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Abstract. Let k be a field of characteristic zero. For any positive integer n

and any scalar a ∈ k, we construct a family of Artin–Schelter regular algebras

R(n, a), which are quantizations of Poisson structures on k[x0, . . . , xn]. This

generalizes an example given by Pym when n = 3. For a particular choice of the

parameter a we obtain new examples of Calabi–Yau algebras when n> 4. We

also study the ring theoretic properties of the algebras R(n, a). We show that

the point modules of R(n, a) are parameterized by a bouquet of rational normal

curves in Pn, and that the prime spectrum of R(n, a) is homeomorphic to the

Poisson spectrum of its semiclassical limit. Moreover, we explicitly describe

Spec R(n, a) as a union of commutative strata.
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A NEW FAMILY OF POISSON ALGEBRAS AND THEIR DEFORMATIONS 33

§1. Introduction

One of the fundamental notions of noncommutative algebraic geometry is

that the noncommutative analogues of polynomial rings (or, alternatively,

the coordinate rings of “noncommutative projective spaces”) are algebras

which are Artin–Schelter regular [AS87]. Constructing and, if possible,

classifying, Artin–Schelter regular algebras of various global dimensions is

thus one of the core problems in the subject. Within the class of quadratic

Artin–Schelter regular algebras one also seeks to construct those which

are Calabi–Yau in the sense of Ginzburg [Gin06]. In general, the problem

of classifying Artin–Schelter regular algebras (or Calabi–Yau algebras) is

unsolved, even for global dimension 4.

In 2014, Brent Pym classified 4-dimensional Calabi–Yau algebras arising

as deformation quantizations of torus-invariant Poisson structures on A4
C.

He showed that there are six families of Calabi–Yau algebras which arise

this way; the most interesting example has generators x0, x1, x2, x3 and

relations

(1.1)

[x0, x1] = 5x2
0

[x0, x2] =−45
2 x

2
0 + 5x0x1

[x0, x3] = 195
2 x2

0 − 45
2 x0x1 + 5x0x2

[x1, x2] =−3
2x0x1 + 3x0x2 + x2

1

[x1, x3] = 5x0x1 − 3x0x2 + 7x0x3 − 5
2x

2
1 + x1x2

[x2, x3] =−77
2 x0x2 − 77

2 x0x3 + 21
2 x1x2 + 7x1x3 − 3x2

2.

In this paper we generalize Pym’s example to arbitrary dimensions, and

study the properties of the resulting algebras. In particular, we obtain new

examples of Calabi–Yau algebras in all global dimensions >5.

Pym’s example comes from an action of the 2-dimensional solvable Lie

algebra on C[x0, x1, x2, x3], inducing a Poisson bracket. He shows, using a

deformation formula of Coll, Gerstenhaber, and Giaquinto, that this Poisson

bracket quantizes to give the algebra (1.1). We generalize Pym’s methods

to construct a family of algebras R(n, a), depending on a scalar a and an

integer n> 1. The R(n, a) are graded, quadratic, Noetherian, AS-regular

domains of global dimension n+ 1 (Theorem 3.8, Proposition 3.15). When

n= 3 and a=−5
4 we obtain Pym’s algebra (1.1). For another example,

R(1, a) is isomorphic to the Jordan plane C〈x, y〉/(xy − yx− x2) (if a 6= 0)

or to the polynomial ring C[x, y] (if a= 0).
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34 C. LECOUTRE AND S. J. SIERRA

For each n, there is one algebra R(n, a) that is Calabi–Yau (Defini-

tion 4.14). We have:

Theorem 1.2. (Corollary 4.17) The algebra R(n, a) is Calabi–Yau if

and only if

a=−(n+ 2)(n− 1)

2(n+ 1)
.

Example (1.1) is the algebra arising from Theorem 1.2 when n= 3. The

examples for n> 4 have not to our knowledge been studied before.

Each R(n, a) induces a Poisson bracket {−,−}a on C[x0, . . . , xn]

in the semiclassical limit. Let A(n, a) be the Poisson algebra

(C[x0, . . . , xn], {−,−}a). In such a deformation-quantization context it is

often expected that the algebra R(n, a) and the Poisson algebra A(n, a)

share similarities. For instance we make a detailed study of the prime spec-

trum SpecR(n, a) of R(n, a) and the Poisson prime spectrum PSpecA(n, a)

of A(n, a) and show that they are homeomorphic (Theorem 7.1). We further

investigate the structure of this space and prove:

Theorem 1.3. (Corollary 7.6) Let n> 3. The space SpecR(n, a)∼=
PSpecA(n, a) is a union of quasiprojective strata, and has dimension

{
(n− 2) if a 6∈Q
(n− 1) if a ∈Q.

Moreover, we show that R(n, a) satisfies the Dixmier–Moeglin equivalence

(Theorem 8.3) and, using a transfer result, we prove that A(n, a) satisfies

the Poisson Dixmier–Moeglin equivalence (Theorem 8.6). Taking advantage

of the fact that SpecR(n, a)∼= PSpecA(n, a) we compute many examples

of prime spectra of the R(n, a).

We investigate various ring theoretic properties of the rings R(n, a) and

A(n, a). For n> 2 we show that R(n, a)∼=R(n, b) if and only if A(n, a)

is Poisson isomorphic to A(n, b) if and only if a= b (Theorem 5.1). We

compute the skewfield of fractions of R(n, a) and show that it is isomorphic

to a Weyl skewfield if and only if a ∈Q (Theorem 8.11). We also show

that the graded automorphism group of R(n, a) is isomorphic to the graded

Poisson automorphism group of A(n, a).
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Finally, we compute the point modules of the R(n, a). We show:

Theorem 1.4. (Theorem 6.1) Let n> 1. For any a, the point schemes

of R(n, a) are isomorphic. The point modules of R=R(n, a) are parame-

terized by the union C1 ∪ · · · ∪ Cn, where Ck is a rational normal curve of

degree k in P(R∗1)∼= Pn.

As with Pym’s original example, these curves correspond to various nice

(equivariant with respect to the appropriate group action) ways to embed

P1 in Symn(P1)∼= Pn.

The organization of the paper is as follows. In Section 2 we define

the R(n, a) and A(n, a), and in Section 3 we prove that A(n, a) is the

associated graded ring of R(n, a) and that R(n, a) is an Artin–Schelter

regular Noetherian domain. We prove Theorem 1.2 in Section 4, and also

calculate the graded automorphism group of R(n, a) and the graded Poisson

automorphism group of A(n, a). We study when two R(n, a) are isomorphic

in Section 5 and prove Theorem 1.3 in Section 6.

In the final three sections we describe the (Poisson) prime and primitive

ideals of R(n, a) and A(n, a). We prove Theorem 1.4 in Section 7. In

Section 8 we show that R(n, a) satisfies the Dixmier–Moeglin equivalence

describing primitive ideals, and that A(n, a) satisfies the related Poisson

Dixmier–Moeglin equivalence. We also compute the fraction skewfield of

R(n, a). Finally, in Section 9 we give many explicit examples of prime

spectra.

§2. Notation and definitions

Throughout we work over a field k of characteristic zero (in the introduc-

tion for simplicity we worked over C).

In this section we define the algebras R(n, a) and the Poisson algebras

A(n, a) that are the subject of the paper, and describe how they arise from

k×-invariant actions of the 2-dimensional solvable Lie algebra on polynomial

rings.

We begin by discussing such actions. Fix an integer n ∈ Z>0, and let ∆

be the “downward derivation”

∆ =X0∂1 + · · ·+Xn−1∂n

(where ∂i = ∂/∂Xi). For a0, . . . , an ∈ k, let Γ = Γ(a0, . . . , an) be the

weighted Euler operator

Γ =
∑

aiXi∂i.
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36 C. LECOUTRE AND S. J. SIERRA

We are interested in when ∆ and Γ generate a copy of the 2-dimensional

solvable Lie algebra inside Derk(k[X0, . . . , Xn]).

