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Abstract

A joint spectral theorem for an n-tuple of doubly commuting unbounded normal operators in a
Hilbert space is proved by using the techniques of GB*-algebras.

1980 Mathematics subject classification (Amer. Math. Soc): primary 47 A 10, 47 B 15; secondary 46 L
99.

Introduction

The definition of a joint spectrum for an w-tuple of bounded operators on a
Hilbert space H has been given by Harte and others [7,12]. We generalize this to
define the joint spectrum of an n-tuple of unbounded operators in H. By using the
techniques of Gfi*-algebras (a class if involutive algebras studied by Allan [1] and
Dixon [4]), we prove the spectral theorem for an «-tuple of unbounded normal
operators (Theorem 2.2). The analogous result for bounded operators is straight-
forward and has been recently noted by Hastings [8].

1. Preliminaries

Throughout the paper H denotes a complex Hilbert space and 9D(H), the
algebra of all bounded linear operators on H.
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204 A. B. Patel [2]

(a) Joint spectrum.

1.1. DEFINITIONS. Let Tt,...,Tnbe closed linear operators in H defined on the
same dense domain 6D. Suppose that T*,..., T* also have the same dense domain
6\}*

(1) The joint left spectrum Sp,(7") of T = (T,,. ..,Tn) is the set of all
( A , , . . . , \ J G Cn such that for no w-tuple (Bx,...,Bn) of operators in 9>(H),
2 r = | J B , ( 7 ; - X , ) C / h o l d s .

(2) The joint right spectrum Spr(T) of T = (Tu...,Tn) is the set (Sp,(T*))*
where T* = (T*,.. .,T*) and for K C C", K* - {(X,,.. . ,AJ : (X,,.. .,\n) G K).

(3) The joint spectrum Sp(T) is the set Sp,(r) U Spr(T).

REMARK. It is easily seen that our definition of the joint spectrum agrees with
the usual definition of the spectrum of a closed unbounded operator [10, page
346].

In the remaining part of this section, we assume that Tx,..., Tn are closed linear
operators in H defined on the same dense domain UD such that their adjoints
T*,..., T* also have the same dense domain ^D*.

1.2. PROPOSITION. Let T = {Tu...,Tn). Then (A, , . . .,\n) G Sp,(T) if, and only

if, there is a sequence {xk} of unit vectors in D̂ such that (Tt• — A,)x^ -> 0 as k -> oo

for each i = 1,2,...,«.

PROOF. Suppose (A,,. . . ,\n) G C". If there is no sequence {xk} of unit vectors
in CT> such that (7; - \i)xk -> 0 / = 1,2,...,«, then the operator 8: ^ -̂  2,"=, © H,
(//,- = H) defined by 8(^) = ({Tx - \x)x,...,(Tn - \n)x) is bounded below.
Hence there exists a bounded operator /?: 2"=1 ® Ht-* H such that /86(x) = x
for all xG6)) . For ; = 1,2,...,«, define a operator Bi on / / by Bt(x) =
P(0,... ,0, x, 0, . . . ,0) where x is in the /th place on the right hand side. Then B,'s
are bounded operators and

n

2 B,(T, - A,)* = x for all i e « D .
/ = i

Thus2,"=15,-(7;. - A,) C / a n d s o ( A , , . . . , A J ^ S p ^ T ) .

The proof of the converse is easy.

1.3. COROLLARY. ( A , , . . . ,An) G Spr(T) //, and only if, there is a sequence {xk}

of unit vectors in i3))* such that (T* — Xj)xk -> 0 as k —> oo for i — 1,... ,n.
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13] A joint spectral theorem 205

1.4. COROLLARY. / / Tx,...,Tn are normal, then Sp,(r) = Spr(T) and hence
Sp(7) = SP/(T).

Since ||(7; - X,)*x|| = 11(7) - \,)x\\ for x G <$ and / = \,...,n, the proof of
the corollary follows from Proposition 1.2 and Corollary 1.3.

(b) GB*-algebras.

A Generalized B*-algebra (G5*-algebra) [1,4] is essentially a symmetric topo-
logical *-algebra A which admits a largest bounded *-semigroup (with respect to
multiplication) Bo called its unit ball which is also closed and absolutely convex
so that the *-subalgebra A(B0) of A which Bo generates algebraically is a Banach
algebra with Minkowski functional of Bo in A(B0) as the norm. A(B0) is, in fact, a
5*-algebra. We shall need the following theorem regarding a GB*-algebra.

