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Abstract--A closed form equation is derived for the calculation of the oriented diffraction pattern 
given by single particle size layer silicates having randomly interstratified interlamellar species. A general 
method for treating any particle size distribution is indicated and closed form results are presented 
for the Poisson, normal, gamma and binomial distributions. No restriction is placed on the number 
of interlayer types. The structure factors for these types are explicitly introduced. Graphs of two of 
the variables appearing in the equations applicable to particle size distributions provide a means of 
visualizing the effects of both interstratification and particle size on observed X-ray patterns. 

INTRODUCTION 

Over the years numerous publications have appeared 
on the subject of the theoretical calculation of diffrac- 
tion by irregularly interstratified laminar systems. The 
best known early paper is that by Hendricks and 
Teller (1942) dealing with the case of infinite crystal- 
lites. Of more interest to clay scientists, however, are 
treatments applicable to small particle size assem- 
blages. Of these the matrix method of Kakinoki and 
Komura (!952) appears to he the most complete in 
that structure factors for all of the layers are intro- 
duced and varying degrees of non-random interstrati- 
fication may be handled. For small particle size sys- 
tems containing only a few different types of layers, 
the direct cosine summation method of MacEwan 
(1958, 1959) may be applied. Of special value as a 
reference work is the set of mixing function curves 
published in book form by Amil, Garcia and 
MacEwan (1967) for a wide variety of two component 
mixtures over the entire range of nearest neighbor 
interactions. MacEwan's method in somewhat modi- 
fied form has been used with considerable success by 
Reynolds (1967) in calculating oriented diffraction 
patterns closely corresponding to actual diffraction 
runs. 

Though notationally different, both the matrix and 
cosine summation methods ultimately involve a 
rather cumbersome and, even in this computer age, 
time consuming summation over all possible phase 
shifts between all of the different layer types. While 
this approach seems unavoidable in the general case, 
M6ring (1949, 1950) has shown that when interstratifi- 
cation is random a closed form equation for the mix- 
ing function may be obtained for single particle size 
systems. 

In the treatment which follows the case of ran- 
domly interstratified single particle size systems is 
also dealt with, again leading to a closed form equa- 
tion. Since the structure factors for all of the layer 

types are explicitly introduced, the M6ring equation 
occurs as a special case, No limit is placed on the 
number of interlayer species; a continuum of inter- 
layer types may in fact be admitted by replacing cer- 
tain of the necessary summations by integrals. A 
general method for allowing a distribution of particle 
sizes is given and closed form results are derived for 
several distributions of practical interest. The final 
section of this paper explores what the author believes 
to be a novel and conceptually valuable means of 
visualizing how both interstratification and particle 
size contribute to produce observed diffraction fea- 
tures. 

THEORY 

Consider for the moment an oriented laminar par- 
ticle made up of n arbitrary layers (Fig. 1). Let the 
structure factor for the kth layer be denoted F (k). Then 
the amplitude of the scattered electric vector, exclu- 
sive of Lorentz polarization and other geometric or 
instrumental effects, is proportional to 

A = Z f(k)e i2n~zlk), 
k - 1  

where 

# = 1/d = 2 sin 0/2. 

The scattered intensity then is proportional to 

IAI 2 = 2 F(k)F (j)* e i~~ + IF(k)] 2, (1) 
L k > j  / R e a l  k T M  1 

where 
~% = 2 n t g z  (~) - z %  

Equation (1) applies to diffraction by a single par- 
ticle of arbitrary but fxed structure. To find the aver- 
age scattered intensity per particle for an assemblage 
of incoherently arranged particles, the equation must 
be averaged by taking into account the probability 
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n- layer particle 

! 
Fig. 1. Arbitrarily oriented n-layer particle. Local origin 
and structure factor for layer i denoted by z (0 and F (~), 

respectively. 

of finding a given phase shift between any two types 
of layers. 

+ ~ P(K)IF~r 2 . (2) 
K 

The indices K and L specify which layer types while 
the set {@stK,c)} is all of the possible positive phase 
shifts between layer types K and L. P(K, L;j) denotes 
the probable number of occurrences of phase shift 
@i and P(K), the probable number of occurrences of 
layer type K per particle. 

In what follows we shall assume that the particles 
consist of identical layers, referred to as basic layers, 
separated by different types of randomly occurring 
interlayer species. For clay systems the basic layers 
are the silicate layers while the interlayer types are 
the exchange ions, if any, plus any other materials 
which might be present between the silicate layers. 
The case of no interlayer material separating adjacent 
basic layers can be handled simply by letting the in- 
terlayer structure factor for this occurrence be zero. 

