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Abstract

The subgroup commutativity degree of a group G is the probability that two subgroups of G commute, or
equivalently that the product of two subgroups is again a subgroup. For the dihedral, quasi-dihedral and
generalised quaternion groups (all of 2-power cardinality), the subgroup commutativity degree tends to 0
as the size of the group tends to infinity. This also holds for the family of projective special linear groups
over fields of even characteristic and for the family of the simple Suzuki groups. In this short note, we
show that the family of finite P-groups also has this property.
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1. Introduction

The subgroup commutativity degree, sd(G), also called the subgroup permutability
degree, of a finite group G is defined as the probability that two subgroups of G
commute, or equivalently that the product of two subgroups is again a subgroup:

sd(G) =
1

|L(G)|2
|{(H,K)∈L(G)2 | HK = KH}|,

where L(G) is the subgroup lattice of G. Many problems related to this concept
have been formulated in [6, 8]. We recall here only the problem of finding some
natural families of groups Gn, n ∈ N, whose subgroup commutativity degree vanishes
asymptotically, that is,

lim
n→∞

sd(Gn) = 0. (1.1)

It is known that the dihedral groups D2n , the quasi-dihedral groups S 2n , the generalised
quaternion groups Q2n (see [6]), the projective special linear groups PSL2(2n) and the
simple Suzuki groups Sz(22n+1) (see [1, 2]) satisfy (1.1). Our main result shows that
the family Gn,p of finite P-groups (defined below) also have this property.
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38 M. Tărnăuceanu [2]

Theorem 1.1. The subgroup commutativity degree of Gn,p vanishes asymptotically,
that is,

lim
n→∞

sd(Gn,p) = 0.

Most of our notation is standard and will usually not be repeated here. Basic
definitions and results on groups can be found in [4]. For subgroup lattice concepts,
we refer the reader to [3].

2. Preliminaries
We first recall the notion of a P-group, according to [3], and explain the subgroup

structure of these groups.
Let p be a prime, n ≥ 2 be a cardinal number and G be a group. We say that G

belongs to the class P(n, p) if it is either elementary abelian of order pn, or a semidirect
product of an elementary abelian normal subgroup H of order pn−1 by a group of prime
order q , p which induces a nontrivial power automorphism on H. The group G is
called a P-group if G ∈ P(n, p) for some prime p and some cardinal number n ≥ 2. It is
well known that the class P(n,2) consists only of the elementary abelian group of order
2n. Also, for p > 2 the class P(n, p) contains the elementary abelian group of order pn

and, for every prime divisor q of p − 1, exactly one nonabelian P-group with elements
of order q. Moreover, the order of this group is pn−1q if n is finite. The most important
property of the groups in the class P(n, p) is that they are all lattice-isomorphic (see
[3, Theorem 2.2.3]). This played an essential role in [6] to produce examples of finite
lattice-isomorphic groups with different subgroup commutativity degrees.

Since the subgroup commutativity degree concept is defined only for finite groups
and it is trivial in the abelian case, we will focus only on finite nonabelian P-groups.
So, let us suppose that p > 2 and n ∈ N are fixed, and take a divisor q of p − 1. The
nonabelian group of order pn−1q in the class P(n, p) will be denoted by Gn,p. By
[3, Remark 2.2.1], it is of type

Gn,p = H〈x〉,
where H � Zn−1

p (that is, the direct product of n − 1 copies of Zp), o(x) = q and there
exists an integer r such that x−1hx = hr for all h ∈ H.

In order to describe the subgroups of Gn,p, we need some information about the
subgroups of a finite elementary abelian p-group. First of all, we recall the following
well-known theorem (see, for example, [5, 7]).

Theorem 2.1. The number of subgroups of order pk of the finite elementary abelian
p-group Zn

p is 1 if k = 0 or k = n, and

an,p(k) =
∑

1≤i1<i2<···<ik≤n

pi1+i2+···+ik−(k(k+1)/2)

if 1 ≤ k ≤ n − 1. In particular, the total number of subgroups of Zn
p is

an,p = 2 +

n−1∑
k=1

an,p(k) = 2 +

n−1∑
k=1

∑
1≤i1<i2<···<ik≤n

pi1+i2+···+ik−(k(k+1)/2).
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Note that an alternative way of writing the numbers an,p(k), k = 0, 1, . . . , n, is

an,p(k) =
(pn − 1) · · · (p − 1)

(pk − 1) · · · (p − 1)(pn−k − 1) · · · (p − 1)
.

Properties of the above numbers will be very useful in determining sd(Gn,p).

Remark 2.2. The numbers an,p(k) and an,p in Theorem 2.1 satisfy the following
recurrence relations:

(1) an,p(k) = an−1,p(k) + pn−kan−1,p(k − 1) for k = 1, 2, . . . , n − 1;
(2) an,p = 2an−1,p + (pn−1 − 1)an−2,p.

We also remark that an,p can be written as an,p = fn(p), where the polynomial
fn ∈ Z[X] is of degree [n2/4]. The leading coefficient xn of this polynomial is 1 if
n is even and 2 if n is odd. Moreover, by using a computer algebra program, from (2)
we can easily obtain the first terms of the integer sequence (an,p)n∈N∗ . Thus,

a1,p = 2,
a2,p = p + 3,

a3,p = 2p2 + 2p + 4,
a4,p = p4 + 3p3 + 4p2 + 3p + 5,

a5,p = 2p6 + 2p5 + 6p4 + 6p3 + 6p2 + 4p + 6

and so on.

