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Abstract

We present continuous estimates of snow and firn density, layer depth and accumulation from a
multi-channel, multi-offset, ground-penetrating radar traverse. Our method uses the electromag-
netic velocity, estimated from waveform travel-times measured at common-midpoints between
sources and receivers. Previously, common-midpoint radar experiments on ice sheets have
been limited to point observations. We completed radar velocity analysis in the upper ∼2 m to
estimate the surface and average snow density of the Greenland Ice Sheet. We parameterized
the Herron and Langway (1980) firn density and age model using the radar-derived snow density,
radar-derived surface mass balance (2015–2017) and reanalysis-derived temperature data. We
applied structure-oriented filtering to the radar image along constant age horizons and increased
the depth at which horizons could be reliably interpreted. We reconstructed the historical instant-
aneous surface mass balance, which we averaged into annual and multidecadal products along a
78 km traverse for the period 1984–2017. We found good agreement between our physically
constrained parameterization and a firn core collected from the dry snow accumulation zone,
and gained insights into the spatial correlation of surface snow density.

1. Introduction

The Greenland Ice Sheet (GrIS) expresses high variability in ice loss, and hence sea level rise,
due to the regional scale variability in the processes governing mass balance (Lenaerts and
others, 2019). Surface mass balance (SMB) contributes just over half (�52%) of GrIS mass
loss, but ice-sheet wide SMB simulated from regional climate models maintains �25% uncer-
tainty (Shepherd and others, 2020). Efforts to improve SMB simulation (e.g. Fettweis and
others, 2017) are limited by the scarcity of observations, which are required to evaluate the
model performance (e.g Noël and others, 2016). Traditionally, SMB measurements are made
at the point scale during infrequent field efforts, through the laborious process of excavating
snow pits or drilling firn cores. The sparseness of snow pit observations on the GrIS limits the
testable correlation lengths and tends to debilitate spatial correlation analysis. Consequentially,
surface density measurements have shown no spatial correlation over length scales of tens to
hundreds of kilometers (Fausto and others, 2018). Due to the unknown variability of density
and SMB, point measurements used to parameterize a firn model (e.g. Zwally and Li, 2002)
must be extrapolated to regional scales cautiously. In space-borne altimetry retrievals of
GrIS mass balance, the uncertainty in modeled corrections for snow densification required
to convert a measured change in ice-sheet volume to a change in mass causes �16% uncer-
tainty (Shepherd and others, 2020).

Ground-penetrating radar (GPR) surveys are capable of imaging layers of accumulated
snow (e.g. Vaughan and others, 1999). However, conventional, single-offset GPR analysis
requires an independent measurement of firn density to estimate the accumulation
(Navarro and Eisen, 2009). Point SMB measurements often provide the required density infor-
mation to extrapolate the density profile along the track of the radar sounding (e.g. Hawley
and others, 2014; Overly and others, 2016). Yet, relying on sparse firn cores to extrapolate
density over tens to hundreds of kilometers may bias the derived accumulation estimates.
For example, ice lenses sampled in a firn core increase the average density and can be
incorrectly extrapolated over tens of kilometers, as these features are uncorrelated over tens
of meters (Brown and others, 2011). For the period 1971–2016, greater than 10% bias to
the SMB is possible, when firn cores are not available for extrapolation (Lewis and others,
2019). Inaccuracies are greater in southern Greenland, which is experiencing increasing
near-surface firn densification as a result of atmospheric warming (Graeter and others,
2018), than in central Greenland. Parameterization of snow and firn densification continues
to improve (e.g. Meyer and others, 2020); yet, evolving the firn using full energy balance
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modeling remains operationally challenging and is limited spa-
tially by the unknown heterogeneities of surface snow density,
accumulation and melt (Vandecrux and others, 2018). Surface
snow density parameterizations formulated around temperature
and wind speed (e.g van Kampenhout and others, 2017) are
arguably less preferable than density measurements because of
uncertainties in estimating wind speed and modeling the
unknown length scale variability that exists in the GrIS snow
(Fausto and others, 2018).

Radar retrievals of snow density are an appealing alternative
to in situ observations of snow and firn because the methods are
non-destructive and rapidly acquire vast amounts of data.
However, few methods for continuously mapping snow and
firn density exist (e.g. Grima and others, 2014) due to the com-
plexities of data inversion. In this work, we present the analysis
of multi-channel, multi-offset, radar (MxRadar) imagery along a
78 km traverse in the GrIS dry snow accumulation zone to dem-
onstrate the capability of this method, which has the advantage
of ascertaining snow and firn density, and depth, and thereby
SMB, independently. Of the previous studies applying GPR vel-
ocity analysis, none have performed continuous estimates
throughout tens of kilometers distance (e.g. Bradford and others,
2009). We based our MxRadar workflow on the analysis of the
radar surface wave, which exhibits linear moveout (LMO), and
the fall 2014 isochronous reflection horizon (IRH) to estimate
the surface snow density, column average density, horizon
depth and 2015–2017 SMB. We then input our data into the
Herron and Langway (1980) firn density and age model. We
use the firn model to further enhance the MxRadar imagery
and extend the historical period of the SMB reconstruction to
1984–2017 with instantaneous (∼14 days) temporal intervals.
We compare the resulting SMB against a firn core and quantify
the length of spatial correlation that exists in surface snow
density. We quantify the bias reduction in SMB derived using
the measured-modeled, MxRadar–Herron and Langway (1980)
method. Then we provide a discussion of the results, limitations
and advantages of the method, and future directions. We devel-
oped our analysis within the interior region of Greenland where
there was significant spatial variation in accumulation, but little
melt, to develop confidence in this type of radar retrieval for
density and SMB.

2. Greenland Traverse for Accumulation and Climate Studies

The Greenland Traverse for Accumulation and Climate Studies
(GreenTrACS) is a multi-disciplinary study of recent SMB
changes in the West Central percolation and dry snow accumula-
tion zones of the GrIS. During the Spring of 2016 and 2017, we
traveled a total of 4436 km by snowmobile from Raven/DYE-2
to Summit Station along the elevation contour straddling the
percolation zone, and along West-East ‘spurs’ perpendicular to
the elevation contours. Throughout the expedition, we collected
16 shallow (22–32 m) firn cores and dug 42 snow pits; 16 pits
were coincident with the cores and the 26 others were dug at
the ends of the spurs (Figs 1 and 2). Our GreenTrACS field sea-
sons occurred prior to the on-set of melt to reduce the complexity
of radar data inversion. The cores and the coincident snow pits
were sampled for density, isotopic chemistry, dust and trace
elements to define annual layer depths for measuring SMB (e.g.
Graeter and others, 2018; Lewis and others, 2019). As firn cores
are strategically located point measurements, GPR imagery is
often leveraged to spatially extend the record of firn stratigraphy
between core sites for accumulation studies (e.g. Spikes and
others, 2004; Miège and others, 2013). We operated a suite of
radar instruments spanning the frequency range 0.4–18 GHz;
the focus of this study is the MxRadar.

