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Trigger sites are specific regions or features of heterogeneity in a material system where key reactions 
initiate and occur. Previous studies have attempted to determine the locations of trigger sites in image 
data using various microscopes based on knowledge of materials science (“empirical” approach). These 
empirical approaches have successfully identified trigger sites in simple systems such as metals. 
However, these approaches have not proved successful in more complicated systems such as composite 
materials (e.g., iron ore sinters and carbon fiber reinforced plastics (CFRP)), batteries, and catalysts. 
Here, we report on our success of a “non-empirical” identification of trigger sites in crack formation 
during heterogeneous reduction of iron-ore sinters using persistent homology [1, 2].  
 
Sinter specimens were prepared by liquid sintering from iron ore and limestone. The specimens were 
then heated to 1473 K in reductive gas for reduction, thus simulating the iron-making process. Chemical 
state mapping was conducted using XAFS at the synchrotron undulator beamline BL-15A1 of the 
Photon Factory, IMSS, KEK in Japan [3]. The crack formation and phase mapping of larger volumes 
were investigated using X-CT measurements. 
 
Mapping the valence states of iron oxidation revealed the heterogeneous dynamic evolution of the 
chemical states from Fe(III) to Fe(II) during the reduction process (Fig. 1). At an intermediate stage of 
the reduction process, the spatial distribution of the changes in the reduced areas was heterogeneous 
rather than homogeneous, resulting in an increase in the local stress and then crack formation. The 
change in the microstructure (i.e., the heterogeneity of the phase mapping) is very complicated, and we 
could not determine how the progress of heterogeneous reduction causes crack formation nor 
empirically identify trigger sites. 
 

However, we identified the most representative topological features that characterize the reduction 
process using persistent homology and the trigger sites for crack formation using machine-learning 
techniques. The X-CT datasets of the reduced sinters were deconvoluted into (a) the initial pores, (b) the 
microcracks formed during reduction, (c) calcium-ferrite phases, and (d) iron-oxide phases. Our analysis 
using persistent homology involved (1) transforming each image into a persistence diagram (PD) and 
then (2) into a vector, (3) feeding the vectors together with the measured crack areas into the absolute 
shrinkage and selection operator (LASSO), (4) identifying the dominant birth–death pairs, and finally 
(5) mapping them back into the original image. 
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Four types of trigger sites, “hourglass”-shaped calcium ferrites (narrow and wide) and “island”- and 
“hourglass”-shaped iron oxides, were determined to initiate crack formation using only mapping data 
depicting the heterogeneities of phases and cracks without prior mechanistic information (Fig. 2). These 
triggers sites, particularly “island’” types, were rather difficult to predict empirically, although the 
determined trigger sites were reasonable in terms of materials-scientific knowledge. 
 
We propose a new approach to identify trigger sites in order to determine macroscopic properties in 
cases when heterogeneous reactions progress microscopically [1]. The identification of these trigger 
sites can provide a design rule for reducing mechanical degradation during the reduction process. 
Furthermore, this approach is expected to deal with multi-dimensional data obtained by spectroscopic 
imaging techniques such as TXM (Transmission X-ray Microscopy) and STXM (Scanning TXM). 
 
Experiments using synchrotron radiation were performed with the approval of the Photon Factory at 
IMSS, KEK Program Advisory Committee (Proposal Nos. 2014G707, 2015S2-002, and 2016S2-001). 
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Figure. 1. Right panel: chemical state mapping of an iron ore sinter determined by XANE. The fraction 
ratio of Fe(II)/(Fe(II) + Fe(III)) is color-coded: blue for 1 and red for 0. (a) Early, (b) Intermediate, and 
(c) Final stages of reduction. Left panel: the elemental distribution of iron (blue) and calcium (yellow).  
 
 
 
 
 

 
Figure. 2. Results of persistent homology and 
machine learning of the image data. (a) Four 
types of trigger sites that were non-empirically 
identified by the new approach. (b) Cracks 
formed that were measured by X-CT. 
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