Lemma 2.1. We have ∆Γ− Γ∆ = ∆ if and only if aj = a0 + j for j ∈
{0, . . . , n}.

Proof. This follows from the computation

(∆Γ− Γ∆)Xi+1 = (ai+1 − ai)Xi,

so ∆Γ− Γ∆ = ∆ if and only if ai+1 = ai + 1 for all i.

The importance of Lemma 2.1 is the following result of [Pym15], based

on the universal deformation formula of [CGG89].

Proposition 2.2. [Pym15, Lemma 3.3] Let A be a commutative k-

algebra, and let ∆, Γ :A→A be k-derivations so that ∆ is locally nilpotent

and [∆, Γ] = ∆. For k ∈ N, define
(

Γ
k

)
= (1/k!)Γ · (Γ− 1) · · · (Γ− (k − 1)).

Then

f ∗ g =
∞∑
k=0

~k∆k(f)

(
Γ

k

)
(g)

defines an associative product on A[~] whose semiclassical limit as ~→ 0 is

the Poisson bracket

{f, g}= ∆(f)Γ(g)− Γ(f)∆(g).

Further, evaluating at a particular ~ ∈ k gives an associative product

∗~ :A⊗k A→A.

The rings (A, ∗~) are isomorphic for any ~ 6= 0.1

Thus let A= k[X0, . . . , Xn]. For a ∈ k, define

Γa =

n∑
i=0

(a+ i)Xi∂i.

Let ∗a :A⊗k A→A be defined by

(2.3) f ∗a g =

∞∑
k=0

∆k(f)

(
Γa
k

)
(g).

1We note that our sign convention in Proposition 2.2 differs from that of Pym’s original
result.
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By Lemma 2.1 and Proposition 2.2, this defines an associative multiplication

on A. Let {−,−}a :A⊗k A→A be the associated Poisson bracket

(2.4) {f, g}a = ∆(f)Γa(g)− Γa(f)∆(g).

Going forward, we define R(n, a) to be the associative algebra (A, ∗a)
and A(n, a) to be the Poisson algebra (A, {−,−}a). The goal of this paper

is to study these two algebras.

To end the section, we describe how the construction above relates to the

canonical action of the standard Borel subgroup of PGL2(k) on P1. Let

G=

{(
a b
0 c

)∣∣∣∣ ac 6= 0

}/
k×

be the standard Borel subgroup of PGL2(k). Note that G∼= k o k× and is

the subgroup of PGL2(k) that fixes the point ∞= [1 : 0] ∈ P1.

The group G acts on Symn(P1)∼= Pn and thus on the homogeneous coor-

dinate ring B(Pn,O(1))∼= k[X0, . . . , Xn]. Thus the 2-dimensional solvable

Lie algebra LieG acts by derivations on k[X0, . . . , Xn] for all n. All of these

actions are induced by taking symmetric powers of the standard action on

V = k · {X, Y }.
To see how this works explicitly, fix a ∈ k and let Γa = aX∂X +

(a+ 1)Y ∂Y and ∆ =X∂Y as above. Fix also n> 1. If we set Xj =

Xn−jY j/j! then X0, . . . , Xn form a basis for Symn(V) with ∆(Xj) =

Xj−1 and Γa(Xj) = ((n− j)a+ j(a+ 1))Xj = (na+ j)Xj . We see that nth

symmetric power of the bracket {−,−}a on k[X, Y ] induces {−,−}na on

k[X0, . . . , Xn].

Consider the surjection φ : k[X0, . . . , Xn]� k[X0, X1](n) induced from

the Veronese embedding of P1 as a rational normal curve in Pn. The Veronese

embedding is G-equivariant by construction, and from the discussion above

we expect φ to be a Poisson homomorphism from A(n, a)→A(1, a/n)(n).

We see in Section 6 that this does happen, and furthermore that there is

also a surjection R(n, a)→R(1, a/n)(n).

§3. First properties

Fix n> 1 and a ∈ k, and let A=A(n, a) and R=R(n, a). In this section,

we give an explicit presentation of R. We show that R is a Noetherian

Artin–Schelter regular domain of global dimension n+ 1. Finally we study

the localizations of A and R at the (Poisson) normal element X0.
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38 C. LECOUTRE AND S. J. SIERRA

In the following, we suppress the subscript a where it is clear from

context, so we use ∗ to denote multiplication in R and {−,−} to denote the

Poisson bracket on A. We use concatenation to denote the (commutative)

multiplication in A.

Let zj = a+ j and set X−1 := 0. Since
(

Γa

`

)
(Xj) =

(
a+j
`

)
Xj we deduce

from (2.3) that, for all 06 i, j 6 n, we have:

(3.1) Xi ∗Xj =
i∑

`=0

(
zj
`

)
Xi−`Xj

and

(3.2) {Xi, Xj}= zjXi−1Xj − ziXj−1Xi.

We use two gradings on A: the standard degree grading d defined by

d(Xi) = 1 for all i and the weight grading ε defined by ε(Xi) = i. For k ∈ N,

let Ak be the d-homogeneous component of d-degree k, and let Ak be the

ε-homogeneous component of ε-degree k. Let Ajk =Aj ∩Ak. Note that we

have

(3.3) ∆(Ajk)⊆A
j−1
k ,

whereas Γa preserves both d-and ε-degree. It follows immediately that R is

also d-graded. Thus the Hilbert series of R (with respect to d) is

(3.4) hilbR= hilbA=
1

(1− t)n+1
.

Observe also that the Poisson bracket on A is d-homogeneous: {Ak, A`} ⊆
Ak+`.

On the other hand, ε defines a filtration on R:

Lemma 3.5. Let A=A(n, a) with Poisson bracket {−,−} and let R=

R(n, a), with multiplication ∗. Let R6k :=
⊕

`6k A
`, considered as a subspace

of R. Then R6k ∗R6` ⊆R6k+`, so R is filtered by the R6k. The associated

graded algebra of R is naturally isomorphic as a graded algebra to A, and

under this identification we have

{gr f, gr g}= gr(f ∗ g − g ∗ f).
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Proof. As graded vector spaces, since R=A certainly grR=⊕
k R
6k/R6k−1 ∼=

⊕
k A

k =A. Let f =
∑k

i=0 fi, g =
∑`

i=0 gi ∈A, where

fi, gi ∈Ai and fk, g` 6= 0. From (2.3) and (3.3) we have that the ε-degree

k + ` components of both f ∗ g and g ∗ f are equal to fkg` = g`fk so the

multiplications on grR and A agree.

Finally, gr(f ∗ g − g ∗ f) lies in ε-degree k + `− 1 and is thus equal to

∆(fk)Γa(g`)−∆(g`)Γa(fk) = {gr f, gr g},

as needed.

Recall that a k-algebra R is strongly Noetherian if R⊗k C is Noetherian

for any commutative Noetherian k-algebra C. (For example, polynomial

rings are strongly Noetherian.) We have:

Corollary 3.6. For any n ∈ Z>0 and a ∈ k, the ring R(n, a) is a

strongly Noetherian domain.

Proof. This follows by standard arguments (see [MR01, Proposi-

tion 1.6.6, Theorem 1.6.9]) from the corresponding properties for A(n, a) =

grR(n, a).

The next result is useful because it allows us to use inductive arguments

to establish properties of the R(n, a) or A(n, a).

Proposition 3.7. Suppose that n> 1. Let A=A(n, a) and let R=

R(n, a). Then

(1) X0 is normal in R, and R/〈X0〉 ∼=R(n− 1, a+ 1).

(2) X0 is Poisson normal in A, and A/〈X0〉 is Poisson isomorphic to

A(n− 1, a+ 1).

Proof. (1) That X0 ∗R=R ∗X0 =X0A is immediate from (3.1), and so

X0 is normal.

