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Condensed matter physics

Condensed matter physics constructs and studies the behavior of simplified

models designed to capture the universal physics of material systems. Phe-

nomena of interest include magnetism, phase transitions, superconductivity,

frustrated systems, topological phases, and the interplay of thermalization and

many-body localization in closed systems. While many seminal models can

be studied analytically in certain limits (e.g., the 1D and 2D classical Ising

model), a number of seemingly innocuous models have proven exceedingly

difficult to solve. This has led to some models, such as the Fermi–Hubbard

model, becoming a proving ground for classical numerical methods. While

there has been significant progress in recent decades in understanding the

physics of these models through numerical simulation, it is still a challeng-

ing problem for many models and parameter regimes. As observed by Feyn-

man [391], quantum computers have a natural advantage over their classical

counterparts for simulating the simple Hamiltonians studied in condensed mat-

ter physics. While Feynman’s proposal was more focused on analog simula-

tion, digital quantum simulation of condensed matter systems has evolved into

a major research direction. In this chapter, we focus on models whose end-to-

end complexities have been well studied in the literature: the Fermi–Hubbard

model, spin models, and the Sachdev–Ye–Kitaev (SYK) model.

The authors are grateful to Ashley Montanaro and Nobuyuki Yoshioka for

reviewing this chapter.

4

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.003
Downloaded from https://www.cambridge.org/core. IP address: 3.147.74.90, on 12 May 2025 at 17:00:29, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.003
https://www.cambridge.org/core


1.1 Fermi–Hubbard model 5

1.1 Fermi–Hubbard model

Overview

The Fermi–Hubbard model was originally introduced as a simplified model

of electrons in materials [546], closely related to the tight-binding model.

It displays a wide range of behaviors including metallic, insulating, and an-

tiferromagnetic phases. The model has more recently found applicability in

studying high-temperature superconductivity. The 2D Fermi–Hubbard model

has a complex phase diagram that appears to reproduce universal (rather than

chemical-specific) features of the phase diagram of cuprate high-temperature

superconductors.

General analytic solutions are not known beyond 1D chains or specific pa-

rameter regimes—see [59] for a discussion—which has motivated the use of

numerical methods to understand the physics of the Fermi–Hubbard model.

More recently, there has been increased interest in understanding the nonequi-

librium properties of the model such as its behavior following a quench.

Based on the current estimates, quantum simulation of Fermi–Hubbard

models requires considerably fewer resources than simulations of molecules

or solving optimization problems. This makes the Fermi–Hubbard model a

promising candidate for early demonstrations of quantum advantage.

A detailed case study on the Fermi–Hubbard model is presented in [101],

including descriptions of the parameters to probe open scientific questions and

estimates of the utility of these computational capabilities.

Actual end-to-end problem(s) solved

The Fermi–Hubbard Hamiltonian on M/2 lattice sites is given by

H = −t
∑

σ∈{↑,↓}

∑

⟨i, j⟩
(c†

iσ
c jσ + c

†
jσ

ciσ) + U
∑

i

ni↑ni↓ , (1.1)

where ciσ are fermionic operators and niσ ≡ c
†
iσ

ciσ is the number operator, with

t denoting the strength of the kinetic term, U the onsite interaction strength,

and ⟨i, j⟩ a sum over nearest-neighbor lattice sites, given a lattice geometry. It

is also possible to consider longer-range hopping terms, the inclusion of site-

dependent chemical potentials, or additional “orbitals” per site.

Quantum simulation provides insights into both equilibrium and nonequilib-

rium physics. With regards to equilibrium physics, the primary computational

task is to resolve and probe the properties of the phase diagram of the Fermi–

Hubbard model, as a function of lattice geometry, parameter values (t,U), dop-

ing (the expected number of fermions divided by the number of sites), and

temperature. This is achieved by preparing the thermal state ρ ∝ e−βH (with
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6 1. Condensed matter physics

β = 1/kBT , where kB is the Boltzmann constant and T the temperature) or at

zero temperature the ground state |E0⟩ for the Fermi–Hubbard Hamiltonian in-

stantiated by the given parameters, and measuring the expectation values of a

set of physical observables to error ϵ. A thorough discussion of this end-to-end

problem (at zero temperature) is provided in [1031], where it is shown how to

perform the following steps:

• Prepare mean-field states in a given phase, for example, a BCS supercon-

ducting ground state.

• Adiabatically evolve from the mean-field Hamiltonian to the final Fermi–

Hubbard Hamiltonian. The absence of a phase transition confirms the pre-

dicted phase.

• Measure observables, including density correlation functions (ni↑+ni↓)(n j↑+

n j↓), pair correlation functions c
†
iσ

c
†
jσ′ckσ′clσ, and dynamical correlation

functions ⟨E0|eiHtAe−iHtB|E0⟩ (for operators A, B and ground state |E0⟩).

The difficulty of this problem depends on the parameter regime under con-

sideration. The ground state in the weak coupling regime of U < 4t is well

understood, but questions remain in the intermediate (4t ≤ U ≤ 6t) and strong

(U > 6t) regimes [847]. Challenges include precisely determining the phase

boundaries and understanding the nature of the superconducting phase [399].

Progress has been made on this latter question in recent years, for example,

by showing the absence of a superconducting phase at the physically relevant

parameters of U ∼ 8t and 1/8th doping (see [847] for a more detailed discus-

sion). Calculations are made challenging by small energy differences between

competing phases, as well as the need to extrapolate from finite simulations to

the thermodynamic limit.

The simulation of nonequilibrium quantum dynamics is of interest for mod-

eling materials driven by an external field (e.g., an ultrafast laser pulse or an

applied voltage), or following a quench in the Hamiltonian. Classically simu-

lating nonequilibrium quantum dynamics has so far proven challenging and is

a less well-studied problem than probing the equilibrium physics of the model.

Example applications include modeling ultrafast spintronics (whereby lasers

are used to manipulate spin degrees of freedom to control and store informa-

tion) [1094], understanding photo-induced phase transitions [812], and clar-

ifying the nature of thermalization in isolated quantum systems following a

quench [837].

Dominant resource cost/complexity

Mapping the problem to qubits: Simulation of the Fermi–Hubbard model is

most naturally performed in the second-quantized representation, as the regime
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1.1 Fermi–Hubbard model 7

of interest is usually close to half-filling (for comparison, we refer to Chapter 2

on simulating molecules). The Jordan–Wigner mapping between fermions and

qubits is typically used. Locality-preserving mappings have also been devel-

oped, which map fermionic operators to qubit operators acting on a constant

number of qubits [1010, 344]. For an L × L lattice, we require M = 2L2 qubits

to simulate the spinful Fermi–Hubbard model using the Jordan–Wigner map-

ping.