1.5. THEOREM [2]. Let A be a GB*-algebra with unit ball Bo. Then A(B0) is
sequentially dense in A.

In the sequel, we shall need to deal with two important GB *-algebra—the
algebra of measurable functions and the algebra of measurable operators. We
discuss below these two algebras.

1.6. EXAMPLE. Let (X, 2, /x) be a measure space with finite subset property. Let
m(X) be the *-algebra consisting of all complex-valued measurable functions
(modulo equality a.e.) on X. For each e > 0, F G E, n(F) < oo, consider the set
V(F, e) = {fem(X): n({x G F: \f(x)\> e}) < e}. Let tx be the topology on
m{X) for which CV = {V(F, e): F 6 S , /x(F) < oo, e > 0} is a zero neighbour-
hood base. Then (m(X), ?,) is a complete G#*-algebra with underlying 5*-alge-

1.7. EXAMPLE. Let A be a von Neumann algebra acting on a Hilbert space H.
Yeadon [13] has discussed the set m^A) of locally measurable operators in H
defined with respect to A. Dixon [5] has proved that rnt{A) is a complete
G£*-algebra with bounded part A(B0) = A, with respect to a topology t2, called
the topology of convergence locally in measure (see also [13]) which is defined as
follows: Let Z be the centre of A. Then Z is * isomorphic to LX(X, 2 , ju) for
some measure space (X, 2, n). Let d be the Segal's dimension function [11] from
the projections in A to nonnegative extended real valued measurable functions on

https://doi.org/10.1017/S1446788700023235 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023235


206 A. B. Patel [4]

X. For each e > 0 and F £ 2, n(F) < oo, consider the set

U(F, e) = {T E m^A): for some projection P E A,

WTPW < e a n d / i ( { * EF:d{\ - P)(x) > e}) < e } .

Then r2 is a topology on m^A) for which % = {£/(/", e): F G 2 , ju(F) < oc,

e > 0} is a zero neighbourhood base.

1.8. DEFINITION. For «,, . . . ,«„ G m(-Y), the joint essential range &(u) of
M = (« , , . . . ,«„) is defined by

/ = i

} \ }
X: 2 !" , ( •*) - A , l < £ [ > 0 for every e > 0 [ ,

J /
and the joint spectrum Sp^=c(X)(w) of u is defined by

S P Z , * ( H ) = i ( A , , . . . , A J G C : for no « - tup le ( t - , , . . . , vj

of elements in L°°(X), 2 »,j«/-^,J = 1 a - e j -

1.9. P R O P O S I T I O N . Let n ^ \ be a positive integer. Then for ut,...,unE

m(X), SpL*(u) = t o ( « ) where u = ( « , , . . . , « „ ) •

PROOF. First we prove the result for n = 1. Let u €E m(X). Suppose that
A $ Spzx(«). Then there is v E LX(X) such that (u - A)t) = 1 a.e. Then ^({JC E
X: \u(x) - A |< l/(2||u||oc)>) = 0. Hence A £ 6(M) . Conversely, if A ̂  S(«)
then there is an e > 0 such that the set 5 = {x E X: | M( JC) — A | < e} has measure
zero. Define v on X by

, . f l / ( w ( x ) - A ) iix E X\S,

[ 0 i f G S

Then v E LX(X) and v(u — A) = 1 a.e. Hence A £ SpZx( V ) (M).

Next for an arbitrary «, suppose that (A, , . . . ,A, , ) £ Sp(«). Then there are

u , , . . . , « „ e L 0 ^ * ) such that 2^= ,»,-(",• ~ A,) = 1 a.e. Let M = m a x { | | ^ | | : / =

1 , . . . ,n}. Then n(Fi/2M) = 0 where for e > 0, Fe = [x E X: 2" = I | u,(x) - A, | <

E}. For, i f /x (F , / 2 v / ) > 0, then for s o m e * G F]/2M.