Single particle size systems 
Initially, assume that the assemblage is made up 

of particles all having the same number N of basic 
layers and that only two different interlayer types are 
present. Denote the basic layer structure factor by 
F o and the interlayer structure factors by FI and F2. 
In addition, assume that the interlayer structure fac- 

-> I 
z 

Fig. 2. Detail of particle having two interlayer types show- 
ing local origins for structure factor evaluations. 

tors are evaluated at local origins located midway 
between the local origins of the basic layers on either 
side (Fig. 2). Then we have the following sets of poss- 
ible phase shifts: 

{@s(o,0)} = {n@l + m%} 
{%1,1)} = {(n + i)@1 + m@2} 
{@.i(z.2); = ',n@l + (m + 1)@2' , 

l@j~o,1)l = ',@jll,o)] = {(n + �89 @1 + mq02} 
I@j(0,2)I = {Oj(2,0)] = ~1~l(/)1 "{- (m Jr �89 

:@j(l,2)} = {@j(2,1)] = {(n + 1)(01 -/'- (m + �89 

where 
n + m ~ < N - 1  
@i = 2n,uzi 
zi = center-to-center distance 

between adjacent basic layers 
separated by an Fi layer. 

Here n and m are the numbers of F1 and F2 layers, 
respectively, which occur between the two layer types 
indicated in the subscripts. 

For particular values of n and m we have 

( n + m )  
P(0, 0; n, m) = p"l p~[N - (n + m)], 

where p~ = probability of occurrence of an Fi type layer 
(171 + P2 = 1). The factor 

is the probability that exactly nFt layers and mF2 layers 
occur in (n + m) spaces regardless of order, while the 
last factor gives the number of ways (n + m) contiguous 
spaces may be fitted on an N-layer particle. By summing 
over all possible n and m values, the contribution of 
FoF~ terms to the bracket in equation (2) is found to be 

N--1 N- -n- -1  - -  / n  + m \  ,, 
FoF* Z L { n )Ptpz[N-(n+m)]e't"~~ 

.=0  m=0 \ / 

For mathematical convenience the n - - m  = 0 term 
has been included. This may be allowed for by adding 
a -2NJF0] 2 term to the final equation. 

In considering the contribution of terms involving 
F~ and F2 some decision must be made as to the 
occurrence of material at the outer faces of the par- 
ticles. The assumption chosen here, primarily because 
of the somewhat less complicated mathematics in- 
volved, is that the regions at the two faces can be 
treated identically to the interlayer spaces. That is, 
for an N-layer particle, there are N + 1 equivalent 
places where 'interlayer' types occur. The remaining 
probabilities in equation (2) may then be written: 

P(I, 1 ; n, m) = p~P(O, 0; n, m) 
P(2, 2; n, m) = p~P(O, 0; n, m) 

P(1,2;n,m) ~- P(2, 1;n,m) = plP2P(O,O;n,m) 
P(1, O;n,m) = P(0, 1;n,m) = plP(O, O; n, m) 
P(2, 0; n, m) = P(0, 2; n, m) = p2P(0, 0; n, In) 

P(0) = N;P(I)  = (N + 1)p~;P(2) = (N + 1)p2. 
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As before, n and m designate the numbers of interven- 
ing F~ and F2 layers, respectively, between the two 
layers concerned. 

Substituting all of these expressions in equation (2) 
and factoring results in 

= 2[(Fo + p~F1 e i'p'/2 + pzF 2 e i'p2/2) J A I L  

(F~ + p1F* e iq'ff2 + P2F~ e i~~ 
N - ~ - , - ~  ( )  

x ~ ~ [ N - ( n + m ) ]  n + m  P]P~' 
n=0~ m=0 n 

e i in~  + mcP~)JRea 1 

- NlFol 2 + (N + 1)(p~lF~[ 2 + p21F212). (3) 

The negative rather than positive sign for the IFol 2 
term outside of the bracket arises from the inclusion 
of the -2NIFo  12 term mentioned before. Note that 
because of the symmetry of the structure factors in 
equation (3) it is immaterial whether the local z-axes 
of the layers in any one particle are all parallel or 
antiparallel to the z-axis of the zero phase shift refer- 
ence plane (Fig. 1). Even if the structure factors have 
imaginary components, an "up-side-down" particle 
gives on the average the same diffracted intensity as 
a "right-side-up" one. Within each particle, however, 
all local z-axes must have the same sense; otherwise 
there would be, in effect, double the number of layer 
types. 

By transforming the indices in equation (3), the 
double summation is found to reduce to two geo- 
metric series. 

Double sum = ~ (N - r) ~ eiO~y'-~(p2 ei~) ~ 
r=O t=O 

N-1 N - I  
- - N  ~ e ' -  ~ r ~  r 

r-O r-O 

= N / ( 1  - ~)  - ~(1 - ~ ) / ( l  - ~)2,  

where 
O~ = Pl  ei~~ + P2 eio2" 

Therefore, for an assemblage of N-layer particles, the 
average diffracted intensity per particle is propor- 
tional to 

] [~v 2 ~3fit N ~(1-- ctu)~] 

-- NIFol 2 + (N + 1)7 

where 
fl = Fo + p~F~ e !~'/2 -t- p2F2 e i~2/2, 

denotes the operation of changing each structure 
factor, but not its associated phase shift multiplier, 
to its complex conjugate, and 

y = p l l F l l  2 +p2lF2] 2. 
When a derivation analogous to the above is made 

for more than two interlayer types, equation (4) again 
results in exactly the same form: ~, /3 and y need 
only be modified by adding the appropriate terms. 