Let π :R→R/〈X0〉 be the canonical map, and let Yi := π(Xi+1) for all

06 i < n. Clearly R/〈X0〉=R/X0 ∗R may be identified with A/X0A=

A/〈X0〉 as a graded vector space, and this and R(n− 1, a+ 1) are isomor-

phic as graded vector spaces. From (3.1), the multiplication ∗ on R/〈X0〉
satisfies

Yi ∗ Yj =

i∑
`=0

(
a+ j + 1

`

)
Yi−`Yj ,

which is precisely the multiplication on R(n− 1, a+ 1).
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40 C. LECOUTRE AND S. J. SIERRA

Note that the isomorphism R/〈X0〉 ∼=R(n− 1, a+ 1) respects both the

d-grading and the ε-filtration on R.

For (2), it is clear that X0 is Poisson normal. Since A/〈X0〉 is the associ-

ated graded of the ε-filtration on R/〈X0〉 ∼=R(n− 1, a+ 1), the remaining

statement follows immediately from Lemma 3.5.

We next prove that the algebras R(n, a) have good homological prop-

erties. Recall that an N-graded k-algebra R with R0 = k is Artin–Schelter

regular or AS-regular if:

(1) gldimR<∞;

(2) R has finite Gelfand–Kirillov dimension;

(3) ExtiR(kR, RR)∼=

{
0 if i 6= gldimR

Rk[`] if i= gldimR.

(Here k[`] means that the module is degree-shifted by some amount

` ∈ Z.) The Artin–Schelter regular condition is a noncommutative analogue

of the good properties of commutative polynomial rings [AS87]. Condition

(3) above is called the AS–Gorenstein condition.

Theorem 3.8. Fix n ∈ Z>0 and let a ∈ k. The algebra R=R(n, a) is

Artin–Schelter regular of global dimension n+ 1.

Proof. We prove by induction on n that R is AS-regular, Auslander–

Gorenstein, and Cohen–Macaulay. We do not give the definitions of

Auslander–Gorenstein or Cohen–Macaulay; the unfamiliar reader may treat

them as technical terms internal to this proof.

It is well known that the Jordan plane R(1, a) and the polynomial ring

R(1, 0) satisfy all of the above properties, so that the base case n= 1 is

clear. Thus we may assume that n > 1.

By Lemma 3.5 A(n, a) is the associated graded ring of R under the

ε-filtration. Thus by [MR01, Corollary 7.6.18], gldimR6 gldimA(n, a) =

n+ 1. By Proposition 3.7 and [MR01, Theorem 7.3.5], gldimR>
gldimR(n− 1, a+ 1) + 1. This last is n by induction. Thus gldimR=

n+ 1.

By induction, R(n− 1, a+ 1) is Auslander–Gorenstein and Cohen–

Macaulay. By [Lev92, Theorem 5.10], the same holds for R. By [Lev92,

Theorem 6.3] and (3.4), R is AS–Gorenstein and thus AS-regular.
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We now compute the relations for R. We use the Vandermonde identity:

for all a, b ∈ k and k ∈ N, we have

(3.9)
k∑

u=0

(
a

u

)(
b

k − u

)
=

(
a+ b

k

)
.

We also use the following lemma:

Lemma 3.10. Let V =A1 = spank(X0, . . . , Xn). For b ∈ k, define a

linear map φb : V → V by

φb(Xi) =

i∑
`=0

(
b

`

)
Xi−`.

Then φaφb = φa+b.

Proof. By (3.9) we have:

φaφb(Xj) = φa

(
j∑
i=0

(
b

i

)
Xj−i

)
=

j∑
i=0

(
b

i

)( j−i∑
`=0

(
a

`

)
Xj−i−`

)

=

j∑
k=0

(
k∑

u=0

(
b

u

)(
a

k − u

))
Xj−k =

j∑
k=0

(
a+ b

k

)
Xj−k = φa+b(Xj).

The following lemma gives us quadratic relations that are satisfied in R.

We also give an equation that reverses the deformation formula (3.1) and

thus allows us to obtain the commutative product from the noncommutative

product ∗.
Recall that we set zj = a+ j.

Lemma 3.11. For all 06 i, j 6 n we have

(3.12) XiXj =Xi ∗Xj +

i∑
`=1

(
−zj
`

)
Xi−` ∗Xj =

i∑
`=0

(
−zj
`

)
Xi−` ∗Xj

and

(3.13) Xi ∗Xj −Xj ∗Xi =

j∑
k=1

(
−zi
k

)
Xj−k ∗Xi −

i∑
`=1

(
−zj
`

)
Xi−` ∗Xj .
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Proof. Fix j, and recall the definition of the linear map φb from

Lemma 3.10. Since for any F ∈R1 we have F ∗Xj = φzj (F )Xj , clearly

XiXj = φ−1
zj (Xi) ∗Xj . By Lemma 3.10, we immediately obtain (3.12).

Applying (3.12) to the equation XiXj =XjXi, we obtain (3.13).

Note that relations (3.13) can be rewritten as:

(3.14)

j∑
k=0

(
−zi
k

)
Xj−k ∗Xi =

i∑
`=0

(
−zj
`

)
Xi−` ∗Xj .

We now have:

Proposition 3.15. The relations in R=R(n, a) are exactly the
(
n+1

2

)
relations given by (3.13) for 06 i < j 6 n.

Proof. By comparing dimR1 ⊗k R1 and dimR2 it is clear that R

satisfies
(
n+1

2

)
quadratic relations; since the relations in (3.13) are linearly

independent for 06 i < j 6 n they are precisely the quadratic relations of R.

By Theorem 3.8 R is AS-regular, and by (3.4) it is what is referred to as

a quantum Pn in [ST01]. Thus by [ST01, Theorem 2.2], R is Koszul and in

particular is given by quadratic relations. Thus the relations in (3.13) are

precisely the relations of R.

Example 3.16. When n= 1 we obtain:

{X0, X1}=−aX2
0 and X0 ∗X1 −X1 ∗X0 =−aX0 ∗X0.

For a 6= 0 the algebra R(1, a) is isomorphic to the well-known Jordan plane,

and the Poisson algebra A(1, a) is isomorphic to the Poisson–Jordan plane:

the polynomial algebra k[X0, X1] endowed with Poisson bracket {X0, X1}=

X2
0 .

Example 3.17. When n= 2 the algebra R(2, a) is given by generators

X0, X1, X2 and relations:

X0 ∗X1 −X1 ∗X0 = −aX0 ∗X0,

X0 ∗X2 −X2 ∗X0 = −aX0 ∗X1 −
(
a

2

)
X0 ∗X0,

X1 ∗X2 −X2 ∗X1 = (a+ 2)X0 ∗X2 − (a+ 1)X1 ∗X1

+

(
a+ 2

2

)
X0 ∗X1.

(3.18)
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The Poisson bracket on A(2, a) is given by:

{X0, X1} = −aX2
0 ,

{X0, X2} = −aX0X1,
{X1, X2} = (a+ 2)X0X2 − (a+ 1)X2

1 .
(3.19)

Example 3.20. When n= 3 and a=−5/4 we obtain an algebra iso-

morphic to Pym’s example (1.1). The isomorphism sends Xi 7→ xi/4
i for

i= 0, . . . , 3.

We now prove a technical result which gives equivalent conditions for an

element to be normal (or Poisson normal), under mild conditions on a and

n. In particular we show that, up to multiplication by nonzero scalars, X0

is the only homogeneous element of d-degree 1 that is (Poisson) normal.

Proposition 3.21. Assume either that n> 2 or that n= 1 and a 6= 0.

Then:

(1a) N is Poisson normal in A=A(n, a) ⇐⇒ (1b) N is normal in R=

R(n, a) ⇐⇒ (1c) we have ∆(N) = 0 and Γa(N) = uN for some u ∈ k.

(2a) N is Poisson central in A ⇐⇒ (2b) N is central in R ⇐⇒ (2c) we

have ∆(N) = Γa(N) = 0.