Accessing the Hamiltonian: Quantum algorithms for simulating the Fermi–

Hubbard model require access to the Hamiltonian. This is typically provided

by block-encoding or Hamiltonian simulation.1 The structure in the Fermi–

Hubbard Hamiltonian reduces the costs of these subroutines. For example,

performing a block-encoding using the linear combinations of unitaries (LCU)

technique requires access to a PREPARE unitary and a SELECT unitary (we

refer to Section 10.2 for definitions). The PREPARE unitary requires prepar-

ing a quantum state from classical data. Because the Fermi–Hubbard Hamil-

tonian has a small number of unique coefficients, the cost of this unitary can

be reduced. Combining the results of [75, 1069, 225], one can implement an

(M(2t + U/8),O(log(M)), ϵ)-block-encoding (see Eq. (10.1) for definition) of

the Fermi–Hubbard Hamiltonian using

O (
M + log(M/ϵ)

)

non-Clifford gates.

As another example, the costs of product formula approaches for Hamil-

tonian simulation can exploit the fact that many terms in the Fermi–Hubbard

Hamiltonian commute, due to their locality. We will explicitly discuss these

costs below.

State preparation:

• Classical trial states: Approximate eigenstates obtained from a classical cal-

culation can be prepared as quantum trial states; examples include Slater de-

terminant states [1031], linear combinations of D Slater determinants (with

complexity Õ(D) [394]–O(MD) [998]), and matrix product states with bond

dimension χ (with complexity O(Mχ2) [394]).

• Quantum trial states: Parameterized quantum circuits, in conjunction with

variational quantum algorithms, have been proposed for preparing approxi-

1 Hamiltonian simulation is used to explicitly simulate dynamics but can also be used implicitly
to provide access to the Hamiltonian for use in static calculations, for example, in quantum
phase estimation.
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8 1. Condensed matter physics

mate energy eigenstates (see §NISQ implementations, below). Like classi-

cal trial states, the states prepared by these circuits can be used as inputs to

other quantum algorithms that further refine the initial state, such as eigen-

state filtering, or quantum phase estimation. Initial resource estimates for

the Fermi–Hubbard model can be found in [215].

• Eigenstate preparation: There exist quantum algorithms that can prepare en-

ergy eigenstates using QSVT-based eigenstate filtering [688], where the cost

scales as 1/γ with γ the overlap of the initial state with the desired eigen-

state. Alternatively, adiabatic state preparation can be used, with a cost that

depends on the gap between energy levels along the adiabatic path. Adia-

batic state preparation was proposed as a method of classifying the phase

diagram of the Fermi–Hubbard model [1031]. A discrete version of the adi-

abatic approach based on qubitization and quantum phase estimation (QPE)

was numerically investigated in the context of preparing ground states of the

Fermi–Hubbard model [673], and showed promising results for the small

system sizes considered (see also [998]).

• Thermal states: A number of algorithms have been developed for prepa-

ration of thermal states, also known as Gibbs states. The most promising

variants of these “Gibbs sampling” algorithms depend on the mixing time

of a Markov chain (similar to classical Monte Carlo approaches for prepar-

ing Gibbs states), which is currently undetermined for the Fermi–Hubbard

model.

Time evolution:

• As discussed above, Trotter approaches for Hamiltonian simulation can ex-

ploit beneficial features of the Fermi–Hubbard Hamiltonian, such as locality,

fixed particle number, and commutativity of the terms [280, 300, 963]. For a

Fermi–Hubbard model with η fermions on M lattice sites, pth-order Trotter

methods can simulate time evolution for time τ up to error ϵ using

O
(

5pMη1/pτ1+1/p

ϵ1/p

)

gates. Explicit gate counts for Trotterization can be obtained from [630, 300,

225, 909], which have focused on constant prefactors for low-order product

formulas, rather than the asymptotic scaling.

Post-Trotter methods, such as [479], using quantum signal processing as

a building block, can achieve similar scaling in M and τ. A suboptimal ap-

proach (i.e., not using the method of [479]), briefly discussed in [392], has
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1.1 Fermi–Hubbard model 9

a gate complexity of approximately

44M2(2t + 3U/8)τ

T gates to simulate time evolution for time τ using quantum signal process-

ing, neglecting logarithmic dependence on the error of the simulation.2

Measuring observables:

• Energies: QPE can be used to measure the energy eigenvalues of the Fermi–

Hubbard Hamiltonian. Given access to (i) an initial state |ψ⟩ that has suf-

ficient overlap γ = |⟨ψ|E j⟩| with the target eigenstate |E j⟩ and (ii) a uni-

tary U = f (H) that encodes the eigenspectrum of the Hamiltonian with a

known, classically invertible relationship f , we can use QPE to project into

the desired eigenstate and provide an estimate of the eigenphase ϕi of U—

which can then be converted into an estimate of the eigenenergy of H using

ϕi = f (Ei). QPE makes

O
(
γ−2∥ f ′(H)∥−1ϵ−1 log(θ−1)

)

calls to the unitary U encoding the spectrum of the Hamiltonian, where θ is

the failure probability, and ϵ is the desired precision in the eigenenergy of

H.3

A common choice for the unitary encoding the Hamiltonian is U ≈ eiHt

approximated via quantum algorithms for Hamiltonian simulation, where

the approximation error must be balanced against the error from QPE. Using

U ≈ eiHt implemented via a second-order product formula results in a T

gate count of O(M3/2/∆E3/2) to resolve the energy of the Fermi–Hubbard

model to precision ∆E, neglecting the cost of initial state preparation and

the dependence on the overlap and failure probability [630, 225]. Another

common choice is to perform QPE on a quantum walk operator W(H) which

acts like ei arccos (H/α), where α is the normalization of the block-encoding of

H. The operator W(H) can be implemented exactly via qubitization [841,

139]. This results in a T gate scaling of O(M2/∆E), also neglecting the cost

of initial state preparation and the dependence on the overlap and failure

probability [75].

2 Note that in [392], M is defined as the number of lattice sites, and so corresponds to M/2 here.
3 It is possible to improve the complexity to O(γ−1∥ f ′(H)∥−1ϵ−1 log(θ−1)) using amplitude

amplification if a sufficiently precise estimate of the eigenvalue is known, or to
O((γ−2∆−1 + ϵ−1)∥ f ′(H)∥−1 log(θ−1)) by exploiting knowledge of the gap ∆ between the
energy eigenstates to perform rejection sampling [139].
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10 1. Condensed matter physics

• Other observables: There have been few studies considering the costs of

measuring observables other than the ground state energy using fault-

tolerant quantum algorithms. In general, it is important to minimize the

number of calls to the unitary Uψ that prepares the desired state, as this is

typically considered the dominant cost. Reference [1031] discussed meth-

ods for measuring density correlation functions (ni↑ + ni↓)(n j↑ + n j↓), pair

correlation functions c
†
iσ

c
†
jσ′ckσ′clσ, and dynamical correlation functions

⟨E0|eiHtAe−iHtB|E0⟩ (for operators A, B and ground state |E0⟩), including

approaches for nondestructively measuring some of these observables.