Ih this case a multinomial, rather than binomial, 
expansion involving the phase shifts is found when 
equation (2) is explicitly written out. In the limit of 
an infinite number of infinitesimally differing inter- 
layer types, a continuum of species may be admitted 
by use of integrals in calculating the required ~, fl 
and ? variables. Specifically, 
let 

f = ~ p~ e io~ + P ( ~ ) e  i~ d~_ 
k=l 

f /3 = Fo + ~ p~F~ e '~/2 + P(~)F(~) e ~ / ~  d~ 
k=l 

and 

f = ~., pkl fk[  2 + P(~)[F(~)I 2 d( ,  
k=l 

where 

M = number of discrete types, 
is the continuum parameter, 

Fk is the structure factor for discrete inter- 
layer type k, 

F(~) is the structure factor for continuum 
interlayer type (, 

% and ~ )  are the phase shifts between adjacent 
basic layers when interlayer types k and 

intervene, respectively, 
P(() is the continuum probability density 

function, 
and 

f Pk + P(~)d~ =- 1. 
k=! 

Then the insertion of these variables into equation 
(4) gives the desired diffraction intensity. The 
examples given in the Applications section of this 
paper should make clear the construction of the ~, 
[3 and Y variables for any particular case. 

Extension to particle size distributions 
In common with other single particle size calcula- 

tions of this sort, equation (4) gives rise to interfer- 
ence fringes associated with sharp diffraction peaks. 
A more realistic approach which serves tO attenuate 
or eliminate these fringes is to introduce a particle 
size distribution and suitably average equation (4). 
Let the probability that a given particle in the assem- 
blage have N basic layers be denoted J'(N). Then 

~ ( N ) =  1 and ~ N ~ ( N ) = N ,  
N = O  N = O  

where N is the average particle size. The case 
N = 0is included merely for mathematical convenience 
as many useful normalized distributions have non-zero 
values for ~(0). 

Since equation (4) gives the average intensity per 
N-layer particle, we have 

A a I I.v = ~ ~(N)IAI2N,~v (5) 
N=I 

= 2[flf l~B(~)]~o.~ - ~ l F o l :  + ( .~  + 1 - ~ 0 ) ) ~ ,  
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where 

B(~) = N / ( 1  - ~) - ~( l  - ~)/(1 - ~)2 

and 

r = ~ ~ ( N ~  N. 
N - 0  

Often the interlayer structure factors are negligible 
in comparison to the basic layer structure factor. For 
this approximation then fl = F o and y = 0. The basic 
layer structure factor is seen to be separable, and a 
pure "mixing function", ~(kt), results. 

]A]~v 
r = - 2B(C0Rea , -- 1~ (6) IFol 2 

The function B(a) which is defined in equation (5) 
appears to have a singularity at ct = 1. Combining 
its terms over the common denominator ( 1 -  a)2, 
however, shows the numerator to likewise have a 
second order zero at this point. A practical conse- 
quence of this behavior is the loss of significant digits 
when ~ is close to one. Thus a Taylor expansion for 
B(ct) about a = 1 will be of use for actual calculations 
in the immediate neighborhood of a -- 1. Straightfor- 
ward application of algebraic techniques shows the 
coefficients of this expansion to be 

/ N  + l \ L  
N _ ~ + , ~ n + 2 )  ( ) , ~ N  (7) bn 

where 

B(~) = b,(c~- 1)". 
n=0  

When the binomial factors are explicitly written out. 
the leading terms are found to be bo = ( ~ z  _ N)/2 
and b~ = ~ - Nl'6. As one would anticipate from 
general principles, the mixing ['unction in equation (6) 
i s  seen to have a value of N 2 at the principle diffrac- 
tion maximum I~ = l). 

Diffraction by assemblages containing but  one kind 
of interlayer species is also described by equations 
(5) and (6) since obviously we may set Pl equal t o  
one. Note. however, that equation (5) still applies to 
N-layer particles having N -  1 "interlayer" regions. 
If the usual approximation ~s made that end effects 
can be ignored, then the interlayer structure factor 
can be included in the basic layer structure factor 
and equation (6) applied. For this case the mixing 
function simply generates the diffraction line profile 
D(#) characteristic of the particle size distribution 
assumed. Because ~1 - 1 for all ~t, equation (6) may 
be simplified to give 

D(p) = (1 - ZRealJ/(I-coso), (Sj 
where 

69 = 2n/td(001). 

Specific distributions 

Use of equations (51 and (6) requires evaluation of 
the variable ~ which is itself dependent on the particle 
size distribution assumed. If the distribution is rela- 

tively narrow, directly carrying out the indicated sum 
over all non-negligible ~(N) is feasible. For certain 
distributions, however, closed forms for z as a func- 
tion of both c~ and the distribution parameters may 
be derived. 

As an example, consider the Poisson distribution 
which is defined by the equation 

~ ( N )  = e -  • (N~N/N! 

where 
N = 0 ,1 ,2 , . . .  