2.1. Study area

GreenTrACS Core 15 (GTC15) is the second most northern core
site of the GreenTrACS campaign (47.197°W, 73.593°N) and is
∼2600 m above sea level. GTC15 had an average annual tempera-
ture of −25.7 ± 1.0°C (Modern-Era Retrospective analysis for
Research and Applications (MERRA), 1979–2012), and an average
annual SMB of 0.306 ± 0.021 mw.e. a−1 (1969–2016). The site
experiences little to no melt, measured as the average melt feature
percentage determined by normalizing each year’s ice layer water
equivalent by the annual water equivalent and then averaging
(0.47%, 1969–2016).

GTC15 Spur West is a triangular, clockwise circuit that departs
from and returns to GTC15 (Fig. 1 inset). The first of three trans-
ects is 15 km in length, bearing 157°, and begins at GTC15. The
second transect is 30 km in length at 246.5° which ends at Pit
15W. The final transect is 33 km in length from Pit 15W to
GTC15 and bearing 40.5°. The GrIS surface of GTC15 Spur
West was wind-affected snow with sastrugi 25 cm in height. We
estimated the average meteorological wind direction of 152°
using monthly 10 m zonal and meridional wind speeds from
the ensemble of the third generation reanalysis models
(GEN3ENS) for the period 1979–2012 (Birkel, 2018). The average
wind direction is approximately parallel to the first transect of
GTC15 Spur West, approximately orthogonal to the second tran-
sect, and 21.5° oblique to the third transect. The cyclicity in the
topographic profile (Fig. 2) results from our return to GTC15
along a path oblique to the path approaching Pit 15W. The
SMB changes significantly across the 5 km wide trough between
distances 40–50 km. But, we do not observe preferential windward
and leeward affects to the accumulation pattern here, because the
orientation of the transects crossing this topographic trough are
approximately orthogonal to the average wind direction. We
selected this particular spur to develop our processing and ana-
lyses because of the apparent interplay between the surface eleva-
tion, SMB and heterogeneous layering observed in the radar
imagery. Yet, we have foregone any topographic corrections in
the radar processing.

2.2. Field methods

The MxRadar is a Sensors & Software 500 MHz GPR deployed
with a multi-channel adapter in a multi-offset configuration
using three transmitting and three receiving antennas (Fig. 3).
During data acquisition, the transmitting and receiving channels
were multiplexed to form nine radargrams which have independ-
ent antenna separations (offsets). The antennas were co-polarized,
perpendicular to the direction of travel, and all are specified at
500 MHz with greater than two octave bandwidth. However,
dependent on the antenna pairing, the actual central frequency
and bandwidth varied on the order of tens of MHz. Our methods
and analysis are tailored to produce meaningful data for the
evaluation and improvement of snow cover and firn models and
regional climate and reanalysis modeling of SMB.

3. Analysis methods

We review multi-offset GPR methods for SMB calculations in
Section 3.1 to clarify the advantages of the multi-offset technique
that are also important for interpreting the results. We provide
much of the methodological detail in the Supplementary
Material S.1. Here, we touch on the methodology to simplify
our strategy for reconstructing the historical SMB for the period
1984–2017 along GTC15 Spur West. We considered SMB rather
than the accumulation rate because of unaccounted mass lost to
sublimation and ablation. SMB is conventionally measured
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using GPR by interpreting a select few IRHs using a constant age
interval and applying the average normalized firn density over
this interval (e.g. Lewis and others, 2019). Instead, we relied on
the models of density and age, which were discretized in depth
at a comparable resolution to the GPR data, and generated a
SMB model with instantaneous (∼14 day) temporal intervals
(Section S.1.3). We averaged annual SMB from many realizations
of the instantaneous SMB model in a Monte Carlo simulation to
assess uncertainty (Section S.1.4). We estimated the multidecadal
average SMB, invoking the central limit theorem, by repeatedly

drawing from 10 of the 33 annual SMB distributions at random
and averaging.

To parameterize the firn model, we first completed conven-
tional signal processing on the nine radargrams, which consisted
of a two octave bandpass filter around 500 MHz, amplitude gain
corrections for wavefront spreading, coherent noise removal
(background subtraction) and random noise removal (smooth-
ing). Then we interpreted the air wave, surface wave and a shallow
reflection (Fig. 4) on each of the nine images using a semi-
automatic picking algorithm (Section S.1.1). We inverted the

Fig. 1. GreenTrACS firn cores (GTCs) are numbered 1–16. Ground-penetrating radar surveys were conducted along spur traverses and the main route that links
the GTCs. We developed our radar processing and analyses at GTC15 Spur West (lower left inset). The 2000 m asl contour envelopes the western spurs. Surface
elevation was acquired from Morlighem (2017) and Porter and others (2018).

Fig. 2. Topographic profile of GreenTrACS Core 15 Spur West. The topographic undulation near Pit 15 W is responsible for increases and decreases in accumulation.
The initial 15 km, up to the point of maximum elevation of the profile, are directed into the predominant wind, making this a leeward slope. The predominant wind
blows approximately orthogonal across the next 30 km of the GTC15 Spur west traverse and is 21.5° oblique to the final 33 km of GTC15 Spur West.
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travel-times of the surface wave and the shallow reflection (see
Section 3.1.1) to estimate the average electromagnetic (EM)
propagation velocity and depth of the dry snow and firn in a
least-squares approach (Section S.1.2), which used random resam-
pling of the data to estimate uncertainties (Section S.1.4). We
then applied a petrophysical model (Wharton and others, 1980)
which relates the EM velocity of dry snow and firn to its density
(Section S.1.3).

