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Abstract We study the space of commuting elements in the central product Gm,p of m copies of
the special unitary group SU(p), where p is a prime number. In particular, a computation for the
number of path-connected components of these spaces is given and the geometry of the moduli space
Rep(Zn, Gm,p) of isomorphism classes of flat connections on principal Gm,p-bundles over the n-torus is
completely described for all values of n, m and p.
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1. Introduction

Let G be a compact Lie group. The space of homomorphisms Hom(Zn, G) can be identi-
fied with the space of commuting n-tuples in G, topologized as a subspace of the Carte-
sian product Gn. The quotient Hom(Zn, G)/G under the conjugation action by G is the
moduli space of isomorphism classes of flat connections on principal G-bundles over the
n-torus (S1)n. In the past few years there has been increasing interest in understanding
these spaces, and especially in computing their number of path-connected components
and their cohomology groups, as they naturally appear in a number of quantum field
theories such as Yang–Mills theory and Chern–Simons theory.

In [5] the space of commuting elements in a Lie group G was analysed by considering
the space of almost commuting elements in the universal cover of G (i.e. elements that
commute up to central elements: see Definition 2.1). In particular, it was shown that
Rep(Zn, G) := Hom(Zn, G)/G is determined by the geometry of G and explicit formula-
tions were given for n = 2 and n = 3; indeed, the main focus there was to describe the
associated moduli spaces of bundles over S

1 × S
1 and S

1 × S
1 × S

1.
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2 A. Adem, F. R. Cohen and J. M. Gómez

On the other hand, in [1] spaces of the form Hom(Zn, G) were studied from a homotopi-
cal point of view. In particular, it was shown that if G is a closed subgroup of GL(n, C),
then there exists a natural homotopy equivalence after a single suspension:

Θn : Σ(Hom(Zn, G)) �
∨

1�r�n

Σ

( (n
r)∨

Hom(Zr, G)/Sr(G)
)

, (1.1)

where Sr(G) ⊂ Hom(Zr, G) is the subspace of r-tuples (x1, . . . , xr) ∈ Hom(Zr, G) for
which at least one of the xi equals 1G. In [2] the authors show that a similar decomposition
to (1.1) also holds for the space of almost commuting elements in a compact Lie group G

and that the corresponding map Θn is actually a G-equivariant homotopy equivalence,
thus affording a stable decomposition for the associated spaces of representations.

Based on these stable homotopy equivalences it seems natural to explore situations
where the geometric description of the moduli spaces associated to commuting pairs and
triples provided in [5] can be extended to arbitrary commuting n-tuples. In particular,
it can be seen that if the maximal abelian subgroups in G are path-connected, then all
of the spaces Hom(Zn, G) are path-connected. However, if the fundamental group of G

has p-torsion, then it is known (see [4, p. 139]) that there is a subgroup Z/p × Z/p ⊂ G

that is not contained in a torus and so the spaces of commuting n-tuples cannot be
path-connected. It is therefore natural to consider examples where π1(G) ∼= Z/p.

In this paper the spaces of the form Hom(Zn, Gm,p) are studied, where

Gm,p = (SU(p)m)/(∆(Z/p))

is an m-fold central product of SU(p), for a prime p. Thus, these are natural examples
of compact Lie groups having a fundamental group of prime order. The study of almost
commuting elements in SU(p)m provides a way to compute the number of path-connected
components of Hom(Zn, Gm,p). In addition, the structure of the components can be
explicitly described. The following theorem summarizes these results.