Some of these approaches can now be reframed as performing amplitude

estimation [637] on UO, a unitary block-encoding of the observable O with

subnormalization factor αO [853]. The measurement of similar observables

using these modern algorithmic tools was studied in [9].

A recent approach [549, 49] based on the quantum gradient estimation

algorithm of [430] simultaneously computes the value of K (noncommuting)

observables O j. The algorithm makes Õ(K1/2/ϵ) calls to Uψ and U
†
ψ (or Rψ =

I − 2|ψ⟩⟨ψ|) and either Õ(K3/2/ϵ) calls to gates of the form eixO j [549] or

Õ(K/ϵ) calls to a block-encoding of the observables [49]. The algorithm also

requiresO(K log(1/ϵ)) additional qubits. This approach has been considered

in the context of measuring fermionic reduced density matrices and dynamic

correlation functions [549].

Existing resource estimates

There have been a number of logical resource estimates for algorithms tar-

geting both static and dynamic properties of the Fermi–Hubbard model. In

Table 1.1, we present approximate resource estimates for simulations of the

2D 10 × 10 spinful Fermi–Hubbard model. The table presents the number of

logical qubits and gates required to run the algorithm; these can be converted

into physical resource estimates via methods for fault-tolerant quantum com-

putation.

References [75, 1069] applied qubitization-based QPE to calculate the

ground state energy to constant additive error. For a lattice with M spin sites,

using the compilation of [75], the number of T gates scales as approximately

(neglecting the dependence on the overlap and failure probability) [75,

Eq. (61)]

#T ∝ (4t + U)M2

∆E
,
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1.1 Fermi–Hubbard model 11

and the number of logical qubits scales as approximately [75, Eq. (62)]

#Qubits ∼ M + log

(
(2t + 0.5U)M4

∆E

)
.

References [630, 225] applied second-order Trotter-based QPE to calculate

the ground state energy. In both references, rigorous but potentially loose up-

per bounds on the Trotter error are computed. For a lattice with M spin or-

bitals, using the compilation of [225], the number of T gates scales as approxi-

mately (neglecting the dependence on the overlap and failure probability) [225,

Eqs. (C3), (D6), (D10), (E17), (F10)]

#T ∝ t
√

t + U

(
M

∆E

)3/2

,

and the number of logical qubits scales as approximately [225, Table II]

#Qubits ∼ (1 + κ)M ,

where κ is a free parameter that controls the number of ancilla qubits used for a

compilation technique known as Hamming weight phasing (which reduces the

cost of applying identical arbitrary angle rotation gates in parallel) [421, 630],

set to κ = 0.25 in [225] and in our Table 1.1.

Problem and method # T gates
# Logical

qubits
Parameters

Ground state energy
via qubitized QPE [75, 1069]

∼ 108 ∼ 236 U/t = 4 and ∆E = 0.01t

Ground state energy
via Trotterized QPE [225, 630]

∼ 5 × 106 ∼ 250 U/t = 8 and ∆E = 0.005Etot

Dynamics
via fourth-order Trotter [392]

4.6 × 105 200 T = 10/t, U = t, and ϵ ≤ 1%

Table 1.1 Logical resource estimates for quantum phase estimation (QPE) and

dynamics simulation applied to a 2D 10 × 10 Fermi–Hubbard model. The QPE

circuits target an energy error of ∆E. In the second row, Etot denotes the ground

state energy. The dynamics simulation runs for time T , and targets an error of less

than 1% in a spatially averaged intensive observable, with Trotter errors bounded

numerically via extrapolated small-scale simulations. The presented gate counts

are for a single run of the circuit. For QPE, the number of required runs depends

on the overlap between the initial state and the ground state (inverse polynomial

dependence), as well as the desired failure probability of QPE. For dynamics sim-

ulations, the number of circuit repetitions depends on the precision to which one

wants to estimate a given observable. The parameters for each problem vary be-

tween different rows of the table, and so cannot be directly compared (although

the different methods for the same problem, e.g., ground state energy estimation,

could be compared by adjusting the analyses in the original papers to the desired

matching parameter values).
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12 1. Condensed matter physics

The methods described above for encoding the Hamiltonian spectra (qubiti-

zation and Trotter) can also be used to simulate the dynamics of the Fermi–

Hubbard model. Trotter methods can be applied directly, while qubitization can

be combined with quantum signal processing (QSP) to perform Hamiltonian

simulation. In [392], a comparison was made between fourth-order Trotteriza-

tion and qubitization+QSP for simulating time evolution of a 10 × 10 Fermi–

Hubbard model. Trotter was determined to be the more efficient method, al-

though this conclusion hinges on a Trotter decomposition with large steps (jus-

tified via numerical simulations). We note that the Trotter decompositions and

analyses in [225, 392] are different, which hampers an immediate comparison.

It may also be fruitful to compare with Hamiltonian simulation algorithms

designed explicitly for simulating local Hamiltonians [479] (see discussion

in [75]).

Caveats

In general, preparing the ground state of the Fermi–Hubbard model is known

to be a hard problem, even for a quantum computer. This task has been proven

QMA-hard for the Fermi–Hubbard model with a site-dependent magnetic

field [910] and for the Fermi–Hubbard model with a site-dependent kinetic

term strength (i.e., t → ti j in Eq. (1.1)) [808]. While the complexity class of

the canonical Fermi–Hubbard model is not yet known, when preparing the

ground state via QPE or eigenstate filtering methods, it is necessary to prepare

an initial state with an overlap that decays no worse than polynomially with

system size; otherwise, the overall complexity will be superpolynomial. While

numerical simulations on small system sizes have shown encouraging re-

sults [998, 673], it is still an open question as to whether this property holds for

sufficiently large system sizes to enable extrapolation to the thermodynamic

limit.

It is also important to note that this extrapolation of measured properties,

computed at a range of finite system sizes, to the thermodynamic limit, has

been observed to contribute a significant proportion of the uncertainty and er-

rors in classical methods [666], and will also afflict quantum simulations.