Our measured-model approach relied on the Herron and
Langway (1980) empirical firn density and age model, hereafter
HL, which requires three input parameters: average snow density,
average annual accumulation and 10 m firn temperature. We
parameterized the HL model with the MxRadar snow density,
MxRadar SMB (2015–2017) and MERRA 2 m air temperature
as a proxy for firn temperature (Loewe, 1970), to model the strati-
graphic age and density of the firn. We assessed the firn model
accuracy and sensitivity to parameterization to illustrate the
accuracy of the MxRadar-HL (MxHL) firn density (Section
S.1.5). We justified tuning the age model to improve our estimates
of SMB in a process that jointly updated the age-depth and SMB
models according to the radiostratigraphy. The age model allowed
us to convert the time domain radar image into the stratigraphic
age domain, known as the Wheeler (1958) domain. In principle,
the firn structure can be estimated by the age model because the
stratigraphy was deposited in isochronous layers. The imaged firn
structure can be flattened by converting the time domain GPR
image into the Wheeler domain because the rows of the
Wheeler image maintain a constant age. We ensured the relative
structure of the age model by picking five horizons of the Wheeler
transformed radiostratigraphy with an average epoch of 5.3 ± 2.7
years (the latest being the 1991 horizon) and perturbing the age
model with the interpolated residuals to re-flatten the Wheeler
image. We developed a structure-oriented noise-suppression filter
which operates along the radar reflection horizons in the Wheeler
domain to eliminate remnant noise after conventional GPR signal
processing (Section S.1.6). This innovative signal processing tech-
nique allowed SMB estimates to depths at which previously the
stratigraphy was uninterpretable due to the low signal-to-noise
ratio. We then converted the filtered radargram from the
Wheeler domain into the depth domain and interpreted 16
IRHs with an average epoch of 2.1 ± 1.7 years dating back to
1984. We calculated the error between the GTC15 geochemically
determined age-depth scale and the 16 picked IRHs and interpo-
lated a second grid of perturbations which we applied as a final
update to the age model. We calculated the instantaneous SMB
by taking a numerical derivative of the age-depth model (dz/da)
and multiplying it by the MxHL density model (Eqn (S.20)).

3.1. Review of multi-offset radar

Common-midpoint (CMP) radar surveys are practiced in glaci-
ology to estimate the EM wave speed of the ice, air and/or

water mixture (e.g. Eisen and others, 2002). The wave speed is
related to firn density and liquid water content using a dielectric
mixture formula for a two or three phase relationship (e.g.
Looyenga, 1965; Wharton and others, 1980). In most studies,
the CMP survey is treated as a point measurement of the firn ver-
tical density profile, which is less laborious than extracting a core,
but offers less vertical resolution and accuracy. Prior to
GreenTrACS, CMP experiments on ice sheets were limited to
point observations. We synthesized continuous CMP data by tow-
ing a streamer of nine antenna pairs that were linearly spaced
from 1.33 to 12 m apart (Fig. 3). While the antenna pairs in
this deployment did not have a common midpoint, we rebinned
the constant offset radargrams for each pair independently,
such that the analysis was performed on offset gathers with com-
mon midpoints.

3.1.1. Interpreting the near-surface waves
Numerous geophysical methods exist for velocity analyses of
CMP data gathers. Analyses of reflection data can be divided
into two fundamental categories by the question, ‘Does the ana-
lysis assume normal moveout?’ Normal moveout (NMO) is the
reflection travel-time dependence on offset that arises from a
homogeneously-layered and planar subsurface structure (within
the distance of the maximum antenna offset) that exhibits small
vertical velocity heterogeneity (Al-Chalabi, 1974). Previous stud-
ies avoided classical NMO analysis, instead using less automated,
more computationally expensive methods that favored accuracy
(Bradford and others, 2009; Brown and others, 2012, 2017).
Many caveats of NMO velocity analysis and sources of error in
the radar common-midpoint analysis are discussed in Barrett
and others (2007). We demonstrate that NMO analysis of the
snow and shallow firn yields a satisfactory result for data with
low noise (see Supplement S.1.5), as ice-sheet stratigraphy in
the high elevation accumulation zone is close to homogeneous
and planar at the length scale of the radar streamer array.

Linear moveout (LMO) is the one-way travel-time dependence
on offset of radar waves traveling directly from the transmitter
through the air over the ice sheet and through the snow under
the ice-sheet surface to the receiver antenna. We assumed that the
air wave expresses the linear moveout velocity c≈ 0.2998 m/ns to
calibrate the timing of the multi-channel system (Section S.1.2).
To analyze the surface wave, we assumed that the shallow, surficial
snow is also planar and homogeneous at the scale of the maximum
offset. We identified the air wave, surface wave and a near surface
reflection and their respective moveout behavior in Figure 4. The
travel-times of these waves were interpreted using a horizon tracking
algorithm (see Supplement S.1.1). The linear methods for LMO and
NMO velocity analysis are described in Section S.1.2 and the meth-
ods for estimating the surficial and average snow density and depth
of the fall 2014 IRH are discussed in Section S.1.3. We quantified
the uncertainty of the density, depth, age and SMB used to param-
eterize the HL model in Section S.1.4.

Fig. 3. The MxRadar streamer array has three transmitting (Tx) and three receiving (Rx) antennas, which form nine independent offsets that were linearly spaced
from 1.33 to 12 m apart. We simultaneously acquired nine continuous radargrams (one for each constant offset) and then binned the source-receiver pairs into
common-midpoint (CMP) gathers.
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3.1.2. Critically refracted waves
Lateral energy travels on direct raypaths from transmitter to
receiver, but also on raypaths that are critically refracted at the
free-surface. An upgoing reflected wave can become critically
refracted along the air/snow interface upon exiting the snow sur-
face. These refracted waves appear in Figure 4 as multiple air wave
arrivals succeeding the initial air wave. In Section S.1.2.1, we pro-
vide a discussion of the critically refracted wave phenomena with
an accompanying snowpack model and exercise to support and
demonstrate the critically refracted raypath.

3.2. Spatial correlation of surface snow density

The LMO and NMO estimated snow densities are independent
measurements of the snow density above the interpreted radar
horizon. The GPR surface wave maintains a fairly consistent
depth level (∼0.5 m, Eqn (S.17)), but the NMO reflection horizon
does not. To mitigate the effects of depth on the correlation, we
extracted the rows of the MxHL density model corresponding
to the average depth of the LMO (0.5 m) and NMO (1.92 m) hor-
izons interpreted for velocity analysis (Fig. 4). We used Pearson
(1907) correlation to determine the relationship between the
density at 0.5 m depth and the density at 1.92 m depth.
Additionally, we conducted variogram analysis (Matheron,
1963) on the LMO estimated snow density for each of the three
transects of GTC15 Spur West. We determined the length scale
over which there is consistent spatial correlation of the surface
snow density across all three transects as the distance where the
three experimental variograms diverge. We understand this diver-
gence point as the experimental range of the variogram with the
shortest length scale of correlation. We determined the experi-
mental range of the remaining two variograms at the second
divergence point and as a significant slope break or change in
concavity/convexity.