Theorem 1. For n � 1 and p a prime number, the space Hom(Zn, Gm,p) has

N(n, m, p) =
p(m−1)(n−2)(pn − 1)(pn−1 − 1)

p2 − 1
+ 1

path-connected components. The path-connected component containing (1, . . . , 1) is a
quotient of, and has the same rational cohomology as,

(Gm,p/(S1)m(p−1)) ×(Σp)m (S1)m(p−1)n,

whereas all the other path-connected components are homeomorphic to

(SU(p))m/((Z/p)m−1 × Ep),

where Ep ⊂ SU(p) is the quaternion group Q8 of order eight when p = 2 and the extra
special p-group of order p3 and exponent p when p > 2.

https://doi.org/10.1017/S0013091512000144 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000144


Commuting elements in central products of special unitary groups 3

In § 3 it is explained how the path-connected component of Hom(Zn, Gm,p) containing
(1, . . . , 1) can be seen as a quotient of the compact manifold

(Gm,p/(S1)m(p−1)) ×(Σp)m (S1)m(p−1)n.

A particular case of relevance of Theorem 1 is the case where m = 1. In this case,
G1,p = PU(p) and according to the theorem Hom(Zn, PU(p)) has

N(n, 1, p) =
(pn − 1)(pn−1 − 1)

p2 − 1
+ 1

path-connected components. Moreover,

(pn − 1)(pn−1 − 1)
p2 − 1

of these components are homeomorphic to SU(p)/Ep. On the other hand, the number
xn of path-connected components of Hom(Zn, SO(3)) that do not contain the element
(1, . . . , 1) was computed in [6], where it was shown that

xn =

{
1
6 (4n − 3 × 2n + 2) if n is even,
2
3 (4n−1 − 1) − 2n−1 + 1 if n is odd.

Note that in Theorem 1 the case p = 2 and m = 1 corresponds to

G1,2 = SU(2)/(Z/2) = PU(2) ∼= SO(3),

which is precisely the situation already studied in [6]. It is easy to verify that

xn =
(2n − 1)(2n−1 − 1)

3
,

and thus the two approaches give the same answer.
Taking a quotient by the conjugation action of Gm,p yields the following.

Theorem 2. The moduli space of isomorphism classes of flat connections on principal
Gm,p-bundles over an n-torus is given by

Rep(Zn, Gm,p) ∼= ((S1)(p−1)mn/(Σp)m) � Xn,m,p,

where Xn,m,p is a finite set with N(n, m, p) − 1 points.

As can be expected, these quotient spaces are much simpler than the spaces of homo-
morphisms lying above them, which can contain interesting geometric information that
is lost modulo conjugation; suffice it to say that for n = 1 this is the difference between
the group Gm,p and its quotient under conjugation T/W , where T ⊂ Gm,p is a max-
imal torus with Weyl group W . Also, it is worth noting that the components that do
not correspond to the identity element deserve special attention, as they are somewhat
exotic.
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It also seems relevant to point out that the central products considered here arise as
subgroups of some of the exceptional Lie groups. For example,

G2,2 ⊂ G2, G2,3 ⊂ F4, G2,5 ⊂ E8, G3,3 ⊂ E6,

and they give rise to subgroups of the form (Z/p)3, which are not contained in the maxi-
mal tori, thus explaining the torsion in the cohomology of the classifying spaces of these
exceptional groups (see [4, pp. 153–154]) even though they are simply connected. It would
seem that the results here could be applied to provide information about Rep(Zn, G),
where G is one of these groups.

Notation. From now on, for a prime number p, Ep denotes the quaternion group Q8

of order eight when p = 2 and the extra special p-group of order p3 and exponent p when
p > 2. Note that this group can be identified with the p-Sylow subgroup of SL3(Fp).
Also, given an integer m � 1,

Gm,p := (SU(p)m)/(∆(Z/p)),

where ∆(Z/p) is seen as a subgroup of SU(p)m by considering the diagonal map

∆(Z/p) ↪→ (Z/p)m = Z(SU(p)m).

Thus, Gm,p is the m-fold central product of SU(p).

2. Almost commuting elements

In this section, almost commuting elements in a Lie group are introduced.