A subgroup of Gn,p is either cyclic if it is included in H, or a semidirect product
of the same type as Gn,p if it possesses some elements of order q. So, we can give an
enumerative description of these subgroups. They are:

- one of order 1, namely the trivial subgroup H1
1 ;

- an−1,p(1) of order p, say Hp
i , i = 1, . . . , an−1,p(1);

- an−1,p(2) of order p2, say Hp2

i , i = 1, . . . , an−1,p(2);
...

- an−1,p(n − 2) of order pn−2, say Hpn−2

i , i = 1, . . . , an−1,p(n−2);

- one of order pn−1, namely Hpn−1

1 = H;
- pn−1 of order q, say Hq

i , i = 1, . . . , pn−1;
- an−1,p(1)pn−2 of order pq, say Hpq

i , i = 1, . . . , an−1,p(1)pn−2;

- an−1,p(2)pn−3 of order p2q, say Hp2q
i , i = 1, . . . , an−1,p(2)pn−3;

...
- an−1,p(n−2)p of order pn−2q, say Hpn−2q

i , i = 1, . . . , an−1,p(n−2)p;

- one of order pn−1q, namely Hpn−1q
1 = Gn,p.
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We observe that
|L(Gn,p)| = an,p

since Gn,p and Zn
p are lattice-isomorphic. On the other hand, by [3, Lemma 2.2.2] we

infer that the normal subgroups of Gn,p are Gn,p itself and all subgroups contained in
H. Therefore,

|N(Gn,p)| = 1 + |L(H)| = 1 + |L(Zn−1
p )| = 1 + an−1,p,

where N(Gn,p) denotes the normal subgroup lattice of Gn,p.

3. Proof of Theorem 1.1

First, we will prove the following inequality:

sd(Gn,p) ≤
an−1,p

an,p

(
2 +

1
an,p

)
. (3.1)

For every subgroup K of Gn,p, let us denote by C(K) the set of all subgroups of Gn,p

which commute with K. Then

sd(Gn,p) =
1

|L(Gn,p)|2
∑

K∈L(Gn,p)

|C(K)| =
1

a2
n,p

∑
K∈L(Gn,p)

|C(K)|. (3.2)

Moreover,

|C(Hpk

i )| = an,p for k = 0, 1, . . . , n − 1 and i = 1, 2, . . . , an−1,p(k),

because all p-subgroups of Gn,p are normal. Then (3.2) becomes

sd(Gn,p) =
1

a2
n,p

(
an−1,p an,p +

n−1∑
k=0

an−1,p(k)∑
i=1

|C(Hpkq
i )|

)
. (3.3)

Assume that k ∈ {0, 1, . . . , n − 1} and i ∈ {1, 2, . . . , an−1,p(k)} are fixed and take a
subgroup S ∈ C(Hpkq

i ). Then either S ∈ N(Gn,p) or q | |S |. In the second case, by the
equality

|S Hpkq
i | =

|S | |Hpkq
i |

|S ∩ Hpkq
i |

it follows that q must divide |S ∩ Hpkq
i | and so there is a subgroup Hq of order q of Gn,p

contained both in S and in Hpkq
i . Thus,

C(Hpkq
i ) = N(Gn,p) ∪

( ⋃
Hq∈Q

{S ∈ L(Gn,p) |Hq ⊆ S }
)

= N(Gn,p) ∪
( ⋃

Hq∈Q

{HqT |T ∈ L(H)}
)
,
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where Q denotes the set of all subgroups of order q in Hpkq
i . Since |Q| = pk,

|C(Hpkq
i )| ≤ |N(Gn,p)| + |L(H)|pk = 1 + an−1,p (1 + pk).

This implies that
n−1∑
k=0

an−1,p(k)∑
i=1

|C(Hpkq
i )| ≤ an−1,p

(
1 +

n−1∑
k=0

an−1,p(k)∑
i=1

(1 + pk)
)

= an−1,p

(
1 + an−1,p +

n−1∑
k=0

an−1,p(k)pk
)

= an−1,p(1 + an,p),

where the last equality has been obtained from the recurrence relation (1). Then (3.3)
shows that

sd(Gn,p) ≤
an−1,p

an,p

(
2 +

1
an,p

)
,

giving (3.1), as desired.
Since an,p can be written as a polynomial in p of degree [n2/4] and leading

coefficient xn ∈ {1, 2},

lim
n→∞

an−1,p

an,p
= lim

n→∞

xn−1

xn
p[(n−1)2/4]−[n2/4] = lim

n→∞

xn−1

xn
p−[n/2] = 0,

which together with (3.1) yields

lim
n→∞

sd(Gn,p) = 0.

This completes the proof.
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[6] M. Tărnăuceanu, ‘Subgroup commutativity degrees of finite groups’, J. Algebra 321 (2009),

2508–2520.
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[8] M. Tărnăuceanu, ‘Addendum to “Subgroup commutativity degrees of finite groups”’, J. Algebra

337 (2011), 363–368.
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