4. Results

The multi-offset radar travel-time inversion determined the GrIS
surface snow density and average snow density without manual
observations (Fig. 5). We estimated the 2015–2017 SMB from
the MxRadar-derived snow depth and density using the GTC15
age of the near-surface IRH (Fig. 5). The LMO and NMO
densities were independently estimated and strongly correlate
(R2 = 0.67, p = 0). Spatial patterns in the LMO derived snow dens-
ity are consistent for three azimuths up to 2 km lag distance
(Fig. 6). The multidecadal average 10 m wind direction from
GEN3ENS (1979–2012) along GTC15 Spur West is approxi-
mately 152°. With information on the predominant wind direc-
tion, a closer look at Figure 6 reveals directionality in the spatial
pattern of surface snow density. The range of the variogram for
the 157° transect (in the direction of the predominant wind) is
6 km, the range of the 246.5° transect (orthogonal to the predom-
inant wind) is ∼2 km, and the range of the 40.5° transect (oblique
to the predominant wind) is ∼3 km. By combining the radar-
derived density and SMB with MERRA 2 m temperature, we
accurately parameterized the HL firn density and age model.
For depths up to ∼22.5 m, the mean absolute error between
GTC15 densities and MxHL densities is 9.6 kg/m3, with a bias
of 1 kg/m3, and rms error of 12.2 kg/m3. We find that extrapolat-
ing the GTC15 densities along GTC15 Spur West introduces
an insignificant (on the order of 1%) bias to the SMB of
−0.004 m w.e. a−1 and rms error of 0.005 m w.e. a−1. The MxHL
firn model permitted radar imaging in the depth and stratigraphic
age domains. In Figures 7 and 8, we illustrate our structure-
oriented filter along GTC15 Spur West between 35 and 55 km dis-
tance, where the largest heterogeneity in firn stratigraphy occurs.
After applying structure-oriented filtering, we were able to inter-
pret significantly more IRHs and refine the age-depth model to an
accuracy of ±31 days (see Supplement S.1.4). We reconstructed
the temporal SMB history from January 1984 to January 2017

Fig. 4. This offset gather is represented by radargrams recorded at offsets 4, 8 and 12 m along the initial 45 km of GTC15 Spur West, and is annotated to convey the
waveforms used in our analysis and the concepts of normal moveout (NMO) and linear moveout (LMO). Consider the traces at zero distance for each offset as a
CMP gather. The air wave and surface wave arrivals are modeled by a linear expression of travel-time as a function of offset (Eqn (S.1)). The air wave is the first to
arrive and expresses a more shallow slope (faster velocity) than the surface wave which is impeded while traveling through the snow. The annotated reflection
expresses non-linear moveout which is approximated by NMO (Eqn (S.2)). The surface-wave (LMO) and reflection (NMO) annotated in this diagram are used to
estimate the surface snow density, average snow density and depth of the fall 2014 isochronous reflection horizon (IRH). The age of the horizon was determined
at GTC15 and allowed us to estimate the 2015–2017 SMB (see Supplement S.1.3), and in turn, is used to parameterize the HL model (see Supplement S.1.5).
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and compare our result to the GTC15 firn core-derived SMB in
Figure 9. The MxHL SMB history has a mean absolute error of
0.038 m w.e. a−1, a bias of 0.004 m w.e. a−1 and an rms error of
0.047 m w.e. a−1. Uncertainty in the SMB measured from
GTC15 was calculated following Graeter and others (2018).
Average uncertainty in annual SMB is 0.036 and 0.044 mw.e. a−1

for MxHL and GTC15, respectively. The mean thickness of an
annual layer for the period 1984–2017 is 57.9 cm as measured at
GTC15. The mean absolute error in the thickness of an
annual layer estimated by MxHL is 7.8 cm, which contributes
0.039 mw.e. a−1 (13%) error in the SMB reconstruction on average.
Density inaccuracies in the SMB reconstruction result in a
0.004 mw.e. a−1 (1.3%) error on average. The MxHL 1984–2017

multidecadal average SMB is 0.297 ± 0.016 mw.e. a−1 and is a
good estimator of the GTC15 1984–2017 multidecadal average
SMB (0.301 ± 0.025 mw.e. a−1). At GTC15 the 2015–2017 average
SMB is within the uncertainty bounds of the multidecadal averages
spanning 1969–2017, the oldest period spanned by the core, and
1984–2017 the period spanned by the MxRadar imagery.

5. Discussion

We independently assessed the four sources of uncertainty in the
MxHL SMB (depth, density, temperature and age) and then pro-
pagated these uncertainties through the MxHL model by Monte
Carlo simulation to estimate the SMB mean and standard devi-
ation for each year of 1984–2017. On average, the difference
between GTC15 and MxHL SMB is small enough to accept
the MxHL measured-modeled densities in place of extrapolating
the measured firn core density along GTC15 Spur West.
Extrapolated densities are likely to be much less accurate farther
from core sites and in the percolation zone, due to increased near-
surface pore space reduction caused by melt water infiltration
(Harper and others, 2012). We also expect the accuracy of the
HL density model to break down at elevations within the perco-
lation zone (Brown and others, 2012). Annual fluctuations in
density, and density excursions due to warming events, are not
captured in the HL model. Using the MxRadar, we have the abil-
ity to measure the density profile in the percolation zone with
additional layer picking for near-surface velocity analysis, but
the NMO approach is sensitive only to the average density of
intervals in between the layer picks (Dix, 1955) and is susceptible
to errors due to subsurface velocity heterogeneities and data noise
(Al-Chalabi, 1974).

In the upper ∼2 m of the firn column, we replaced modeled
densities with a linear fit between the two radar measurements
of snow and firn density using the surface wave and the reflection
from the fall 2014 IRH. This reduced the near-surface bias pre-
sent in the HL density profile and we found strong correlation
between the densities of these independent radar measurements.
The richness of the MxRadar data stream permits geostatistical
analysis at the sub-kilometer scale. We found that local (on the
order of 1 km neighborhood) processes control the GrIS dry
snow density. The similarity in spatial patterns of radar estimated
surface snow density, up to ∼2 km lag distance, contrasts with
the findings that no correlation exists between surface snow dens-
ity, latitude, longitude or elevation (Fausto and others, 2018),
which is likely due to the limited observations of snow density
at the <1 and <10 km scales within the Surface Mass Balance
and Snow Depth on Sea Ice Working Group dataset
(Montgomery and others, 2018). Our variogram analysis was
tested to 15 km lag separations along three azimuths: 157°,
246.5° and 40.5°. In the direction of the prevailing wind, we
found 6 km correlation distance with diminishing correlation
length for transects increasingly orthogonal to the prevailing
wind. We found that the SMB decreased with increasing slope
on the leeward, 157°, transect, which corroborated the findings
of Arcone and others (2005). We did not find trends in SMB
with slopes of the 246.5°, and 40.5° transects, as these transects
were approximately orthogonal and 21.5° oblique to the predom-
inant wind direction, respectively. Future application of this
method to the 4000 + km traverse will allow the exploration of
surface density variations at much larger scales and at additional
orientations relative to the prevailing winds.

