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The combined effects of heater position, mean flow parameters and flame models on
thermoacoustic instability in a one-dimensional Rijke tube are studied systematically by
classic linear stability analysis (LSA) and lattice Boltzmann method (LBM) simulation.
In the former, the stability range of the linear flame model under low Mach number
assumption is solved analytically, while in the more general case, it is obtained by
numerically solving the dispersion relation. Both the linear and nonlinear flame model
cases are studied using the LBM with a spectral multiple-relaxation-time collision model
and a newly developed heat source term. With the linear flame model, the LBM is in
good agreement with LSA in predicting the transition point and growth rates, while with
the nonlinear flame model, LBM simulations are consistent with solutions of limit cycle
theory in the fully developed state. These results demonstrate the applicability of the LBM
in solving complex thermoacoustic problems.
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1. Introduction

Thermoacoustic instability (TAI) is a critical issue in propulsion engines as it may
cause severe damage to an engine when excited to a large amplitude (Poinsot 2017).
This instability results from the coupling between unsteady heat release and acoustic
fluctuations, and has been studied extensively by a variety of approaches, such as simple
analytical models (Hubbard & Dowling 2001), time-domain network models (Pankiewitz
& Sattelmayer 2003; Stow & Dowling 2009), and more recently computational fluid
dynamics (CFD) simulations (Hantschk & Vortmeyer 1999; Cannon, Adumitroaie &
Smith 2001; Poinsot & Veynante 2005). In addition to the common difficulties in
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Figure 1. Demonstration of a horizontal Rijke tube with a compact heater (the red dashed line), and the
coordinate definition. We take the integration of u′ and p′ in analysis infinitesimal control volume around
the compact flame model (the green dash-dotted box) to get the connecting condition. The volume thickness is
δx → 0. Subscripts 1 and 2 denote the upstream and downstream regions of the heater, respectively.

turbulence modelling, simulation of TAI with classic CFD methods is extremely
demanding on computational resources due to its stiff characteristics involving drastically
different spatial and temporal scales (Poinsot 2017). A realistic calculation requires a very
high resolution to capture both the small flamelets and the large wavelength of the pressure
waves. This causes a strict limitation on time step in simulations, and usually a large
number of numerical evolutions are necessary due to the considerably long time before
the onset of self-sustaining instability (Toffolo, Masi & Lazzaretto 2010). These constraints
require the numerical method to have both low dissipation and high efficiency as well as
the ability to handle complex geometries for practical applications.

The Rijke tube is a greatly simplified piece of equipment that can reproduce the
fundamental TAI phenomenon. It has been thoroughly studied in both experiments and
theoretical analysis. In the idealized version shown in figure 1 (Matveev 2003; Xi et al.
2022), the flame is replaced by a heater to avoid complex chemical reaction processes. Due
to its relative simplicity, a lot of work has been devoted to the analysis of the horizontal
Rijke tube in the TAI study. The classic analytical approach is to apply the perturbation
method in frequency space, and link the flow fluctuations to the heat release rate with a
linear flame transfer function (FTF). The stability for each eigenfrequency can then be
predicted (Dowling 1995). When the amplitude of oscillation increases, a nonlinear flame
describing function (FDF) can be used to replace the linear FTF so that the limit cycle
oscillations and their frequencies can be described correctly (Dowling 1997, 1999; Stow
& Dowling 2004; Noiray et al. 2008). However, this ‘describing function’ approach is
applicable only when there is one dominant mode. To overcome this shortcoming, Stow
& Dowling (2009) proposed a time domain analytical approach that transforms FDFs
into temporal space first, and then uses convolution integration with time to dispose
the interaction of different modes. This method has been further developed to explain
phenomena known as hysteresis, triggering, mode switching and frequency shift during
the growth of instabilities (Noiray et al. 2008; Boudy et al. 2011, 2013; Palies et al. 2011).

Although the analytical approach is rather successful, for practical combustors
the multi-dimensional effects and complex geometry make the analysis difficult.
Consequently, several groups tried to employ the classic CFD simulation to solve thermal
acoustic problems. Hantschk & Vortmeyer (1999) used the commercial software Fluent to
simulate the self-excited thermoacoustic instabilities in Rijke tubes. Cannon et al. (2001)
simulated the lean premixed fuel combustors by three-dimensional RANS and LES models
with a Fluent-like pressure-based finite volume solver. Mariappan & Sujith (2011) used
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the similar CFD algorithm in the hydrodynamic zone near the heater, and performed the
Galerkin technique for the acoustic zone far away. Generally speaking, the traditional CFD
methods are still suffering from the stiff problem due to the scale separation between the
heat source and acoustic waves at present.

Over the past few decades, the lattice Boltzmann method (LBM) (Benzi, Succi
& Vergassola 1992; Chen & Doolen 1998) has attracted tremendous attention in the
CFD community. Unlike traditional methods that solve the Navier–Stokes equation with
macroscopic variables directly, the LBM solves a discrete version of the Boltzmann
equation on a mesoscopic scale, with which the Navier–Stokes macroscopic behaviours
or even those beyond may be described adequately. This allows certain subtle physical
mechanisms to be included in calculations at a more fundamental level. Furthermore, the
LBM is inherently parallelizable and can easily exploit the vast computational resource
available on modern GPU (Kuznik et al. 2010; Rinaldi et al. 2012; Wang et al. 2014;
Delgado-Gutierrez et al. 2020). For computational aero-acoustics, many studies have
shown its low dissipation and high efficiency (Buick, Greated & Campbell 1998; Marié,
Ricot & Sagaut 2009; Barad, Kocheemoolayil & Kiris 2017), which makes the LBM a
promising method for simulating acoustic problems.

The LBM simulation of the highly thermally compressible flow in engine TAI is
still considered difficult to a large extent. This is partly due to the fact that the
LBM was originally developed a posteriori (Chen, Chen & Matthaeus 1992; Qian,
d’Humières & Lallemand 1992) to ensure that its macroscopic behaviour follows the
near-incompressible Navier–Stokes equation. Efforts to extend this approach to thermal
flows have encountered difficulties in recovering the energy equation with sufficient
numerical stability (McNamara, Garcia & Alder 1995). In addition to the lack of energy
conservation, the non-thermal LBM suffers from a number of artefacts, including the
velocity-dependent viscosity, the isothermal (Newtonian) sound, the unity Prandtl number,
and the fixed and incorrect isentropic indices, all of which can be significant obstacles in
TAI simulations.

Nowadays, in general two categories of LBM are developed to treat thermal flow.
The most common approach is to use the athermal LBM to solve the continuity and
momentum equations, and another LBM or other traditional solver to resolve the energy
(or equivalently temperature, pressure, entropy, etc.). For instance, Wang et al. (2015) has
simulated the open–open Rijke tube with a hybrid finite-difference, double-distribution
LBM, and this approach was followed recently by Slimene et al. (2022). In these
non-thermal LBM solvers, the compressible and thermal effects have to be explicitly
patched and modelled. Although conceptually simple, this type of approach has the
disadvantage that the patching and modelling must be done case by case, and are seldom
complete.

The other type of thermal LBM attempts to naturally restore the energy equation
as the second-order moment equation of the Boltzmann equation (Alexander et al.
1992; Chen, Ohashi & Akiyama 1994; McNamara et al. 1995). Early attempts of this
kind treated the LBM as a kinetic description of a discrete system, and were not very
satisfactory due to the lack of clear theoretical guidance. Later theory of formulating the
LBM as a velocity–space discretization (Shan & He 1998; Shan, Yuan & Chen 2006)
gave the necessary and sufficient conditions for the various hydrodynamic moments
to be recovered in the LBM (Nie, Shan & Chen 2008a). Very recently, the spectral
multiple-relaxation-time (SMRT) collision model (Li & Shan 2021; Shan, Li & Shi
2021) addressed additional compressible artefacts and has theoretically enabled LBM
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simulations of thermal compressible flows with correct Prandtl numbers and isentropic
exponents.

During the same period, another type of thermal LBM model, based on a
body-centred-cubic lattice, was proposed by Namburi, Krithivasan & Ansumali (2016),
which used two usual lattices displaced by an offset distance of half the mesh size in
each direction. This lattice can provide better accuracy in both the spatial and velocity
spaces, and works well for high Rayleigh number flows (Atif, Namburi & Ansumali
2018). Recently, Kolluru, Atif & Ansumali (2023) combined the body-centred-cubic lattice
model with an advection–diffusion relaxation equation for the rotational energy to allow
tunable bulk viscosity, thermal conductivity and specific heat ratio, and satisfactory results
were obtained in benchmarks for polyatomic gases.

To the best of our knowledge, few works have applied the advantage of the LBM in
acoustic computation to thermoacoustic problems. The published works that are related to
this topic, i.e. Wang et al. (2015) and Slimene et al. (2022), have adopted a block heater
with high temperature in the tube to provide the heat source. This is rather different from
the realistic heater that has infinitely thin thickness in laboratory TAI equipment or gas
turbines. The present work aims at validating and further developing the LBM, especially
with the SMRT model, for simulation of TAI using the compact flame model in a Rijke
tube as the benchmark. In § 2, the approach of linear stability analysis (LSA) is adopted
to obtain the transition point and growth rate for different heater locations and other flow
parameters with a linear flame model. This detailed analysis has merely been elaborated in
the past studies, and the results will also be used as reference to validate the accuracy of the
thermal LBM. In § 3, a number of Rijke flow cases with linear flame model are simulated
by the LBM using a heat source model and modified reflecting boundary condition. The
comparison of LSA and LBM simulation results will also be presented. Next, the LBM is
applied to the Rijke tube with a nonlinear flame model in § 4. A brief conclusion is given
in § 5.

