Of enrollees:	
		Of enrollees:	NHW: 81.7%			Area deprivation index	
TT===4=1=4==1			NHB: 7.5%	Of enrollees:	NR	(ADI) 76-100%ile:	NR
Hantel et al.	2022	2022 60-79: 38.8%	NH-NA: 0.88%	F: 42.4%	INK	18.10%	INK
		80+: 2.5%	NH-Asian: 2/44%			Urban: 76.4%	
			Н: 5.33%			CCC: 62.5%	

			Oth: 2.17%				
			Of total:				Depression, anxiety, pain,
		Of total:	Non-White: 15.9%				and sleep examined as
Hanvey et al.	2022	60+: 56.2%	Hispanic: 5.1%	All AFAB	NR	attrition predictor	longitudinal attrition
			POC: 20.3%				predictor
		Median age: 62 y.o.					
Hennessy et al.	2022	Age restriction: 32%	NR	NR	NR	NR	NR
fielillessy et al.	2022	Median age restriction:		IVIX		INK	INK
		75					
		Of all Japanese cancer					
		population:					
		Median(range)= 69 (54-					
		75)					
		%65+:64%					
		Of Japanese CCT					Contextualized findings
Hori et al.		accruals (68 trials):	Japanese nationality (no	NR	NR	NR	within comorbidity,
lion et ul.		Median difference	further specification)				functional status, and
		compared to population:					eligibility criteria
		7 (-16-33)					
		%trials median age <					
		population: 88.2%					
		Report explicitly on					

	•	underrepresentation of older (65+) cancer patients						
Housri et al. 20	15	Of accruals: <60: 60% 65+: 40% Of non-accruals: <60: 55.3% 65+: 44.7%	Of accruals: Dichotomized W: 74.6% NW: 25.4% Full categories: NHW: 74.6% Black: 13.1% Asian: 6.9% Hispanic: 5.4% Of non-accruals: Dichotomized W: 59.8% NW: 40.2%	Women	NR	NR	Staging Of Tis= T1= T2=8.5% Of Tis=18.2% T1=59.8% T2=22%	accruals: 22.3% 69.2% non-accruals:

Huang, Ezenwa, Wilkie, & Judge	2013	Of total pain referrals: M=53.6 Of total symptom referrals: M=52.9	NHW: 79% Minority: 13%	Of total referrals: M: 41% F: 59%		NR Of CCT enrollees:	NR
Hue et al.	2022	Of CCT enrollees: Stage I-III: 64 Stage IV mean: 63 Of non-enrollees: Stage I-III: 69 Stage IV mean: 68	Stage I-III: NHW: 86.3% NHB: 5.7% Oth: 8.0% Stage IV: NHW: 85.9% NHB: 4.8% Oth: 9.3% Of non-enrollees: Stage I-III: NHW: 75.9%	Of CCT enrollees: Stage I-III: F: 49.5% Stage IV: F: 44.5% Of non-enrollees: Stage III: F: 50.4 Stage IV: F: 46.9%	NR	Stage I-III: Median ZIP income <\$40,227: 13.4% ZIP w/o HS Edu 17.6% +: 12.9% Private insurance: 47.5% Stage IV: Median ZIP income <\$40,227: 11.4% ZIP w/o HS edu 17.6%+: 11.6%	Of CCT enrollees: Stage III: Charlson-Deyo 3+: 1.2% Stage IV: Charlson-Deyo 3+: 0.7% Of non-enrollees: Stage III: Charlson-Deyo 3+: 2.9% Stage IV: Charlson-Deyo 3+: 3.5%