1=1- - ^
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which is a contradiction. This shows that (X,, . . . ,Xn) £ £(«)• Conversely, sup-
pose that (X,, . . . ,Xn) $. &(u). Then for some e > 0, n(Fe) — 0. If now
(X,,...,Xn) G Sp(«) then for any «,,.. . ,«„ in L00(A'), 2^= 1I;,(M, - X,) is not
invertible in L°°( Jf) and hence

But then by the result proved above for n — 1, 0 G S(2"=1u,(w, — X,)) for every
vu.. .,vn E LX(X). Hence for each i\ > 0 and for each v — ( « , , . . . ,«„) G

)",/!(£„(»)) > 0 , where

Take

and Tj = —-—
| M , - X ,

Then £,,(«) C Fr, so that fi(En(v)) — 0, which is a contradiction. It follows that
(X|, . . . ,Xn) (£ Sp(«) and the proof is complete.

2. Main theorems

In this section, we prove two main results of the paper.

2.1. THEOREM. Let Tx,...,Tn be doubly commuting {that is TtT* = T*T, and
T:Tj = TjTj for i, j = 1,...,«) normal operators in H with the same domain UD.
Then the bounded bicommutant A of {T{,...,Tn) is a commutative von Neumann
algebra such that m:(A) contains T{,..., Tn.

PROOF. Since each TJ is closed, (1 + T*Ti)~
] exists and is a bounded operator

with ||(1 + T*Tt)~
x || *£ 1. Let E' be the resolution of identity on Borel subsets of

[0,1] for the operator (1 + T*T,y]. Let w0 = {0}, wk = (\/(k + 1), \/k\ for
k = 1,2, Then {wk} is a sequence of disjoint Borel subsets of [0,1] with union
[0,1]. Then Tik= TiE'(wk) is bounded and normal for each i= 1,...,« and
k = 0,1,2 Hence using ([3],Theorem 15.12.8 page 389), x G <$ ( = 6D(7;),
domain of 7,) if, and only if. 2^ -O||7]-Ax||2 < oo, and for such x, '2^=QtTikx = T{x
and 2k

c
=0T*kx = T*x for i —- 1 , . . . ,n.

Now let 5 G { 7 , , . . . , Tn}'. the bounded commutant of Tx,..., Tn (that is S G

and ST: C TjS for each i). By the Fuglede theorem [6], it is easy to see that
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(1 + T^Tj-r'S = 5(1 + T*^)-1. Therefore, E'(wk)S = SE'(wk); and so STikx =
TikSx (x EH, i= 1,2,...,n; k = 0 , 1 , . . . ) . Hence 5 G {Tik: i = \,...,n; k =

0 , 1 , 2 , . . . } ' . Conversely, let 5 G {Tik: /" = 1, . . . ,«; A: = 0 , 1 , 2 , . . . } ' . Then 57;* =

7 ^ 5 f o r / = l , . . . , / j andA: = 0 , 1 , 2 . . . . Let x G <*D. Then Sx G <$, for

2 H7)A
A: = 0 k = 0 k = 0

for i = 1,. . . ,n. Also,

5T;.X = 5 2 ^ = 1 5 7 ; , ^

f o r / = 1,...,«. Hence 5 G (71,,.. .,Tn}'. Thus {7, , . . . ,Tn}' = {7;*: / = \,...,n;k
= 0 ,1 ,2 , . . .} ' .

Next we show that the set {7;*: / = 1,.. . ,n; k = 0,1,2, . . .} is a commuting set.
For 1 =£ i, j < «, we have TjTfT, = 7J.7J.7?1 = 7j.7J.17 = T,T?Tj = T*T,Tr Hence
7J(1 + T*T,) = (1 + 7;*7;)7J. Therefore (1 + ^ T ; . ) - ' ^ ! + T*T,) = (1 +
7;*7;)-'(l + 777;)7J C 7J;andso (1 + T*T,ylTj C 7J.(1 + T*^)-1. By Fuglede's
theorem, (1 + TfT^T* C 7J*(1 + T*^)-1 also. After a little computation, we
get(l + TfT^il + T*TjY] C (1 + T*TjY\\ + 7T7;.)-1. Since (1 + T*T,YX and
(1 + 777;.)-1 are bounded, (1 + T*T,)-\l + T*Tj)-1 = (1 + 7J*7J)-'(1 + 7^7;.)-'.
It follows that E'(wk)E

J(w,) - Ej(w,)E\wk) for 1 < i,j < n and k, I - 0 ,1 ,2, . . . .
Since for 1 < /, j < n (1 + TfT^Tj C 7J(1 + 7;*?;.)-1, we have for x G H, and
A:,/ = 0,1,2, . . .