2. Thermoacoustic theory in a Rijke tube

A typical horizontal Rijke tube is illustrated in figure 1. The gas flow with density ρ,
velocity u and temperature T enters the tube from the left, passes through an infinitely thin
heater located at x = 0 with a heat release rate per unit area of Q, and forms a downstream
flow with a discontinuity at the flame. Neglecting transverse and viscous effects, the flow
in the duct can be described by the one-dimensional Euler equation:

∂ρ

∂t
+ ∂(ρu)

∂x
= 0,

∂(ρu)
∂t

+ ∂(ρu2 + p)
∂x

= 0,

∂(ρE)
∂t

+ ∂(ρEu + pu)
∂x

= Q.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

Here, E = e + u2/2, with e = RT/(γ − 1) being the internal energy, R the gas constant,
and γ the specific heat ratio. The physical variables are non-dimensionalized as follows.
Given the reference temperature T0 and density ρ0 – usually the values at the upstream
inlet – the reference speed is V0 = √

RT0. Choosing the reference length L0 as the grid
size �x of the LBM simulation, the reference time scale is t0 = L0/V0. The reference
pressure is defined as p0 = ρ0V2

0 so that the ideal gas law can be written as p = ρT in
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non-dimensional form. The non-dimensional heat source term is Q∗ = Qρ0V3
0/L0. If we

omit the superscript ∗, then the non-dimensional Euler equation has exactly the same form
as (2.1). Hereinafter, all quantities are in non-dimensional form.

We decompose the flow parameters into the mean and fluctuation parts, e.g. ρ(x, t) =
ρ̄ + ρ′(x, t), and the same goes for u, p, T and Q. Here, we omit the subscripts j = 1, 2
shown in figure 1 for brevity. Further, assuming that the mean quantities of the fully
developed flow are time-independent, the fluctuations are governed by the linearized Euler
equation for both the upstream and downstream flows, with the mean quantities taking their
corresponding values: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ′

∂t
+ ū

∂ρ′

∂x
+ ρ̄

∂u′

∂x
= 0, (2.2a)

∂u′

∂t
+ ū

∂u′

∂x
+ 1
ρ̄

∂p′

∂x
= 0, (2.2b)

∂T ′

∂t
+ ū

∂T ′

∂x
+ (γ − 1)T̄

∂u′

∂x
= Q′, (2.2c)

∂p′

∂t
+ ū

∂p′

∂x
+ γ p̄

∂u′

∂x
= (γ − 1)Q′. (2.2d)

Defining the material derivative operator D/Dt = ∂/∂t + ū∂/∂x and applying it to (2.2d),
with the help of (2.2b), we have the wave equation

1
c̄2

D2p′

Dt2
− ∂2p′

∂x2 = γ − 1
c̄2

DQ′

Dt
, (2.3)

where c̄ = √
γ p̄/ρ̄ is the sound speed.

In the following, we first derive the relations connecting the mean and fluctuation
variables across the heater using the flame models. Then, with different simplifications
(e.g. with or without the low Mach number assumption), LSA will be performed to
obtain the dispersion relation from which the temporal growth characteristics of the
acoustic waves can be discerned. These growth features will provide reference for the
LBM simulation detailed in the next section.

2.1. Connecting relations and flame model
As shown in figure 1, the compact flame model Q(x, t) = Q(t) δ(x) is positioned at x = 0.
The integration of the Euler equation (2.1) over the infinitely thin control volume across
the heater results in ⎧⎪⎨

⎪⎩
ρ̄1ū1 = ρ̄2ū2, (2.4a)

p̄1 + ρ̄1ū2
1 = p̄2 + ρ̄2ū2

2, (2.4b)

ū1(ρ̄1Ē1 + p̄1)+ Q̄ = ū2(ρ̄2Ē2 + p̄2). (2.4c)

Combining (2.4a) and (2.4b) with p̄j = ρ̄jT̄j, we have

ū2
2 − T̄1 + ū2

1
ū1

ū2 + T̄2 = 0. (2.5)

Practically, we typically prescribe ρ̄1, ū1, T̄1 and a desired T̄2, from which ū2 can be solved
using (2.5). Then ρ̄2 and Q̄ can be obtained from (2.4a) and (2.4c), thus all the downstream
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mean variables are determined. The connecting relations for the fluctuations can be derived
by integrating (2.2b) and (2.2d) over the same control volume:

[
p′ + ρ̄ūu′]x=0+

x=0− = 0, (2.6a)[
ūp′ + γ p̄u′]x=0+

x=0− = (γ − 1)Q′. (2.6b)

The simplest unsteady heat release rate model is the time-lag (or n-τ ) model (Crocco
1951; Dowling & Stow 2003; Schuller, Poinsot & Candel 2020). In this model, Q′ depends
only on the velocity u′

1 at the heater position (x = 0), as

Q′(x = 0, t) = Q̄
ū1

Nu′
1(x = 0, t − τ), (2.7)

where N measures the strength of the flame’s response to the velocity perturbations, and
τ is the time lag between Q′ and u′. These two parameters are constants, determined on
a case-by-case basis by the flame’s configuration. Transforming (2.7) into the frequency
domain, we obtain

Q̂′(ω)
Q̄

=
∫ +∞

0
N

u′
1(x = 0, t − τ)

ū1
eiωt dt = N e−iωτ û′

1(ω)

ū1
. (2.8)

It can be observed that Q̂′ can grow with û′ at any frequency. However, according to the
experiment of Bloxsidge, Dowling & Langhorne (1988), the susceptibility of the flame
to changes in the flow varies inversely with the local Strouhal number St = 2πωr/ū,
where r denotes the radius of the gutter. Therefore, this result indicates that the interaction
index N is a small value in the high-frequency regime, which is consistent with the flame
surface kinematics analysed by Fleifil et al. (1996). An effective approach to recover this
phenomenon is to add a low-pass filter before (2.8) as proposed by Fleifil et al. (1996), i.e.

Q̂′(ω)
Q̄

= N
1 + iτcω

e−iωτ û′
1(ω)

ū1
, (2.9)

which reduces to the original n-τ model if τc = 0. Alternatively, it can be rewritten as

Q̂′(ω)
Q̄

= Ñ e−iωτ̃ û′
1(ω)

ū1
, Ñ = N√

1 + τ 2
c ω

2
, ωτ̃ = ωτ + arctan(ωτc). (2.10)

Compared to the original n-τ model, it is evident that the filtered response strength Ñ
decreases rapidly when ω is large, while the phase difference ωτ̃ − ωτ approaches π/2
when ω → ∞. Both aspects are more consistent with realistic physics.

2.2. The LSA of acoustic modes
We begin the analysis with the simplest case, namely, the unfiltered n-τ flame model (2.7)
and the assumption ū → 0. Let ū2

1 = ū2
2 = 0, while retaining the first-order terms of ū1
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and ū2 as small values when necessary. Under these conditions, (2.4) reduces to

p̄1 = p̄2 = p̄,

ū1(ρ̄1Ē1 + p̄1)+ Q̄ = ū2(ρ̄2Ē2 + p̄2).

}
(2.11)

The total energy is now ρ̄jĒj = p̄j/(γ − 1)+ ρ̄jū2
j = p̄/(γ − 1), and (2.5) reduces to

T̄2/T̄1 = ū2/ū1. Consequently, (2.11) becomes

ū2 − ū1 = γ − 1
γ p̄

Q̄ = γ − 1
ρ̄1c̄2

1
Q̄ ⇒ γ − 1

ρ̄1c̄2
1

Q̄
ū1

= ū2

ū1
− 1 = T̄2

T̄1
− 1. (2.12)

The n-τ flame model (2.7) can be rewritten as

γ − 1
ρ̄1c̄2

1
Q′(x = 0, t) = Nθ u′

1(x = 0, t − τ), θ = T̄2/T̄1 − 1. (2.13)

The connecting relation (2.6) for fluctuations now becomes[
p′]x=0+

x=0− ≡ p′(x = 0+)− p′(x = 0−) = 0, (2.14a)[
γ p̄u′]x=0+

x=0− = (γ − 1)Q′. (2.14b)

From (2.11), we have ρ̄1c̄2
1 = γ p̄1 = γ p̄2 = ρ̄2c̄2

2, and (2.14b) finally leads to

[
u′]x=0+

x=0− = γ − 1
ρ̄1c̄2

1
Q′ = Nθ u′

1(x = 0, t − τ). (2.15)

With the above simplifications, we can now implement the LSA using the dispersion
relation. The wave equation (2.3) simplifies to

∂2p′

∂t2
− c̄2

j
∂2p′

∂x2 = (γ − 1)
∂Q′

∂t
. (2.16)

The right-hand side of (2.16) is zero for both upstream and downstream flows at x /= 0.
With the assumption ū = 0, its general solution can be written as

p′
j(x, t) = (A+

j eikjx + A−
j e−ikjx) e−iωt, (2.17)

where kj = ω/c̄j is the acoustic wavenumber, and A+
j ,A−

j are the corresponding
amplitudes to be determined. Using (2.2b), the solution for velocity fluctuation is

u′
j(x, t) = 1

ρ̄jc̄j
(A+

j eikjx − A−
j e−ikjx) e−iωt. (2.18)

Using the above general solutions in the simplified connecting relations for p′ and u′,
namely, (2.14a) and (2.15), we obtain

A+
2 + A−

2 = A+
1 + A−

1 , (2.19a)

A+
2 − A−

2 = β(A+
1 − A−

1 ), β = [1 + Nθ eiωτ ]ρ̄1c̄1/ρ̄2c̄2. (2.19b)

The open boundary condition is implemented at both the inlet and outlet of the tube,
where p′

1(x = −l1, t) = 0 and p′
2(x = l2, t) = 0. Using (2.17), this boundary condition can
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be expressed as

A+
1 e−ik1l1 + A−

1 eik1l1 = 0, A+
2 eik2l2 + A−

2 e−ik2l2 = 0. (2.20a,b)

Equations (2.19)–(2.20) can be further recast into a compact form

CA = 0, C =

⎡
⎢⎢⎢⎣

1 1 −1 −1
1 −1 −β β

0 0 e−ik1l1 eik1l1

eik2l2 e−ik2l2 0 0

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎣

A+
2

A−
2

A+
1

A−
1

⎤
⎥⎥⎥⎥⎦ . (2.21)

This linear system has a non-trivial solution only if C is singular, which means

|C|
2

= (β − 1) sin (k2l2 − k1l1)+ (β + 1) sin (k1l1 + k2l2) = 0. (2.22)

Without the heater, where N = 0 and β = 1, the dispersion relation (2.22) simplifies to
sin(k1l1 + k2l2) = sin(kl) = 0, indicating that the solution consists of a series of harmonic
acoustic modes (eigenmodes)

k = k0 = nπ/l, n = 1, 2, 3, . . . . (2.23)