Finally, it will be necessary to repeat simulations a large number of times. In

order to measure a single observable to precision ϵ we requireO(1/ϵ2) incoher-

ent repetitions of the simulation, or O(1/ϵ) using methods based on amplitude

estimation. To map out and compute properties of the phase diagram or extract

the phase following a quench, we may need to measure a large number of ob-

servables. In some cases, it may be necessary to re-prepare the initial state for

each observable.
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1.1 Fermi–Hubbard model 13

Comparable classical complexity and challenging instance sizes

The Fermi–Hubbard model has been a fertile environment for the develop-

ment and testing of classical numerical methods for both static and dynamical

properties. To the best of our knowledge, the largest exact diagonalization cal-

culations performed to date are on systems with 17 fermions in 22 sites (44

spin sites), requiring 7.1 terabytes of memory [1063]. State-of-the-art approxi-

mate methods for computing the phase diagram include quantum Monte Carlo

methods (variational QMC, determinantal QMC, diagrammatic MC, auxiliary-

field QMC, diffusion MC), density matrix renormalization group (DMRG),

coupled cluster methods, and impurity methods (dynamical mean-field the-

ory, density matrix embedding theory), among others. These methods typi-

cally have an approximation parameter (e.g., the excitation degree in coupled

cluster or the bond dimension in DMRG) which influences the scaling of the

algorithm and the accuracy of the simulation. Modern numerical studies of the

Fermi–Hubbard model typically cross-validate using a number of simulation

methods [666, 900]. For example, [666] benchmarked a range of methods and

performed sufficiently large and accurate simulations for extrapolation to the

thermodynamic limit. That work concluded that “the ground-state properties

of a substantial part of the Hubbard model phase space are now under numer-

ical control,” but that some uncertainties still remain for 4t ≤ U ≤ 8t and

dopings near half-filling. For a recent review of numerical simulations of the

Fermi–Hubbard model, we refer the reader to [847]. We also refer to [1054],

which benchmarked a number of variational classical methods on a range of

condensed matter systems, including the Fermi–Hubbard model.

The simulation of dynamics of the Fermi–Hubbard model appears to be

more challenging for classical methods. For example, [326, 392] concluded

that simulating the dynamics of a 10× 10 lattice would be infeasible for tensor

network techniques. Other classical approaches for simulating time evolution

of the Fermi–Hubbard model include nonequilibrium extensions of dynamical

mean-field theory [43] or Floquet methods [812].

Speedup

The speedup of quantum algorithms for computing static properties of the

Fermi–Hubbard model, such as its ground state energy, is difficult to deter-

mine. In general, we know that closely related models are QMA-hard (see

§Caveats, above) and so should be exponentially difficult for both classical

and quantum computers. Assuming an initial state that has overlap with the

target eigenstate that decays no faster than polynomially, then QPE can be

used to efficiently measure the eigenenergy and project into the desired eigen-

state. It does so with cost poly(M/∆E), where the precise scaling depends on
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14 1. Condensed matter physics

the quantum algorithm used. Exact classical methods such as exact diagonal-

ization have a cost that scales exponentially with M or 1/∆E. Approximate

classical methods scale with an approximation parameter (e.g., bond dimen-

sion, number of excitations) which will depend on both M and ∆E. For exam-

ple, [670, Fig. 4] shows the convergence of a tensor network calculation for the

2D Fermi–Hubbard model as a function of bond dimension and system size.

For the small systems studied (up to 16 × 4 sites) the plots are consistent with

the bond dimension scaling polynomially in 1/∆E, with a weak dependence

on the system size. If this holds for larger system sizes and across a range of

system parameters, this would suggest that quantum algorithms provide only a

polynomial speedup for computing the ground state energy.

Simulating the dynamics of the Fermi–Hubbard Hamiltonian requires poly-

nomial resources using quantum algorithms, scaling almost linearly both in M

and in the evolution time τ. By using carefully engineered interactions (e.g.,

deviating significantly from a square lattice) it can be shown that simulating the

dynamics of the Fermi–Hubbard model on a planar graph is a BQP-complete

problem and so is expected to be hard for classical computers in the worst

case [93]. Supporting this observation, all known classical methods appear to

scale exponentially in system size and simulation accuracy. For example, [392]

used tensor network (matrix product state) approaches for simulating the dy-

namics of the Fermi–Hubbard model following a quench. When truncating

the bond dimension to facilitate efficient classical simulation, they found that

errors in the observables grew exponentially with time. While this supports

the conclusion of an exponential quantum speedup, we note that classical ap-

proaches will likely continue to improve and be applied to increasingly large

system sizes.

NISQ implementations

There have been a number of proposals (and experimental demonstrations)

for simulating the Fermi–Hubbard model on NISQ hardware. Ground state

calculations can be performed using the variational quantum eigensolver

(VQE) [576, 871, 872, 218, 215], and experimental demonstrations have been

carried out on lattices of size 1 × 8 and 2 × 4 using 16 superconducting qubits,

yielding qualitative agreement with theoretical expectation [951].

Dynamics can be simulated using Hamiltonian simulation (typically Trotter

methods) [300] and have been demonstrated for an 8 × 1 lattice on 16 super-

conducting qubits [64].

The simple Hamiltonian of the Fermi–Hubbard model makes it well suited

to realization in analog quantum simulators, including ultracold atoms in opti-

cal lattices, trapped ions, and neutral atom arrays. It has been argued that some
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1.2 Spin models 15

local observables can be robust to errors in the simulation [836, 392], enabling

analog simulations to already surpass classical methods for simulating dynam-

ics. Nevertheless, it can be challenging to cool the analog fermionic system to

its ground state. We refer the reader to [326, 461] for additional discussion on

analog simulation.

Reference [300] considered an approach with flavors of both digital and

analog simulation, moving to a cost model based on evolution time, rather than

number of gates. This reduces the cost of simulating Trotterized dynamics of

the Fermi–Hubbard model, compared to purely gate-based approaches.

Outlook

The Fermi–Hubbard model provides a long-standing and physically relevant

computational challenge. The low gate counts and modest number of logical

qubits required to compute ground state energies could make quantum algo-

rithms competitive with leading classical approaches in challenging regimes.

We note that further research is required to ascertain the costs for initial state

preparation for these calculations. For the less well-studied task of simulating

the dynamics of the Fermi–Hubbard model, quantum algorithms currently pro-

vide an exponential speedup over known classical algorithms. Nevertheless, as

the Fermi–Hubbard Hamiltonian is sufficiently simple to be realized in many

controlled physical systems, future fault-tolerant quantum computers will also

have to compete against analog quantum simulators.

1.2 Spin models

Overview

Classical and quantum spin systems are prototypical models for a wide range

of physical phenomena including magnetism, neuron activity, simplified mod-

els of materials and molecules, and networks. Studying the properties of spin

Hamiltonians can also provide useful insights in quantum information science.

