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Rectifiable Curves

Let us first have a quick look at rectifiable curves, concentrating on some facts
that are relevant for the more general rectifiable sets.

By a curve in Rn we mean a continuous image of a line segment, C =
f ([a, b]). The curve is rectifiable if you can rectify it, that is, take hold of the
endpoints and pull it straight. This is the same as to say that the curve has
finite length. A standard definition of the length is that it is the total variation
of f :

Vf (a, b) = sup

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

k∑

j=1

| f (x j) − f (x j−1)| : a = x0 < x1 < · · · < xk = b

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
.

However, this depends on f since f could travel through some parts of C sev-
eral times. For us the length of C will be the one-dimensional Hausdorff mea-
sure H1(C) of C. It agrees with Vf (a, b) if f is injective, or more generally if
the set of points of C which are covered more than once has zeroH1 measure.

If Vf (a, b) < ∞, then f is a function of bounded variation. Such functions
have many well-known nice properties, but for us it is important to know that
we can do better: if f is the arc-length parametrization of C, then f is Lipschitz.
This is essential, in particular, in the case of higher-dimensional rectifiable sets.

Now let C = f ([a, b]) be a rectifiable curve in Rn with a Lipschitz parametri-
zation f . Here are some of its basic easily verifiable properties:

Area formula :
∫

C
N( f , y) dH1y =

∫ b

a

√

f ′1(x)2 + · · · + f ′n(x)2 dx, (2.1)

where N( f , y) is the number of points x ∈ [a, b] with f (x) = y. So, in particular,

H1(C) =
∫ b

a

√

f ′1(x)2 + · · · + f ′n(x)2 dx
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if f is injective. The key for the proof is Rademacher’s theorem (or Lebesgue’s
in the one-dimensional case); Lipschitz mappings are almost everywhere dif-

ferentiable. Using also that
√

f ′1(x)2 + · · · + f ′n(x)2 tells us how the derivative

of f at x changes length, a rather elementary proof can be given. As expected,
a higher-dimensional version also is valid and will be presented later. Hence
the name area formula.

With the help of the area formula and again Rademacher’s theorem, the fol-
lowing two properties are not too hard to verify:

Tangents: C has a tangent atH1 almost every point x ∈ C. (2.2)

Density: lim
r→0

H1(C ∩ B(x, r))
2r

= 1 forH1 almost all x ∈ C. (2.3)

In the plane, the length can be computed by counting the intersection points
with lines:

Crofton formula : 2H1(C) =
∫

card(C ∩ L) dL. (2.4)

Here the measure dL on lines can be obtained by parametrizing the lines as
{te + a : t ∈ R}, e ∈ S 1, a ∈ e⊥, and integrating over e and a.

This formula is trivially checked when C is a line segment. The general case
can be done using Rademacher’s theorem and approximation by polygonal
curves. Crofton proved this in 1868, which marked the beginning of integral
geometry – unless you want to start at 1777 with Count Buffon and his needle.

In the beginning I said that a curve is rectifiable if it has finite length. But
if we take Hausdorff measure as length, can we get from its finiteness the Lip-
schitz parametrization which was used above? Yes, we can, even in general
metric spaces:

Theorem 2.1 If X is a metric space and C ⊂ X is a compact connected
set with H1(C) < ∞, then there is a Lipschitz mapping f : [0, 1] → X with
f ([0, 1]) = C.

For a rather easy proof in Rn, see [147, Theorem I.1.8], and in the Hilbert
space, [394, Lemma 3.7]. Here are some ideas. For each δ > 0 choose a max-
imal δ separated subset Aδ of C. Connect with line segments all those pairs of
points of Aδ that have distance at most 2δ and let Cδ be the union of these
segments. Playing with some graphs shows that Cδ is a continuum which can
be parametrized by a Lipschitz map fδ : [0, 1] → Rn with Lip( fδ) � H1(C).
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Finally use the Arzela–Ascoli theorem to get f as the limit of some sequence
( fδ j ).

Theorem 2.1 was proved by Eilenberg and Harrold in [187]. It is one of the
reasons why the rectifiability theory often is much easier for one-dimensional
sets. Another reason is compactness and lower semicontinuity:

Theorem 2.2 If Ck ⊂ Bn(0, 1), k = 1, 2, . . . are continua, then there is a
subsequence Ckj converging in the Hausdorff distance to a continuum C with
H1(C) ≤ lim inf j→∞H1(Ckj ).

Again the proof is rather easy, see [190, Theorems 3.16 and 3.18].
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