						Stage I-III:	
			Stage IV:			Median ZIP income	
			NHW: 73.9%			<\$40,227: 18.6%	
			NHB: 12.1%			ZIP w/o HS Edu 17.6%+:	
			Oth:14.0%			20.9%	
						Private insurance: 31.3%	
						Stage IV:	
						Median ZIP income	
						<\$40,227: 19.1%	
						ZIP w/o HS Edu 17.6%+:	
						20.6%	
						Private insurance: 32.5%	
			Of all CCT participants:				
		Of all CCT participants:	W: 44.3%				
Jan et al.	2022	65+: 46.7%	B: 3.6%	Of all CCT participants:	NR	NR	NR
		03+.40.770	AAPI: 47.4%				
			Unk: 4.4%				
		Among eligible					
		respondents:					
		%65+ trial available:				% Distance >50 mi, trial	Addressed at item level
		Yes: 27%				enrolled:	regarding reasons for
Javid et al.	2012	No: 30%	NR	AFAB-exclusive	NR	Yes: 23%	ineligibility and
						No: 34%	intersection with age
		%65+ trial eligible:					(dichotomized 65+)
		Yes: 24%					
		No: 37%					

		%65+ trial enrolled: Yes: 21% No: 26%					
Javier-DesLoges et al.	2022	Of CCT participants: 65+: 33.8% US rate: 65+: 44.1%	Of CCT participants: NHW: 81.3% B: 8.7% H: 4.8% AAPI: 2.8% NA: 0.3% Oth: 2.0% US rate: NHW: 78.5% B: 11.6% H: 5.9% AAPI: 2.6% NA: 0.5% Oth: 0.9%	Of CCT participants: F: 71.7% US rate: F: 49.2%	NR	NR	NR
Jayakrishnan et al.	2021	Of CCT participants: M: 61	Race reporting only: 85.4%	NR	NR	Briefly mention potenti role in explaining findings	al Briefly mention potential role in explaining findings
Kaanders et al.	2022	Age restriction: 42% CCT participants: Median: 57 years	NR	NR	NR	NR	 >70 Karnofsky restriction: 18% CCT participants: >70%: 0-1 PS or 90-100

		Clinical population: 64					Karnofsky
		years					
							WHO/ECOG/ Zubrod
							restriction 0-1: 21%
			Of screened patients:				
			W: 83%				
		Of screened patients:	Asian: 7%	Of screened patients:			Briefly address potential
Kanapuru et al.	2023	65-75: 41%	B: 4%	F: 45%	NR	NR	role of comorbidity
		75+: 19%	Oth: 2%	1. 43 70			Tole of comorbidity
			H: 4%				
		Of non-accruals:	Of non-accruals:	Of non-accruals:		County poverty	
		Baltimore:	Baltimore:	Baltimore:		quartiles:	
		<20: 3.1%	W: 43.0%	M: 49.8%		Of non-accruals:	
		20-64: 58.8%	B: 55.4%	F: 50.2%		Baltimore:	
		65+: 38.1%	O: 1.6%			Least poor: 0%	
				Non-Baltimore:		2:0%	
		Non-Baltimore:	Non-Baltimore:	M: 58.5%		3: 0%	
Kanarek et al.	2010	<20: 2.8%	W: 85%	F: 41.5%		Poorest: 100%	NR
Kallalek et al.	2010	20-64: 64.4%	B: 11.0%				INK
		65+: 32.8%	O: 4.0%	Non-catchment area:		Non-Baltimore:	
				M: 72.9%		Least poor: 87.6%	
		Non-catchment area:	Non-catchment area:	F: 27.1%		2: 8.9%	
		<20: 2.2%	W: 91.6%			3: 0.5%	
		20-64: 68.8%	B: 5.4%	Of accruals:		Poorest: 3.0%	
		65+: 29.0%	O: 3.0%	Therapeutic:			
				M: 57.5%		Non-catchment area:	