Proof. Without loss of generality, n > 0. The implications (1c)⇒
(1a), (1b) and (2c)⇒ (2a), (2b) are clear from (2.3). To prove the other

implications, we first prove:

Claim. There is an irreducibleG ∈A with ∆(G) = 0 and Γ(G) = λG for some

λ 6= 0, and further such that 〈G〉=G ∗R=R ∗G is a completely prime ideal

of R.

To prove the claim, if a 6= 0 then we may take G=X0, so λ= a. The last

statement follows from the isomorphism R/〈X0〉 ∼=R(n− 1, a+ 1).

If a= 0 and n> 2 then let G=X0X2 − 1
2X

2
1 and λ= 2. We have

∆(G) = 0 and Γa(G) = 2(a+ 1)G= λG. Note that G is normal in R and ε-

homogeneous and so the ε-filtration on R descends to R/〈G〉. It is clear that

gr(R/〈G〉) is isomorphic to A/〈G〉 which is a domain, so G ∗R is completely

prime.

We now prove (1a)⇒ (1c). Let G, λ be as in the Claim. Suppose that N

is Poisson normal in A. Without loss of generality we can assume that N /∈
GA and N 6∈X0A since G and X0 are Poisson normal. Because {G, N}=

−λG∆(N) ∈NA, there exists G′ ∈A such that G∆(N) =G′N . Since N /∈
GA and G is irreducible there exists v ∈A such that G′ = vG and we obtain
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∆(N) = vN after dividing by G. Since ∆ is d-homogeneous we must have

v ∈A0 = k. But ∆ is locally nilpotent so we must have v = 0 and ∆(N) = 0.

There therefore exists X ′1 ∈A such that:

X ′1N = {X1, N}=X0Γa(N).

Again since N /∈X0A we can write X ′1 =X0u for some u ∈A, and we have

Γa(N) = uN . The derivation Γa being d-homogeneous, we conclude as before

that u ∈A0 = k is a scalar.

We now prove (1b)⇒ (1c). Suppose that N is normal in R. Without

loss of generality we can assume that N /∈X0 ∗R and N 6∈G ∗R since X0

and G are normal. By normality of N there exists G′ such that G ∗N =

N ∗G′. Since N /∈G ∗R we must have G′ ∈G ∗R as G ∗R is completely

prime. Moreover, using the equation G ∗N =N ∗G′ we deduce that G′ is d-

homogeneous and d(G′) = d(G). So G′ = wG for a scalar w, and we conclude

that N must satisfy the equation G ∗N = wN ∗G. Using the definition of

the product ∗ we obtain the following equation after dividing by G:

(3.22) w

(
N + λ∆(N) +

λ(λ− 1)

2
∆2(N) + · · ·+

(
λ

k

)
∆k(N)

)
=N

for some k > 0. We decompose N =
∑`

i=0 Ni ∈
⊕

Ai into ε-homogeneous

pieces. Since ∆(Ai)⊆Ai−1 we deduce from Equation (3.22) that N` = wN`,

that is, w = 1 and ∆(N`) = 0. Finally we obtain by (a decreasing) induction

that ∆(Ni) = 0 for all i, so that N ∈ ker ∆.

By normality of N there exists F ∈R such that X1 ∗N =N ∗ F . Since

∆(N) = 0 we have

NF =N ∗ F =X1 ∗N =X1N +X0Γa(N),

so N divides X0Γa(N) ∈A. As N 6∈X0 ∗R=X0A we have that N divides

Γa(N), so there exists u ∈A with Γa(N) = uN . Comparing d-degrees we

have u ∈A0 = k.

For the remaining equivalences note that if N is either Poisson central

in A or central in R then certainly N is (Poisson) normal. We have seen

that ∆(N) = 0 and Γa(N) = uN for some u ∈ k. We then have either: 0 =

{X1, N}= uX0N (if N is Poisson central) or 0 =X1 ∗N −N ∗X1 = uX0N

(if N is central). In either case u= 0. Thus (2a)⇒ (2c) and (2b)⇒ (2c).

Remark 3.23. We note that Proposition 3.21 does not make it easy to

find the normal (or central) elements of R. In particular, it is a famously
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difficult problem in symbolic dynamics to calculate A∆ = {f ∈A |∆(f) =

0}; see [Fre13]. In fact, A∆ is not known explicitly for n> 9.

The rings R(n, a) are complicated to study but they become much simpler

after localization at the normal element X0. To end this section we study

the localizations of R=R(n, a) and A=A(n, a) at the (Poisson) normal

element X0. Let R◦ :=R[X−1
0 ] and A◦ :=A[X−1

0 ]. We note that ∆ and Γa
extend to A◦, and that the Poisson bracket {−,−}a extends to A◦ and is

still defined by (2.4). Likewise, the multiplication ∗a on R◦ is still defined

by (2.3). The d-grading extends to A◦ and to R◦. The ε-grading extends to

A◦, and ε defines a filtration on R◦ with associated graded A◦, as with the

nonlocalized rings.

We further define a new grading A◦ =
⊕

e∈k A
◦(e) by defining A◦(e) to

be the e-eigenspace of Γa. Notice that A◦(e) 6= 0 if and only if e ∈ aZ + N.

Further note that if F ∈ (A◦)εd, then F ∈A◦(e) for e= da+ ε. It follows from

(3.3) that A◦ is also the associated graded ring of R◦ with respect to the

e-filtration, and that the ε- and e-filtrations on R◦ both induce the Poisson

bracket {−,−}a on A◦.

Let B = (A◦)∆. In contrast to A∆, which is unknown in general, B is easy

to compute and is isomorphic to a polynomial ring in n variables. Explicitly,

for j > 1 define

Yj =
∞∑
p=0

(−X1)p

p!Xp
0

∆p(Xj).

This is well defined since ∆ is locally nilpotent. Note that Yj ∈ (A◦)j1; in

particular, Yj is e-homogeneous, with e(Yj) = e(Xj) = zj .

Lemma 3.24. We have that A◦ is freely generated by X1, Y2, . . . , Yn and

B is freely generated by Y2, . . . , Yn as commutative algebras over k[X±1
0 ].

Proof. That B is generated by X±1
0 , Y2, . . . , Yn follows from [vdE93,

Proposition 2.1], since ∆(X1/X0) = 1. If i> 2, then

(3.25) Xi − Yi ∈ k[X±1
0 , X2, . . . , Xi−1].

This shows that the elements X0, X1, Y2, . . . , Yn are algebraically indepen-

dent, proving that B is freely generated as claimed.

By (3.25) and induction, A◦ is generated over B by X1, and thus

over k[X±1
0 ] by X1, Y2, . . . , Yn. Since KdimA◦ = n+ 1, thus A◦ is freely

generated as well.
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Lemma 3.26. Let δ =X0Γa, so δ ∈Derk(B). Define a map β :B[z]→
A◦ by β(

∑
biz

i) =
∑
biX

i
1. Then β is a ring isomorphism B[z; δ]→R◦ and

a Poisson isomorphism (B[z], {−.−}δ)→A◦.

Proof. Since B is an e-graded subring of A◦, therefore δ(B)⊆B and so

δ ∈Derk(B).

Let ? be the multiplication in B[z; δ]. Note that if we put e(z) = a+ 1

then β is clearly e-graded as an isomorphism of vector spaces and e-filtered

as a map from B[z; δ]→R◦. Since A◦ is the associated graded of R◦ it

suffices to prove that β :B[z; δ]→R◦ is a ring homomorphism. It is enough

to check that β(z ? g) = β(z) ∗a g for g ∈B(e). But we have

β(z) ∗a g =X1 ∗a g = gX1 + egX0 = β(gz + δ(g)) = β(z ? g)

as needed.

§4. Graded automorphisms and the Nakayama automorphism

In this section we compute the graded automorphism group of R(n, a) and

determine its Nakayama automorphism. In particular we prove Theorem 1.2.