A number of scientific and industrial problems can be mapped onto finding

the ground or thermal states of classical or quantum spin models, for exam-

ple, solving combinatorial optimization problems, training energy-based mod-

els in machine learning, and simulating low-energy models of quantum chem-

istry [983].

Simulating the dynamics of quantum spin models is primarily of interest for

quantum information science, as well as condensed matter physics or chem-

istry. For instance, such simulations are relevant for interpreting nuclear mag-
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16 1. Condensed matter physics

netic resonance (NMR) [920, 806] or related spectroscopy experiments [273,

749].

Because of the natural mapping between spin-1/2 systems and qubits, as

well as the fact that interactions in spin models are typically local, the re-

sources required to simulate simple spin models using quantum algorithms

can be much lower than for problems in areas like quantum chemistry or cryp-

tography.

While our discussion will focus on quantum algorithms designed to be run

on fault-tolerant quantum computers, the simple Hamiltonians of spin models

are naturally realized in many physical systems. This has led to the use of

analog simulators [157, 417], such as arrays of trapped ions or neutral atoms,

for simulating the static and dynamic properties of interesting spin models. We

will comment briefly on this below.

Actual end-to-end problem(s) solved

The most commonly studied spin models are those with pairwise interactions,

referred to as 2-local Hamiltonians. We note that the interactions are not nec-

essarily geometrically local, although this will be present in many models of

physical systems. Given a graph G with N vertices {i} and L edges {[i, j]}, we

associate a classical or quantum spin with each vertex, and an interaction be-

tween spins with each edge. We can also add one-body interactions acting on

individual spins. The Hamiltonian can then be written as

H =
∑

i

∑

α∈{x,y,z}
Bαi σ

i
α +

∑

[i, j]

∑

α,β∈{x,y,z}
J
αβ

i j
σi
ασ

j

β
, (1.2)

where {σi
x, σ

i
y, σ

i
z} denote the Pauli operators Xi,Yi,Zi acting on site i, and

{Bα
i
}, {Jαβ

i j
} are coefficients. For classical spin Hamiltonians, the sums are re-

stricted to Z operators. The Hamiltonian in Eq. (1.2) encompasses a wide range

of spin models, including the following:

• The classical Ising model

H =
∑

i

BiZi +
∑

i j

Ji jZiZ j , (1.3)

which also describes the Hamiltonians arising from quadratic unconstrained

binary optimization (QUBO) problems.

• The (quantum) transverse-field Ising model (TFIM)

H = B
∑

i

Xi + J
∑

i j

ZiZ j . (1.4)
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1.2 Spin models 17

• The Heisenberg model with a site-dependent magnetic field, defined in 1D

with nearest-neighbor interactions by

H =
∑

j

(
B jZ j + JxX jX j+1 + JyY jY j+1 + JzZ jZ j+1

)
. (1.5)

Across the different models, we can vary the dimension, locality of interactions

(e.g., nearest-neighbor vs. fully connected vs. power-law), and values of the

site-dependent coefficients in comparison to the interaction terms. The models

can be extended beyond 2-local by considering couplings of 3 or more spins—

see, for example, p-spin models, which are p-local [345]. The above definitions

can be extended from spin-1/2 systems to higher-dimensional spin operators

by generalizing the Pauli operators with their higher-dimensional counterparts.

For classical spin models, we seek to prepare the ground or thermal states

of the model, as these may encode, for example, the solution to a combina-

torial optimization problem, or a probability distribution that can be used for

generative modeling. For quantum spin models, we similarly seek to compute

ground or thermal states. However, because these are not classical states that

can be easily extracted, we typically wish to sample observables with respect to

these states. Examples include the energy, the magnetization of the system, and

correlations between sites. In dynamics simulations of quantum systems, we

seek to determine how observables of interest vary as a function of evolution

time. Examples include the magnetization (used to infer the Hamiltonian in

nuclear magnetic resonance [533] or related [172] experiments), or the growth

of correlations between sites to probe thermalization. Digital Hamiltonian sim-

ulation can additionally extract certain quantities that may be hard to directly

measure in experiments (e.g., time reversal) [402]. Since studies of quench

dynamics often require preparation of simple states, such as product states or

the ground states of classically solvable Hamiltonians, and the measurement of

local observables, propagation under the Hamiltonian typically dominates the

simulation cost. For lattice systems with N spins in D spatial dimensions, it is

conventional to consider evolution times that scale as Ω(N1/D), as the system

must evolve for at least this long in order for information to propagate across

the system due to the Lieb–Robinson bound [261].

Reference [101] details a number of applications of simulating quantum spin

models, with relevance to systems studied at Los Alamos National Laboratory,

including the parameters of end-to-end simulations. Reference [374] presents

an end-to-end assessment of using quantum computers to simulate quantum

spin Hamiltonians for applications in NMR spectroscopy.
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18 1. Condensed matter physics

Dominant resource cost/complexity

For a system of N spin- 1
2

particles, we require N qubits to represent the state

of the system. For N spin-S particles, the problem can be mapped to qubits in

different ways, for example, using N⌈log2(2S + 1)⌉ qubits [897] or using 2NS

qubits [749].

Quantum algorithms for preparing the ground or Gibbs states of classical

spin systems are discussed in detail in Chapter 4 (combinatorial optimization),

and Section 9.2 (energy-based machine learning models), respectively. We will

restrict our discussion to the resources required for performing time evolution

of quantum spin models. The reason for this is that quantum algorithms for

preparing ground or thermal states require similar primitives for Hamiltonian

access to algorithms for time evolution (e.g., block-encodings or Hamiltonian

simulation itself) and use these in conjunction with either (i) eigenstate fil-

tering approaches [689, 688] based on quantum singular value transformation,

(ii) adiabatic state preparation, (iii) quantum phase estimation from a trial state,

or (iv) quantum algorithms for thermal state preparation, that is, Gibbs sam-

pling. More detailed discussions of these algorithms and their caveats can be

found in the corresponding sections, as well as in the discussion of quantum

algorithms for simulating molecules and materials (Section 2.1) or the Fermi–

Hubbard model (Section 1.1), where preparing (approximate) eigenstates is the

primary topic of interest. All of these algorithms depend on either an overlap

between the trial state and the target state, the minimum gap along an adiabatic

path, or the mixing time of a Markov chain—all of which are difficult to bound

in the general case.