Definition 2.1. Take G to be a Lie group and K ⊂ Z(G) to be a closed subgroup.
An n-tuple x := (x1, . . . , xn) ∈ Gn is said to be a K-almost commuting n-tuple if
[xi, xj ] ∈ K ⊂ Z(G) for every 1 � i, j � n.

The motivation for considering almost commuting elements is as follows. Consider the
space Hom(Zn, H), where H can be written in the form H = G/K, for a Lie group G

and a closed subgroup K ⊂ Z(G). In this case, the natural map f : G → G/K is both a
homomorphism and a principal K-bundle. If x = (x1, . . . , xn) is a sequence of elements
in G/K that commute, then for any lifting x̃i of xi the commutator [x̃i, x̃j ] ∈ K ⊂ Z(G)
and the space of all such sequences can be used to study Hom(Zn, G/K).

Definition 2.2. Given a compact Lie group G and K ⊂ Z(G) a closed subgroup,
define

Bn(G, K) = {(x1, . . . , xn) ∈ Gn | [xi, xj ] ∈ K for all i, j}.

The set Bn(G, K) can be regarded as a topological space by naturally identifying it
with a subspace of Gn. The following simple lemma describes the precise relationship
between Bn(G, K) and Hom(Zn, G/K).
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Lemma 2.3. Let G be a Lie group and let K ⊂ Z(G) be a closed subgroup. Then
the quotient map f : G → G/K induces a G-equivariant principal Kn-bundle

φn : Bn(G, K) → Hom(Zn, G/K).

In general, K-almost commuting elements in G can be used to obtain a decomposition
of the space Hom(Zn, G/K) into the union of (possibly empty) open and closed sub-
spaces in the following way. Given x = (x1, . . . , xn) ∈ Bn(G, K), consider the different
commutators dij = [xi, xj ] ∈ K for 1 � i, j � n. The elements dij are such that dii = 1
and dij = d−1

ji , thus the matrix D = (dij) is an antisymmetric matrix with entries in
K ⊂ Z(G) that varies continuously with x. Let T (n, π0(K)) be the set of all n × n anti-
symmetric matrices C = (cij) with entries in π0(K). Given a matrix C ∈ T (n, π0(K))
define

ACG(C) = {(x1, . . . , xn) ∈ Gn | π0([xi, xj ]) = cij ∈ π0(K)} ⊂ Bn(G, K)

and
Hom(Zn, G/K)C = φn(ACG(C)) ⊂ Hom(Zn, G/K).

Note that both ACG(C) and Hom(Zn, G/K)C are invariant under the conjugation
action of G. Also, these can be endowed with the natural subspace topology and in this
case each Hom(Zn, G/K)C is both open and closed in Hom(Zn, G/K) and is thus a union
of connected components. The restriction of φn defines a principal Kn-bundle

ACG(C) → Hom(Zn, G/K)C

and there is a decomposition

Hom(Zn, G/K) =
⊔

C∈T (n,π0(K))

Hom(Zn, G/K)C . (2.1)

In [5], Borel et al . showed that the orbit space MG(C) := ACG(C)/G is describable
in terms of the geometry of G. Moreover, they obtained explicit descriptions for n = 2
and n = 3. In the next section, their work will be used to obtain an explicit description
for Hom(Zn, Gm,p) for every n. This sheds some light on the structure of the spaces of
the form Hom(Zn, G) for a general compact Lie group G.

3. Commuting elements in Gm,p

The goal of this section is to prove Theorems 1 and 2 in § 1. These are the main results
of this article and are proved using decomposition (2.1).

To start, suppose that G is a compact connected Lie group. Let Hom(Zn, G)(1,...,1)

be the path-connected component of Hom(Zn, G) that contains (1, . . . , 1). By [1,
Proposition 2.3], if every abelian subgroup of G is contained in a path-connected
abelian subgroup, then the space Hom(Zn, G) is path-connected and thus agrees with
Hom(Zn, G)(1,...,1). In [3], the spaces of the form Hom(Zn, G)(1,...,1) were studied. For
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example, the cohomology groups with rational coefficients of these spaces were com-
puted. Some of the results proved in [3] are recalled next. The reader is referred to [3]
for the proofs of these facts.