		Of accruals:	Of accruals:	F: 42.5%		Least poor: 30.2%	
		Therapeutic:	Therapeutic:			2: 23.6%	
		<20: 9.9%	W: 85.4%	Non-therapeutic:		3: 20.2%	
		20-64: 61.7%	B: 10.9%	M: 54.7%		Poorest: 9.6%	
		65+: 25.5%	O: 3.6%	F: 45.3%			
						Of accruals:	
		Non-therapeutic:	Non-therapeutic:			Therapeutic:	
		<20: 9.7%	W: 83.1%			Least poor: 69.4%	
		20-64: 66.9%	B: 13.8%			2: 10.9%	
		65+: 20.1%	O: 2.7%			3: 4.7%	
						Poorest: 12.6%	
						Non-therapeutic:	
						Least poor: 68.9%	
						2: 9.1%	
						3: 4.7%	
						Poorest: 14.5%	
			Race reporting:				
Keegan et al.	2023	NR	73.4% studies reported	NR	NR	NR	NR
			race/ethnicity				
			Of CCT enrollees:			Of CCT enrollees:	Of CCT enrollees:
		Of CCT enrollees:	W: 85.8%			Private insurance: 58.2%	Charlson-Deyo 2+: 2.7%
		M: 60.4	B: 7.1%			Median income	Stage IV: 26.6%
Khadraoui et al.	2023		H: 3.8%	All AFAB	NR	<\$46,277: 12.4%	
		Of non-enrollees:	Asian: 2.2%			%w/o HS edu 15.3%+:	Of non-enrollees:
		M: 62.9	NH/PI: 0.2%			12.2%	Charlson-Deyo 2+: 5.7%
			AI/AN: 0.6%			Rural: 1.6%	Stage IV: 12.4%

			Oth: 9.7% Of non-enrollees: W: 78.7% B: 10.0% H: 6.8% Asian: 3.3% NH/PI: 0.3% AI/AN: 0.3% Oth: 11.3%			Of non-enrollees: Private insurance: 45.8% Median income <\$46,277: 16.9% % w/o HS edu 15.3%+: 21.5% Rural: 1.6%	
Kilic et al.	2023	Of age-reporting CCTs (avg): 65+: 51%	NHB: 9% NHAPI [,] 4%	Of sex-reporting CCTs (avg): F: 44%	NR	Briefly discuss potential role of SES	NR
Ko et al.	2015	Of total screens: M=61	NHB: 40% Hispanic: 9%	Of total screens: M: 39% F: 61%	NR	Private: 24% Uninsured: 10%	Accounted for ability and comorbidities as reasons for ineligibility and non- enrollment

Kwak et al.	2023	Of CCT enrollees: M: 63.7 Of non-enrollees: M: 68.4	Oth: 8.8% Of non-enrollees: NHW: 78.5% NHB: 10.3% H: 2.9% Oth: 8.3%	Of CCT enrollees: F: 53.8% Of non-enrollees: F: 47.8%	NR	mi. Lowest SES sector: 6.6% Of non-enrollees: Private insurance: 26.2% Distance traveled: 27.2	Of CCT enrollees: Charlson Deyo 3+: 2.9% Stage IV: 67.3% Of non-enrollees: Charlson Deyo 3+: 4.9% Stage IV: 40.2%
Ladbury et al.	2022	Mean age difference (participants vs. SEER): - 2.29 years	EIR (participants vs. SEER) W: 1.06 B: 0.86 Asian: 0.51 AI/AN: 0.74 H: 0.89	NR	NR	NR	NR

Langford et al.	2014	Of all patients: M: 62 65+: 43%	% enrollment rate within racial/ethnic group: NHW: 20% NHB: 18% Hispanic: 22% Asian: 10% Other: 14% Proportion of all patients: NHW: 78% NHB: 13% Hispanic: 4% Asian: 4% Other: 1%	F: 68%	NR	NR	Addressed demographic characteristics as predictors of comorbidity
Lythgoe, Savage, & Prasad	2021	NR	Of race-reporting CCTs: W; 76.3% B: 2.9% Asian: 7.9% AI/AN: 0.5% Oth: 1.8% Unknown/missing: 10.5%	NR	NR	NR	NR
Mishkin, Minasian, Kohn, Noone, & Temkin	2016	Of accruals: 75-84: 7.1% 85+: 0.4% Population estimates: 75-84: 18.5%	Of accruals: White: 87.8% Black: 8.3% AI/AN: 0.9% API: 3.0%	Women		Of accruals: Private (ovarian): 85.8% Medicaid: 5.5% Uninsured (cervical): 15.8%	Comment on intersection between age, race/ethnicity, SES, and ability