Substituting these values for ~(N) in the general 
expression for z gives 

z = e - ~  ~ (N~)~/N! = eN(~-lk 
N = 0  

By transforming the summation index in equation (7) 
so that the new index starts at zero, the b, coefficients 
in the B(~) expansion for the Poisson distribution are 
found to be 

bn ~- (~)n+ I ( N  _~_ F/-~ 2)/(n + 2)! 

These results are summarized in Table 1. 
Also presented in Table 1 are similar results which 

have been derived for the normal, gamma and bino- 
mial distributions. Note that the two parameters of 
the normal and gamma distributions allow specifica- 
tion of the first two distribution moments. The form 
of the binomial distribution, having three independent  
parameters, allows specification of the first three. 

In order to obtain closed forms for z in the cases 
of the normal and gamma distributions, it was necess- 
ary to replace the summations by integrals. While this 
approximation seems severe, particularly for small 
particle sizes, in practice it works quite well. As an 
example, the four place printout of an exact calcula- 
tion involving a normal distribution with N = 5 and 
a 2 = 1 truncated at N = 1 and 9 differed not at all 
from that for a similar calculation utilizing the inte- 
gral approximation. The principle diffraction maxi- 
mum at ~ = 1 had in both instances been normalized 
to one. 

Infinite crystallites 

From equation (4), which gives the dllli'acted inten- 
sity for single particle size assemblages, it is a simple 
matter to find the form of the working equations for 
infinite crystallites. To obtain a finite limit as N goes 
to infinity, division of both sides of the equation by 
N is necessary to get the intensity per basic layer 
rather than per particle. For large N the second term 
in the bracket is seen to go to zero while the 7 multi- 
plier goes to one, thus giving 

IA[iZ~f -- 2[tiff*~(1 - ~)]Real - -  lEo[ 2 q- 7. (9) 

If the mixing function approximations are applied, 
there results 

(~(~)ine = 211 / (1  - a)JReal - -  1. (10)  

The final equation in Section 2 of the paper by Hen- 
dricks and Teller (1942), though more complicated 
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Table 1. Summary of closed form results for z and B(c 0 
expansion coefficients for various distributions 

Def . :z=/z le  ~" and ~={c~]e ~ = x + i y  
where - n  ~< q9 ~< n and x and y are real 

A. Single particle size B. Poisson distribution 
~(N) = 1 for N = N ~'(N) = e - N N ~ / N !  

= 0 otherwise N = 0, 1, 2 . . . .  
z = @ z = e g(~- 1) 

I~1 = I~1 ~ I~1 = e & ~ -  ~) 
r/ = Nq~ ~/ = Ny 

bo = N ( N  + 1)/2 b0 = N ( N  + 2)/2 
b~ = N ( N  ~ - 1)/6 b~ = Nz(~: + 3)/6 

C. Normal distribution (integral approximation) 
1 e - (N - / ~ ) ~ / 2 ~  2 ~(N) = ~ 

N = . . . , - - 1 , 0 , 1 , 2 , . . .  
where N and ~ are such that ~(N < 0) is negligible. 

T ~ ~ l  e(alnc02/2 

ITI = I~I w e~=~ln=l~l-'~=)/2 
rl = q~(N + a 2 lnlctl) 

b0 = [N(/Y + 1) + az]/2 
b~ = ~(?~2 _ 1 + 3a2)/6 

D. Gamma distribution (integral approximation) 
l 

~ ( N ) = ~ N  k-le-N/" N = 0 , 1 , 2 , . . .  

where �9 = (N - N)2/N = N Z / N  - N and k = N/e. 
= 1/(1 - �9 

It[ = 1/[(1 -- �9 lnl~z[) 2 + (�9 
t / =  k tan- ~ [�9 - e lnl~l)] 

bo = k~[(k + 1)�9 + 1]/2 
b, = kE[(k + l)(k + 2)�9 - 13/6 

E. Binomial distribution* 

N = S , S +  I , . . . , S + R  
where p = (.~ - S)/R, q = 1 - p, (N  - ~)2 = Rpq and 

(N  - ~)3 = Rpq(q - p). 
T = ~S(p~t + q)R 

Izl = NS[ (p x  + q)2 + (py)2]g/2 
r/ = SO + R tan- ~ [py/(px + q)] 

bo = [ N ( N  + 1) + Rpq]/2  
b~ = [N(N 2 -- 1) + Rpq(q - p + 3N)]/6 

* Derived results also apply to more general beta distribu- 
tion (S and R + S not necessarily integral). 

in appearance, can be shown to be mathematically 
identical to equation (I0). 

APPLICATIONS 

By this point the reader may well be somewhat 
overwhelmed by the number of  different variables 
which have been introduced. In actual practice, how- 
ever, these variables serve to break the problem into 
various independent and fairly simple parts. A step- 
wise procedure for a complete calculation using equa- 
tion (5) might be the following. 