The 2014–2017 SMB appears to be overestimated by MxHL,
though the near-surface radar velocity analysis was focused on
this range. We support the radar findings here with the under-
standing that firn samples recovered from these depths are sus-
ceptible to in situ losses due to their unconsolidated nature.

Fig. 5. The MxRadar inversion parameter distributions along GTC15 Spur West. The
LMO and NMO densities were independently estimated and strongly correlate (R2 =
0.67, p = 0). The MxHL model is parameterized by the average of the LMO and
NMO densities, the 2015–2017 average SMB and MERRA (1979–2012) average 2 m
temperature.

Fig. 6. We calculated experimental variograms of the LMO estimated snow density
along the three azimuths of GTC 15 Spur West using lag separations up to 15 km.
Plotted in log-log space, the linearity of each variogram slope indicates that spatial
correlation among the three azimuths exists up to ∼2 km distance. Correlation
beyond this distance is difficult to assess given the limited azimuths and lag separa-
tions possible for GTC 15 Spur West. However, predominant wind direction appears
to have a control on the correlation length, as evidenced by the 6 km range of the
157° transect variogram (in the direction of the predominant wind) and shorter,
∼2 and ∼3 km ranges of the 246.5° transect (orthogonal to the predominant wind)
and 40.5° transect (oblique to the predominant wind), respectively.
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The radar retrieval has a sample footprint of approximately
∼25 m (twice the length of the antenna array) and is non-
destructive, while the borehole diameter is ∼8 cm and samples
only one point in space. It is also likely that the age model is
less accurate nearest the ice-sheet surface due to core sample
loss; however, we sacrifice greater accuracy in the radar domain
because of the limitations in our ability to interpret depth
image. The fall 2014 horizon was the latest IRH measured in
our analysis. Picking annual reflection horizons later than 2014,
near the model boundary, created steep gradients in the numerical
derivative required to estimate the SMB which yielded erroneous
values.

We see evidence of the 2012 melt event (Nghiem and others,
2012) in the filtered depth image (Fig. 8). At 3 m depth, the top of
the reflection sequence represents January 2013, and at 4 m depth,
the bottom of the sequence is January 2011. This IRH sequence
expresses fading and discontinuity that, we hypothesize, is the
result of 2012 melt water infiltration. Measured at GTC15, the

2011 annual layer has a melt feature percentage of 7.9%.
However, melt water-induced firn densification does not explain
the inaccuracy in 2010 MxHL SMB, as 2010 recorded 0% melt
feature percentage at GTC15. The MxHL density model is accur-
ate within the 2010 annual layer, rather our estimate of the 2010
annual layer thickness is 22 cm thinner than measured at GTC15.
This is the second largest error in annual layer thickness, only
behind the 2015 layer which was estimated to be 24 cm thicker
than measured at GTC15 because of the aforementioned issues
in estimating SMB near the model boundary. The degraded
image quality of the 2011–2013 IRH sequence inhibited our abil-
ity to interpret the age sequence accurately enough to define the
annual layer thicknesses for 2011 and 2012. Instead, we relied
on interpolation to approximate the thickness of these horizons.
The leading source of error in the historical SMB reconstruction
are inaccuracies in the age model that result from limitations in
our ability to interpret the radar image, even after applying the
structure-oriented filter.

Fig. 7. Conventional GPR processing was applied to each of the nine constant offset radargrams. We then performed NMO correction to project each constant
offset image to zero offset. We stacked the NMO corrected radargrams together to synthesize one conventional GPR travel-time image. The travel-time image
remains quite noisy, and it is difficult to interpret due to the discontinuities along the reflection horizons.

Fig. 8. The travel-time image (Fig. 7) is first transformed into the stratigraphic age domain, known as the Wheeler (1958) domain. Then we applied structure-
oriented filtering to the Wheeler domain image and converted into the depth domain. The depth section, taken from GTC15 Spur West, has remarkable continuity
along the reflection horizons, which allows us to interpret IRHs to ∼22.5 m depth. The undulation in the firn stratigraphy is caused by spatial variability in snow
accumulation. It is necessary to interpret along steeply varying undulations like these to evaluate high resolution (< 5 km) regional climate model simulations of
SMB. However, without the structure-oriented filter we would be unable to track the reflection horizons along the undulations.
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The multidecadal average SMB for the period 1984–2017 at
GTC15 has remained nearly constant. Yet, sinusoidal variability
in SMB on the decadal time scale is apparent in the MxHL histor-
ical SMB reconstruction and is confirmed by GTC15 SMB. Decadal
variability in the MxHL reconstruction would not be observable
without the application of structure-oriented filtering and inter-
pretation that permitted an accurate instantaneous SMB model.
For GPR imagery expressing small or gradual SMB variability, it
may be sufficient to apply the structure-oriented filter in the
Wheeler domain without the steps of interpretation, age model cor-
rections and image re-flattening (Section S.1.6). The snow density
estimation component is unique to the multi-offset radar and inte-
gral in our ability to parameterize the HL model. However, the
structure-oriented filtering can be applied to any GPR imagery of
isochronous firn, provided a stratigraphic age model in the radar
travel-time domain is used as a proxy for the firn structure.

Along GTC15 Spur West, we expect the largest errors due to
firn advection to occur across the studied undulations (Figs 7
and 8), where the SMB gradient is largest and oscillating. The
two undulations here represent the same feature observed on out-
bound and inbound traverses, and serve as a demonstration of the
repeatability of the methods. In regions where the spatial gradient
in SMB is dynamic or ice-sheet surface velocities are large, the
advection of firn mass decreases the accuracy of radar estimated
SMB. On Pine Island Glacier, with ice surface velocities on the
order of 10–103m a−1, strain corrections applied to the accumula-
tion model amounted to a 1% correction to the 1986–2014 aver-
age SMB (Konrad and others, 2019). Ice surface velocities along
GTC15 Spur West are on the order of 10 m a−1 (Joughin and
others, 2018), and therefore we accept a contribution of error
that is an order of magnitude less than the uncertainty, by not
applying corrections for the SMB due to advection.