If the heater exists but the interaction effect Nθ is small, then the influence of heat
release on the mean flow is negligible, resulting in ρ̄1 ≈ ρ̄2 ≈ ρ̄, c̄1 ≈ c̄2 ≈ c̄, k1 ≈ k2 ≈
k = ω/c̄. Thus (2.22) can be simplified to

(β − 1) sin(kδl)+ (β + 1) sin(kl) = 0, δl = l2 − l1. (2.24)

Expanding k into the eigenmode k0 and perturbation k′, i.e. k = k0 + k′, and utilizing
Taylor expansion with sin(k0l) = 0, (2.24) can be rewritten as

(β − 1)[sin(k0δl)+ k′δl cos(k0δl)] + (β + 1)k′δl cos(k0l) = 0, (2.25)

and we get the solution for k′:

k′ = sin(k0δl)
(1 + β)l/(1 − β) cos(k0l)− δl cos(k0δl)

= k′
r + ik′

i, (2.26)

with

k′
i = −2l cos(k0l) sin(k0δl) sin(ωτ)

DkNθ
, (2.27)

Dk =
[(

2 cos(ωτ)
Nθ

+ 1
)

l cos(k0l)+ δl cos (k0δl)
]2

+
(

2l sin(ωτ)
Nθ

)2

. (2.28)

By now, we can analyse the stability of different eigenmodes, particularly focusing on
the n = 1 and n = 2 cases in (2.23), which represent the odd and even modes. From
the general solutions (2.17) and (2.18), the temporal growth factor is given by e−iωt =
exp(−iωrt + ωit) = exp(−ic̄krt + c̄kit), where ki = k′

i since k0 is real. Consequently, the
amplitude of the solution will increase over time if k′

i > 0, and it will decrease if k′
i < 0.

Assuming that τ is small, such that ωτ < π and sin(ωτ) > 0, the sign of k′
i depends

entirely on the phases of k0l and k0δl in (2.27). This leads to the following predictions.

1000 A92-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
31

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1031


Analysis and LBM of thermoacoustic problems

6

1st mode, numerical

1st mode, analytical

2nd mode, numerical

2nd mode, analytical

4

2

0R
e(

–
iω

)l/
c̄ 1

–2

–4
0 1/8 1/4 3/8 1/2

l1/l
5/8 3/4 7/8 1

(×10–2)

Figure 2. The growth rate obtained from the numerical solution of dispersion relation (2.24) with mean flow
ū = 0 and the unfiltered n-τ flame model. The results of the first and second eigenmodes are presented.

(i) When n = 1, cos(k0l) = −1. If sin(k0δl) = sin(πδl/l) < 0, indicating −1 < δl/l <
0, i.e. l/2 < l1 < l, then we find that ki < 0, causing u′(t) and p′(t) to damp over
time. Conversely, growth occurs within the range 0 < l1 < l/2.

(ii) When n = 2, cos(k0l) = 1. If sin(k0δl) = sin(2πδl/l) > 0, indicating −1 < δl/l <
−1/2 or 0 < δl/l < 1/2, i.e. l/4 < l1 < l/2 or 3l/4 < l1 < l, then ki < 0, causing
fluctuations to damp over time. The growth range for this eigenmode is 0 < l1 < l/4
and l/2 < l1 < 3l/4.

The above analytical results are demonstrated more clearly in figure 2. Here, we choose
Nθ = 0.03, τ = l/(2πc̄). For comparison, the dispersion relation (2.24) is also solved
numerically using MATLAB’s fsolve toolbox for 20 discrete values of l1/l ∈ (0.01, 0.99),
and the results are illustrated simultaneously in figure 2. The analytical and numerical
solutions of ωi show excellent consistency.

If the Rijke tube flow has a non-negligible mean velocity but a still low Mach number,
i.e. 0 < Ma1 ≡ ū1/c̄1 � 1, then after some algebra, we find that the effect of the heater
position on growth rate is the same as in the ū = 0 case (see Appendix A for details).

In the most general case, we consider the Rijke tube system without assuming a low
Mach number. Meanwhile, the n-τ model with the low-pass filter (2.9) is adopted. To
implement the LSA, we transform the filtered n-τ model back into the time domain. This
is done by multiplying (2.9) with 1 + iτcω and taking the inverse Laplace transform on
both sides, thus obtaining an equation relating Q′(t) to u′(t):

(
τc

d
dt

+ 1
)

Q′(t)
Q̄

= N
u′

1(x = 0, t − τ)

ū1
. (2.29)
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Replacing u′ in (2.29) by its general solution (A2), we have

Q′(t) = Q̄
ρ̄1c̄1ū1

N
1 + iτcω

eiωτ (A+
1 − A−

1 ) e−iωt, (2.30)

which can be further used in the connecting relations (2.6a) and (2.6b), resulting in

A+
2 + A−

2 + ū2

c̄2
(A+

2 − A−
2 ) = A+

1 + A−
1 + ū1

c̄1
(A+

1 − A−
1 ), (2.31a)

ū2(A+
2 + A−

2 )+ c̄2(A+
2 − A−

2 ) = ū1(A+
1 + A−

1 )+ (c̄1 + Q1)(A+
1 − A−

1 ), (2.31b)

where

Q1 = (γ − 1)Q̄
ρ̄1c̄1ū1

N
1 + iτcω

eiωτ . (2.32)

Furthermore, the inlet and outlet boundary conditions are considered to be slightly
dissipative rather than perfectly reflective. To achieve this, the general solution of pressure
is decomposed into waves propagating in two directions,

p′
j(x, t) = p′+

j + p′−
j , p′+

j = A+
j eik+

j x e−iωt, p′−
j = A−

j e−ik−
j x e−iωt, (2.33)

and the reflecting relations at the two boundary points are defined as

p′+
1 (−l1, t) = R1 p′−

1 (−l1, t), p′−
2 (l2, t) = R2 p′+

2 (l2, t), (2.34)

where R1 and R2 are reflection coefficients. For simplicity, we set R1 = R2 = Rf
throughout this work. Obviously, if Rf = −1, then the boundary condition (2.34) would
lead to the commonly open inlet/outlet boundary condition p′(x = −l1, t) = p′(x =
l2, t) = 0. A value |Rf | < 1 can be set to introduce the dissipative effect. With this
implementation, the relations for A±

j at boundaries can be expressed as

A+
1 e−ik+

1 l1 − R1A−
1 eik−

1 l1 = 0, −R2A+
2 eik+

2 l2 + A−
2 e−ik−

2 l2 = 0. (2.35)

Equations (2.31) and (2.35) can be recast into a linear system CA = 0 with

C =

⎡
⎢⎢⎢⎢⎢⎣

1 + ū2

c̄2
1 − ū2

c̄2
−1 − ū1

c̄1
−1 + ū1

c̄1
ū2 + c̄2 ū2 − c̄2 −ū1 − c̄1 − Q1 −ū1 + c̄1 + Q1

0 0 e−ik+
1 l1 −R1 eik−

1 l1

−R2 eik+
2 l2 e−ik−

2 l2 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (2.36)

If Q̄ = 0, i.e. (ρ̄1, ū1, T̄1) = (ρ̄2, ū2, T̄2), then this case degenerates to the previous
low Mach number simplified case, and we will not repeat the results. When Q̄ /= 0, we
consider the stability range for the heated flow with an arbitrary selection of parameters,
for example N = 3, ū1 = 0.01c̄1, Rf = −1, τ = l/(2πc̄1), τc = l/(πc̄1). Then ω is solved
for numerically by setting |C| = 0, starting with an initial guess ω = nπc̄1/l, where n
represents the mode number under low Mach number assumptions. Subsequently, we
determine the actual frequency −ωr and growth rate ωi for the nth mode.

The frequencies for the first and second modes are depicted in figure 3. As expected, the
frequency −ωr varies with different l1 and T̄2, but it remains close to the basic frequencies.
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Figure 3. The actual frequencies −ω′
r solved from the dispersion relation at different T̄2/T̄1 and heater

positions: (a) frequencies of the first mode; (b) frequencies of the second mode. Other flow parameters are
N = 3, ū1 = 0.01c̄1, Rf = −1, τ = l/(2πc̄1) and τc = l/(πc̄1).

0 1/4

(b)

1/2

l1/l l1/l
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R
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–
iω

)l/
c̄ 1
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(×10–1) (×10–2)

T̄2 = 1.01

T̄2 = 1.05

T̄2 = 1.10

Figure 4. The growth rate ωi of the first mode solved from the dispersion relation at different T̄2/T̄1: (a) ωi
for all heater positions; (b) a zoomed-in portion of (a) near the transition point l1 = l/2. Other flow parameters
are N = 3, ū1 = 0.01c̄1, Rf = −1, τ = l/(2πc̄1) and τc = l/(πc̄1).

The corresponding growth rates are illustrated in figures 4 and 5. For T̄2/T̄1 = 1.01, the
transition point for the first mode is observed at 0.491l1/l, and for the second mode at
0.500l1/l, which align closely with the analytical results from simplified cases where
ū → 0. As T̄2/T̄1 increases from 1.01 to 1.1, discrepancies from the analytical results
become apparent, with observed transition points of l1 decreasing. Additionally, we
note that the absolute value of ωi increases for higher T̄2, which is reasonable as more
heat injected into the flow accelerates system dynamics, whether in growth or damping
phases.

2.3. Effect of flow and flame parameters on stability range
After establishing of the general approach for LSA, we now analyse the detailed impact
of flow parameters, including reflection coefficients Rf , mean flow Ma1 and T2/T1, as
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Figure 5. The growth rate ωi of the first mode solved from the dispersion relation at different T̄2/T̄1: (a) ωi for
all heater positions; (b–d) zoomed-in portions of (a) near the transition points l1 = l/4, l/2, 3l/4, respectively.
Other flow parameters are N = 3, ū1 = 0.01c̄1, Rf = −1, τ = l/(2πc̄1) and τc = l/(πc̄1).

well as flame model parameters N and τ . First, we investigate the effect of the reflection
coefficient. Figure 6 illustrates the growth rate for the n = 1–4 eigenmodes, with Rf = −1
to −0.9. Additional flow parameters are ū1 = 0.01c̄1 and T̄2/T̄1 = 1.1, with N = 3,
τ = l/(2πc̄1) and τc = l/(πc̄1). As expected, when |Rf | decreases, more energy dissipates
from the boundary, resulting in a lower growth rate and narrower range of l1 where the
perturbation grows. For Rf = −0.9, the n = 1 mode does not exhibit growth for any heater
position l1 with current parameters. Therefore, we set Rf = −0.97 to ensure that both
growth and damping ranges exist for the first two eigenmodes in subsequent analysis and
simulations, unless otherwise specified.