Given p; 
(1) evaluate ~(p), 

(2) calculate z(c0; functional form is dependent on 
particle size distribution, 

(3) evaluate B(a, z); use expansion for a close to one, 
(4') calculate structure factors; all interlayer structure 

factors must be calculated with respect to local 
origins located midway between the local origins 
of the basic layers on either side, 

(5) evaluate fl and fl*, then form product tiff*; if all 
structure factors are real then fl = fit, 

(6) calculate 7, 
(7) insert ~, leo[ 2 and real part of flfl*B(oO into 

equation (5) and 
(8) apply Lorentz and geometric factors to result. 

Thus, in a computer program, the evaluation of ~t, 
z, B(~), the structure factors, fl[3 t, and y might each 
be carried out by separate short subroutines. The 
function of the main program would be simply to 
organize the input data for use by the subroutines 
and to combine the various results in step (7). 

The range of application of the equations which 
have been derived is surprisingly broad because of 
the simple additive construction of  the ~, B and 7 
variables. It is hoped that the few examples given in 
this section will demonstrate this versatility. In all 
cases the mixing function approximation has been 
used in preparing the figures so that structure factor 
effects do not mask those arising from mixed layering. 
Calculations for the figures were performed on a 
Model  9820A Hewlet t-Packard calculator, a pro- 
grammable desk top computer of modest memory 
size and speed. Typically one to  t w o  seconds were 
required per data point. A two term exoansion for 
B(~) was used when Is - i I < 0"01. 

Disc re t e  in ter layer  t ypes  

Consider a partially hydrated 2:1 clay hav ing  a 
random mixture of spacings corresponding to zero, 
one and two water layers separating adjacent silicate 
layers. For  the purposes of this calculation, we shall 
assume these spacings to be 9-5, 12"5 and 15"5•, re- 
spectively. The basic layer is taken to be the 2:1 layer 
exclusive of exchange ions. If the interlayer structure 
factors are denoted by their characteristic spacings, 
then F(9'5) is the structure factor for the anhydrous 
exchange ions while F(12"5) and F(15.5) include the 
scattering by one and two water layers, respectively. 
Since each type of layer has a center of symmetry, 
the structure factors may all be evaluated with respect 
to these centers. 

The e, fl and y variables for this three component 
case are 

c~ = p(9"5) e i19~" + p(12"5)e i25~u 

+ p(15'5) e i31,~,, 

fl = F(2:1) + p(9'5)F(9'5) e i95~" 
+ p(12.5)F(12-5) e nzs"u 

+ p(15"5)F(15"5)e i~55'~u, 
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0.33:5/0.333/0.335 

0.50/025/~25 

1.0, 

Q5 

Q25/G50/Q25 

0.25/Q25/0.50 

~ 0 . 6 0  
( Va),~-' 

Fig. 3. Calculated intensity vs # for three component mixture. Probabilities given as p(9.5)/p(12.5)/ 
p(15.5). Five layer Poisson distribution. 

and 

7 = P(9"5)IF(9"5)I 2 + p(12'5)lF(12"5)] z 

+ p(IS.S)JF(IS.S)J 2. 

Figure 3 shows mixing function calculations for 
four sets of probabilities. A Poisson particle size dis- 
tribution with N = 5 was assumed. The small vertical 
lines along each # axis denote the positions where 
the basal lines would occur for the pure components. 
It is of some practical interest to note that, due to 
the near coincidence of the higher order basal lines 
of all three components near/~ = 0.32, a sharp peak 
is always observed in this region even when mixed 
layering greatly broadens other features. This effect 
has in fact been observed by Rowland, Weiss and 
Bradley (1956) in their diffraction studies of heated 
clay films. 

A continuum o f  interlayer types 

Given the partially random nature of isomorphous 
substitution in expansible 2:1 clays, it is reasonable 
to expect small variations in spacing between adjacent 
silicate layers, particularly when sorbed interlayer 
species are present. If these variations occur randomly 
along the z-axis, then the equations developed here 
may be applied to determine how this disorder effects 
the basal diffraction pattern. 

Assume that the center to center spacing between 
adjacent 2:1 layers, D, has a normal distribution 

1 P(D) = - -  e - ( o -  ~oF/2 ~ 
~/(2n) A 

where 
z o = average spacing 

= apparent d(O01) 
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~c 

'!I- 
J k= 

2 

A = 0 .02  z o 

A = 0 . 0 4 z  o 

m 

3 4 5 6 
(z  o / d )  

Fig. 4. Calculated intensity vs /~ for normal continuum of interlayer spacings. Ten layer Poisson 
distribution. 

and 
A ~ z o .  

Then. by taking D to be the continuum parameter. 
we have 

ct = P(D) e i2~"D dD - e -  2(n#A)2 e i2nt~z~ 

I 

f l =  F ( 2 : l ) +  [ P(D)F(D) ei""D dD 
I 

= F(2:l) 1- F(zo)e -~'a)2/2 e i~"z~ 

t3* = ~,  
and 

~ P(D)IF(D)r 2 dD - f(zo)t 2. 

