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Abstract

In this short note, we describe all the elements in the semigroup

S (X,Y) = { f ∈ TX : f (Y) ⊆ Y}

which are left compatible with respect to the so-called natural partial order. This result corrects an error
in a paper by Sun and Wang [‘Natural partial order in semigroups of transformations with invariant set’,
Bull. Aust. Math. Soc. 87 (2013), 94–107].
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Let TX be the full transformation semigroup on the nonempty set X and fix a nonempty
subset Y of X. Endow the semigroup

S (X,Y) = { f ∈ TX : f (Y) ⊆ Y}

with the so-called natural partial order [1], that is, for f , g ∈ S (X,Y),

f ≤ g if and only if f = kg = gh and f = k f for some k, h ∈ S (X,Y).

Sun and Wang [2] gave a characterisation of this partial order ≤, namely, f ≤ g if and
only if the following statements hold:

(C1) π(g) refines π( f ) and πY (g) refines πY ( f );
(C2) if g(x) ∈ f (X) for some x ∈ X, then f (x) = g(x);
(C3) f (X) ⊆ g(X) and f (Y) ⊆ g(Y).

A transformation h ∈ S (X, Y) is said to be strictly left compatible (left compatible)
with the partial order if h f < hg (h f ≤ hg) whenever f < g ( f ≤ g).

Theorem 1 [2]. Let h ∈ S (X, Y). Then h is strictly left compatible if and only if h is an
injection.
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From the proof of [2, Theorem 2.3], the necessity of Theorem 1 holds, but the
sufficiency may not be true. Now let us show a counterexample.

Example 2. Let X = {1, 2, 3, . . .} and Y = {4, 5, 6, . . .}. Let

h(x) =

{
1 if x = 1,
x + 2 if x ∈ X − {1}.

It is clear that h ∈ S (X,Y) and h is an injection. Take

f (x) =

{
1 if x ∈ {1, 2, 3},
4 if x ∈ Y and g(x) =


1 if x = 1,
2 if x ∈ {2, 3},
4 if x ∈ Y.

Then f , g ∈ S (X, Y) and f < g. Now we assert that h is not strictly left compatible.
Indeed, if h is strictly left compatible, then h f < hg. By (C1), πY (hg) refines πY (h f ).
However, hg(2) = hg(3) = 4 ∈ Y and h f (2) = h f (3) = 1 ∈ X − Y which implies that
πY (hg) does not refine πY (h f ), a contradiction. So h is not strictly left compatible.

Our main purpose in this short note is to correct an error in Theorem 1 and give a
necessary and sufficient condition for all the left compatible elements of the semigroup
S (X, Y) with respect to this partial order. First, we give a necessary condition for the
strictly left compatible elements.

Lemma 3. Let h ∈ S (X, Y). If h is strictly left compatible, then either h−1(Y) = X or
h−1(Y) ⊆ Y.

Proof. There are two cases to consider.

Case 1. |X − Y | = 1. Obviously, for each h∈S (X,Y), we have h−1(Y)= X or h−1(Y)⊆Y ,
as required.

Case 2. |X − Y | ≥ 2. Suppose that h−1(Y),X. Let a∈X − Y be such that h(a)∈X − Y .
Now we assert that h−1(Y) ⊆ Y . Indeed, if h(b) = c ∈ Y for some b ∈ X − Y (b , a).
Then define f , g : X → X by

f (x) =

{
a if x ∈ X − Y,
x otherwise and g(x) =

{
a if x ∈ X − Y − {b},
x otherwise.

Clearly, f , g ∈ S (X, Y) and f < g. Noting that h is left compatible, we have h f < hg.
However, on the one hand, h f (b) = h(a) ∈ X − Y; on the other hand, h f (b) = khg(b) =

kh(b) = k(c) ∈ Y for some k ∈ S (X, Y), a contradiction. So h−1(Y) ⊆ Y and the
conclusion follows. �

So Theorem 1 should be corrected as follows.