(1 + TTT^T^x = (1 + TrT

= 7J7(1

which implies that E'(wk) commutes with 7J7. Hence for x G H,

T,kTjtx = T,E'(wk)TjlX = 7J

= TjEJ(W,)Tikx = TjtTlk
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Therefore, TikTj,= Tj,Tik and the set {Tik: i=\,...,n; k - 0 , 1 , 2 , . . . } is a

commuting set of bounded normal operators. Hence

A = {Tu...,Ta}"={Tik:i=l,...,n;k = 0,l,2,...}"

is a commutative von Neumann algebra. Now let Qik — 2j=0E'(wj). Then Qjk is
a projection in A and Alk/I as k -» oo. Also, 7]gj t = 7]-2*=0£'(w,-) = 2 ) = 0 ^ 7 -
Hence 7j.(2;t G .4 and so TtQik is measurable for i = 1,2,... ,7V; fc = 0, 1,2,
Therefore by [13, Theorem2.1], 7, , . . .,Tn G m,(A).

REMARK. If A is as above and B is a von Neumann algebra containing A, then
it is clear that each 7] G mt{B).

2.2. THEOREM {Spectral Theorem). Let T — (T, , . . . ,Tn) be an n-tuple of doubly
commuting normal operators with the same domain D̂. Then there is a resolution of
identity on Borel subsets of joint spectrum Sp(T) of T such that for each Borel
function f on Sp(T), there is an operator f(T) with

f{T)=f /(X)dE(X).
•'Sp(T)

PROOF. Let A be the maximal abelian self-adjoint algebra containing the
bounded bicommutant of {Tu... ,Tn}. Then by the remark following Theorem
2.1, A is a von Neumann algebra such that m,(A) contains 7 \ , . . . , Tn. Since A is
maximal abelian, there exists a measure space (X, 2 , /x) such that H can be
identified with L2(X) and LX(X, 2 , ft) is W*-isomorphic to A.

Let $ be the W*-isomorphism of LX(X, 2 , /x) onto A We show that $ extends
uniquely to a toplogical *-isomorphism of w(A') onto m,(A). For this, since
LX(X) and /I are sequentially dense in m(X) and m,(A) respectively, it is
sufficient to prove that the induced topologies on LX(X) from m(X) and on A
from m,{A) are identical via $. We prove this below.

Let {fk} be a sequence in LX(X) converging to zero in the induced topology.
Let F G 2, [i{F) < oo and let e > 0. Take e' such that 0 < e' < e. Since fk -> 0
there exists an integer A:o such that fk G F(F, e') for all k 3= fc0. Hence if
Rk = {xG F: \fk(x) |> E'}, then /x(/?^) < e' for all k > k0. Let £^ = $(x«- ) be
a projection in ^ . Then \\$(fk)Ek\\ = ll$(Ax/!i)ll = HAX/JJH ^ e ' < e for all
A: s* A:o. Let ^ = $ " ' restricted to projections in A. Then d satisfies all the
properties of Segal's dimension function and so

li{{x G F: d{\ - Ek)(x) > E}) < fi({x G F: d{\ - Ek)(x) > e'})

n(Rk) < e ' < e for all A: > A:
o.
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Therefore <&(fk) E U(F, e) for all k 3= k0, and hence <&(fk) -* 0 in the topology
induced from m,(A). Thus $ : L00(Ar) -> ̂  is continuous in the induced topolo-
gies of m{X) and m,{A).

Conversely, let {Sk} be a sequence in A such that Sk -> 0 in w,(^) . Let F E 2,
/t(F) < oo and let 0 < e < 1. Then there exists kn such that S* G f/(F, e) for all
k > k0, that is, there exists a projection i> in A such that for all k > k0,
\\SkP\\ < e and fi({x E F: d{\ - P)(x) > e}) < e where rf is the Segal's dimen-
sion function $" ' restricted to projections in A. Since $ is onto, there exists
W G S such that $(xw) = p- A l s o $ being an isometry, ^ " ' ( S ^ x ^ l l -
HS^PH < e for all k ^ A:o. Hence {x & X: \ <S>-\Sk)(x) \> e} C Wc for all k > k0.
Therefore, for k> kQ,

{x GF: \$-\Sk)(x)\>e} C Wc D F = {x E F: $"'(1 -/>)(*) > e}

and so

M({x G F: | $-\Sk)(x) \>e})< p({x E F: d(\ - P){x) > e})

< e for all A: > kQ.

Hence <&-\Sk) G F(F, e) for all k > k0 and so <&-\Sk) - 0 in w(Ar). Thus $" '
is continuous.