6. Conclusions

GreenTrACS conducted the first multi-offset GPR traverse on
the Greenland Ice Sheet, covering a total distance of 4436 km.
We examined a 78 km section of the GreenTrACS 2017 traverse
(GTC15 Spur West) to develop the methodology for multi-offset
GPR wave velocity, imaging and uncertainty analyses to accurately
quantify the surface snow density, average snow density, firn
density, instantaneous SMB, annual SMB and multidecadal aver-
age SMB for the period 1984–2017. Using travel-time inversion of
the radar waveforms, we continuously mapped Greenland snow
density without manual observations of the snow. We found con-
sistent spatial correlation of near-surface density for separations
up to 2 km distance and evidence to support the prevailing
wind direction as a source of correlation up to 6 km distance.
We found significant correlation (R2 = 0.67, p = 0) between near-
surface snow density and average snow density of the upper 2 m.
We demonstrated the use of the Herron and Langway (1980)
model that was parameterized by the radar-derived snow density,
radar-derived SMB (2015–2017), and MERRA 2 m air tempera-
ture, to estimate firn density and age. Our measured-modeled
firn density in the dry snow accumulation zone accurately repre-
sents the firn core but can be performed continuously along a tra-
verse in the field without destructive measurements. GreenTrACS
Core 15 Spur West presented an interesting challenge because of
spatial SMB variability that is enhanced by the surface topog-
raphy. In the dry snow zone, the topographic effect induces undu-
lations in the firn stratigraphy which steepen with depth, due to
the persistence of increased accumulation. Folds in the firn stra-
tigraphy are difficult to image clearly with conventional GPR pro-
cessing methods. Using seismic interpretation methods, we
facilitated structure-oriented filtering by utilizing the firn age
model to determine the firn structure. In doing so, we furthered
the application of the IRH theory, which is integral in SMB ana-
lyses conducted with radar imagery. This innovation enabled our
interpretation of deeper (from 16.60 ± 0.04 to 20.15 ± 0.04 m at
GTC15) and older (from 1991 ± 31 to 1984 ± 31 days) layers
and permitted tuning the age model to a degree of accuracy
which allowed us to derive instantaneous estimates of SMB
which we averaged annually and multidecadally. Future work
will include application of this methodology to the entire
4000 + km GreenTrACS traverse, with independent evaluation at
the 16 core sites. To reduce the labor in interpreting the radar
imagery of future work, it would be advantageous to model the
firn age-structure using the kinematic wave equation (Ng and
King, 2011) to capture the advection process imprinted on the
radiostratigraphy without having to interpret the Wheeler domain
radargram. We picked horizons in the Wheeler domain as a
necessary step in applying the structure-oriented filter to the
GTC15 Spur West radargram. This interpretive process could
be avoided by generating the relative age using the kinematic
wave equation. Yet, this model requires an independent estimate
of firn density and accumulation to satisfy the initial and bound-
ary conditions. Deep learning techniques have been recently
applied to seismic imaging that automate structure-oriented filter-
ing and horizon interpretation problems. By generating synthetic
seismograms from numerical structural models as training data
(Wu and others, 2020), relative stratigraphic age models have
been recovered from real seismic data and used for automated iso-
chrone horizon interpretation (Geng and others, 2020). The kine-
matic wave firn model could serve as a basis for generating
synthetic radargrams to be used in a deep learning application
for historical SMB reconstruction.

Supplementary material. The supplemental material for this article can be
found at https://doi.org/10.1017/jog.2020.91

Fig. 9. The GTC15 and MxHL historical SMB for January 1984–January 2017.
Uncertainty in GTC15 SMB (± σ) was estimated following Graeter and others (2018).
Uncertainties in the MxHL 1984–2017 SMB (± σ) were propagated by Monte Carlo
simulations of firn models generated from the parameter distributions of snow dens-
ity, 2015–2017 SMB, and MERRA temperature. We applied ± 31 days uncertainty to the
measured ages of isochrones within the simulations.
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Data availability. The 2017 GreenTrACS multi-channel GPR data can be
found at https://doi.org/10.18739/A21G0HT84. The MATLAB scripts used
in this analysis are continually under development and can be forked from
the github repository https://github.com/tatemeehan/GreenTrACS_MxRadar.

Acknowledgments. Greenland Traverse for Accumulation and Climate Studies
was funded by the National Science Foundation Office of Polar Programs: Awards
# 1417921 and # 1417678. Additional support of this work was awarded through
the NASA Idaho Space Grant Consortium Graduate Fellowship and the STEM
Student Employment Program through the U.S. Army Engineer Research and
Development Center, Cold Regions Research and Engineering Laboratory. We
thank Steve Arcone and an anonymous reviewer for their recommendations
which improved the communication of technical aspects of this work and
Journal of Glaciology Scientific Editor Shad O’Neel for his additional review of
our manuscript which greatly improved its readability.

References

Al-Chalabi M (1974) An analysis of stacking, RMS, average, and interval
velocities over a horizontally layered ground. Geophysical Prospecting 22,
458–475. doi: 10.1111/j.1365-2478.1974.tb00099.x.

Arcone SA, Spikes VB and Hamilton GS (2005) Stratigraphic variation within
polar firn caused by differential accumulation and ice flow: Interpretation
of a 400 MHz short-pulse radar profile from West Antarctica. Journal of
Glaciology 51(174), 407–422. doi: 10.3189/172756505781829151.

Barrett BE, Murray T and Clark R (2007) Errors in Radar CMP velocity esti-
mates due to survey geometry, and their implication for ice water content
estimation. Journal of Environmental and Engineering Geophysics 12(1),
101–111. doi: 10.2113/JEEG12.1.101.

Birkel S (2018) Greenland surface mass balance derived from climate reanaly-
sis models, 1979–2017. 10.18739/A2D21RH75.

Bradford JH, Nichols J, Mikesell TD and Harper JT (2009) Continuous pro-
files of electromagnetic wave velocity and water content in glaciers: an
example from Bench Glacier, Alaska, USA. Annals of Glaciology 50(51),
1–9. doi: 10.3189/172756409789097540.

Brown J and 5 others (2012) Georadar-derived estimates of firn density in the
percolation zone, western Greenland ice sheet. Journal of Geophysical
Research Earth Surface 117(1), 1–15. doi: 10.1029/2011JF002089.

Brown J, Harper J and Humphrey N (2017) Liquid water content in ice esti-
mated through a full-depth ground radar profile and borehole measure-
ments in western Greenland. The Cryosphere 11(1), 669–679. doi: 10.
5194/tc-11-669-2017.

Brown J, Harper J, Pfeffer WT, Humphrey N and Bradford J (2011)
High-resolution study of layering within the percolation and soaked facies
of the Greenland ice sheet. Annals of Glaciology 52(59), 35–42. doi: 10.
3189/172756411799096286.

Dix CH (1955) Seismic velocities from surface measurements. Geophysics 20
(1), 68–86. doi: 10.1190/1.1438126 v. 20 no. 1 p. 68-86.

Eisen O, Nixdorf U, Wilhelms F and Miller H (2002) Electromagnetic wave
speed in polar ice: validation of the common-midpoint technique with
high-resolution dielectric-profiling and density measurements. Annals of
Glaciology 34, 150–156. doi: 10.3189/172756402781817509.