		85+: 10.4%%	Hispanic: 5.9%			Population estimates:	
			Non-Hispanic: 94.1%			Private (ovarian): 76.1%	
						Medicaid: 13.9%	
			Population estimates:			Uninsured (cervical):	
			White: 81.7%			8.9%	
			Black: 13.4%				
			AI/AN: 0.6%				
			API: 4.3%				
			Hispanic: 14.7%				
			Non-Hispanic: 85.3%				
						Addressed	Addressed
			Addressed			disproportionate impact	disproportionate impact
		Addressed	disproportionate impact of		Addressed	of eligibility criteria (i.e.,	of eligibility criteria on
		disproportionate impact	eligibility criteria (i.e.,		disproportionate impact	blood-borne virus and	individuals experiencing
		of eligibility criteria (i.e.,	differences in organ		of eligibility criteria (i.e.,	associated treatment,	physical, cognitive, or
Moloney & Shiely	2022	ECOG, complications) on	functioning,	Primary AFAB focus	blood-borne virus and	differences in organ	psychiatric comorbidity;
		older adult	comorbidities) on		associated treatment) on	functioning,	or on individuals
		underrepresentation	underrepresentation of		LGBTQ+	comorbidities) on	experiencing treatment
		underrepresentation	Black and Hispanic		underrepresentation	underrepresentation of	complications,
			participation			individuals with lower	metastases, or poorer
						SES	functional status
		Of accruals:	CCT enrollees	Of accruals:		Report briefly on	Briefly alluded to
Murthy,		30-64: 68%	White: 85.6%	M: 32.1%		potential SES intersection	potential comorbidity
Krumholz, &	2004	65-74: 23.7%	Black: 9.2%	F: 67.9%	NR	with race/ethnicity in	intersection with age and
Gross		70+: 8.3%	API: 1.9%			compromising	race/ethnicity in
			AI/AN: 0.3%	Population estimates:		participation)	compromising

		Population estimates:	Hispanic: 3.1%	M: 51%			participation
		30-64: 37.5%		F: 49%			
		65-74: 31.4%	Population estimates:				
		75+: 31.2%	White: 83.1%				
			Black: 10.9%				
			API: 2%				
			AI/AN: 0.2%				
			Hispanic: 3.8%				
		Of ACOSOG accruals:	Of all accruals:				Directly account for more
		<65: 56%	AA: 10.5%				advanced staging among
		65+: 44%	Hispanic: <1%	Elaborate in discussion		Elaborate in discussion	minority patients at initial
Newman et al.	2004			on interactions between	NR	on interactions between	presentation; refers to
		Population estimates:	Population estimates:	race, ethnicity, and sex		race, ethnicity, and SES	eligibility limitations in
		<65: 42.8%	AA: 9.4%				discussion for older
		65+: 57.2%	Hispanic: 3.4%				adults
						Of referrals:	
						IMD 1: 15.8%	
		Of referrals:	Of referrals:	Of referrals:		IMD 2: 14.7%	
		<67: 68.4%	W: 74.2%	M: 54.7%		IMD 3: 20.7%	
		<07. 08.4% 67+: 31.6%	W: 14.2% NW: 13.7%	F: 45.3%		IMD 4: 27%	Allude briefly to
Noor et al.	2013	07+. 51.0%	Unspecified: 12.1%	F. 43.3%	NR	IMD 5: 21.9%	intersection of age, SES,
INOUI Et al.	2013	Of comparators:	Unspecified. 12.1%	Of comparators:			and ability via discussion
		<67: 44.9%	Of comparators:	M: 51.9%		Of comparators:	of comorbidities
		<07. 44.9% 67+: 55.1%	NR	F: 41.8%		IMD 1: 13%	
		077. 33.170	T NTZ	1. 41.070		IMD 2: 14.2%	
						IMD 3: 16.3%	
						IMD 4: 29%	