Next, we examine the combined effects of two parameters that control the mean flow,
namely Ma1 and T̄2/T̄1, along with the effects of N and τ . Here, we set l1/l = 1/4 as
the representative heater location to avoid the stagnation point issue for either the first
or the second mode; see discussion in § 3.2 for details. Two temperature ratios, namely
T̄2/T̄1 = 1.1 and 1.3, are selected to represent cases with low and high mean heat release
rates, respectively. Similarly, three upstream mean Mach numbers, i.e. 0.01, 0.1 and 0.3,
are chosen to represent cases with relatively low to high speed flows. The parameter N
is investigated within the range 0 < N < 5, with step size 0.1, and τ is varied within
0 < τ < 3 with step size 0.03. Consequently, the effect of N and τ can be depicted using
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Figure 6. The growth rate ωi for different reflection coefficients. The results for the n = 1–4 eigenmodes are
presented: (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4. Other flow parameters are ū1 = 0.01c̄1, T̄2/T̄1 = 1.1,
N = 3, τ = l/(2πc̄1) and τc = l/(πc̄1).

contours in two-dimensional plots, while the influence of Ma1 and T̄2/T̄1 can be discerned
by comparing different cases in figures 7 and 8.

We can draw several conclusions from figures 7 and 8.

(i) The growing range and growth rate increase with a higher heat release rate, i.e. a
larger T̄2/T̄1. This is evident by comparing the area ofωi > 0 regions in T2/T1 = 1.1
and 1.3 cases in either figure 7 or figure 8 at the same upstream Mach number. This
phenomenon is natural since the released heat is the energy source of thermoacoustic
waves.

More specifically, from the n-τ model in low Mach number flows, i.e. (2.13), a
larger T2/T1 will result in a larger Q′ magnitude for the same u′. Then according to
the Rayleigh criterion expressed by (2.37) below, this will further lead to a larger R
and cause a higher growth rate.

(ii) The growing range and growth rate decrease with a higher mean velocity, especially
when the flame interaction strength N is small, assuming that the temperature is
constant. This is evident by comparing figures 7(a,c,e) and 8(a,c,e). This might
be due to the fact that a higher-speed flow is less sensitive to small pressure
disturbances, as more fluctuation (or sound) energy is flushed out of the flow region
with a higher Mach number.

(iii) A larger flame interaction strength N can significantly increase the growth rate and
growing range, as shown clearly in each separate plot. It is straightforward from the
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Figure 7. The combined effect of Ma1, T2/T1, N and τ on the growth rate for the first mode. Results are from
the numerical solution of the dispersion relation. Other parameters are τc = l/(πc̄1) and l1/l = 1/4.

definition of N and (2.7) that Q′ will be larger with a larger N, since more energy is
absorbed by fluctuation waves.

(iv) The effect of τ on growth rate is periodic. In fact, the growth rate of perturbations
is determined by the well-known Rayleigh criterion R, which can be expressed as
(Schuller et al. 2020)

R ∝ 1
Teg

∫ Teg

0
p′(t)Q′(t) dt, (2.37)

where Teg ≡ 2l/c̄1 represents one period of time for the wave to propagate forwards
and backwards in the tube. We can estimate the value of τ at which the value of R is
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Figure 8. The combined effect of Ma1, T2/T1, N and τ on the growth rate for the first mode. Results are from
the numerical solution of the dispersion relation. Other parameters are τc = l/(πc̄1) and l1/l = 1/8.

the largest under ideal conditions. Based on the definition of reflection coefficients,
i.e. (2.34), we have A−

1 = A+
1 e−i(k+

1 +k−
1 )l1/R1. Thus p′ and u′ can be expressed as

p′
1

e−iωt = A+
1 eik+

1 x + A−
1 e−ik−

1 x = A+
1

R1 exp(i(k+
1 + k−

1 )(x + l1))+ 1

R1 exp(i[(k+
1 + k−

1 )l1 + k−
1 x])

,

u′
1

ρ̄1c̄1 e−iωt = A+
1 eik+

1 x − A−
1 e−ik−

1 x = A+
1

R1 exp(i(k+
1 + k−

1 )(x + l1))− 1

R1 exp(i[(k+
1 + k−

1 )l1 + k−
1 x])

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.38)
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Letting R1 = −1 denote a perfectly reflective boundary, we have

p′
1ρ̄1c̄1

u′
1

= − exp(i(k+
1 + k−

1 )(x + l1))+ 1

− exp(i(k+
1 + k−

1 )(x + l1))− 1
= i

sinϕ
1 + cosϕ

, ϕ = (k+
1 + k−

1 )(x + l1),

(2.39)

which means that the phases of p′
1 and u′

1 differ by π/2, as

p′
1(x, t) = Pu u′

1(x, t) eiπ/2, Pu = sinϕ
(1 + cosϕ)ρ̄1c̄1

. (2.40)

By substituting the n-τ model (2.7), as well as (2.40), into (2.37), we have

R ∝ 1
Teg

∫ Teg

0
u′(t) u′(t − τ) eiπ/2 dt = ei(π/2−ωτ) 1

Teg

∫ Teg

0
|u′(t)|2 dt. (2.41)

From (2.41), we can see that for the nth mode in the low Mach number flow, if ωτ =
2mπ + π/2, or τ = (2m + 1/2)l/(nc̄1), then R will have the peak values with any
integer m. Specifically, the first peak in growth rate is expected at approximately τ =
l/(2c̄1) for the first mode, and the corresponding period for τ is 2l/c̄1; for the second
mode, the first peak occurs at τ = l/(4c̄1), and its period with τ is l/c̄1. The same
analytical approach applies similarly to the downstream flow, yielding comparable
results. In realistic conditions, the τ values corresponding to peak growth rates and
their periodic behaviour can be observed in figures 7 and 8. These observations align
closely with the predictions of the Rayleigh criterion, although the τ values for the
peaks are slightly shifted from their theoretical positions due to the influence of the
filter.

3. Lattice Boltzmann simulation with the linear flame model

In this section, the Rijke tube flow will be simulated using the LBM, and the computational
results will be compared with previous LSA predictions.

3.1. The LBM with a heat source
The details of the LBM have been elaborated in Shan & He (1998), Shan et al. (2006, 2021)
and Shan (2016, 2019); we will briefly describe the essential ideas here. The Boltzmann
equation with a collision model Ω and a heat source S can be expressed as

∂f
∂t

+ ξ · ∇f = Ω + S, (3.1)

where f ≡ f (x, ξ , t) is the density distribution function, with x, ξ and t being the spatial,
velocity and temporal coordinates in the D-dimensional phase space, respectively. The
quantities ρ, u and T relate the distribution function to moments of ξ as

ρ =
∫

f dξ , ρu =
∫

f ξ dξ , ρe = 1
2

∫
f |ξ − u|2 dξ . (3.2)

And the discrete form of (3.1) is

fa
(
x + ξa�t, t +�t

) − fa(x, t) = �t [Ωa(x, t)+ Sa(x, t)]. (3.3)

As pointed out by Shan et al. (2006), to recover the correct thermal-compressible
Navier–Stokes–Fourier equation, the discrete velocities {ξa : a = 1, 2, . . . , d} and weights
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wa must form a Gauss–Hermite quadrature of at least eighth order in velocity space, with
details provided by Shan (2016). With such a proper set of discrete velocities, ρ, u and e
can be obtained from the discrete distribution function fa(x, t) as

ρ =
d∑

a=1

fa, ρu =
d∑

a=1

faξa, ρe = 1
2

d∑
a=1

fa|ξa − u|2. (3.4)

The collision model Ω and heat source term S should be expanded using Hermite
polynomials H(n)(ξ) as

Ωa(x, t) = wa

4∑
n=2

1
n!

a(n)Ω (x, t) · H(n)(ξa), (3.5a)

Sa(x, t) = wa

3∑
n=2

1
n!

a(n)S (x, t) · H(n)(ξa), (3.5b)

where a(n)Ω (x, t) and a(n)S (x, t) are nth-order coefficients. According to the temperature-
scaled collision model coefficients (Li & Shan 2021), a(n)Ω are expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a(2)Ω = −a(2)1
τ2
, (3.6a)

a(3)Ω = −a(3)1
τ3

+ 3
(

1
τ3

− 1
τ2

)
ua(2)1 , (3.6b)

a(4)Ω = 4ua(3)Ω − 6a(2)Ω
[
u2 + (1 − T)δ

]
. (3.6c)

Here, τ2 is related to the fluid’s dynamic viscosity μ by μ = pτ2, and τ3 = τ2/Pr, where
Pr is the Prandtl number. Also, δ is the Kronecker delta function, the apposition of two
arbitrary tensors a and u denotes the symmetric product of a and u as detailed in Shan
(2019), and a(n)1 is the Hermite expansion coefficient for the non-equilibrium part of the
distribution function, which is given by

a(n)1 (x, t) =
d∑

a=1

[
fa(x, t)− f (0)a (x, t)

]
H(n)(ξa), (3.7)

with discrete form of equilibrium

f (0)a = waρ

{
1 + ξa · u + 1

2

[
(ξa · u)2 − u2 + (T − 1)(ξ2

a − D)
]

+ ξa · u
6

[(ξa · u)2 − 3u2 + 3(T − 1)(ξ2
a − D − 2)]

+ 1
24

[(ξa · u)4 − 6(ξa · u)2u2 + u4]

+ T − 1
4

[(ξ2
a − D − 2)((ξa · u)2 − u2)− 2(ξa · u)2]

+(T − 1)2

8
[ξ4

a − 2(D + 2)ξ2
a + D(D + 2)]

}
. (3.8)
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The Hermite expansion coefficients of source S are

a(2)S = 2Q
D

δ, a(3)S = 6Q
D

δu. (3.9)

Chapman–Enskog analysis confirms that (3.9) recovers the desired heat release rate Q in
the energy equation. Details can be found in Appendix B.