Fix T ⊂ G a maximal torus in G. The conjugation action of G induces a G-equivariant
map

ϕn : G × Tn → Hom(Zn, G)(1,...,1), (3.1)

(g, t1, . . . , tn) �→ (gt1g
−1, . . . , gtng−1). (3.2)

By [3, Lemma 4.2] it follows that every commuting n-tuple in Hom(Zn, G)(1,...,1) lies in a
maximal torus of G. Since any two maximal tori in G are conjugated, this shows that the
map ϕn is surjective. Note that N(T ) acts on G×Tn diagonally and that ϕn is invariant
under this action. Therefore, ϕn descends to a map

ϕ̄n : G/T ×W Tn = G ×N(T ) Tn → Hom(Zn, G)(1,...,1),

where W is the Weyl group associated to T . In fact, G ×N(T ) Tn is a non-singular real
algebraic variety and ϕ̄n is a resolution of singularities for Hom(Zn, G)(1,...,1), as was
pointed out in [3]. Thus, in general, Hom(Zn, G)(1,...,1) is homeomorphic to the quotient
of the compact manifold G/T ×W Tn, where each fibre ϕ̄n

−1(x) is collapsed to a point
for x ∈ Hom(Zn, G)(1,...,1). Moreover, modulo the conjugation action of G, ϕ̄n induces a
homeomorphism

Tn/W
∼=−→ Rep(Zn, G)(1,...,1),

with W acting diagonally on Tn. In addition, by [3, Theorem 4.3], given a field F of
characteristic relatively prime to |W |, the map ϕ̄n induces an isomorphism

H∗(Hom(Zn, G)(1,...,1); F) ∼= H∗(G/T × Tn; F)W . (3.3)

For the case of G = Gm,p, a maximal torus T is homeomorphic to (S1)m(p−1) and
W = (Σp)m. Moreover, if C1 is the trivial matrix whose entries are all 1, then it follows
that Hom(Zn, Gm,p)(1,...,1) = Hom(Zn, Gm,p)C1 is a quotient of

(Gm,p/(S1)m(p−1)) ×(Σp)m (S1)m(p−1)n, (3.4)

and we also have that

Rep(Zn, Gm,p)(1,...,1)
∼= (S1)m(p−1)n/(Σp)m (3.5)

and

H∗(Hom(Zn, Gm,p)(1,...,1); F) ∼= H∗((Gm,p/(S1)m(p−1)) × (S1)m(p−1)n; F)(Σp)m

(3.6)

for every field F with characteristic not dividing p!.
Next, the spaces of the form Hom(Zn, Gm,p)C for C �= C1 are studied. The following

lemma, which can be proved directly or by using [5, Proposition 4.1.1], is used to handle
this case.
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Lemma 3.1. Let c ∈ Z(SU(p)) − {1}. Then there is a pair (x0, y0) of elements in
SU(p) with [x0, y0] = c. Moreover, the pair (x0, y0) is unique up to conjugation and if
(x, y) is any such pair, then ZSU(p)(x, y) = Z(SU(p)).

The following notation will be used. Given an element c ∈ ∆(Z/p), C(c) denotes the
2 × 2 antisymmetric matrix with entries in ∆(Z/p) defined by c11 = c22 = 1 ∈ ∆(Z/p)
and c12 = c−1

21 = c. Theorem 1 will be proved by considering first the case n = 2.

Proposition 3.2. The space Hom(Z2, Gm,p) has p path-connected components. One
of these components is Hom(Z2, Gm,p)(1,...,1) and the rest of the components are all
homeomorphic to SU(p)m/((Z/p)m−1 × Ep).