We begin with the graded automorphism group of R(n, a). In order to

prove that the maps φb defined in Lemma 3.10 are well-defined automor-

phisms of R(n, a) for any a, b ∈ k we use the theory of Zhang twists. More

specifically we prove that R(n, a) and R(n, b) are Zhang twists of each other

for any a, b ∈ k. We now recall the definition of Zhang twist from [Zha96].

If S is an N-graded ring with multiplication ∗, and φ ∈Aut(S) is a graded

automorphism of S, then the Zhang twist of S by φ is written Sφ. As a

graded vector space, Sφ is isomorphic to S. The multiplication ◦ on Sφ

is defined by r ◦ s= r ∗ φi(s) for all r ∈ Sφi = Si and s ∈ Sφj = Sj . This is

associative by [Zha96, Proposition 2.3].

In the terminology of [Zha96] the family of maps {φi | i ∈ N} is a twisting

system of S. We note that the definition in [Zha96] is slightly more general

than the one we give here, but we do not need this greater generality.

Also recall that we may define a left-hand Zhang twist of S by φ,

which we write φS. The multiplication ◦′ on φS is defined by r ◦′ s=

φj(r) ∗ s for all r ∈ φSi = Si and s ∈ φSj = Sj . This is associative by [Zha96,

Proposition 4.2]. We have the following easy lemma.
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Lemma 4.1. Let S be an N-graded ring with multiplication ∗, and let

φ ∈Aut(S) be a graded automorphism of S. Then Sφ ∼= φ−1
S.

Proof. Define Φ : Sφ→ φ−1
S by Φ(t) = φ−k(t) for all t ∈ Sφk .

We denote the multiplication on Sφ by ◦ and the multiplication on φ−1
S

by ◦′. Then for r ∈ Si, s ∈ Sj , we have

Φ(r ◦ s) = Φ(r ∗ φi(s)) = φ−(i+j)(r ∗ φi(s)) = φ−i−j(r) ∗ φ−j(s)

since φ is an algebra automorphism of S. Thus

Φ(r) ◦′ Φ(s) = φ−j(φ−i(r)) ∗ φ−j(s) = Φ(r ◦ s),

as needed.

The first goal of this section is to prove the following theorem

Theorem 4.2. Fix n ∈ Z>0. For any a, b ∈ k, the rings R(n, a) and

R(n, b) are right and left Zhang twists of each other.

We prove this by constructing some explicit graded automorphisms of

R(n, a).

Lemma 4.3. For any a ∈ k, the map

φa(Xj) =

j∑
i=0

(
a

i

)
Xj−i

induces a d-graded automorphism of R(n, a), which we also denote φa.

Proof. Note that

Xj ∗X0 = φa(Xj)X0 =X0φa(Xj) =X0 ∗ φa(Xj).

Thus φa is simply the automorphism of R(n, a) induced by conjugating by

the normal element X0.

Proposition 4.4. For any a ∈ k, let φa be the automorphism of R(n, a)

defined in Lemma 4.3. Then R(n, 0)∼=R(n, a)φa, under the map induced by

sending Xi 7→Xi.

Proof. By Lemmas 4.1, and 3.10, it suffices to prove that R(n, 0)∼=
φ−aR(n, a). Let ◦ denote the multiplication on φ−aR(n, a). Then for any i
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and j, we have

Xi ◦Xj = φ−a(Xi) ∗Xj =
i∑

`=0

(
−a
`

)
Xi−` ∗Xj

=
i∑

`=0

j−∑̀
k=0

(
−a
`

)(
a+ j

k

)
Xi−`−kXj

=

i∑
u=0

u∑
v=0

(
−a
v

)(
a+ j

u− v

)
Xi−uXj

=
i∑

u=0

(
j

u

)
Xi−uXj ,

where we have used the Chu-Vandermonde identity at the end. This agrees

with the formula for multiplication in R(n, 0).

As a corollary of Proposition 4.4 we obtain that φb induces an automor-

phism of R(n, a) for any a, b. For we have

Lemma 4.5. Let S be an N-graded ring and let φ, ψ be graded automor-

phisms of S such that φψ = ψφ. Then ψ is also an automorphism of Sφ and
φS.

Proof. We prove the lemma for Sφ; note the statement makes sense

because as a graded vector space S = Sφ. Let ∗ denote the multiplication

on S and let ◦ denote the multiplication on Sφ. We check that for any r ∈ Si
and s ∈ Sj , we have

ψ(r ◦ s) = ψ(r ∗ φi(s)) = ψ(r) ∗ ψφi(s) = ψ(r) ∗ φiψ(s) = ψ(r) ◦ ψ(s),

as needed.

Corollary 4.6. Fix n ∈ Z>0. For any a, b ∈ k, the action of φb on

R(n, a) induces an automorphism of R(n, a).

Proof. That φb induces an automorphism of R(n, 0) for any b follows

from Lemma 4.5, with φ= ψ = φb. We then apply Lemma 4.5 again, using

the facts that φaφb = φa+b = φbφa and that R(n, a)∼= φaR(n, 0) proved in

Proposition 4.4.

Corollary 4.7. For any a, b ∈ k, we have φbR(n, a)∼=R(n, a+ b),

under the map Xi 7→Xi.
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Proof. The proof is very similar to the proof of Proposition 4.4 and is

left to the reader.

Proof of Theorem 4.2. The result follows immediately from Corol-

lary 4.7, using Lemma 4.1 to move from left to right twists.

We now show that up to composition with nonzero scalar multiplication,

the only nontrivial graded automorphisms of R(n, a) are the maps φb. We

need the following lemma.

Lemma 4.8. Let n> 2. Suppose that ψ ∈AutR(n, a) is such that

ψ(X0) =X0 and ψ(Xj) =Xj + αjX0 with αj ∈ k for 16 j 6 n. Then ψ is

the identity.

Proof. By applying ψ to the second equation of (3.18) we obtain

[X0, X2] = [X0, X2 + α2X0] = ψ([X0, X2]) = [X0, X2]− aα1X0 ∗X0.

Thus we have α1 = 0 when a 6= 0. If a= 0 we apply ψ to the third equation

of (3.18) to get

(X1 + α1X0) ∗ (X2 + α2X0)− (X2 + α2X0) ∗ (X1 + α1X0)

= [X1, X2] = [X1, X2]− 2α1X0 ∗X1 + (2α2 − α2
1 + α1)X0 ∗X0.

Again we must have α1 = 0. Now suppose that αj = 0 for 16 j < k. We

apply the automorphism ψ to the relation (3.13) with i= 1 and j = k. After

rearranging we get

X1 ∗ (Xk + αkX0)− (a+ k)X0 ∗ (Xk + αkX0)

= (Xk + αkX0) ∗X1 +

k∑
j=1

(
−a− 1

j

)
Xk−j ∗X1.(4.9)

Thanks to Equation (3.1) we compare the coefficients of the X2
0 term in both

sides of the equality (4.9) and we obtain αk(a− (a+ k)) = 0. So −kαk = 0

and αk = 0 since k 6= 0.

We can now determine the graded automorphism group Autgr R(n, a) of

R(n, a). For λ ∈ k×, let ξλ be the automorphism that scales all Xi by λ.

Theorem 4.10. Assume either that n> 2 or that n= 1 and a 6= 0. The

d-graded automorphisms of R(n, a) are of the form ξλφc, for some λ ∈ k×
and c ∈ k. In particular we have Autgr R(n, a)∼= k× × k.
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Proof. It follows from Corollary 4.6 that the maps ξλφc are indeed

automorphisms of R(n, a). Reciprocally, we proceed by induction on n. We

first assume that a 6=−(n− 1). For n= 1 (and a 6= 0), the result follows

from [Shi05, Theorem 3.1]. We assume that the result is true for R(n− 1, b)

with b 6=−(n− 2). Let ψ be a d-graded automorphism of R(n, a). Thanks

to Proposition 3.21 the only normal elements of R(n, a) with d-degree 1 are

the nonzero scalar multiples of X0. Thus, up to composition with some ξλ,

we have that ψ(X0) =X0. In particular ψ induces a d-graded automorphism

of R(n, a)/〈X0〉 ∼=R(n− 1, a+ 1). By the induction hypothesis we have

ψ(Xj) =
∑j−1

i=0 λ
(
c
i

)
Xj−i + αjX0 for any j > 1, where λ ∈ k× and c, αj ∈ k.