Fausto RS and 11 others (2018) A snow density dataset for improving surface
boundary conditions in Greenland Ice sheet firn modeling. Frontiers in
Earth Science 6, 1–10. doi: 10.3389/feart.2018.00051.

Fettweis X and 8 others (2017) Reconstructions of the 1900–2015 Greenland ice
sheet surface mass balance using the regional climate MAR model.
The Cryosphere 11(2), 1015–1033. doi: 10.5194/tc-11-1015-2017.

Geng Z, Wu X, Shi Y and Fomel S (2020) Deep learning for relative geologic
time and seismic horizons. Geophysics 85(4), 1–47. doi: 10.1190/
geo2019-0252.1.

Graeter KA and 9 others (2018) Ice core records of West Greenland melt and
climate forcing. Geophysical Research Letters 45(7), 3164–3172. doi: 10.
1002/2017GL076641.

Grima C, Blankenship DD, Young DA and Schroeder DM (2014) Surface
slope control on firn density at Thwaites Glacier, West Antarctica: results
from airborne radar sounding. Geophysical Research Letters 41(19), 6787–
6794. doi: 10.1002/2014GL061635.

Harper J, Humphrey N, Pfeffer WT, Brown J and Fettweis X (2012)
Greenland ice-sheet contribution to sea-level rise buffered by meltwater
storage in firn. Nature 491(7423), 240–243. doi: 10.1038/nature11566.

Hawley RL and 6 others (2014) Recent accumulation variability in northwest
Greenland from ground-penetrating radar and shallow cores along the
Greenland Inland traverse. Journal of Glaciology 60(220), 375–382. doi:
10.3189/2014JoG13J141.

Herron MM and Langway CC (1980) Firn densification: an empirical model.
Journal of Glaciology 25(93), 373–385. doi: 10.3189/S0022143000015239.

Joughin I, Smith BE and Howat IM (2018) A complete map of Greenland ice
velocity derived from satellite data collected over 20 years. Journal of
Glaciology 64(243), 1–11. doi: 10.1017/jog.2017.73.

Konrad H and 6 others (2019) Observations of surface mass balance on Pine
Island Glacier, West Antarctica, and the effect of strain history in fast-flowing
sections. Journal of Glaciology 65(252), 595–604. doi: 10.1017/jog.2019.36.

Lenaerts JT, Medley B, van den Broeke MR and Wouters B (2019)
Observing and modeling ice sheet surface mass balance. Reviews of
Geophysics 57(2), 376–420. doi: 10.1029/2018RG000622.

Lewis G and 9 others (2019) Recent precipitation decrease across the western
Greenland ice sheet percolation zone. The Cryosphere 13(11), 2797–2815.
doi: 10.5194/tc-13-2797-2019.

Loewe F (1970) Screen temperatures and 10m temperatures. Journal of
Glaciology 9(56), 263–268. doi: 10.3189/S0022143000023571.

Looyenga H (1965) Dielectric constants of heterogeneous mixtures. Physica 31
(3), 401–406. doi: https://doi.org/10.1016/0031-8914(65)90045-5.

Matheron G (1963) Principles of geostatistics. Economic Geology 58(8), 1246–
1266. doi: 10.2113/gsecongeo.58.8.1246.

Meyer CR, Keegan KM, Baker I and Hawley RL (2020) A model for
French-press experiments of dry snow compaction. The Cryosphere 14(5),
1449–1458. doi: 10.5194/tc-14-1449-2020.

Miège C and 6 others (2013) Southeast Greenland high accumulation rates
derived from firn cores and ground-penetrating radar. Annals of
Glaciology 54(63), 322–332. doi: 10.3189/2013AoG63A358.

Montgomery L, Koenig L and Alexander P (2018) The SUMup dataset: com-
piled measurements of surface mass balance components over ice sheets
and sea ice with analysis over Greenland. Earth System Science Data 10
(4), 1959–1985. doi: 10.5194/essd-10-1959-2018.

Morlighem M (2017) Icebridge bedmachine greenland, version 3. doi: 10.
5067/2CIX82HUV88Y.

Navarro F and Eisen O (2009) Ground-penetrating radar in glaciological
applications. In Pellikka P and Rees GW (eds), Remote Sens Glaciers.
Boca Raton, FL: CRC Press, pp. 195–229. doi: 10.1201/b10155-12.

Ng F and King EC (2011) Kinematic waves in polar firn stratigraphy. Journal
of Glaciology 57(206), 1119–1134. doi: 10.3189/002214311798843340.

Nghiem SV and 8 others (2012) The extreme melt across the Greenland ice
sheet in 2012. Geophysical Research Letters 39(20), 6–11. doi: 10.1029/
2012GL053611.

Noël B and 6 others (2016) A daily, 1 km resolution data set of downscaled
Greenland ice sheet surface mass balance (1958–2015). Cryosphere 10(5),
2361–2377. doi: 10.5194/tc-10-2361-2016.

Overly TB, Hawley RL, Helm V, Morris EM and Chaudhary RN (2016)
Greenland annual accumulation along the EGIG line, 1959–2004, from
ASIRAS airborne radar and neutron-probe density measurements. The
Cryosphere 10(4), 1679–1694. doi: 10.5194/tc-10-1679-2016.

Pearson K (1907) On further methods of determining correlation, volume 16.
London, England: Dulau and Company.

Porter C and 28 others (2018) ArcticDEM (doi: 10.7910/DVN/OHHUKH).
Shepherd A and 88 others (2020) Mass balance of the Greenland Ice Sheet

from 1992 to 2018. Nature 579(7798), 233–239. doi: 10.1038/
s41586-019-1855-2.

Spikes VB, Hamilton GS, Arcone SA, Kaspari S and Mayewski PA (2004)
Variability in accumulation rates from GPR profiling on the West
Antarctic plateau. Annals of Glaciology 39, 238–244. doi:10.3189/
172756404781814393.

Vandecrux B and 10 others (2018) Drivers of firn density on the Greenland
ice sheet revealed by weather station observations and modeling. Journal of
Geophysical Research. Earth Surface 123(10), 2563–2576. doi: 10.1029/
2017JF004597.

van Kampenhout L and 6 others (2017) Improving the representation of
polar snow and firn in the community earth system model. Journal of
Advances in Modeling Earth Systems 9(7), 2583–2600. doi: 10.1002/
2017MS000988.

Vaughan DG, Corr HFJ, Doake CSM and Waddington ED (1999) Distortion
of isochronous layers in ice revealed by ground-penetrating radar. Nature
398(6725), 323–326. doi: 10.1038/18653.