Proof. This proposition will be proved by studying the different spaces ACSU(p)m(C),
where C is a general matrix in T (2, ∆(Z/p)). Such a matrix is of the form C = C(c)
for some c ∈ ∆(Z/p). When c = 1, the space ACSU(p)m(C(1)) equals Hom(Z2, SU(p)m),
which is path-connected. Thus, suppose that c �= 1. Since c ∈ ∆(Z/p), it is of the form
c = (c, . . . , c) for c ∈ Z/p = Z(SU(p)) with c �= 1. Fix a pair of elements x0, y0 in SU(p)
with [x0, y0] = c. By Lemma 3.1 the group SU(p)m acts transitively by conjugation on
each ACSU(p)m(C(c)), thus there is a continuous surjective map

SU(p)m → ACSU(p)m(C(c)),

(g1, . . . , gm) �→ (x,y),

where
x = (g1x0g

−1
1 , . . . , gmx0g

−1
m ) and y = (g1y0g

−1
1 , . . . , gmy0g

−1
m ).

In particular, ACSU(p)m(C(c)) is path-connected and

ACSU(p)m(C(c)) ∼= SU(p)m/ SU(p)m
(x0,y0),

where x0 = (x0, . . . , x0), y0 = (y0, . . . , y0) and SU(p)m
(x0,y0) is the isotropy subgroup of

SU(p)m at (x0,y0). Note that

ZSU(p)(x0, y0) = Z(SU(p))

by Lemma 3.1, hence

SU(p)m
(x0,y0) = Z(SU(p)m) = 〈c〉m = (Z/p)m

and therefore
ACSU(p)m(C(c)) ∼= SU(p)m/〈c〉m. (3.7)

On the other hand, (∆(Z/p))2 acts on ACSU(p)m(C(c)) by left componentwise multipli-
cation. This action gives rise to a covering space sequence

(∆(Z/p))2 → ACSU(p)m(C(c)) → Hom(Z2, Gm,p)C(c). (3.8)

In particular, Hom(Z2, Gm,p)C(c) is path-connected and

Hom(Z2, Gm,p)C(c)
∼= ACSU(p)m(C(c))/(∆(Z/p))2.
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Notice that under the identification (3.7), this action of (∆(Z/p))2 corresponds to

(∆(Z/p))2 × SU(p)m/〈c〉m → SU(p)m/〈c〉m,

(cs, cr), [(g1, . . . ., gm)] �→ [(g1x
r
0y

−s
0 , . . . , gmxr

0y
−s
0 )].

This is true because

(xr
0y

−s
0 )x0(xr

0y
−s
0 )−1 = csx0 and (xr

0y
−s
0 )y0(xr

0y
−s
0 )−1 = cry0.

It then follows that Hom(Z2, Gm,p)C(c)
∼= SU(p)m/Kp, where Kp ⊂ SU(p)m is the sub-

group generated by Z(SU(p)m), x0 = (x0, . . . , x0) and y0 = (y0, . . . , y0). By [5, Propo-
sition 4.1.1], the subgroup generated by x0 and y0 in SU(p)/〈c〉 is isomorphic to (Z/p)2,
and by [5, Corollary 4.1.2], x0 and y0 have order 4 and x2

0 = y2
0 = c if p = 2 and order p

if p > 2. Thus, when p = 2 the subgroup E2 of SU(2) generated by c, x0 and y0 has the
presentation

E2 := {x, y | x4 = y4 = 1, x2 = y2, yxy−1 = x},

and thus E2 = Q8. When p > 2, the subgroup Ep of SU(p) generated by c, x0 and y0

has the presentation

Ep = {x, y, c | xp = yp = cp = 1, xc = cx, yc = cy, xy = cyx}

and this is easily seen to be the extra special p-group Sylp(SL3(Fp)). The group Kp fits
into a short exact sequence