We obtain that λ= 1 by applying φ to the first equation of (3.18) when

a 6= 0, or to the third equation of (3.18) when a= 0. In particular we have

ψ = φc modulo X0, and by applying Lemma 4.8 to ψ ◦ φ−c we conclude that

ψ = φc.

We finally deal with the case a=−(n− 1). We prove by induction on

n> 2 that the d-graded automorphisms of R(n,−(n− 1)) are of the form

ξλφc. We only prove the base case of the induction since the induction

step of the previous induction will also apply to that case. Let ψ be a d-

graded automorphism of R(2,−1). Then ψ(X0) = λX0 for some nonzero

λ, and by rescaling we may assume that λ= 1. Further, ψ induces a d-

graded automorphism of the commutative polynomial ring R(2,−1)/〈X0〉 ∼=
R(1, 0)∼= k[X1, X2]. Therefore, there exist c, d, α, β, γ, δ such that ψ(X1) =

αX2 + βX1 + cX0 and ψ(X2) = γX2 + δX1 + dX0, where αδ − βγ 6= 0.

Applying ψ to the relations (3.18) we obtain that α= 0, β = γ = 1, δ = c

and d=
(
c
2

)
. This shows that ψ = φc and concludes the proof.

One can prove a similar version of Proposition 4.10 for the Poisson

algebra A(n, a). For any c ∈ k the maps ϕc := exp(c∆) are well-defined

automorphisms of the commutative polynomial ring A(n, a) since ∆ is a

locally nilpotent derivation. Moreover, we observe that

∆({Xi, Xj}) = {∆(Xi), Xj}+ {Xi,∆(Xj)}

for all 06 i, j 6 n. This shows that ∆ is a Poisson derivation of A(n, a), and

thus the maps ϕc are Poisson automorphisms of A(n, a).

We state the following result without proof.

Proposition 4.11. Assume either that n> 2 or that a 6= 0. The d-

graded Poisson automorphisms of A(n, a) are of the form ξλϕc, for some
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λ ∈ k× and c ∈ k. In particular the graded Poisson automorphism group

PAutgr A(n, a) of A(n, a) is isomorphic to k× × k.

Corollary 4.12. Assume either that n> 2 or that a 6= 0. Then

PAutgr A(n, a)∼= k× × k∼= Autgr R(n, a).

When n= 1 and a= 0 we have

PAutgr A(1, 0) = Autgr R(1, 0) = Autgr k[X, Y ]∼= GL2(k).

Remark 4.13. We note that for certain values of a, there exist non-

graded (Poisson) automorphisms. For instance it is well known that for any

polynomial P ∈ k[X0] the map sending X0 7→X0 and X1 7→X1 + P defines

an automorphism of the Jordan plane R(1, a) and the Poisson–Jordan plane

A(1, a). When n= 2 and a= 1/q for some q ∈ Z>0, the map f defined by

f(X0) =X0, f(X1) =X1 +Xq+1
0 , f(X2) =X2 +Xq

0X1 +X2q+1
0

is a nongraded Poisson automorphism of A(2, 1/q).

To conclude this section we calculate the Nakayama automorphism of

R(n, a) and prove, in particular, that R(n,−1
2(n+ 2)(n− 1)/(n+ 1)) is

(n+ 1)-Calabi–Yau for every n > 0. We first recall some definitions. Let

R be a k-algebra, and let Re =R⊗k R
op be the enveloping algebra of R.

An (R, R)-bimodule M can be considered as a left Re-module by defining

r ⊗ s ·m= rms.

Definition 4.14. We say that R is skew Calabi–Yau (or skew CY ) if

(i) R is homologically smooth: R has a finite projective resolution as a left

Re-module such that each term is finitely generated;

(ii) There are an algebra automorphism µ of R and an integer d such that

ExtiRe(R, Re)∼=

{
0 if i 6= 0
1Rµ if i= d.

(Here 1Rµ is the R-bimodule which is isomorphic to R as a k-vector

space and such that r · s · t= rsµ(t).)

If R is skew CY, the automorphism µ is called the Nakayama automorphism

of R. If µ is inner, then R is Calabi–Yau or CY.
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By [RRZ14, Lemma 1.2], any AS-regular connected graded algebra is

skew CY. In particular, the algebras R(n, a) are skew CY.

We need the following lemma before calculating the Nakayama automor-

phism of R(n, a).

Lemma 4.15. Let µ be the Nakayama automorphism of R=R(n, a) for

any n> 1. Then for all 06 j 6 n, we have µ(Xj)−Xj ∈ span(X0, . . . ,

Xj−1). In particular µ(X0) =X0.

Proof. The Nakayama automorphism of the commutative polynomial

ring A= k[X0, . . . , Xn] is well known to be trivial. Since A is the asso-

ciated graded of R with respect to the ε-filtration and clearly Ae ∼=
k[X0, . . . , X2n+1] is the associated graded of Re, by [Bjö89, Proposition 3.1],

we have that the associated graded of ExtnRe(R, Re) = 1Rµ is a subquotient

of ExtnAe(A, Ae) = 1A1. This shows that the ε-leading term of µ(Xj) must

be Xj .

Theorem 4.16. For any n> 1, the Nakayama automorphism of R(n, a)

is φc, where

c= (n+ 1)a+

(
n+ 1

2

)
− 1.

Proof. We begin by calculating the Nakayama automorphism of R(n, 0).

For n= 1 we have R(1, 0)∼= k[X0, X1], so the Nakayama automorphism is

the identity φ0; we have 0 =
(

2
2

)
− 1. Suppose now that n > 1 and we wish

to calculate the Nakayama automorphism µ of R(n, 0). Let b= n+
(
n
2

)
−

1 =
(
n+1

2

)
− 1. Since by Lemma 4.15 we have µ(X0) =X0, thus µ induces

an automorphism of R(n, 0)/〈X0〉 ∼=R(n− 1, 1). By [RRZ14, Lemma 1.5],

using the fact that X0 is central, this induced automorphism is equal to the

Nakayama automorphism ofR(n− 1, 1), which by induction on n is φb. Thus

modulo X0, we have that µ= φb. By applying Lemma 4.8 to ψ = µ ◦ φ−b we

see that µ= φb.

Let µ be the Nakayama automorphism of R(n, 0) and ν be the Nakayama

automorphism of R(n, a) = φaR(n, 0). By [RRZ14, Theorem 0.3], we have

ν = µφn+1
a ξλ for some λ ∈ k×. By Lemma 4.15, we must have λ= 1. Thus

ν = µφn+1
a = φ(n+1

2 )−1+(n+1)a,

as claimed.
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Corollary 4.17. For any n> 1, the algebra R(n, a) is Calabi–Yau if

and only if

a=
1−

(
n+1

2

)
n+ 1

=−(n+ 2)(n− 1)

2(n+ 1)
.

Example 4.18. When n= 3, we have −(n+ 2)(n− 1)/2(n+ 1) =−5
4 ,

so Pym’s example 1.1 is Calabi–Yau, using Example 3.20.

§5. Isomorphisms

We have seen in Example 3.16 that we have R(1, 0)∼=R(1, a) ⇐⇒ a= 0

and that R(1, a)∼=R(1, b) for any nonzero a, b ∈ k. A similar statement

holds for the Poisson algebras A(1, a). In this section we analyze the

isomorphism question for R(n, a) and A(n, a) where n> 2. Moreover, we

show that each R(n, a) is isomorphic to its opposite ring.

The main theorem of this section is the next result.

Theorem 5.1. Let n> 2 and let a, a′ ∈ k. The following are equivalent:

(1) a= a′;

(2) R(n, a)∼=R(n, a′);

(3) A(n, a) is Poisson isomorphic to A(n, a′).