3.2. Simulation parameters and results
The simulation is implemented with an in-house two-dimensional LBM code for
the monatomic gas, with specific heat ratio γ = 2. The computational domain spans
[−1000, 1000] × 1, with periodic boundary condition in the y direction. A relaxation time
τ2 = 0.012 is chosen to ensure stability at the heater with relatively low dissipation. The
initial condition is set according to the mean field solved from the connection relation
(2.4), which can be written as

ρ = ρ̄1, u = ū1, T = T̄1, for −l1 � x < 0,
ρ = ρ̄2, u = ū2, T = T̄2, for 0 � x � l2.

}
(3.10)

Meanwhile, an artificial heat release disturbance involving a total of K modes, i.e.

Q′(t) = Q̄
K∑

n=1

αn sin(ωnt), (3.11)

is used to initiate the start-up fluctuations in the tube. Once the sound waves are excited,
this disturbance will be replaced by the flame model, allowing the fluctuations to develop
naturally. The heat source is implemented on the single cell centred at x = 0 to recover the
compact-flame assumption as closely as possible.

Since the n-τ model (2.7) requires the velocity fluctuation at t = τ , an arbitrarily
selected τ may lead to temporal interpolation of u′. To enhance accuracy, we utilize the
spectral method to obtain the heat release rate. First, we take the Laplace transform of u′(t)
to get

û′(ω) =
∫ +∞

0
u′

1(t) eiωt dt =
∫ t∗

0
u′

1(t) eiωt dt. (3.12)

Using (2.8), Q′(ω) is obtained in the frequency domain. Subsequently, it is transformed
back into the time domain as

Q′(t) = 1
π

∫ ∞

−∞
Q̂′(ω) e−iωt dω ≈ 1

π
Re

∫ ωmax

0
Q̂′(ω) e−iωt dω, (3.13)

where ωmax = 100πl/c̄1 is chosen to account for the consideration of small wavenumbers
in our simulation. The characteristic boundary condition proposed by Chen, Yang & Shan
(2023) is adopted for both the inflow and outflows. In this approach, the bound region
is handled using a finite-difference method to configure the reflecting coefficient derived
from local one-dimensional inviscid (LODI) analysis. To ensure proper reflections at both
ends of the tube, we have slightly adjusted the outflow boundary condition to allow
the imposition of a desired value with relaxation to prevent drifting, and the details are
presented in Appendix C.

The upstream mean flow variables are set to ρ̄1 = 1.0, T̄1 = 1.0. The parameters in
the n-τ model are τ = l/(πc̄1) and τc = l/(2πc̄1). Following the analysis in § 2, T̄2,
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Figure 9. Snapshots of spatial distribution for u′ and p′ in one period: (a) u′ for the first eigenmode, with
l1 = 0.433l, α1 = 0.1; (b) p′ for the second eigenmode, with l1 = 0.696l, α2 = 0.1.

N and the position of the heater l1 will be adjusted according to the specific mode
under consideration. An issue that needs special treatment is the sample location for the
acoustic wave. For a self-maintained acoustic wave in the tube without heat release, i.e.
N = 0, Rf = −1 and T̄1 = T̄2, by (2.19) we obtain A+

1 = A+
2 = A+ and A−

1 = A−
2 = A−.

Meanwhile, since the value of l1 is arbitrary in (2.20), we set l1 = l2 = l/2 and obtain
A+ = −A− = A, which is reasonable since the acoustic wave should have the same
amplitude when it propagates upstream and downstream. Using (2.23), the basic mode
is kl = nπ, and the pressure and velocity fluctuations can be expressed as

p′(x, t) = A(exp(inπ(x/l + 1/2))− exp(−inπ(x/l + 1/2))) e−iωt, (3.14)

u′(x, t) = A
ρ̄c̄
(exp(inπ(x/l + 1/2))+ exp(−inπ(x/l + 1/2))) e−iωt. (3.15)

It is evident from (3.14) that p′(−l/2) = p′(l/2) = 0, which is consistent with the
boundary conditions. Furthermore, at x = 0, we have p′(x, t) = 0 for n = 2, and u′(x, t) =
0 for n = 1, according to (3.14) and (3.15), respectively. This indicates that x = 0, i.e. the
middle position of the tube, is the stagnation point for the first mode of u′ and the second
mode of p′. Moreover, the stagnation point will not shift significantly under non-ideal
conditions, as shown in figure 9. Therefore, if u′ or p′ is sampled at the middle of the tube,
then there might be a relatively large numerical error depending on the wave mode. On the
other hand, the position l/4 from the left inlet does not suffer from this issue and is chosen
as the monitoring site.

3.3. Evolution and growth rate for one-mode wave
As the simplest case, we begin with the simulation of the first eigen-acoustic mode. As
discussed in § 2.2, the transition point of the heater for the first mode is at approximately
l1 = 0.43l when T̄2/T̄1 = 1.1 (refer to figure 6). Therefore, we select three heat positions
l1/l = 0.42, 0.433, 0.45, and set α1 = 0.1, ω = πc̄1/l in the initial heat disturbance (3.11).
The initial heater is turned off at t = Teg. Then the n-τ flame model is enabled for Q′(t).
After 15Teg, the flow fluctuations reach a fully developed state, and their changes over
time are shown in figure 10. It is observed that when l1/l = 0.42, the pressure oscillation
grows gradually, whereas for l1/l = 0.44, the oscillation of pressure attenuates with time.
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2

1

0

–1
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t/Teg

35 40 45

p′
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/
ρ̄

1
c̄ 12

(×10–4)

l1/l = 0.42 l1/l = 0.433 l1/l = 0.44 Fitted envelope

Figure 10. The LBM simulation of the first oscillation mode with different heater locations in a Rijke tube.
Other parameters are Ma1 = 0.01, T̄2 = 1.1, N = 3. The dotted line shows the envelope curve fitted with (3.16),
and the fitted coefficients are p′

0 = 7.7 × 10−5ρ̄1c̄2
1, ωi = 7.7 × 10−3c̄1/l.

For l1/l = 0.433, the amplitude of the pressure fluctuation appears invariant after t >
15Teg. These phenomena can be demonstrated more clearly in figure 11, where the
temporal spectra of p′(t) during t = 15Teg–25Teg and t = 25Teg–35Teg are illustrated.
It is evident that l1/l = 0.42 and l1/l = 0.45 lead to increment and decrement of p̂′,
respectively, and the pressure spectrum is nearly unchanged for l1/l = 0.433. These
observations are consistent with previous LSA predictions in § 2.2.

As a more quantitative study, we examine the detailed growth rate from the LBM result
for the first and second modes. For the first mode, in addition to the three cases illustrated
in figure 10, two additional cases with l1/l = 0.41 and 0.46 are simulated to verify a wider
range. For the second mode, five cases with 0.67 � l1/l � 0.72 are simulated. In each
case, the envelope of p′ peaks is expected to satisfy

p′(tm) = p′
0 eωitm ⇒ ln p′(tm) = ln p′

0 + ωitm, (3.16)

where tm is the time for p′ to reach the mth peak value. The actual growth rate ωi and
fundamental amplitude p′

0 can be obtained by least squares fit of (3.16) from a series of
(tm, p′(tm)), as shown in figure 10. The extracted growth rates, as well as the solutions from
LSA, are shown in figure 12. It is observed that the growth rates from the two approaches
are quite consistent with each other.

We further consider the cases with different downstream temperatures T̄2, which
essentially means different mean heat release rate Q̄. Additionally, we consider four
different upstream velocities, Ma1 = 0.01, 0.1, 0.2 and 0.3. The assembled result is
shown in figure 13. It is observed that the growth rate increases with higher downstream
temperature T2, which is straightforward since more heat released in the flow makes the
system more unstable. On the other hand, the upstream Mach number seems to have a
negative effect on the growth rate, i.e. a higher heat release rate (or T̄2) is required to
trigger the acoustic wave to increase at higher Ma1. For the same T̄2, flows with lower
Mach numbers always exhibit larger growth rates compared to higher Ma1 cases. These
results are consistent with the phase diagrams solved with LSA and shown in figure 7,
and the reason for the change of growth rate can be explained with the Rayleigh criterion
(2.37) as well as the balance of gain and loss of sound energy; see the discussions near
figures 7 and 8 for details.
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Figure 11. Pressure oscillation spectra of the fields shown in figure 10 at two time ranges, for: (a) l1/l = 0.42,
(b) l1/l = 0.433, (c) l1/l = 0.45.
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Figure 12. The growth rate of p′ near the transition point for (a) the first mode and (b) the second mode.
Other parameters are Ma1 = 0.01, T̄2 = 1.1 and N = 3.
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Figure 13. The growth rate of p′ for the first mode under different upstream Mach numbers with N = 3.0 and
l1/l = 1/4.

For different flame interaction strengths N = 1, 2 and 3, the growth rates and transition
points for T̄2 are also studied with the LBM. The result is shown in figure 14. It is evident
that the ωi extracted from the simulated flow field closely matches the LSA results.
Furthermore, as the interaction strength increases, the T̄2 required for waves to grow
decreases rapidly. This can be explained by the heat release perturbation in an FTF as
well, that a more sensitive flame is usually more unstable.