In deriving fl and 7, the simplifying assumption has 
been made that the variation in the interlayer struc- 
ture factor, F(D), is small enough that the average 
interlayer structure factor. F(zol. may be substituted. 

In Fig. 4 mixing function calculations for two dif- 
ferent A/zo ratios are plotted. This condition is analo- 
gous to strain broadening in metals. Qualitatively it 
is seen that the presence of a continuum of interlayer 
types results in a gradual loss of scattering coherence 
as # increases and that the greater the distribution 
of interlayer spacings, the more rapid is the loss of 
sharpness in the diffraction features. The decrease of 
peak intensity with increasing /~ differs from that 
caused by temperature effects in that the integrated 
intensity of each peak remains very nearly constant 
rather than suffering an exponential decrease with ~2. 

When A is small compared to Zo, the principle dif- 
fraction maximum at/~ - 0 has a line shape almost 
identical to that calculated for the same particle size 
distribution without interlayer disorder. Even though 
this line is not observable in practice, any parameter 
relating to its shape may be determined by an extra- 
polation of the parameter values for the higher order 
peaks. 

In particular, for the two plots given in Fig. 4, the 
width at half2height of the zero order line falls on 
an extrapolated graph of line width vs diffraction 
order squared for the higher order (observable) peaks. 
By using the square of the order as the abscissa, a 
nearly linear graph having only slight upward curva- 
ture results. Though space limitations prevent a fuller 
development of this subject here, it is clear that infor- 
mation concerning both the particle size distribution 
and degree of interlayer disorder is recoverable from 
such graphs. 

A mixture o f  discrete and continuous interlayer types 
A possible model for a partially dehydrated 2:1 

clay would involve a mixture of 9.5 and ]2.5 A spac- 
ings with an added continuum of intermediate spac- 
ings. While it might be argued with some justification 
that the adjacent layers would no longer be strictly 
parallel, a calculation using this model should none 
the less provide some insight into the effect of such 
transitional regions on the oriented diffraction pat- 
tern. 

Assume that the continuum probability density is 
constant; that is 

P(D) = p(tr.)/(12"5-9-5) 

where 

p(tr.) = total probability that a given spacing lies 
in the continuum range 9"5 < D < 12"5. 

Then 
= p(9'5) e il9~u d- p(12-5) e i25~ 

f l  "5 
+ P(D) ei2nuD dO 

"5 
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~ I 
a5/O,O/a5 

0~5/(110/0h5 

O~/Q2/O~ 

(12  - 

0 
0 0.05 QIO 0.15 020 025 0.50 0.35 0.40 0.45 0.50 0.55 0.60 

(I/d),~" 
Fig. 5. Calculated intensity vs/~ for two component mixture with added constant probability of tran- 

sitional spacings. Probabilities given as p(9.5)/p(tr.)/p(12.5). Eight layer Poisson distribution. 

The form Of the ]3 and ~ variables will depend on 
the interlayer structure factor used for the transitional 
region. 

Figure 5 shows mixing function curves for equal 
amounts of the two discrete components with p(tr.) = 
0"0, 0"1 and 0"2. It is seen that the major effect of 
the transitional components is to decrease the sharp- 
ness and maximum intensity of the strong peak at 
# = 0-32. Generally speaking the latter two patterns 
for large # resemble calculations for the two discrete 
spacings with a somewhat smaller particle size. Why 
this is so will be dealt with in the final section of 
this paper concerning the B(c0 map, 

Particle size estimates for one-component systems 
If a reasonable model for the particle size distribu- 

tion of a one-component system is known, then by 
use of equation (8) a series of profiles may be calcu- 
lated to find the parameters which give the best agree- 
ment with the observed line profile (after correction 
for structure factor effects, K 7 doubling, etc.). Of the 
distributions discussed here, the simplest from this 
standpoint is the Poisson since it contains but one 
adjustable parameter. 

Figure 6 shows the profiles given by the Poisson 
distribution for a variety of average particle sizes. 
Over the range shown, the widths at half-height (mea- 
sured from zero diffracted intensity) are given to 

within one percent by the equation 
0.87 

W =  (~ + VS)d(OO1) 
where Wis the width measured in units of #. 

) -  

2 
Lu 
h-  
Z 

LL 
> 

E re  

(zo/d) 
Fig. 6. Poisson distribution diffraction profiles for various 

average particle sizes. 
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Since the first order basal lines of layer silicates occur 
at low enough angles that sin0 ~ 0 and cos0 ~ 1, a 
good estimate of the average number of layers making 
up a coherent diffracting unit is given by 

= 0'87 (20)~176 1.5, 
(A20)oo l 

where 
(20)o01 = (001) diffraction angle, 

and 
(A20)oo~ = angular width at half-height 

of (001) peak. 

T H E  B ( ~ )  M A P  

Though a discussion of the B(~) function defined 
in equation (5) might more logically be a part of the 
theoretical section of this paper, it has been deferred 
until now in order to include the examples given in 
the previous section. The discussion will center on 
the mixing function case (equation 6) where the dif- 
fracted intensity is given within a constant simply by 
twice the real part of B(c0. Even if the mixing function 
approximations are not applied in an actual calcula- 
tion, this case is conceptually quite useful because the 
interlayer structure factors generally make only a 
minor contribution to the final calculated pattern. 