						IMD 5: 27.4%	
Osann et al.	2011	NH	Of accruals: NH: 60% H: 40% 70% Hispanic enrollees: speak Spanish at home	Women	NR	Of accruals: Education (College+): NH: 80% H: 25% Income (\$25k+): NH: 83.3% H: 37.5%	NR
Owens-Walton et al.	2022	intersecting role of age in underpinning CCT	Primary focus of representativeness (proportions NR, only relative representation)	NR	NR	Briefly addresses intersecting role of SES in underpinning CCT disparities	Briefly addresses intersecting role of comorbidities in underpinning CCT disparities
Palmer et al.	2021	% participating in any cancer research 65+: 21.9% Exclusion: 75+	% participating in any cancer research African American: 47.6% Asian American: 16.7% Latino: 17.0% White: 26.2%	AMAB only	NR	% participating in any cancer research HS or less: 18.7% Private insurance: 27.8% Low health literacy: 15.5%	Health status <very good:<br="">24.1% Comorbidity 2+: 29.2% Exclusion: no physical, cognitive, mental disability</very>
Pang et al.		<70: 74.7% 70+: 25.3%	Black: 7.7% AI/AN: 1.0%	Of accruals: M: 59.1% F: 40.1%	NR	Report partially on intersection between minorities, SES indicators, and access to clinic	NR

			Hispanic: 1.7%						
			Non-Hispanic: 92.8%						
			Of GI total:						
			W: 87%						
			B: 7%				0.6	CT.	1
		Of GI total:	Asian: 2%			Of GI total:	Of	GI	total:
		65-74: 30%	Oth: 2%	Of GI total:		Not working: 19%	<5	CCI:	29%
		75+: 18%	Missing/unk: 1%	F: 40%		Private insurance: 35%	Stage	IV:	27%
Patel et al.	2023				NR				
		Of HN total:	Of HN total:	Of HN total:		Of HN total:	Of	HN	total:
		65-74: 19%	W: 92%	F: 46%		Not working: 14%	<5	CCI:	63%
		75+: 12%	B: 3%			Private insurance: 42%	Stage IV	/: 40%	
			Asian: 3%						
			Oth: 2%						
			Missing/unk:1%						
						Of total sample:			
			Of total sample:			Education			
			White: 56%			HS or less: 29%	0.6	1	
		Of total sample:	Black: 18%			Some college or		total	sample:
Patel et al.	2020	50 and younger: 24%	Latina: 18%	Women	NR	technical: 32%	Comort	oldity	
		51-65: 46%	Asian: 9%			College+: 39%	0:		71%
		65+: 30%					1+: 29%)	
			High acculturation: 85%			Income			
			-			<\$40,000: 37%			

						\$40,00: 63% Insurance None: 1% Medicaid: 14% Medicare: 29% Other public: 1% Private: 55% Employment Unemployed: 61%		
Patki et al.	2023	NR	Of CCT participants: W: 82.6% B: 9.8% Asian: 5.7% (greatest underrepresentation) H: 7.9%	AMAB only	NR	# reporting SES: 1 # reporting edu attainment: 3 Comment on lack of available data for reporting	Briefly comment intersection between ethnicity, SES, ineligibility	
Perni, Moy, & Nipp	2021	Phase I: Median: 60 Phase II-III: Median: 61	Phase I: W: 93% B: 2% Asian: 6% Phase II-III: W: 93% B: 4% Asian: 3%	Phase I: F: 57% Phase II-III: F: 44%	NR	Phase I: Median income <\$50k: 14% Distance <50: 57% Private insurance: 67% Phase II-III: Median income <\$50k: 16%		I: 79% II-III:

						Distance <50: 72%	
						Private insurance: 69%	
Pittel et al.	2023	Of patient total: 65-74: 32.7% 75+ 26.8%	Of total: W: 78.4% B: 13.7% L: 7.9%	Of total patients:	NR	NR	Of total patients: ECOG 2+: 15.2%
Pirl et al.	2018	Note reporting across studies		Note reporting across studies	NR	Note reported SES variables for each study	NR
Ramamoorthy et al.	2018	Among CCT participants: 2008-2013: 65+: 41% 2014-2017:	W: 80% Asian: 12% B: 4% Hispanic: 4%	Among CCT participants: 2008-2013: F: 44% 2014-2017: F: 52%		NR	NR

Riaz et al.	2023	Of CCT participants: 65+: 71.1%	W: 78.5% H: 4.4%	AMAB only	NR	NR	NR
Reihl et al.	2022	age-adjusted comparison rates (cohort age NR)	Asian: 1.5%	Of CCT participants: F: 37.5%	NR	NR	NR
Saphner et al.	2021	CCT enrollees: 65+:38.3%	B: 6.6%	CCT enrollees: F: 62.2%	NR	CCT enrollees: Median income: 0.25/1.00 Below PL: 6.3% Owner values: 0.18/1.00 Unemployed: 2.8% College: 27.2% <hs: 4.2%<br="">Crowding: 0</hs:>	NR
Sawaf et al.	2023	Primarily addressed underrepresentation of older participants per trial	relative underrepresentation of	Primarily addressed underrepresentation of females per trial		Address lack of CCT reporting SES, education, and rurality	Address lack of CCT reporting on comorbidity scores, limited ECOG, BMI, and smoking

			patients per trial				reporting
			Described significant				
			underreporting of Asian,				
			NH/PI, and AI/AN races				
			Of accruals:				
	2015		White: 83%	ND		ND	
Scalici et al.	2015	Apply age-adjusted rates	Black: 8%	NR	NR	NR	NR
			Other: 9%				
						Income	
						50-69 y.o. <\$50K: 34%	
		Offered CCT:				70+ y.o. <\$50K: 47%	
		50-69 y.o.: 74%					
		70+: 26%	Ethnicity (%Hispanic)	F:		Education	# Comorbidities
Sedrak et al.	2022		50-69 y.o.: 6%	50-69 y.o.: 80%	NR	50-69 y.o. <hs: 6%<="" td=""><td>50-69 y.o., 2+: 301%</td></hs:>	50-69 y.o., 2+: 301%
		Enrolled in CCT:	70+ y.o.: 3%	70+ y.o.: 64%		70+ y.o. <hs: 9%<="" td=""><td>70+ y.o., 2+: 51%</td></hs:>	70+ y.o., 2+: 51%
		50-69 y.o.: 68%					
		70+: 85%				Rurality:	
						50-69 y.o. rural site: 21%	
						70+ y.o. rural site: 24%	
			CCT participants:		CCT participants:		CCT participants
		CCT participants:	W: 90.3%	CCT participants:	<\$38k median income:	CCT participants:	Stage IV: 20.7%
		M: 56.4	B: 4.3%	F: 29.1%	13.2%	Distance: 61.1 mi	Charlson-Deyo=0: 81.6%
Shinder et al.	2023		Oth: 3.7%		W/o HS edu 21%+:		
		Matched controls:		Matched controls:	11.2%	Matched controls:	Matched controls
		M: 63.5	Matched controls:	F: 37.2%	Private insurance: 67.3%	Distance: 32.9 mi	Stage IV: 20.7%
			W: 86.0%				Charlson-Deyo=0: 69.8%