1 → (Z/p)m−1 → Kp → 〈c,x0,y0〉 → 1,

where the map (Z/p)m−1 → Kp is as follows. Let u1, . . . , um−1 be elements in the Fp

vector space (Z/p)m such that u1, . . . , um−1, c forms a basis. Then the ith generator of
(Z/p)m−1 is sent to ui for 1 � i � m − 1. The previous short exact sequences splits,
〈c,x0,y0〉 ∼= Ep, and therefore Kp

∼= (Z/p)m−1 ×Ep. To finish the proposition, note that
there are precisely p − 1 non-trivial elements c ∈ ∆(Z/p). �

From the previous proposition it is deduced that N(2, m, p) = p. Moreover, from the
proof it follows that Gm,p acts transitively by conjugation on each component that is
homeomorphic to SU(p)m/((Z/p)m−1 × Ep).

Lemma 3.3. Suppose that x = (x1, . . . , xm) and y = (y1, . . . , ym) are elements in
SU(p)m that almost commute with c := [x,y] = (c, . . . , c) ∈ ∆(Z/p) for c �= 1. Take
z ∈ SU(p)m with [x,z], [y,z] ∈ ∆(Z/p). Write [x,z] = cb and [y,z] = ca for integers
0 � a, b < p. Then there is an element w = (w1, . . . , wm) ∈ Z(SU(p)m) such that
z = wx−ayb; that is, zi = wix

−a
i yb

i for all i.

Proof. It is enough to prove the lemma for m = 1. Fix x, y and z in SU(p) such
that there exists c ∈ Z(SU(p)) − {1} with d1,2 := [x, y] = c, d1,3 := [x, z] = cb and
d2,3 := [y, z] = ca for integers 0 � a, b < p. Then the triple (x, y, z) is an almost
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Commuting elements in central products of special unitary groups 9

commuting triple in ACSU(p)(D), where D is the antisymmetric matrix with entries di,j .
Consider the map

ψ : ACSU(p)(C) → ACSU(p)(D),

(x1, x2, x3) �→ (x1, x2, x
−a
1 xb

2x3),

where C is the antisymmetric matrix with coefficients in Z(SU(p)) and c1,2 = c−1
2,1 = c and

ci,j = 1 otherwise. It is straightforward to check that ψ is a well-defined homeomorphism
that is equivariant under the conjugation action of SU(p). Let (x′, y′, z′) be any element
in ACSU(p)(C). This means that [x′, y′] = c �= 1 and z′ commutes with both x′ and y′.
Thus, z′ ∈ ZSU(p)(x′, y′) = Z(SU(p)) by Lemma 3.1. On the other hand, since [x, y] = c,
it follows by Lemma 3.1 that the pair (x′, y′) is conjugate to (x, y). This shows that
any element in ACSU(p)(C) is of the form (gxg−1, gyg−1, w) for some g ∈ SU(p) and
w ∈ Z(SU(p)). In particular, since ψ is surjective, there are g ∈ SU(p) and w ∈ Z(SU(p))
such that

(x, y, z) = ψ(gxg−1, gyg−1, w);

that is,

(x, y, z) = (gxg−1, gyg−1, g(wx−ayb)g−1).

This means that gx = xg and gy = yg, hence g ∈ ZSU(p)(x, y) = Z(SU(p)) and therefore

z = wx−ayb.

�

The next step is the proof of Theorem 1 in § 1.