For the moment it is useful to forget the original 
definition of the c~ variable and consider B(e) just to 
be a function defined in the complex plane. Given 
any particle size distribution we may calculate con- 
tour maps of the real and imaginary parts of B(e) 
on the (x, y) plane, where o~ = x + iy. Since, in an 
actual calculation, c~ is confined to the unit circle, the 
behavior of B(c0 in this region is of the most interest. 

/ /  

-. -cu~ -. -0.4 -0.2 0 0.2 0,4 0.8 o.8 ' 0'2 ' n'4 ' n'~ ' n'R ' lio 
X 

} ~ 

/ \ IZ 
/ 14 

/ .4 ~6 

/ ~ ,8 / 
/ ao / 

-,:'o I -~8' oli 04 o~ o:~ ' o'.,~ ' 0:8 ' da ' ~.o 
• 

Fig. 7. B(c~) maps for five (top) and six (bottom) layer single 
particle size distributions. Heavy lines are contours of real 
part and light lines, of imaginary part (unit contour 

intervals). 
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Fig. 8. B(~) maps for 6-layer Poisson distribution (top) and 
for infinite particles (bottom). Heavy lines are contours of 

real part and light lines, of imaginary part. 

Figures 7 and 8 show such calculations for four 
different distributions. In all cases the real and im- 
aginary parts have been superpositioned since the 
contours of one are the lines of steepest descent of 
the other (a general property of analytic complex 
functions). Only the positive y half-plane is shown 
since the real part of B(ct) is symmetric and the im- 
aginary part antisymmetric about the x-axis. In par- 
ticular Fig. 7 shows maps for 5 and 6-layer single 
particle size "distributions", while Fig. 8 applies to 
a 6-layer Poisson distribution and to infinite crystal- 
lites. It is remarkable how similar the general features 
of the maps are, considering the differences in the 
distributions. Within the unit circle the real part of 
each increases to a maximum as c~ approaches one. 
Away from c~ = 1 the slope decreases and becomes 
comparatively gentle for negative x. The saddle-points 
evidenced in the single particle size maps are seen 
to average out to nearly circular contours in the Pois- 
son map. (The maps are additive since z is itself addi- 
tive.) In the map for infinite crystallites the contours 
are perfect circles. 

The most important point to be made here is that 
no reference has been made to any particular mixed 
layer types in constructing these maps. They are 
defined entirely by the particle size distribution. 

Now return to the original definition of the a vari- 
able. Given a specific case of mixed layering we have 

O~ = 2 Pk ei~~ + I- P(~) ei~~176 d~, 
k d 

where 

and 
(1) ~0 k = 2=/~Za; ~o({) = 2~zpz({) 
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Thus, e can be constructed by plotting end-to-end 
its vector components on the complex plane. The dis- 
crete types when plotted give a broken line while the 
continuous types give a curve (the limit of an end-to- 
end plot of vectors of length p(~)A~ and phase tp(~) 
as A~ goes to zero). Condition (1) expresses the fact 
that the value of # determines how the end-to-end 
construction will be folded; condition (2) requires that 
the total length along the construction remain one 
regardless of #. 

For a specific set of interlayer types and probabili- 
ties, e becomes a function of # only without reference 
to particle size. For each specification the curve that 
e traces out on the complex plane as # varies may 
be plotted. For later reference the curve may be 
marked in equal increments of #. The curve starts 
out in every case at e = 1 for # = 0 and because of 
condition (2), is confined to the unit circle. 

The independence of the B(e) map from specific 
interlayer species and of the a-plot from particle size 
considerations have been stressed to make clear that 
all that is required for a calculation involving a given 
set of interlayer types for a particular particle size 
distribution is a superposition of the appropriate 
graphs. The conceptual value of this observation will 
hopefully be made plain by the following examples. 

The simplest case is that of a single component 
system. Here e = e '~. e is constrained to move uni- 
formly on the unit circle with angular velocity pro- 
portional to d(001). In effect e picks out that curve 
on the B(e) surface which gives D(#), the diffraction 
profile function. Conversely, the Poisson diffraction 
profile given in Fig. 6 in the Applications Section for 
N = 6 is linearly related to the unit circle cut of the 
B(e) map in Fig. 8. In the case of the map for infinite 
crystallites, also given in Fig. 8, the unit circle is 
simply the 0.5 contour level. This value gives zero 
diffracted intensity for all # as it should (except at 
q~ = 0, where B(e) is undefined). For  the six layer 
single particle size distribution (Fig. 7), the unit circle 
is tangent to the 3.0 contour level at q) = re/3, 2~/3 
and ~, thus giving zero values for ~ # )  at these points. 
As a consequence, subsidiary maxima are observed 
in the diffraction profile for this distribution. 