3.4. LBM simulation of thermoacoustic waves with two mixed modes
Previous LBM simulations have focused solely on a single oscillation mode. In this
subsection, we consider a more complex situation involving a thermoacoustic field
composed by the first and second modes. As discussed above and shown in figure 6(b),
the transition point from increment to decay for the first eigenmode is l1 = 0.433, while
the transition point from damping to increasing for the second mode is l1 ≈ 0.5. Therefore,
we expect that when l1/l = 0.25, the first mode will grow and the second mode will
decay. To observe the evolving process more clearly, we set α1 = 0.01 and α2 = 0.2 in
(3.11) so that the damping mode is initialized with a larger amplitude and the increasing
mode is initialized with a smaller value. We further set ω = πc̄1/l in the initial heat
release disturbance (3.11). The initial heater is turned off at t = Teg. Then the n-τ flame
model is employed for Q′(t). The result for the mixed modes with l1/l = 0.25 is shown in
figure 15. It is observed that although the second mode (the shorter wave) is dominant at
the beginning, it decays gradually over time. At time t = 50Teg, the shorter wave almost
disappears, while the longer wave, i.e. the first mode, becomes predominant in figure 15
and continues to increase over time.
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Figure 14. The growth rate of p′ for the first mode with different N at Ma1 = 0.01 and l1/l = 1/4.
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Figure 15. The LBM solution of the mixed acoustic modes. The initial heater coefficients are α1 = 0.01,
α2 = 0.2. Other parameters are Ma1 = 0.01, T̄2 = 1.1, N = 3 and l1/l = 1/4.

In figure 16, the spectra of the pressure oscillations for the two mixed-mode cases in the
time intervals t = 10Teg–30Teg and t = 30Teg–50Teg are illustrated. It is evident that the
amplitude of the first mode in the second time interval is lower than at the beginning, while
the amplitude of the second mode exhibits the opposite behaviour. This result confirms
that mixed modes are also consistent with the stability ranges predicted by LSA.

4. Lattice Boltzmann simulation with nonlinear flame model

In previous sections, all the analyses are based on the linear flame model. Results show
that the unstable modes will continue to increase indefinitely with the n-τ model given a
sufficiently long period, whereas in realistic conditions, the final amplitude remains finite.
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Figure 16. Spectra of the pressure oscillation for the mixed acoustic modes of figure 15 in two time intervals.

Consequently, several nonlinear models have been developed to address this issue (Fleifil
et al. 1996; Dowling 1997, 1999; Dowling & Stow 2003). In this section, we introduce
a modification to the flame model to preserve the developing characteristics of the linear
model when the amplitude is small; as the amplitude reaches a predefined value, the system
will stabilize, and waves will not amplify further. This approach is to add a piecewise
‘saturation function’ to Q′(t), as proposed by Stow & Dowling (2009), i.e.

Q′(t) =
{

Q′
L(t), |Q′

L(t)| < κQ̄,
sgn(Q′(t)) κQ̄, |Q′

L(t)| � κQ̄,
(4.1)

where κ is a constant representing the expected saturation extent with Q̄, and Q′
L(t)

represents the linear model part expressed by (2.9). The sign function sgn(x) is 1 when
x � 0, and returns −1 when x is negative. The coefficient κ is associated with flame
models constructed from the realistic saturation status in combustors (Stow & Dowling
2004; Bellucci et al. 2005), such that 0 < κ < 1 should be adopted. Here, we choose
κ = 0.01 without loss of generality, since the frequencies of thermoacoustic modes are
not affected much by the specific value of κ .

We first consider an initial condition with mixed modes, excited by setting the initial
heat release perturbation in (3.11) with α1 = α3 = 0.2, i.e. the first and third eigenmodes
are imposed at the beginning. The result is shown in figure 17. Instead of plotting p′, u′
is illustrated here since the final amplitude can be compared with the result of limit cycle
theory described later. It can be seen from figure 17 that both the shorter and longer waves
are significant at the beginning. As time progresses, the oscillation is gradually dominated
by the longer wave, i.e. the first mode, while waves of other lengths gradually become
invisible. By t = 70Teg, the velocity fluctuation becomes a periodic wave with constant
amplitude. The final amplitude of u′(t) can be determined using the limit cycle theory
(Stow & Dowling 2009), which establishes a balance between the velocity fluctuation and
energy input for nonlinear flame model; see Appendix D for details. This theory yields the
stable velocity fluctuation as u′ ≈ 1.85 × 10−4c̄1, as shown in figure 17.

The spectra of the velocity perturbation in the time intervals t = 20Teg–45Teg and
t = 45Teg–70Teg are illustrated in figure 18. It can be observed that the first and third
modes have almost equivalent energy initially (the third mode diminishes slightly during
the developing process), consistent with the initial heat disturbance. In the time interval
t = 45Teg–70Teg, the amplitude of the first mode is approximately double the beginning

1000 A92-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
31

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1031


Analysis and LBM of thermoacoustic problems

3

2

1

0

–1

u′
(t)

/c̄
1

–2

–3
20 30 40 50

t/Teg

60 70

(×10–4)

Figure 17. The LBM simulation of the velocity oscillation with the nonlinear flame model at l1 = l/4. The
first and third modes are excited at t = 0–2Teg. The dashed lines denote the amplitude predicted by the limit
cycle theory with u′ ≈ 1.85 × 10−4c̄1.
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t/Teg = 20–45

(×10–4)

Figure 18. Spectra of the velocity oscillation with the nonlinear flame model at l1 = l/4 in time intervals
t/Teg = 20–45, t/Teg = 45–70 and t/Teg = 475–500.

status, while the third mode decays significantly. An interesting phenomenon is that the
third mode cannot be eliminated completely, regardless of how long the simulation runs.
For instance, we have run this case to 500Teg, and the amplitude of the third mode in
t = 475Teg–500Teg is also shown in figure 18. We can see that |û′| for the third mode
is almost unchanged after t > 70Teg. The persistence of the third harmonic wave with
low amplitude has also been detected by Stow & Dowling (2009). This occurs because
as the system reaches the limit cycle condition, the nonlinear effect of the flame model
continues contributing to the energy of the third mode. Eventually, the increasing and
damping factors reach an equilibrium, maintaining the presence of the third mode.

The saturation character (limit cycle) of the nonlinear model can be verified not only
from the increasing side but also from the decaying aspect. We consider two cases with
only the first eigenmode, where the initial perturbations are given either a smaller heat
disturbance α1 = 0.1 or a larger value of α1 = 0.4. The other parameters remain the
same as in the previous mixed modes case in this section. Figure 19 shows the temporal
evolution of the velocity fluctuations. The results indicate that the acoustic wave with
smaller initial amplitude grows rapidly, consistent with the dispersion analysis’ prediction.
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3
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Figure 19. The LBM simulations of the velocity oscillation with the nonlinear flame model at l0 = 0.25l and
two initial wave amplitudes. The dashed lines denote the amplitude predicted by the limit cycle theory, with
u′ ≈ 1.85 × 10−4c̄1.

On the other hand, the oscillation with a larger initial amplitude decays even if it is at the
same frequency. This confirms that the saturation factor in (4.1) has taken effect at such a
large amplitude. At t = 70Teg, the acoustic waves of both cases converge to the same state
and eventually approach the limit cycle value u′ ≈ 1.85 × 10−4c̄1.

5. Conclusion

In this paper, the influence of the heater position, mean flow, and heat release parameters
on the stability of thermoacoustic waves in a one-dimensional Rijke tube is studied, using
both classic linear stability analysis (LSA) and the lattice Boltzmann method (LBM).
Three types of flame models are proposed to represent the ideal time-lag heat release
model, the frequency-selected interaction flame, and the nonlinear flame with both finite
frequency and amplitude. The stability ranges for the most simplified system, assuming
both zero velocity and small Mach number, can be obtained analytically, while LSA
without these simplifications can be solved numerically. We find that the growth rate of
a pressure perturbation increases with a higher heat release rate, while it decreases with
a higher mean velocity provided that other flow parameters are kept the same. A larger
flame interaction strength N in the flame model can increase the growth rate and growing
range significantly, while the effect of the lag time τ on growth rate is periodic due to the
Rayleigh criterion.

A multi-speed LBM with a heat source is proposed to address thermoacoustic problems.
It is constructed using our recently developed spectral multiple-relaxation-time (SMRT)
collision model and characteristic boundary conditions. Then the LBM is implemented
with both the linear and nonlinear flame models to validate the LSA predictions. We
perform several simulations with the first, second and mixed eigen-acoustic modes. Their
developing characteristics and growth rates are consistent with the results from the LSA.
The final fluctuation amplitude of the LBM simulation with the nonlinear model coincides
with the value obtained by the limit cycle theory.

These results demonstrate the capability of the multi-speed LBM with SMRT model
to simulate thermoacoustic problems. The next step is to extend the current analysis
and simulation approaches to two- and three-dimensional problems. Meanwhile, a more
realistic flame model and complex combustor boundaries should also be adopted. These
are currently under active research by the authors, and will be presented in future work.
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Appendix A. The LSA of flow with low mean velocity

As a more realistic case, the Rijke tube flow with a non-negligible mean velocity, but
still low Mach number, will be discussed in this appendix. The general solution for wave
equation (2.3) in upstream and downstream flows is

p′
j(x, t) = (A+

j eik+
j x + A−

j e−ik−
j x
) e−iωt, (A1)

with k±
j = ω/(c̄j ± ūj), and the solution for u′ is

u′
j(x, t) = 1

ρ̄jc̄j
(A+

j eik+
j x − A−

j e−ik−
j x
) e−iωt. (A2)

The connecting conditions across the heater are the same as in (2.19), while the
boundary condition p′(x = −l1, t) = p′(x = l2, t) = 0 now leads to

A+
1 e−ik+

1 l1 + A−
1 eik−

1 l1 = 0, A+
2 eik+

2 l2 + A−
2 e−ik−

2 l2 = 0. (A3)

These equations can be recast into

CA = 0, C =

⎡
⎢⎢⎢⎢⎣

1 1 −1 −1
1 −1 −β β

0 0 e−ik+
1 l1 eik−

1 l1

eik+
2 l2 e−ik−

2 l2 0 0

⎤
⎥⎥⎥⎥⎦ . (A4)

We still assume the heater to have a negligible effect on mean flow properties, i.e. ρ̄1 ≈
ρ̄2 ≈ ρ̄, c̄1 ≈ c̄2 ≈ c̄ and k±

1 ≈ k±
2 ≈ k± = ω/(c̄ ± ū). Then |C| = 0 leads to

(β − 1)(eik+δl − e−ik−δl)+ (β + 1)(eiχ1 − e−iχ2) = 0, (A5)

where χ1 = k−l1 + k+l2 and χ2 = k−l2 + k+l1.
Without the heater, N = 0 and β = 1, (A5) reduces to

e−iχ2[ei(χ1+χ2) − 1] = 0 ⇒ ei(χ1+χ2) − 1 = 0, (A6)

and its solution is χ1 + χ2 = (k+ + k−)l = 2nπ. Then the eigenmodes for ω and k± are