Theorem 1. For n � 1 and p a prime number, the space Hom(Zn, Gm,p) has

N(n, m, p) =
p(m−1)(n−2)(pn − 1)(pn−1 − 1)

p2 − 1
+ 1

path-connected components. The path-connected component containing (1, . . . , 1) is a
quotient of, and has the same rational cohomology as,

(Gm,p/(S1)m(p−1)) ×(Σp)m (S1)m(p−1)n,

whereas all the other path-connected components are homeomorphic to

(SU(p))m/((Z/p)m−1 × Ep),

where Ep ⊂ SU(p) is the quaternion group Q8 of order eight when p = 2 and the extra
special p-group of order p3 and exponent p when p > 2.
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Proof. Fix p a prime number. The proof of the theorem goes by induction on n. For
n = 1 the theorem is trivial and for n = 2 the theorem follows by Proposition 3.2. Assume
then that n � 3. To determine the value of each N(n, m, p) it will be shown that the
different N(n, m, p) satisfy the recurrence equation

N(n, m, p) = pm−1N(n − 1, m, p) + pm(n−2)+n−1 − pm(n−2) − pm−1 + 1.

Once this is proved, by induction it follows that

N(n, m, p) =
p(m−1)(n−2)(pn − 1)(pn−1 − 1)

p2 − 1
+ 1.

By (2.1) the space Hom(Zn, Gm,p) is a disjoint union of the different Hom(Zn, Gm,p)C ,
where C runs through the elements in T (n, ∆(Z/p)). The different possibilities for ele-
ments C ∈ T (n, ∆(Z/p)) are considered next.

Case 1. Suppose that C = C1 ∈ T (n, ∆(Z/p)) is the trivial matrix whose entries
are all equal to 1. In this case the space Hom(Zn, Gm,p)C1 is path-connected and is as
described in (3.4) and (3.6).

Case 2. Suppose that C ∈ T (n, ∆(Z/p))−{C1} is such that c1,i = 1 for all i. Because C

is not trivial there exist 2 � i, j � n such that ci,j �= 1. Take (x1, . . . ,xn) ∈ ACSU(p)m(C).
Since c1,i = 1, it follows that x1 commutes with xi for all i. Also, [xi,xj ] ∈ ∆(Z/p)−{1}
and thus x1 ∈ ZSU(p)m(xi,xj) = Z(SU(p)m) by Lemma 3.1. Therefore,

(x1, . . . ,xn) ∈ Z(SU(p)m) × ACSU(p)(C̃),

where C̃ is the (n − 1) × (n − 1) matrix obtained from C by deleting the first row and
column from C. In this case,

Hom(Zn, Gm,p)C = (Z(SU(p)m) × ACSU(p)m(C̃))/(∆(Z/p))n

∼= (Z/p)m/(∆(Z/p)) × Hom(Zn−1, Gm,p)C̃

∼= (Z/p)m−1 × Hom(Zn−1, Gm,p)C̃ .

By induction, each path-connected component of Hom(Zn, Gm,p)C is homeomorphic to

SU(p)m/((Z/p)m−1 × Ep),

with Gm,p acting transitively by conjugation. In addition, each matrix C of the type
considered in this case determines and is uniquely determined by the corresponding C̃,
which is non-trivial. It follows that there are pm−1(N(n − 1, m, p) − 1) path-connected
components associated to this case.

Case 3. Suppose that C ∈ T (n, ∆(Z/p)) is such that c1i �= 1 for some i. Then
2 � i � n as c11 = 1. Let i be the smallest i with c1i �= 1, let c = c1i ∈ ∆(Z/p) and
take (x1, . . . ,xn) ∈ ACSU(p)m(C). For each 2 � k � n with k �= i consider the triple
(x1,xi,xk). This is an almost commuting triple with [x1,xi] = c �= 1. By Lemma 3.3, if
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c1,k = [x1,xk] = cbk and ci,k = [xi,xk] = cak for integers 0 � ak, bk < p, then there exist
wk ∈ Z(SU(p)m) such that xk = wkx−ak

1 xbk
i for all k. Note that the integers ak and bk

are uniquely determined by the condition 0 � ak, bk < p and these are in turn uniquely
determined by c1k, cik. It follows that the n-tuple (x1, . . . ,xn) is uniquely determined
by (x1,xi), c1,k, ci,k ∈ ∆(Z/p) and wk ∈ Z(SU(p)m) for k �= 1, i. Moreover, if, as before,
C(c) is the 2 × 2 matrix

C(c) =

[
1 c

c−1 1

]
,

then the map

ψ : ACSU(p)m(C(c)) × (Z(SU(p)m))n−2 → ACSU(p)m(C),

((x1,xi), (w2, . . . ,wi−1,wi+1, . . . ,wn)) �→ (y1, . . . ,yn)

is a homeomorphism where

yk =

⎧⎪⎨
⎪⎩

x1 if k = 1,

xi if k = i,

wkx−ak
1 xbk

i if k �= 1, i.