Now consider the case of more than one discrete 
component. Here the construction of e results in a 
broken line because of the differing phase angles of 
its various components. Initially at /~ = 0 all of the 
component vectors are aligned and the calculated in- 
tensity has its maximum value. As # increases e must 
depart from the unit circle and describe a series of 
loops. As one would intuitively expect, the more 
closely the component angular velocities (i.e. basal 
spacings) match, the more nearly the a-plot initially 
resembles that of a one-component system. To a fairly 
good approximation, regardless of the particle size 
distribution considered, the calculated diffraction pat- 
tern has maxima where the loops are closest to e = 1 
and minima where the loops are furthest from this 
point. Only if the loops quite closely approach e = 1 
are sharp peaks observed even in the case of infinite 

oa - -  / .g7 

o - [  "~ 0 

-0.8-- \ / 

...... i-A'-o~ -o= o A' ...... ' o!= i ,!o 

Fig. 9. ~-plot for p(9.5)/p(12.5)/p(15.5) = 0.333/0"333/0"333. 
Values of # are noted on curve. 

crystallites. In addition it is clear that the ratios of 
the component spacings must be rational in order 
for the pattern ever to repeat. 

Figure 9 is an a-plot for the equi-probable three 
component mixture discussed in the first part of the 
Applications Section. All of the points mentioned 
above can be verified by a careful comparison of this 
a-plot with the calculated diffraction pattern in Fig. 
3. Note that, even without going to the rather exten- 
sive labor of constructing a B(e) map, it is possible 
to extract a great deal of semi-quantitative informa- 
tion just from the a-plot. 

The limit of an infinitely large number of discrete 
components with only infinitesimally differing spac- 
ings defines the continuum case. Again, at/~ = 0 the 
construction of e is a straight line along ~o = O. As 
/~ increases, however, the line must become increas- 
ingly bowed due to the smooth variation in the angu- 
lar velocities of the infinitesimal components. Since 
there is no way the slower moving components can 
ever catch up with the faster ones, it is obvious that 
e must become zero in the limit as/~ goes to infinity. 
The constant length vector construction of e simply 
winds itself up more and more tightly around the 
origin. The calculated intensity thus approaches that 
expected for N incoherently scattering layers. 

As an example of this behavior we may look at 
the normal distribution continuum discussed in the 
second part of the Applications section. Examination 
of the formula derived there shows e to trace out 
a spiral which descends upon the origin. The greater 
the distribution of spacings (i.e. A), the more rapid 
is the approach to zero. 

When both discrete and continuous components 
are present, again, the continuous components even- 
tually wind themselves up and become effectively zero 
in length. In the third part of the Applications section 
dealing with this case note how the integral contribu- 
tions to c~ drop out for large # due to the presence 
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of the 1/# factors. In general, after a certain point 
the pattern is determined almost entirely by the dis- 
crete components. Since the sum of the discrete pro- 
babilities is necessarily less than one, c~ is also now 
confined to a circle of radius less than one. A consider- 
ation of the general changes in the B(a) map with 
particle size shows that the calculated pattern for this 
reduced circle closely resembles the pattern one 
would calculate for the same discrete components 
with renormalized probabilities but with a smaller 
average particle size. 

(As an aside, it might be noted here that quite 
reasonable looking 'small particle size' calculations 
may be made using the comparatively simple infinite 
crystallite equations (9) and (10) just by scaling down 
e. By use of a scale factor, the singular point for B(c0 
at e = 1 is thus avoided. A scale factor close to one 
gives a pattern typical of large crystallites, while a 
smaller scale factor causes the peaks to broaden in 
a manner characteristic of small particles. For one- 
component systems the peak shape resulting from this 
device is very nearly Lorentzian.) 

Unfortunately, a great deal of the conceptual sim- 
plicity hopefully brought out in this section is lost 
when the scattering contributed by the interlayer 
materials cannot be ignored. In this case, the imagin- 
ary component of/3/3t forces a consideration of the 
imaginary as well as the real part of B(c0. Contrary 
to what one might suppose,/3/3* cannot be reasonably 
approximated by the squared magnitude of any sort 
of average structure factor. The foregoing remarks 
concerning the independence of B(c 0 from specific in- 
terlayer types and c~ from particle size still hold true 
however. 

CONCLUSIONS 

Though the mathematics involved in calculating 
the diffraction patterns given by randomly interstrati- 
fled clay systems is not trivial, the approach devel- 
oped here, leading to the concepts of the B(~t) map 
and the a-plot, allows a penetrating visualization of 
how specific interlayer spacings and particle size con- 
tribute and interact to produce observed diffraction 
phenomena. In contrast to cosine summation or 
matrix methods, where the number of terms to be 
considered increases geometrically with both the 

A. C. WRIGHT 

number of interlayer species and particle size, the ~, 
fl and ~ variables are simply linear functions of the 
interlayer types. Calculations for 50 layer particles 
become no more difficult than five layer calculations. 
Finally, use of the equations derived in this paper 
allows the introduction of a wide variety of particle 
size distributions in a natural and easily handled 
manner with little increase in complexity over single 
particle size calculations. 
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