ω0 = 2nπ

l
1

1/(c̄ − ū)+ 1/(c̄ + ū)
, k±

0 = ω0/(c̄ ± ū), n = 1, 2, 3, . . . . (A7)

We also define χ10 ≡ k+
0 l2 + k−

0 l1 and χ20 ≡ k+
0 l1 + k−

0 l2.
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If Nθ has a small value, then we expand ω as the summation of the eigenfrequency and
perturbation, i.e. ω = ω0 + ω′, so that k± = k±

0 + k′±, with k′± = ω′/(ū ± c̄). Then (A5)
can be Taylor expanded as

(β − 1)(eik+
0 δl + ik′+δl eik+

0 δl − e−ik−
0 δl + ik′−δl e−ik−

0 δl)

+ (β + 1)(eiχ10 + iχ ′
1 eiχ10 − e−iχ20 + iχ ′

2 eiχ20) = 0. (A8)

The perturbations k′±, χ ′±
j and ω′ have relations

k′± = k±
0
ω0
ω′, χ ′±

j = χj0

ω0
ω′. (A9)

Then (A8) can be simplified with (A6) and (A9):

(β − 1)(eik+
0 δl + ik+

0 δl
ω′

ω0
eik+

0 δl − e−ik−
0 δl + ik−

0 δl
ω′

ω0
e−ik−

0 δl)

+ (β + 1) eiχ10 (χ10 + χ20)
ω′

ω0
i = 0. (A10)

With χ10 + χ20 = 2nπ, we have

(β − 1)(eik+
0 δl + ik+

0 δl
ω′

ω0
eik+

0 δl − e−ik−
0 δl + ik−

0 δl
ω′

ω0
e−ik−

0 δl)

+ (β + 1) eiχ10 2nπ
ω′

ω0
i = 0, (A11)

which leads to

ω′

ω0
= − eik+

0 δl − e−ik−
0 δl

2nπi eiχ10 (β + 1)/(β − 1)+ iδl(k+
0 eik+

0 δl + k−
0 e−ik−

0 δl)
. (A12)

Assuming ū → 0, we have

k+
0 = ω0

c̄ + ū
= ω0(c̄ + ū)

c̄2 − ū2 ≈ ω0

(
1
c̄

− ū
c̄2

)
, (A13)

k−
0 = ω0

c̄ − ū
= ω0(c̄ + ū)

c̄2 − ū2 ≈ ω0

(
1
c̄

+ ū
c̄2

)
, (A14)

χ10 = k+
0 l2 + k−

0 l1 = ω0

(
1
c̄

− ū
c̄2

)
l2 + ω0

(
1
c̄

+ ū
c̄2

)
l1 = ω0

c̄
l − ω0

ū
c̄2 δl, (A15)

and

eik+
0 δl = exp(−iω0ūδl/c̄2) eiω0δl/c̄, (A16)

e−ik−
0 δl = exp(−iω0ūδl/c̄2) exp(−iω0δl/c̄), (A17)

eiχ10 = exp(−iω0ūδl/c̄2) eiω0l/c̄. (A18)
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As a result, the exponential terms in (A12) can be expressed as

eik+
0 δl − e−ik−

0 δl

= exp(−iω0ūδl/c̄2)[eiω0δl/c̄ − e−iω0δl/c̄] = 2 exp(−iω0ūδl/c̄2) sin(ω0δl/c̄) i, (A19)

k+
0 eik+

0 δl + k−
0 e−ik−

0 δl = ω0

(
1
c̄

− ū
c̄2

)
exp(−iω0ūδl/c̄2) exp(iω0δl/c̄)

+ ω0

(
1
c̄

+ ū
c̄2

)
exp(−iω0ūδl/c̄2) exp(−iω0δl/c̄)

= 2ω0 exp(−iω0ūδl/c̄2)[l/c̄ cos(ω0δl/c̄)+ ū/c̄2 sin(ω0δl/c̄) i]. (A20)

Equation (A12) can be simplified by eliminating the common term exp(−iω0ūδl/c̄2) in
both the numerator and denominator as

ω′

ω0
= sin(ω0δl/c̄)

Dω
= Wr + iWi

‖Dω‖2 , (A21)

with

Dω = −nπ(β + 1)/(β − 1) eiω0l/c̄ − (ω0δl/c̄) cos(ω0δl/c̄)− (ω0ūδl/c̄2) sin(ω0δl/c̄) i

=
(

2 cos(ωτ)
Nθ

+ 1
)

nπ cos(ω0l/c̄)− (ω0δl/c̄) cos(ω0δl/c̄)

+
[

2nπ sin(ωτ)
Nθ

cos(ω0l/c̄)− ω0ūδl
c̄2 sin(ω0δl/c̄)

]
i, (A22)

where ‖Dω‖ is the magnitude of Dω. Therefore,

Wi = ω′
i

ω0
= − sin(ω0δl/c̄)

2nπ sin(ωτ)
Nθ

cos(ω0l/c̄)+ sin2(ω0δl/c̄)
ω0ūδl

c̄2 . (A23)

When ū → 0, the second term in (A23) is negligible compared with the first term, and

ω′
i

ω0
= Wi

‖Dω‖2 ≈ − sin(ω0δl/c̄)
2nπ sin(ωτ)
Nθ ‖Dω‖2 cos(ω0l/c̄)

= − sin(nπδl/l)
2nπ sin(ωτ)
Nθ ‖Dω‖2 cos(nπ), (A24)

where the ω0 of (A7) has been replaced with nπc̄/l by dropping the small ū2 term.
Similar to the discussions for ū = 0 in § 2.2, the n = 1 and n = 2 cases are considered as

representations for odd and even modes, respectively. When τ is small so that sin(ωτ) > 0,
the sign of ω′

i is determined completely by the values of cos(nπ) and sin(nπδl/l), and we
can make a prediction similar to that in the ū = 0 case that: (i) when n = 1, the stable range
for fluctuations is l/2 < l1 < l, so that sin(nπδl/l) < 0 and ω′

i < 0, while the unstable
range is 0 < l1 < l/2; (ii) when n = 2, the stable range is l/4 < l1 < l/2 and 3l/4 < l1 <
l, while the unstable range is 0 < l1 < l/4 and l/2 < l1 < 3l/4.

To verify the analytical predictions, the numerical solutions of (A5) are plotted in
figures 20(a,b) with Nθ = 0.03 and τ = l/(2πc̄). The results show that the l/2 < l1 < l
range is indeed stable when n = 1, and the stable range for n = 2 is l/4 < l1 < l/2 and
3l/4 < l1 < l, which is consistent with the analytical predictions. We can see that even
if the mean velocity ū increase to Ma1 = 0.3, the stable and unstable ranges are still
unchanged.
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Figure 20. Numerical solutions of dispersion relation (A5) for Rijke tube flow with low Mach number. The
results for n = 1–4 eigenmodes are presented: (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4.

Appendix B. Chapman–Enskog analysis of the source term in the LBM

B.1. Zeroth-order approximation
For the equilibrium distribution function f (0), we have

f (0)(ρ,u, T) = ρ

(2πT)D/2
exp

[
−(ξ − u)2

2T

]
. (B1)

Its zeroth- to third-order moments of ξ are∫
f (0) dξ = ρ,

∫
f (0)ξ dξ = ρu,

∫
f (0)ξiξj dξ = ρ(uiuj + Tδij),∫

f (0)ξiξjξk dξ = ρuiujuk + ρT(uiδjk + ujδik + ukδij). (B2)

In addition, there exist fourth-order Gaussian integrals for f (0):∫
f (0)c2cicj dc = (D + 2)ρθ2δij. (B3)

For the source term, we have

a(0)S = a(1)S = 0, a(2)S = 2Q
D

δ, a(3)S = 2Q
D

3δu, (B4)
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and its moments for c are ∫
S dc =

∫
Sc dc = 0, (B5a)∫

Sc2 dc =
∫

Sξ2 dc − 2u
∫

Sξ dc + u2
∫

S dc = a(2)S = 2Q
D

δ, (B5b)∫
Sc3 dc =

∫
Sξ3 dc − 3u

∫
Sξ2 dc + 3u2

∫
Sξ dc + u3

∫
S dc

= a(3)S − 3ua(3)S = 0.
(B5c)

Replacing the distribution function f in (3.1) with f (0), and taking the zeroth to second
moments of ξ , we have

∂ρ

∂t
+ ∇ · (ρu) = 0, (B6a)

∂(ρu)
∂t

+ ∇ · (ρuu + ρTδ) = 0, (B6b)

∂

∂t

(
ρ

DT + u2

2

)
+ ∇ ·

(
ρ

DT + u2

2
+ ρT

)
u = Q. (B6c)

Equation (B6) can be rewritten into the form of primary variables as

Dρ =
(
∂

∂t
+ ξ · ∇

)
ρ = −ρ∇ · u + c · ∇ρ,

Du =
(
∂

∂t
+ ξ · ∇

)
u = − 1

ρ
∇ · (ρTδ)+ c · ∇u,

DT =
(
∂

∂t
+ ξ · ∇

)
T = −2T

D
∇ · u + c · ∇T + 2Q

ρD
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B7)

where c = ξ − u.

B.2. First-order approximation
We expand f asymptotically in powers of the Knudsen number (Kn → 0):

f = f (0) + Knf (1) + O(Kn2)+ · · · . (B8)

Substituting (B8) into (3.1) and omitting terms higher than O(Kn), we have

Ω = Df (0) − S. (B9)

Using the chain rule, Df (0) can be expressed by

Df (0) = ∂f (0)

∂ρ
Dρ + ∂f (0)

∂ui
Dui + ∂f (0)

∂T
DT, (B10)
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and derivatives of f (0) for ρ, ui and T can be calculated easily from definition (B1):

∂f (0)

∂ρ
= 1
(2πT)D/2

exp
(

− c2

2T

)
= f (0)

ρ
,

∂f (0)

∂ui
= ρ

(2πT)D/2
exp

(
− c2

2T

)
ci

T
= ci f (0)

T
,

∂f (0)

∂T
= ρ

(2πT)D/2
exp

(
− c2

2T

) (
c2

2T2 − D
2T

)
= c2f (0)

2T2 − Df (0)

2T
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B11)

Substituting (B7) and (B11) into (B10), we get

Ω = Ω∗ + S∗, (B12)

with

Ω∗ =
(

−D + 2
2T

c · ∇T + 1
T

c · ∇u · c − c2

DT
∇ · u + c2

2T2 c · ∇T
)

f (0),

S∗ = 2Q
ρD

(
c2

2T2 − D
2T

)
f (0) − S.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B13)

Here, Ω∗ is the first-order expansion of Ω without S, from which the compressible
Navier–Stokes equation can be recovered (see e.g. Huang 1987), while S∗ would contribute
to additional terms.