Journal of Glaciology 227

https://doi.org/10.1017/jog.2020.91 Published online by Cambridge University Press

https://doi.org/10.18739/A21G0HT84
https://doi.org/10.18739/A21G0HT84
https://github.com/tatemeehan/GreenTrACS_MxRadar
https://github.com/tatemeehan/GreenTrACS_MxRadar
https://doi.org/10.1111/j.1365-2478.1974.tb00099.x
https://doi.org/10.1111/j.1365-2478.1974.tb00099.x
https://doi.org/10.3189/172756505781829151
https://doi.org/10.2113/JEEG12.1.101
https://doi.org/10.18739/A2D21RH75
https://doi.org/10.3189/172756409789097540
https://doi.org/10.1029/2011JF002089
https://doi.org/10.5194/tc-11-669-2017
https://doi.org/10.5194/tc-11-669-2017
https://doi.org/10.5194/tc-11-669-2017
https://doi.org/10.5194/tc-11-669-2017
https://doi.org/10.5194/tc-11-669-2017
https://doi.org/10.3189/172756411799096286
https://doi.org/10.3189/172756411799096286
https://doi.org/10.1190/1.1438126 v.�20 no. 1 p.�68-86
https://doi.org/10.1190/1.1438126 v.�20 no. 1 p.�68-86
https://doi.org/10.3189/172756402781817509
https://doi.org/10.3389/feart.2018.00051
https://doi.org/10.5194/tc-11-1015-2017
https://doi.org/10.5194/tc-11-1015-2017
https://doi.org/10.5194/tc-11-1015-2017
https://doi.org/10.5194/tc-11-1015-2017
https://doi.org/10.1190/geo2019-0252.1
https://doi.org/10.1190/geo2019-0252.1
https://doi.org/10.1190/geo2019-0252.1
https://doi.org/10.1002/2017GL076641
https://doi.org/10.1002/2017GL076641
https://doi.org/10.1002/2014GL061635
https://doi.org/10.1038/nature11566
https://doi.org/10.3189/2014JoG13J141
https://doi.org/10.3189/S0022143000015239
https://doi.org/10.1017/jog.2017.73
https://doi.org/10.1017/jog.2019.36
https://doi.org/10.1029/2018RG000622
https://doi.org/10.5194/tc-13-2797-2019
https://doi.org/10.5194/tc-13-2797-2019
https://doi.org/10.5194/tc-13-2797-2019
https://doi.org/10.5194/tc-13-2797-2019
https://doi.org/10.3189/S0022143000023571
https://doi.org/10.1016/0031-8914(65)90045-5
https://doi.org/10.1016/0031-8914(65)90045-5
https://doi.org/10.2113/gsecongeo.58.8.1246
https://doi.org/10.5194/tc-14-1449-2020
https://doi.org/10.5194/tc-14-1449-2020
https://doi.org/10.5194/tc-14-1449-2020
https://doi.org/10.5194/tc-14-1449-2020
https://doi.org/10.3189/2013AoG63A358
https://doi.org/10.5194/essd-10-1959-2018
https://doi.org/10.5194/essd-10-1959-2018
https://doi.org/10.5194/essd-10-1959-2018
https://doi.org/10.5194/essd-10-1959-2018
https://doi.org/10.5067/2CIX82HUV88Y
https://doi.org/10.5067/2CIX82HUV88Y
https://doi.org/10.1201/b10155-12
https://doi.org/10.1201/b10155-12
https://doi.org/10.3189/002214311798843340
https://doi.org/10.1029/2012GL053611
https://doi.org/10.1029/2012GL053611
https://doi.org/10.5194/tc-10-2361-2016
https://doi.org/10.5194/tc-10-2361-2016
https://doi.org/10.5194/tc-10-2361-2016
https://doi.org/10.5194/tc-10-2361-2016
https://doi.org/10.5194/tc-10-1679-2016
https://doi.org/10.5194/tc-10-1679-2016
https://doi.org/10.5194/tc-10-1679-2016
https://doi.org/10.5194/tc-10-1679-2016
https://doi.org/10.1038/s41586-019-1855-2
https://doi.org/10.1038/s41586-019-1855-2
https://doi.org/10.1038/s41586-019-1855-2
https://doi.org/10.1038/s41586-019-1855-2
https://doi.org/10.1038/s41586-019-1855-2
https://doi.org/10.3189/172756404781814393
https://doi.org/10.3189/172756404781814393
https://doi.org/10.1029/2017JF004597
https://doi.org/10.1029/2017JF004597
https://doi.org/10.1002/2017MS000988
https://doi.org/10.1002/2017MS000988
https://doi.org/10.1038/18653
https://doi.org/10.1017/jog.2020.91


Wharton RP, Hazen GA, Rau RN and Best DL (1980) Advancements In
Electromagnetic Propagation Logging. In SPE Rocky Mt. Reg. Meet.,
Society of Petroleum Engineers, Society of Petroleum Engineers. doi: 10.
2118/9041-MS.

Wheeler HE (1958) Time-stratigraphy. AAPG Bulletin 42(5), 1047–1063. doi:
10.1306/0BDA5AF2-16BD-11D7-8645000102C1865D.

Wu X and 5 others (2020) Building realistic structure models to train convo-
lutional neural networks for seismic structural interpretation. Geophysics
85(4), WA27–WA39. doi: 10.1190/geo2019-0375.1.

Zwally HJ and Li J (2002) Seasonal and interannual variations of firn
densification and ice-sheet surface elevation at the Greenland summit.
Journal of Glaciology 48(161), 199–207. doi: 10.3189/172756502781831403.

228 Tate G. Meehan and others

https://doi.org/10.1017/jog.2020.91 Published online by Cambridge University Press

https://doi.org/10.2118/9041-MS
https://doi.org/10.2118/9041-MS
https://doi.org/10.2118/9041-MS
https://doi.org/10.1306/0BDA5AF2-16BD-11D7-8645000102C1865D
https://doi.org/10.1306/0BDA5AF2-16BD-11D7-8645000102C1865D
https://doi.org/10.1306/0BDA5AF2-16BD-11D7-8645000102C1865D
https://doi.org/10.1306/0BDA5AF2-16BD-11D7-8645000102C1865D
https://doi.org/10.1190/geo2019-0375.1
https://doi.org/10.1190/geo2019-0375.1
https://doi.org/10.3189/172756502781831403
https://doi.org/10.1017/jog.2020.91

	Reconstruction of historical surface mass balance, 1984--2017 from GreenTrACS multi-offset ground-penetrating radar
	Introduction
	Greenland Traverse for Accumulation and Climate Studies
	Study area
	Field methods

	Analysis methods
	Review of multi-offset radar
	Interpreting the near-surface waves
	Critically refracted waves

	Spatial correlation of surface snow density

	Results
	Discussion
	Conclusions
	Acknowledgments
	References