When simulating the time evolution of spin systems via Hamiltonian simu-

lation, the most efficient algorithms exploit the locality of interactions in the

Hamiltonian, and the resulting commutation structure. For 2-local spin-1/2

systems on a D-dimensional lattice with nearest-neighbor geometric locality,

algorithms with almost optimal gate complexity are known for performing time

evolution. Reference [280] showed that the gate complexity of the (2k)th-order

product formula scales as

O
(
(Nt)1+1/2k/ϵ1/2k

)

to simulate time evolution for time t to accuracy ϵ, using a Hamiltonian given

in the Pauli access model. Note that this expression suppresses the 52k constant

prefactor present in (2k)th-order Trotter (see Eq. (11.1)). Similarly, [479] gave

an algorithm with complexity O(Nt · polylog(Nt/ϵ)) for Hamiltonians given in

the sparse access model. In contrast, note that approaches that are asymptoti-

cally optimal in the black-box setting, such as quantum signal processing, have

a gate complexity of O(N2t+N log(1/ϵ)) using a block-encoding based on lin-
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1.2 Spin models 19

ear combinations of unitaries (LCU)—the normalization of the block-encoding

is α = O(N) and the gate complexity to implement the block-encoding is also

O(N).

Spin Hamiltonians with power-law interactions were studied in [993, 286],

that is, where the interaction strength between spins i and j depends inversely

on a power of the distance between the spins, denoted by ∥i− j∥2. (This implies

that the model is translationally invariant.) For a D-dimensional lattice with 2-

local interactions with interaction strengths scaling as 1/∥i − j∥α
2
, (2k)th-order

Trotter gives a gate complexity scaling as (as above, suppressing the 52k con-

stant prefactor present in (2k)th-order Trotter) [286]

Õ
(

N3− α
D

(1+1/2k)+1/kt1+1/2kϵ−1/2k if 0 ≤ α < D,

N2+1/2kt1+1/2kϵ−1/2k if α ≥ D

)
.

Further improvements are possible in cases where the Hamiltonian coefficients

are efficiently computable by an oracle, or if certain truncations can be per-

formed [721]. Focusing on the D = 1 case, if one were to directly apply quan-

tum signal processing based on a block-encoding via the linear combination of

unitaries approach, the scaling of the gate complexity would be

Õ
(
N2t + N log(1/ϵ)

)
.

These asymptotic complexities are complemented by the constant prefactor

analyses discussed in the following section.

For estimating expectation values of observables to precision ϵ, one can ei-

ther consider directly sampling and then re-preparing the state of interest (scal-

ing as O(1/ϵ2)), or coherent approaches based on amplitude estimation (scal-

ing as O(1/ϵ), but requiring a longer coherent circuit depth). Measurements

of simple observables, such as the magnetization, can be obtained through the

computational basis measurements on single qubits. For more complicated ob-

servables, one can consider the approaches in [853, 549, 49], discussed in more

detail in Chapter 2 (quantum chemistry).

Existing resource estimates

A number of logical resource estimates for simulating the dynamics of spin

systems and for finding their ground states via quantum phase estimation have

been reported in the literature. In such calculations, it is necessary to optimize

the constant prefactor contributions from implementing the algorithmic prim-

itives used. A detailed comparative study on simulating the dynamics of a 1D

nearest-neighbor Heisenberg model (Eq. (1.5)) was reported in [283], compar-

ing the logical qubit and T gate counts of product formulas, Taylor series, and
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20 1. Condensed matter physics

quantum signal processing. The two most efficient approaches are shown in

the first two rows of Table 1.2.

On a fault-tolerant quantum computer, arbitrary angle rotation gates must

be synthesized using a sequence of T and Clifford gates [625]. The number of

T gates to synthesize a group of parallel rotation gates can be reduced if they

share the same angle [421, 630, 225], a method known as Hamming weight

phasing. This technique can be exploited in fault-tolerant compilations of al-

gorithms simulating physical spin systems, which often exhibit features such

as translational invariance.

In addition to the entries given in Table 1.2, fault-tolerant approaches to

simulating NMR [806, 374] and muon spectroscopy [749] experiments, which

are effectively spin model simulations, have been considered.

Caveats

When formulated as a decision problem, determining the ground state energy

for 2-local classical and 2-local quantum spin models is NP-complete [94, 726]

and QMA-complete [607], respectively. As such, we do not expect quantum

algorithms to provide efficient solutions to these problems in the general case.

Nevertheless, given the success of classical heuristics for these problems, one

may hope to observe a similar benefit from quantum heuristic algorithms, such

as Monte Carlo–style Gibbs sampling algorithms.

In contrast, simulating the dynamics of spin models is a BQP-complete

problem [705]; it is likely one of the most simple beyond-classical calcula-

tions that could be performed on a future fault-tolerant quantum computer.

While such a computation would be of great scientific interest, providing new

insights in quantum information and many-body physics, it is currently un-

clear whether dynamics simulations of large systems will have a direct impact

on industrially relevant applications.

Comparable classical complexity and challenging instance sizes

Exact classical simulations of quantum spin models are exponentially costly in

system size. Exact simulations that consider a time evolution long enough for

information to propagate across the system (as per the Lieb–Robinson bound)

are limited to around 50 spins using the largest classical supercomputers [492,

283].

Approximate classical algorithms for studying quantum spin systems in-

clude tensor network approaches and quantum Monte Carlo (QMC) methods.

These methods provide empirically accurate results for computing the ground

states of physically motivated spin systems, in particular those with local inter-

actions, in low dimensions. For example, the ground states of local, gapped 1D
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22 1. Condensed matter physics

Hamiltonians have area law entanglement [504]; thus, they can be efficiently

represented by matrix product states, a type of tensor network. The situation in

higher dimensions is less clear, as an area law for gapped 2D local Hamiltoni-

ans has not been proven, and such a relation does not imply efficient represen-

tation via classical tensor network approaches such as projected entangled pair

states (PEPS) [503]. Indeed, the 2D local Hamiltonian problem with the con-

straint that the ground state obeys area laws is QMA-complete [545]. Other ap-

proximate classical methods, including QMC approaches, can also be effective

for preparing low energy states of spin systems. For example, [1054] provides

benchmarks for both tensor network and QMC-based variational methods ap-

plied to spin systems in a range of lattice geometries.

In contrast, these methods are less accurate when performing simulations

of quantum spin dynamics [912, 907]. In many of these systems, the entan-

glement entropy grows linearly with time [219], resulting in a cost that grows

exponentially with time for tensor network approaches targeting fixed accu-

racy (see, e.g., [921, 501] for counterexamples). For example, it was claimed

in [392] that simulations of the dynamics of the 2D TFIM for N = 100 spins

would be far beyond the current capabilities of tensor network methods [392].