We remark that Theorem 5.1 is not particularly surprising given Corol-

lary 4.17, since for each n there is a unique a with R(n, a) Calabi–Yau.

Proof of Theorem 5.1. (1)⇒ (2), (3) is trivial.

(3)⇒ (1). Let A=A(n, a) and let A′ =A(n, a′). To avoid any confusion,

we denote the generators of A by X0, . . . , Xn as usual and denote the

corresponding generators of A′ by X ′0, . . . , X
′
n. We let ∆ also denote the

downward derivation on A′, so ∆(X ′i) =X ′i−1.

Suppose that there is a Poisson isomorphism α :A→A′. For 06 i6 n
set α(Xi) = Ti = Li + Pi, where Li ∈A′1 and Pi ∈ k⊕

⊕
k>2 A

′
k. Note that

since α can be seen as an algebra automorphism of the polynomial ring A,

the linear parts Li must be nonzero for all 06 i6 n (using the fact that the

Jacobian of α must be nonzero at the origin).

If a= 0 then since X0 is Poisson central T0 must be as well. As the Poisson

bracket respects the d-grading on A′, the degree 1 part L0 must be Poisson

central and by Proposition 3.21 we have L0 ∈ ker ∆. Thus L0 = λ0X
′
0 is

Poisson central and so a′ = 0. This shows that a= 0 ⇐⇒ a′ = 0.

Suppose now that aa′ 6= 0. Now T0 is Poisson normal and by

Proposition 3.21 we have T0 ∈ ker ∆ and T0 is a Γa′-eigenvector. Thus
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L0 ∈ ker ∆ and so L0 = λ0X
′
0 for some 0 6= λ0 ∈ k. Since Γa′(L0) = a′L0 we

have Γa′(T0) = a′T0.

Let c= a/a′ 6= 0. Applying α to the equation a∆(g)X0 = {g, X0}a we

obtain

aα∆(g)T0 = {α(g), T0}a′ = a′∆α(g)T0

and so

(5.2) ∆α= cα∆

as maps from A→A′. Since ∆ respects the d-degree we have ∆(Li) = cLi−1

for 16 i6 n. Thus there are λ1, λ2 ∈ k so that

L0 = λ0X
′
0,

L1 = cλ0X
′
1 + λ1X

′
0,

L2 = c2λ0X
′
2 + cλ1X

′
1 + λ2X

′
0.

From (5.2) we also conclude that T0, T1 ∈ Im ∆ and so have no constant

term. Considering the equality

(5.3) (a+ 2)T0T2 − (a+ 1)T 2
1 = α({X1, X2}a) = {T1, T2}a′

then gives that T2 has no constant term. Therefore, the X ′0X
′
2 term of the

left-hand side of (5.3) is (a+ 2)c2λ2
1X
′
0X
′
2. On the other hand, the X ′0X

′
2

term of the right-hand side is ∆(cλ0X
′
1)Γa′(c

2λ0X
′
2) = c3λ2

0(a′ + 2)X ′0X
′
2.

Thus a+ 2/a= a′ + 2/a′ and a′ = a.

(2)⇒ (1). Let R=R(n, a) and let R′ =R(n, a′). As above, we denote the

generators ofR′ byX ′0, . . . , X
′
n. If R∼=R′ then by [BZ17, Theorem 0.1] there

exists a graded isomorphism α :R→R′. Since X0 is normal in R1 its image

α(X0) is normal in R′1 and α(X0) ∈ span(X ′0) thanks to Proposition 3.21.

We prove the result by induction on n.

We first consider the case n= 2. Since X0 is central if and only if a= 0

we deduce that a= 0⇐⇒ a′ = 0. Therefore, we may assume that a, a′ 6= 0

in the following. Since α(X1) ∈R′1 there exist scalars µ0, µ1 and µ2 not

all zero such that α(X1) = µ0X
′
0 + µ1X

′
1 + µ2X

′
2. We fix λ0 ∈ k× such that

α(X0) = λ0X
′
0. By applying α to the first equality in (3.18) we obtain

λ0µ1(X ′0 ∗X ′1 −X ′1 ∗X ′0) + λ0µ2(X ′0 ∗X ′2 −X ′2 ∗X ′0) =−aλ2
0X
′
0 ∗X ′0.

After simplification using the relations (3.18) we compare the coefficients

of the X ′0 ∗X ′1 term. We get −a′λ0µ2 = 0 which implies that µ2 = 0 since

a′ 6= 0. In particular we have α(X1) ∈ span(X ′0, X
′
1) and α respects the
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ε-filtrations on R and R′. By Lemma 3.5 α induces a Poisson isomorphism

between A(2, a) and A(2, a′), so a= a′.

Suppose now n> 3 and the result true for n− 1. Since α(X0) ∈
span(X ′0) there is an isomorphism R(n− 1, a+ 1)∼=R/〈X0〉 →R′/〈X ′0〉 ∼=
R(n− 1, a′ + 1) and we have a+ 1 = a′ + 1.

To end the section we prove that R(n, a) and R(n, a)op are isomorphic.

This will be used in the next section.

Theorem 5.4. For any u ∈ k, the map ωu from R(n, a) to R(n, a)

defined by

ωu(Xi) = (−1)i
i∑

`=0

(
i− u
`

)
Xi−` = (−1)iφi−u(Xi)

is an anti-isomorphism. In particular R(n, a) and R(n, a)op are isomorphic

for any a ∈ k and any n > 0.

We need the following lemmas.

Lemma 5.5. For any v ∈ N and a, m ∈ k we have

(5.6)
v∑
k=0

(−1)k
(
a

k

)(
m− k
v − k

)
=

(
m− a
v

)
.

Proof. The proof is a combination of the Chu-Vandermonde identity

(3.9) and the identity (
u

`

)
= (−1)`

(
`− u− 1

`

)
for any ` ∈ N and u ∈ k.

Lemma 5.7. For a, u ∈ k we have

(5.8) ωuφa = ωu+a.

Proof. We have

ωuφa(Xi) =

i∑
k=0

(
a

k

) i−k∑
`=0

(−1)i−k
(
i− k − u

`

)
Xi−k−`

= (−1)i
i∑

k=0

i−k∑
`=0

(−1)−k
(
a

k

)(
i− k − u

`

)
Xi−k−`
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= (−1)i
i∑

v=0

v∑
k=0

(−1)−k
(
a

k

)(
i− k − u
v − k

)
Xi−v

= (−1)i
i∑

v=0

(
i− (u+ a)

v

)
Xi−v = wa+u(Xi),

where we have set v = k + ` and then use Lemma 5.5 with m= i− u.

Proof of Theorem 5.4. Note that the relations (3.14) in R(n, a) can be

rewritten as

(5.9) φ−zi(Xj) ∗Xi = φ−zj (Xi) ∗Xj

for any 06 i, j 6 n. To see that ωu is a well-defined anti-automorphism of

R(n, a) it is enough to apply ωu to both side of (5.9) and check that we

obtain the same result. Using (5.8) we have

ωu(φ−zi(Xj) ∗Xi) = ωu(Xi) ∗ ωuφ−zi(Xj)

= ωu(Xi) ∗ ωu−zi(Xj) = (−1)i+jφi−u(Xi) ∗ φj−u+zi(Xj)

and similarly

ωu(φ−zj (Xi) ∗Xj) = (−1)i+jφj−u(Xj) ∗ φi−u+zj (Xj).

For any c ∈ k the map φc is an automorphism of R(n, a), and by applying

φc to (5.9) we obtain that

φc−zi(Xj) ∗ φc(Xi) = φc−zj (Xi) ∗ φc(Xj).

Letting c= a+ i+ j − u= i− u+ zj = j − u+ zi we deduce that

φj−u(Xj) ∗ φi−u+zj (Xi) = φi−u(Xi) ∗ φj−u+zi(Xj).