Obviously, the S∗ first-order moment of c is zero, and the mass conservation equation is
recovered without any additional term. The S∗ second-order moment of c would contribute
the viscous stress, which is

∫
S∗cc dc =

∫
2Q
ρD

(
c2

2T2 − D
2T

)
f (0)cc dc −

∫
Scc dc = 2Q

D
δij − a(2)S = 0. (B14)

And the S∗ third-order moment of c would contribute to the thermal diffusion flux, which
is

∫
S∗c3 dc =

∫
2Q
ρD

(
c2

2T2 − D
2T

)
f (0)c3 dc −

∫
Sc3 dc = 0, (B15)

where the first quadrature diminishes due to odd-order moments of c for f (0) being zero,
while the second quadrature is from (B5c). Therefore, we have confirmed that the source
term does not contribute to the viscous and thermal diffusion terms. The only effect of S
is the heat release rate Q in the energy equation, like what appears in (B6c).
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Appendix C. The characteristic boundary without drifting

Following Poinsot & Lele (1992) and Chen et al. (2023), the LODI wave form equations
can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ 1

c2

[
L2 + L4 + L1

2

]
= 0, (C1a)

∂u
∂t

+ L4 − L1

2ρc
= 0, (C1b)

∂v

∂t
+ L3 = 0, (C1c)

∂p
∂t

+ L4 + L1

2
= 0, (C1d)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 = λ1

(
∂p
∂x

− ρc
∂u
∂x

)
, (C2a)

L2 = λ2

(
c2 ∂ρ

∂x
− ∂p
∂x

)
, (C2b)

L3 = λ3
∂v

∂x
, (C2c)

L4 = λ4

(
∂p
∂x

+ ρc
∂u
∂x

)
, (C2d)

with four waves propagating at speeds (λ1, λ2, λ3, λ4) = (u − c, u, u, u + c).
For the left-hand side inflow (x = −l1), only L1 with speed λ1 < 0 is the outgoing

wave, which can be calculated directly from the inner field. We set

L2 = L3 = 0, L4 = Rf L1 (C3)

to meet the reflecting coefficient Rf at the inlet boundary as proposed by Poinsot & Lele
(1992).

For the right-hand side outflow (x = l2), if a reflecting coefficient Rf is on demand, then
we can adopt

L1 = Rf L4. (C4)

However, the drift phenomena may occur if both (C3) and (C4) are used. To fix it, we can
force the pressure of the outflow to meet a desired far-field value p̄2, i.e.

L1 = K( p − p̄2). (C5)

Obviously, (C4) and (C5) cannot be satisfied simultaneously. In the following, we would
like to derive a boundary condition such that both the reflecting coefficient and the destine
pressure can be configured for the outflow.
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From (C1b) and (C1d), L1 and L4 can be solved as

L1 = −
(
∂p
∂t

− ρc
∂u
∂t

)
, L4 = −

(
∂p
∂t

+ ρc
∂u
∂t

)
. (C6)

Then we have

L1 − Rf L4 = −(1 − Rf )
∂p
∂t

+ (1 + Rf )ρc
∂u
∂t
. (C7)

Here, the reflecting coefficient has already been merged in. If we further replace the
temporal derivatives in (C7) with relaxation relations, i.e.

∂p
∂t

= −K( p − p̄2), ρc
∂u
∂t

= −Kρ̄2c̄2(u − ū2), (C8)

then (C7) can be rewritten as

L1 = K[(1 − Rf )( p − p̄2)− (1 + Rf )ρ̄2c̄2(u − ū2)] + Rf L4. (C9)

The LODI equations (C1) with L1 replaced by (C9) can serve as the evolution equation at
the outflow bound.

Appendix D. The velocity amplitude given by limit cycle theory

We adopt the approach proposed by Stow & Dowling (2009) to obtain the amplitude of the
limit cycle. Considering that only one dominant frequency ω can sustain in the nonlinear
flame model system finally, the form for the final velocity perturbation can be written as

u1 = ū1[1 + A cos(ωt)], (D1)

where ω and A remain to be determined. The nonlinear effect can be seen as changing the
heat term Q1 in the dispersion relation (2.36) to

Q1 = Q̂′

Q̂′
L

(γ − 1)Q̄
ρ̄1c̄1ū1

N
1 + iτcω

eiωτ , (D2)

where

Q̂′ = ω

π

∫ 2π/ω

0
Q′(t) eiωt dt, Q̂′

L = ω

π

∫ 2π/ω

0
Q′

L(t) eiωt dt. (D3)

Now we solve the dispersion relation |C| = 0 again. However, this time the ratio Q̂′/Q̂′
L

should be estimated before numerically searching for the root of ω. The object is to find
a proper ratio so that ωi = 0 for the output solution to ensure a zero growth rate. After a
few trials, we find that Q̂′/Q̂′

L = 0.323 can satisfy this requirement, with corresponding
ωr = 1.029πc̄1/l. For the pure linear model Q′

L, we will get ωr = 1.030πc̄1/l. This is
consistent with previous statement that the saturation function in the nonlinear model does
not change the eigenfrequency much.

After that, we solve the expression for Q̂′/Q̂′
L to get A, which is

Q̂′

Q̂′
L

=

⎧⎪⎨
⎪⎩

1, β � 1,

1 − 2ψ
π

+ 2
(
1 − 1/β2)1/2

πβ
, β > 1.

(D4)

Here, β = AN/κ
√

1 + ω2τ 2
c represents the amplitude, and ψ = arccos(1/β).
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Figure 21. The relation between Q̂′/Q̂′
L and β governed by (D4).

A detailed derivation of (D4) can refer to Stow & Dowling (2009) and Urednicek (2018).
Figure 21 shows the relation of Q̂′/Q̂′

L with β. For β � 1, the heat fluctuation Q̂′ behaves
the same as in the linear flame model. As β is larger than 1, Q̂′ becomes smaller than Q̂′

L.
This is due to the saturation operator in (4.1) damping the gain of the FTF. For Q̂′/Q̂′

L =
0.323, A = 1.85 × 10−2 can be solved from (D4), which means that the amplitude of the
velocity perturbation is |u′

max|/c̄1 = Aū1/c̄1 = 1.85 × 10−4 according to (D1).

Appendix E. The LBM model with polyatomic gases

For the polyatomic gas, another distribution function g that describes the extra S degrees
caused by rotational and vibration movements is introduced following Nie, Shan & Chen
(2008b). The lattice Boltzmann equation for g with Bhatnagar–Gross–Krook model reads

∂g
∂t

+ ξ · ∇g = Ωg + Sg, Ω = −g − f (0)T
τg

, (E1)

where Sg is the heat release source term for g. Now, the macroscopic variables ρ, u and e
are related to f and g by

ρ =
∫

f dξ , ρu =
∫

f ξ dξ , ρe = 1
2

(∫
f |ξ − u|2 dξ + S

∫
g dξ

)
, (E2)

and the specific ratio γ is given by

γ = 1 + 2
D + S

. (E3)

Like f , both the collision operator Ωg and Sg can be expanded with Hermite
polynomials:

Ωg = wa

2∑
n=0

1
n!

b(n)Ω (x, t) · H(n)(ξa), Sg = wa

1∑
n=0

1
n!

b(n)S (x, t) · H(n)(ξa), (E4)
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Figure 22. The growth rate ωi of the first mode solved from the dispersion relation for different γ : (a) ωi
for all heater positions; (b) zoom of (a) near the transition point l1 = l/2. Other flow parameters are N = 3,
T̄2/T̄1 = 1.1 and ū1 = 0.01c̄1.

where the b(n)Ω are expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b(0)Ω = −b(0)1
τ2
, (E5a)

b(1)Ω = −b(1)1
τ3

+
(

1
τ3

− 1
τ2

)
ub(0)1 , (E5b)

b(2)Ω = 2ub(1)Ω − b(0)Ω [u2 + (1 − T)δ], (E5c)

with

b(n)1 (x, t) =
d∑

a=1

[
ga(x, t)− T f (0)a (x, t)

]
H(n)(ξa). (E6)

The coefficients for the source terms of f and g should be modified to⎧⎪⎪⎨
⎪⎪⎩

a(0)S = a(1)S = 0, a(2)S = 2Q
D + S

δ, a(3)S = 2Q
D + S

3δu, (E7a)

b(0)S = 2Q
D + S

, b(1)S = 2Q
D + S

u. (E7b)

Now we can examine the effect of γ on thermoacoustics in the Rijke tube. The
stability range for the heated flow with γ = 1.4, N = 3, T̄2/T̄1 = 1.1 and ū1 = 0.01c̄1
is considered. First, the LSA result is compared with that of γ = 2. Figure 22 shows the
normalized growth rates for γ = 1.4 and γ = 2 for all the values of l1. We can see that
the transition points are almost unchanged for the two cases. In the two-dimensional LBM
solver, we take S = 3 to yield γ = 1.4, and let the downstream temperature vary from 1.01
to 1.15 while fixing the heater position at l1 = l/4. The growth rates extracted from the
LBM results at different T̄2 are shown in figure 23. We can see that the normalized growth
rates are very similar for γ = 1.4 and γ = 2, except for T̄2 > 1.12, because the thermal
effects are more significant at these temperatures.
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Figure 23. The growth rates of p′ for the first mode with different γ at N = 3 and l1/l = 1/4, extracted from
LBM simulated flow fields. Other parameters are the same as in figure 22.
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