Many physical systems are subject to strong interactions with their en-

vironment, which limits their coherence times. In these cases, the behavior

of the system can often be reproduced by simulating a smaller number of

spins (e.g., N ≤ 30) and accounting for the interactions with the environment

through physically motivated heuristics [1045]. Such simulations (accessible

via open-source software libraries) are used to analyze NMR [533] and muon

spectroscopy experiments [172].

Speedup

The speedup for computing the ground states of quantum spin Hamiltonians

over classical approximate methods (such as tensor networks or QMC) is cur-

rently an open research question; it depends on the complexity of being able

to prepare good approximations of the ground state using quantum algorithms

for cases where classical trial states are unable to efficiently and accurately

represent the ground state [670].

The simulation of quantum spin dynamics appears to be exponentially costly

using all known classical methods. As such, quantum algorithms for Hamilto-

nian simulation would provide an exponential speedup for this task. This would

likely provide insights in quantum information and many-body physics. As an

example, such systems could study the competition and interplay between ther-

malization and many-body localization in quantum systems.
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1.2 Spin models 23

NISQ implementations

Quantum spin models are commonly used as benchmark systems for

NISQ algorithms—for example, finding ground states [595], simulating

dynamics [880], and probing thermalization [762]. For instance, variational

algorithms have been applied to spin systems with up to 24 qubits, showing

rapid convergence to the ground state as the number of layers of the variational

circuit was increased [174, 604].

The Hamiltonians of spin models are also naturally realized in a wide range

of physical systems, including trapped ions or neutral atoms [157, 417]. For

example, recent experiments in neutral atom systems have studied the dynam-

ics of on the order of 200 spins, which went beyond the capabilities of classical

simulation via matrix product state approaches [371, 906]. Analog simulators

are already an important tool providing new scientific insights, and they set a

high bar for the future performance of fault-tolerant approaches to simulating

spin systems. Nevertheless, analog simulators are restricted in the complexity

of the models that they can simulate (e.g., it may be more challenging to study

site-dependent impurity models or composite spin–fermion systems), and they

are susceptible to errors from miscalibration and interactions with the environ-

ment.

Outlook

Simulating the behavior of spin systems is arguably one of the most natural

tasks for quantum computers, while being exponentially costly using all known

classical methods. Such simulations can provide important insights into ques-

tions in quantum information science and many-body physics. Spin system

simulations are also relevant to condensed matter physics and chemistry, since

spin systems can act as models for more complex systems in those fields.

Logical resource estimates for quantum algorithms simulating spin systems

are among the lowest known for beyond-classical tasks. Nevertheless, analog

quantum simulators are already able to natively simulate the dynamics of hun-

dreds of spins. In order to surpass these capabilities, digital approaches may

need to consider more complex observables or target better accuracies that are

only achievable using devices capable of quantum error correction.

In addition, for many systems of scientific interest in related fields, such

as chemistry or condensed matter physics, decoherence-inducing interactions

with the environment often limit the required simulation sizes. Identifying ap-

plications where accurate dynamics simulation of large spin models is required

would increase the impact and applicability of quantum algorithms in this area.
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24 1. Condensed matter physics

1.3 SYK model

Overview

The Sachdev–Ye–Kitaev (SYK) model [889, 622] is a simplified model of

a quantum black hole that is strongly coupled and “maximally chaotic,” but

still analytically tractable. This remarkable and, to date, unique combination

of properties has led to great activity surrounding SYK. It has applications in

high-energy physics through its connections to black holes and quantum grav-

ity, and it has applications in condensed matter physics as a model of quantum

chaos and scrambling, which sheds light on phases of matter in strongly cou-

pled metals [882, 945]. While many interesting properties of the SYK model

can be computed analytically in certain limits, not all properties qualify, and

questions remain about the behavior of the model outside of these limits—

these questions can potentially be addressed numerically by a quantum com-

puter.

Actual end-to-end problem(s) solved

The SYK model has many variants; a common version to consider is the four-

body (q = 4) N-site Majorana fermion Hamiltonian with Gaussian coefficients

HSYK =
1

4 · 4!

N∑

i, j,k,ℓ=1

gi jkℓ χiχ jχkχℓ , (1.6)

where χi denote Majorana fermion mode operators obeying the anticommu-

tation relation χiχ j + χ jχi = 2δi jI (where I denotes the identity operator,

and δi j the Kronecker delta symbol), and gi jkℓ are coefficients drawn indepen-

dently at random from a Gaussian distribution with zero mean and variance

σ2 = 3!g2/N3 (with g the tunable coupling strength). The normalization of

Eq. (1.6) matches the convention of [78] and ensures that the ground state en-

ergy of HSYK is extensive (i.e., growing linearly in N).

In the limit of a large number of local degrees of freedom N → ∞ and at

strong coupling βg ≫ 1 (where β is the inverse of the temperature), analytic

predictions can be computed for the asymptotic behavior of some properties.

While these arguments are not mathematically rigorous, in practice they pro-

vide a consistent picture for the SYK model and provide insights into quantum

gravity and quantum chaos. However, questions remain about the wealth of

properties out of reach by taking limits or the nonasymptotic regime of pa-

rameters. For example, it has been challenging to rigorously calculate the den-

sity of states at arbitrary energies and the ground state energy in the large-N

limit [316, 78, 511]. These problems can potentially be probed numerically on

a quantum computer.
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1.3 SYK model 25

Generally speaking, this often reduces to performing the following task

on the quantum computer: given as input an instance of HSYK (generated by

choosing the couplings gi jkℓ at random) and an observable O, estimate the ex-

pectation value tr(ρO), where ρ could be, for instance, (i) the ground state

of HSYK, (ii) the thermal state ρ ∝ e−βHSYK , or (iii) a time-evolved state ρ =

eiHSYKt |0⟩⟨0|e−iHSYKt from an easy-to-prepare initial state |0⟩, among other pos-

sibilities. The observable O could be a local operator or even HSYK itself. An-

other case is for O to be composed of t-dependent time-evolution unitaries

eiHSYKt.

For example, computing the ground state energy corresponds to taking ρ to

be the ground state of HSYK and O to be HSYK, and computing a 4-point out-

of-time-ordered correlation function corresponds to taking ρ to be the thermal

state at inverse temperature β and O to be AeiHSYKtBe−iHSYKtAeiHSYKtBe−iHSYKt,

where A and B are few-body operators [555]. In another example, [204, 799]

give a detailed proposal to “simulate quantum gravity in the lab” via computing

expectation values of observables and states formed via simulation of the SYK

model.

Depending on the ultimate end-to-end goal, one may need to repeat this

calculation for many different O or for many instances of HSYK, for example,

to compute an ensemble average.