			B: 10.3%		Matched controls:		
			Oth: 2.9%		<\$38k median income:		
					19.0%		
					W/o HS edu 21%+:		
					17.9%		
					Private insurance: 41.0%		
			% of CCT enrollees:				
			AI/AN: 0.1%				
			East Asian: 9.1%				
			Asian (Oth, NOS): 0.5%				
			B/AA: 3.7%				
			Hispanic/Latino: 0.6%				
			H/Unk/Unsp: 0.1%				
			NH/PI: 0.1%				
			Oth/unk: 6.1%				Briefly address potential
Steventon et al.	2024	NP	Caucasian: 79.8%	NR	NR	NR	contributing role of
Steventon et al.	2024						comorbidity
			% of CCT enrollees by				comorbianty
			continent:				
			North America: 80.1%				
			(US: 78.1% total)				
			Europe: 13.0%				
			East Asia: 3.4%				
			Middle East: 1.3%				
			South American: 1.3%				
			Australasia: 0.7%				

		Of accruals:	Of accruals:				
		21-44: 16.53%	NHW: 86.57%				
		45-54: 28.23%	Hispanic: 3.4%				
		55-64: 28.08%	AA: 7.92%	Of accruals:			
		65-74: 20.61%	API: 1.86%	M: 16.05%			Comment on intersection
Stewart, Bertoni,		75+: 6.55%	AI/AN: 0.25%	F: 83.95%		Comment on intersection	between minority status
Staten, Levine, &	2007				NR	between minority status	& disqualifying
Gross		Population estimates:	Population estimates:	Population estimates:		& SES	cardiovascular
		21-44: 4.91%	NHW: 82.15%	M: 48.97%			comorbidities
		45-54: 11.82%	Hispanic: 4.24%	F: 51.03%			
		55-64: 20.84%	AA: 11.23%				
		65-74: 30.78%	API: 2.16%				
		75+: 31.64%	AI/AN: 0.22%				
		Of participants:					
		65+: 36%					
		70+: 20%					
Talarico, Chen, &	2004	75+: 9%	_	Reported "no imbalance	NR	NR	NR
Pazdur		Of SEER:	by [] ethnicity"	by sex"			
		65+: 60%					
		70+: 46%					
		75+: 31%					

Tharakan, Zhong, & Galsky	2021	NR	 % CCT enrollees overall: Black: 2.5% % CCT enrollees overall w/ location data: Black: 3.2% 	NR	NR	Briefly address role of national SES	NR
Unger et al.	2020	NR	Pharmaceutical company: B: 2.9% SWOG: B: 9.0% SEER: B: 12.1%	NR	NR	NR	NR
Unger, Gralow, Albain, Ramsey, & Hershman	2016			M: 16% F: 84%	NR	Income <\$20,000: 22% \$20,000-49,999: 30% \$50,000+: 48% Education < 2-year college: 55% 2-year college+: 45% Distance from clinic <13 miles: 28% 13+ mi: 72%	NR
Unger et al.	2013	% group enrolled onto	% group enrolled onto	% group enrolled onto	NR	% group enrolled onto	% group enrolled onto