We denote the extension of $ to w^X) again by $. Since $ is from m(X) onto
m,(A), there exist ul,...,uninm(X) such that $(«,) = Tl(i ~ 1,...,«). We shall
show that Sp(7) = Sp^(r) where Sp^T) = {(A,,... ,AJ G C : there are no
B],...,BninA satisfying 1%X{T, - X,)BI = / } . By Corollary 1.4, Sp(T) = Sp,(T)
and as is easily seen Spj(T) C Sp^T). Also, since $ is an isomorphism which
maps L°°(X) onto A, we have SpA(T) = SpLX(X)(u) = $(u) where u =
(«, , . . . ,«„) . Thus to show that Sp(T) = Sp^T), it is enough to show that
&{u) C Sp,(T). Let, therefore, (0, . . . ,0) G S(w). Let Ek= {xE X: 2f=1 | u,(x) |
< \/k) where A: is a positive integer. Then n(Ek) > 0. Let {/̂ } be the sequence
of unit vectors in L2(X) defined byfk — XEJ yu(Ek) • Since

f\uifk\
2dp=f\ui\

2\fkJx Jx
Also,

/

proving that (0, . . . ,0) G Sp,(T). Thus $(w) C Sp,(T), hence Sp(T) = Sp^T).
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If / is a Borel function on Sp(T), then / ° w £ m(X). Now a resolution of
identity £ on Sp(r) is defined as follows: For each Borel subset w of Sp(T),
define E(w) — <J>(xw ° ")• It is easy to verify that

(i)£(0) = O,£(Sp(T)) = /.
(ii) £(w, D w2) = E(w])E(w2) for all Borel subsets wx,w2 of Sp(T).
(iii) £(w, U w2) = E(wx) + E(w2) whenever wuw2 are disjoint Borel subsets of

Sp(7).
It only remains to show:
(iv) For each f, TJ £ //, w -> (£(»f , rj) is a complex Borel measure on Sp(T),

or equivalently, for each f £ H, w -> (£(>)?, f) is a complex Borel measure.
Let f £ H. Define ^ on LX(X) by ^ ( / ) = ($(/)£, 0- Then ^ is a positive

linear functional and hence norm continuous on LX(X). Therefore there is a
finitely additive measure jnf f on X such that

(l)

[9,page 357]. In fact, ^ is weak* continuous on /.""(A"). To see this, let [ga] be a
net in LX(X) converging to g in weak* topology. Then by continuity of <P, $(#„)
converges to <b(g) in a-weak topology and so $(/„) converges to $(g) weakly. In
particular, <^(ga) -» ^f(g), which proves the continuity of i//? in weak* topology.
It follows that /i? j. is a countably additive measure on X. Thus

where /i^(w) = jLtw(w~'(w)), defines a Borel measure on Sp(T). Hence £ is a
resolution of identity on Borel subsets of Sp(r), and by (1)

where £?f(w) = î" f(w) for all f £ H and for all bounded Borel functions/on
Sp(7). Let/be a nonnegative Borel function on Sp(T). Then, as is well known,
for some sequence {fk} of nonnegative simple functions on Sp(T), fkS*f. Then,
since S(u) = Sp(T), fk ° u / / ° u on X and hence sup^ fk ° u = f ° u.

Let ? £ H for which /Sp(T) | / |
2 d£M < oo. With this f,

= / o M duf f = I sup / t o u du.y,

/• .
= sup
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212 A. B.Patel [10]

By [13, Theorem 3.5], sup^ <&(fk ° u) exists and it is in mt{A)+. Let B =
sup ®(fk ° w). Then B < $ ( / o M). If B =£ $ ( / ° M), there exists g E m(X) such
that 5 = $(g); g < / ° M and g ¥= f ° u. Since 3>(g) > $(/<. ° M), g > fk ° u which
contradicts f ° u = sup .̂ /<. ° M. Thus B = $ ( / ° M). Therefore

Hence fSpiT)fdE C $ ( / ° w). Both being normal, their maximal normality gives

f
•'s

3. Concluding remarks

(a) From [10, Theorem 13.24] it is easily seen that our joint spectral theorem
holds for T— (Tu.. -,Tn) if, and only if, all the operators in the «-tuple T are
doubly commuting.

(b) Also our technique yields a new proof with much algebraic flavour of the
classical spectral theorem for unbounded normal operator.
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