Dominant resource cost/complexity

Mapping the problem to qubits: To simulate the SYK model on a quan-

tum computer, the Majorana operators are represented by strings of Pauli op-

erators according to the Jordan–Wigner representation (e.g., [407]). As a re-

sult, the Hamiltonian HSYK on N Majoranas becomes a linear combination of

multi-qubit Pauli operators over N/2 qubits. Methods for Hamiltonian sim-

ulation given a classical description of the Hamiltonian as a linear combi-

nation of Pauli strings (the Pauli access model) typically introduces into the

complexity a dependency on the number of terms, N4, and on the 1-norm of

Pauli coefficients, denoted by λ, which for typical SYK instances is seen to be

λ = O(gN5/2) (see [78, Eq. (16)]).

State preparation: To solve the problem of estimating tr(ρO), one must be

able to prepare the (N/2)-qubit state ρ. In some cases, ρ could simply be a

product state, which is trivial to prepare. If ρ is the thermal state at inverse

temperature β, then algorithms for Gibbs sampling would be used to prepare

the state. Due to the chaotic properties of SYK and the fact that the system is

expected to thermalize quickly in nature, one expects that Monte Carlo–style

Gibbs samplers (e.g., [984, 256, 939, 856, 260]) have a favorable poly(N) gate
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26 1. Condensed matter physics

complexity, but the exact performance is unknown. If ρ is the ground state of

HSYK, there are several methods for preparing ρ, including projection onto ρ

by measuring (and postselecting) an ansatz state ϕ in the energy eigenbasis

using quantum phase estimation (QPE), or by adiabatic state preparation. The

cost of either of these methods depends on details such as which ansatz state is

used (in particular, its overlap with ρ), the adiabatic path, and the spectrum of

HSYK—in both cases, in the absence of evidence to the contrary, the scaling can

be exponential in N. In [511], a poly(N)-time quantum algorithm for preparing

states ρ achieving a constant-factor approximation to the ground state energy

of HSYK was given, which could be used as ρ to probe low-energy properties

of the system.

Time evolution: The calculation also requires simulating time evolution by

HSYK. This can be because O is a time-evolved operator, because the state ρ

corresponds to a time-evolved state, or simply as a subroutine for QPE or Gibbs

sampling, mentioned above. Reference [407] proposed a scheme for simulat-

ing time evolution using a first-order product formula approach to Hamilto-

nian simulation. That is, it implements the unitary eiHSYKt to precision ϵ, with

gate complexity O(N10g2t2/ϵ). However, this steep scaling with N suggests

that accessing large system sizes will be difficult with this method. Reference

[78] later gave a method with better N dependence, achieving gate complexity

O(N7/2gt + N5/2gt polylog(N/ϵ)), leveraging qubitization with quantum sig-

nal processing. This gate complexity grows more slowly than the number of

terms in HSYK (i.e., O(N4)), a feat that is only possible because the simula-

tion method generates the SYK coupling coefficients pseudorandomly: to con-

struct the block-encoding of HSYK, they perform the PREPARE step in the

linear combination of unitaries using a shallow quantum circuit composed of

polylog(N) random two-qubit gates, producing a state for which the N4 am-

plitudes are distributed approximately as independent Gaussians. Further re-

duction in the gate count would be bottlenecked by the 1-norm λ of the coeffi-

cients of HSYK; however, note that [1059] suggests gravitational features may

remain even if the Hamiltonian is substantially sparsified, which could reduce

the number of terms and the value of λ.

Measuring observables: Finally, given the ability to prepare a purification of

ρ and supposing O is unitary (if it is not, it could be decomposed into a sum of

unitaries and each constituent computed separately), estimating the expectation

value tr(ρO) to precision ϵ can be done by overlap estimation, costing O(1/ϵ)

calls to the routine that prepares ρ and to the routine that applies O. If the

purification of ρ cannot be prepared, the cost is O(1/ϵ2).
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1.3 SYK model 27

Existing resource estimates

Reference [78] compiled the dominant contributions in their approach to

Hamiltonian simulation into Clifford + T gates, and they found that at

N = 100, implementing eiHt requires fewer than 107gt T gates, and at

N = 200, it requires fewer than 108gt T gates. Both of these figures are for a

single circuit; that is, they do not include the cost of averaging over many SYK

instances. The T -count can be turned into an estimate of the running time

and number of physical qubits; see the discussion in Part III on fault-tolerant

quantum computation.

Caveats

Existing resource estimates only focus on simulating the dynamics of SYK

models, but the proposed classically challenging problems involve static prop-

erties such as density of states and properties of thermal states. Probing these

static properties in an end-to-end fashion would likely require preparing ther-

mal states, ground states, or other kinds of low-energy states, in addition to be-

ing able to implement eiHt. The cost of preparing these states is unknown and

difficult to assess analytically. Another caveat is that the gate counts quoted

above do not take into account the O(1/ϵ) scaling of reading out an observable

to precision ϵ, or any repetitions for different instances of HSYK required for

making inferences about the physics of SYK.

Comparable classical complexity and challenging instance sizes

As mentioned above, one of the reasons that the SYK model is appealing is that

many properties can be computed analytically in certain limits. Other prop-

erties that would be of interest to numerically compute on a quantum com-

puter require poorly scaling classical methods. Exact diagonalization of sys-

tems consisting of more than roughly 50 Majoranas would be challenging due

to the exponential growth of the Hilbert space, which has dimension 2N/2. For

example, [316] and [408] gave a variety of numerical results based on exact

diagonalization up to N = 34 and N = 36, respectively.

Speedup

Hamiltonian simulation has poly(N) runtime, an exponential speedup over ex-

act diagonalization, which is the go-to method for classical simulation of SYK-

related problems. However, Hamiltonian simulation does not alone solve the

same end-to-end problem as exact diagonalization; the persistence of the ex-

ponential speedup requires identifying specific interesting properties where the

relevant initial states can also be prepared in poly(N) time, which is currently

less clear.
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28 1. Condensed matter physics

NISQ implementations

Experimental realizations of the SYK model have been proposed on several

different experimental platforms [401, 851, 728]. However, even if these

demonstrations can be realized, we do not expect this approach to scale in the

absence of quantum error correction.

Outlook

Simulating time evolution of the SYK model on a quantum computer has rel-

atively mild gate cost, due to the model’s straightforward mapping to a qubit

Hamiltonian. At the same time, it is difficult to simulate the SYK model on a

classical computer, owing to its chaotic and strongly coupled nature. However,

further work is needed to understand the entire end-to-end pipeline. It has not

yet been identified which properties would be most valuable to compute on a

quantum computer and how costly they will be. Computing these properties

will likely involve far more than a single run of time evolution on a single in-

stance of the SYK model, so the overall cost is likely to be much larger than

what initial gate counts in the literature suggest.
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