		CCT:	CCT:	CCT:		CCT:	CCT:
		65+: 5.4%	White/other: 9.0%	M: 5.6%		<\$50K: 7.6%	0-1: 10.1%
			AA: 11.1%	F: 11.1%		\$50K+: 10.0%	2+: 7.5%
		Of evaluable				<college: 7.9%<="" td=""><td></td></college:>	
		respondents:	Of evaluable respondents:	Of evaluable		college+: 9.6%	Of evaluable
		65+: 22%	W: 94.4%	respondents:			respondents:
			AA: 2.5%	F: 62%		Of evaluable	0-1: 59%
			AAPI: 1.1%			respondents:	2+: 41%
			NA: 0.4%			<\$50K: 32%	
			Other: 1.6%			<2-yr. college degree:	
						34%	
VanderWalde et		CCT enrollees:					Account for intersecting
	2022	Median: 60	NR	NR	NR	NR	role of disease site and #
al. (2022)		%65+:39%					trial modalities
			Enrollment fraction by				
			group:				
We can at al	2022	Of enrollees:	NHW: 1.519%	AFAB	NR	NR	NR
Wagar et al.	2022	M: 60	NHB: 0.473%	АГАВ	INK	INK	INK
			Hispanic: 0.338%				
			AAPI: 2.379%				
		Median(Japan trials)= 59					Report on effects of
		Median(US trials)= 55				Driefly report on offecto	<u>^</u>
		Median(Japan pop)= 59	Japan			Briefly report on effects	
Yonemori et al.	2010		US	NR	NR	of SES intersecting with	
		Proportion >65 in Japan	(otherwise NR)			older patient	comorbidity impairing
		accruals: 35%				underrepresentation	older patients
		Proportion >65 in US					disproportionately

		accruals: 28%						
		NR	Of CCT enrollees:			NR	Of CCT enr	ollees
			Black: 2.1%	Of CCT enrollees:			HBV:	1.3%
			Asian/Other: 19.4%	F: 36.0%			HCV:	0.8%
Yekedūz et al.	2021				NR		HIV:	NR
			Of population:	Of population:			Brain metastases:	
			Black: 9.8%	F: 49.6%			ECOG <2: 82%	1.07
			Asian/Other: 8.1%				1000 <2. 02 /0	
Zafar et al.		Median: 71	AA: 12%	M: 63% F: 37%	NR	NR	PS	
							0:	13%
	2011						1:	59%
							2:	16%
							3:	11%
							4:	1%
							Comorbidities	
							CV:	66%
							Renal:	6%
							Hepatic:	1%
							Hematologic:	3%
							Endocrine: 30%	
Zhao et al.	2024	Total DMA: -8.15	NR	NR	NR	Briefly mention	Address intersectin	ng role
	2024					intersecting role of	of comorbidities	and

						financial strain	disease site
Zullig et al.	2016	Of accruals: M=57.8	White: 2.37% enrollment out of new cases Minority: 2.21% enrollment out of new	Of accruals: M: 1.46% enrollment out of new cases F: 3.25% enrollment out of new cases	NR	Of accruals: Q1 (fewest uninsured): 2.22%% enrollment out of new cases Q2: 2.43% enrollment out of new cases Q3: 2.49% enrollment out of new cases Q4 (most uninsured): 2.16% enrollment out of new cases	NR
Zuniga et al.	2020	NR	Of accruals: W: 80% B: 17% Other: 4% Of incident cases: W: 80% B: 15% Other: 5%	Men	NR	NR Report briefly on intersection between race and access to resources	NR

^{***}*NB*: Abbreviations included in this table are utilized as follows, listed alphabetically: AA: African American; ACOSOG: American College of Surgeons Oncology Group; AFAB: assigned female at birth; AI/AN: American Indian/Alaska Native; AMAB: assigned male at birth; AML: acute myeloid leukemia; ALL: acute lymphocytic leukemia; API: Asian or Pacific Islander; B: Black; CCC: comprehensive cancer center; CCT: cancer clinical trial; COPD: chronic obstructive pulmonary disease; CV: cardiovascular; DLBCL: diffuse large B-cell lymphoma; ECOG: Eastern Cooperative Oncology Group; edu: education; F: female; IQR: interquartile range; M: male; NCI: National Cancer Institute (NCI); NH: non-Hispanic; NIH: National Institutes of Health; NR: not reported; O: Other; PCa: prostate cancer; PL: poverty line; PS: performance status; SES: socioeconomic status; SGM: sexual and/or gender minority; W: White; WTP: willingness to participate; y.o.: years old