The map ψ is SU(p)m-equivariant, with SU(p)m acting by conjugation. By passing to the
quotient of the respective (∆(Z/p))n-actions, it follows that ψ induces a homeomorphism

Hom(Z2, Gm,p)C(c) × (Z/p)(m−1)(n−2) → Hom(Zn, Gm,p)C .

By the case n = 2, each path-connected component of Hom(Zn, Gm,p)C is of the desired
type and there are p(m−1)(n−2) such components associated to C. It also follows that
Gm,p acts transitively on each of these components. Moreover, C is uniquely determined
by c = c1i �= 1, c1k for i + 1 � k � n and cik for 2 � k � n and k �= i. Thus, there are
a total of p(m−1)(n−2)(p − 1)p2n−i−2 different components associated to such a C, with
c1,i �= 1. Letting 2 � i � n vary, a total number of

n∑
i=2

p(m−1)(n−2)(p − 1)p2n−i−2 = pm(n−2)(pn−1 − 1)

path-connected components is obtained for this case.
By adding the contributions from Cases 1–3, the recurrence equation

N(n, m, p) = 1 + pm−1(N(n − 1, m, p) − 1) + pm(n−2)(pn−1 − 1)

= pm−1N(n − 1, m, p) + pm(n−2)+n−1 − pm(n−2) − pm−1 + 1

is obtained as claimed. �

As previously mentioned, Gm,p acts transitively on the components of Hom(Zn, Gm,p)
that are homeomorphic to SU(p)m/(Z/pm−1×Ep). This shows that these path-connected
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components represent isolated points in the moduli space Rep(Zn, Gm,p). On the other
hand, by (3.5) there is a homeomorphism

Rep(Zn, Gm,p)(1,...,1)
∼= (S1)m(p−1)n/(Σp)m.

As a corollary of this the following theorem is obtained.

Theorem 2. Let p be a prime number and let m � 1. Then Rep(Zn, Gm,p) has

N(n, m, p) =
p(m−1)(n−2)(pn − 1)(pn−1 − 1)

p2 − 1
+ 1

path-connected components and

Rep(Zn, Gm,p) ∼= ((S1)(p−1)mn/(Σp)m) � Xn,m,p,

where Xn,m,p is a finite set with N(n, m, p) − 1 points.

The component of the identity can be described more explicitly as follows. Σp acts
on (S1)p as the Weyl group of a maximal torus in SU(p). Then the product (Σp)m acts
on the product (S1)(p−1)m, and therefore diagonally on the product (S1)(p−1)mn. For
example, if p = 2, the action of (Σ2)m on (S1)m is simply given as a product of the
complex conjugation action, and this is extended to a diagonal action on ((S1)m)n.

In Theorem 1, if p is no longer assumed to be a prime number, then the situation is more
complicated. For example, when n = 2, the conjugation action of SU(r) on ACSU(r)(C(c))
is no longer transitive, unless c is a generator of the cyclic group Z/r. Because of this, the
space Hom(Zn, SU(r)) generally has more path-connected components that have orbifold
singularities. In particular, for n = 2 the following proposition can be proved in the same
way as Proposition 3.2.

Proposition 3.4. The space Hom(Z2, PU(r)) has r path-connected components. Of
these, ϕ(r) are homeomorphic to PU(r)/(Z/r)2.
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