Theorem 1′. Let h ∈ S (X, Y). Then h is strictly left compatible if and only if h is an
injection with either h−1(Y) = X or h−1(Y) ⊆ Y.
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Proof. The necessity follows from the proof of [2, Theorem 2.3] and Lemma 3, and
now we show the sufficiency. Let f , g ∈ S (X, Y) and f < g. We verify that h f < hg.
Assume that hg(x) = hg(y) for some x, y ∈ X. Noting that h is an injection, we have
g(x) = g(y) and f (x) = f (y) since π(g) refines π( f ). So h f (x) = h f (y) and π(hg) refines
π(h f ). Moreover, if hg(x) = hg(y) ∈ Y , then either g(x) = g(y) ∈ Y or g(x) = g(y) ∈
X − Y . If the former case occurs, then f (x) = f (y) ∈ Y and h f (x) = h f (y) ∈ Y . If the
latter case occurs, then h−1(Y) = X. So f (x) = f (y) and h f (x) = h f (y) ∈ Y . Hence
πY (hg) refines πY (h f ) and the transformations h f , hg satisfy (C1). It is routine to show
that the transformations h f , hg satisfy (C2) and (C3). Therefore, h f < hg and h is
strictly left compatible. �

We see that, in Example 2, h is an injection and h−1(Y) = X − {1} but neither
h−1(Y) = X nor h−1(Y) ⊆ Y , so h is not strictly left compatible.

We point out that Lemma 3 also holds for the case where h is left compatible, that
is, if h is left compatible, then h is an injection with either h−1(Y) = X or h−1(Y) ⊆ Y .
In what follows we consider a sufficient condition for all the left compatible elements
in the semigroup S (X,Y).

Lemma 4. Suppose that h ∈ S (X, Y) is not a constant transformation. Then the
following statements hold:

(1) if h|X−Y is not injective, then h is not left compatible;
(2) if h(X − Y) ∩ h(Y) , ∅, then h is not left compatible;
(3) if h|Y is not injective and |h(Y)| ≥ 2, then h is not left compatible.

Proof. (1) Let h(a) = h(b) , h(c) for some distinct a, b ∈ X − Y and c ∈ X. Suppose to
the contrary that h is left compatible. Define f : X → X by

f (x) =

{
c if x = a,
x otherwise.

Clearly f ∈ S (X, Y) and f ≤ idX . So h f ≤ h idX = h and π(h) refines π(h f ). However,
on the one hand, h(a) = h(b); on the other hand, h f (a) = h(c) and h f (b) = h(b). It
readily follows from h(c) , h(b) that h f (a) , h f (b), a contradiction. Hence h is not
left compatible.

(2) Let h(a) = h(b) , h(c) for some distinct a ∈ X − Y , b ∈ Y and c ∈ X. Take f
as in (1) so that f ≤ idX . Then h f ≤ h and π(h) refines π(h f ), which also leads to a
contradiction. Thus h is not left compatible.

(3) Let h(a) = h(b) , h(c) for some distinct a, b, c ∈ Y . Take f as in (1) so that
f ≤ idX . Then h f ≤ h and π(h) refines π(h f ) which also leads to a contradiction. It
follows that h is not left compatible. �

It is routine to verify the following lemma.

Lemma 5. Let h ∈ S (X, Y). If h|X−Y is injective, h(X − Y) ∩ h(Y) = ∅ and |h(Y)| = 1,
then the following statements hold:

(1) if h−1(Y) = X, then h is left compatible;
(2) if h−1(Y) ⊆ Y, then h is left compatible.
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Now we obtain the main result of this short note.

Theorem 6. Let X be a set and Y be the subset with Y , X. Suppose that |X| ≥ 3
and |Y | ≥ 2. Then h ∈ S (X, Y) is left compatible if and only if one of the following
statements holds:

(1) h is a constant transformation;
(2) h is an injection with either h−1(Y) = X or h−1(Y) ⊆ Y;
(3) h|X−Y is injective, h(X − Y) ∩ h(Y) = ∅ and |h(Y)| = 1 with either h−1(Y) = X or

h−1(Y) ⊆ Y.
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