This proves that ωu(φ−zi(Xj) ∗Xi) = ωu(φ−zj (Xi) ∗Xj) and finishes the

proof.

The opposite algebra A(n, a)op of the Poisson algebra A(n, a) is the

same associative k-algebra endowed with the opposite Poisson bracket

{−,−}op :=−{−,−}. The analogue of Theorem 5.4 for A(n, a) follows

easily from Lemma 3.5. It is straightforward to check that the map β from

A(n, a)op to A(n, a) sending Xi to (−1)iXi for all i is a Poisson algebra

isomorphism.
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§6. Point modules

Let R be an N-graded ring. A (left or right) point module over R is a

cyclic graded module M with hilb(M) = 1/(1− t). In this section we study

the point modules of the R(n, a) and prove:

Theorem 6.1. Let R=R(n, a), where n> 1. If M =R/J is a right or

left point module, then J is generated by J1 as a right (respectively, left)

ideal of R. There is a projective scheme X that parameterizes both left and

right point modules, and Xred is isomorphic to n copies of P1, where the

kth copy is embedded in V (X0, . . . , Xn−k−1)⊆ P(R∗1) as a rational normal

curve of degree k.

Recall that there are normal elements Y2, . . . , Yn in R◦ =R[X−1
0 ]. Let T

be the subalgebra of R◦ generated by X0, X1, Y2, . . . , Yn. We compute the

point modules for R by relating points of R to those of T .

Let C = k[X0, Y2, . . . , Yn]. We know from Lemma 3.26 that R◦ =

C[X−1
0 ][X1; δ] where δ is the derivation X0Γa of C[X−1

0 ]. The proof of that

result also gives that T = C[X1; δ]. We then have:

Proposition 6.2.

(1) T has
(
n+1

2

)
quadratic relations. They are:

A : X1X0 −X0X1 − aX2
0

A(k) : X1Yk − YkX1 − (a+ k)X0Yk for 26 k 6 n
B(k) : X0Yk − YkX0 for 26 k 6 n
C(j, k) : YkYj − YjYk for 26 j < k 6 n.

(2) T is Artin–Schelter regular.

Proof. (1) is a straightforward computation. For (2), note that the

weight grading ε can be used to define a filtration on T whose associated

graded ring is the commutative polynomial ring C[X1]. Thus T has finite

global dimension. Clearly T has finite Gelfand–Kirillov dimension. Note that

Y2, . . . , Yn are normal in T , and T/(Y2, . . . , Yn) is isomorphic to the Jordan

plane and is AS-regular. Thus T is AS–Gorenstein by [Lev92, Corollary 5.10,

Theorem 6.3].

By Corollary 3.6 R is strongly Noetherian. Thus by [AZ01, Theorem E4.3]

there is a projective scheme X that parameterizes right R-point modules up

to isomorphism. For x ∈X, let M(x) be the corresponding point module.
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By [KRS05, Proposition 10.2], there is σ ∈Aut(X) so that M(x)[1]>0
∼=

M(σ(x)) for all x ∈X.

We also have:

Lemma 6.3. If M is an R-point module or a T -point module, then either

MX0 = 0 or M is X0-torsionfree.

Proof. This is a consequence of the facts that R and T are AS-regular

with Hilbert series 1/(1− t)n+1 and X0 is a normal element. See [LBS93,

page 728] for a summary of the argument.

We now relate X0-torsionfree point modules over R to point modules

over T .

Proposition 6.4. Let M be an X0-torsionfree point module over R.

Then there is a unique T -action on M that extends the action of T ∩R and

makes M a T -point module.

Similarly, if L is an X0-torsionfree point module over T then there is a

unique R-action on L that extends the action of T ∩R and makes L also a

point module over R.

Proof. Let x ∈X and recall the isomorphism M(x)[1]>0
∼=M(σ(x)).

Equivalently, there are inclusions M(x)⊆M(σ−1(x))[1] for all x ∈X. Note

also that because σ ∈Aut(X), the point σ−1(x) is the unique y ∈X so that

M(x)⊆M(y)[1]. Let

N(x) := lim←−M(σ−n(x))[n].

The module N(x) is Z-graded with dimN(x)k = 1 for all k ∈ Z. (In fact,

N(x) is the injective hull of M(x) in the category of graded R-modules.)

Suppose now that M(x) is X0-torsionfree. By Lemma 6.3 so is each

M(σ−n(x)), asM(x)⊆M(σ−n(x))[n]. ThusN(x) isX0-torsionfree. We may

thus choose a basis {nk | k ∈ Z} of N(x) with nk ∈N(x)k and nkX0 = nk+1.

If we define nkX
−1
0 = nk−1 for all k ∈ Z, we obtain an action of R[X−1

0 ] on

N(x), and thus an action of T on N(x)>0 =M(x). The action is clearly

unique.

The proof that an X0-torsionfree point module over T has an induced

R-action is similar.

If K is an X0-torsionfree point module over T (or over R) then K is cyclic

as a module over k[X0]. Thus K is also cyclic under the induced R-action

(or T -action).
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We now compute the point modules of T , at least up to radical. Let V :=

T/〈Y2, . . . , Yn〉. We have V ∼= k〈X0, X1〉/〈X1X0 −X0X1 − aX2
0 〉. If a 6= 0,

this ring is the Jordan plane; in particular, the V are isomorphic for any

a 6= 0. If a= 0, then V is a commutative polynomial ring.

Proposition 6.5. The reduced point scheme of T is isomorphic to

V (X0) ∪ V (Y2, . . . , Yn)⊆ P(T ∗1 ). In particular, an X0-torsionfree point

module over T must be annihilated by Y2, . . . , Yn.

The point modules over T that are annihilated by Y2, . . . , Yn are param-

eterized by P1.

Proof. The final statement comes directly from the isomorphism of V

with the Jordan plane (if a 6= 0) or with k[X0, X1] (if a= 0).

We multilinearize the relations of T as in [ATVdB90], to compute

the scheme X(2)⊆ P(T ∗1 )×2 parameterizing truncated point modules over

T with Hilbert series 1 + t+ t2. Let the coordinates on P(T ∗1 )×2 be

X0, X1, Y2, . . . , Yn, X
′
0, X

′
1, Y

′
2 , . . . , Y

′
n. We thus obtain an

(
n+1

2

)
× (n+ 1)

matrix A with entries in T1 so that X(2) is defined by the equations

A


X ′0
X ′1
Y ′2
...
Y ′n

= 0.

The rows of A are given by:

A :
[
X1 − aX0 −X0 0 . . .

]
A(k) :

[
0 −Yk . . . X1 − (a+ k)X0 . . .

(k + 1)

]
B(k) :

[
−Yk 0 . . . X0 . . .

(k + 1)

]
C(j, k) :

[
0 . . . Yk . . . −Yj . . .

(j + 1) (k + 1)

]
.

(Here we use (`) to indicate the column of an entry.)

Let X ′ be the projection of X(2) onto the first coordinate. It is standard

that X ′ is defined by the locus where rank(A)< n+ 1. Consider the minor

Ak of A given by rows A, A(k), and B(2)−B(n). In columns j > 2, j 6= k
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the only nonzero entry of Ak is the (j + 1, j + 1) entry X0. Thus

detAk =±Xn−2
0

∣∣∣∣∣∣
X1 − aX0 −X0 0

0 −Yk X1 − (a+ k)X0

−Yk 0 X0

∣∣∣∣∣∣=±kXn
0 Yk.

Since k 6= 0 we have that X ′ is a closed subscheme of V (Xn
1 Y2, . . . , X

n
1 Yn).

Let Y be the reduced point scheme of T . Since T is strongly Noetherian,

for some N we have Y ⊆ P(T ∗1 )×N . Let X be the projection of Y to the

first factor; we have X ⊆X ′. To prove that this projection induces an

isomorphism Y ∼= V (X0) ∪ V (Y2, . . . , Yn) it suffices to prove that each point

of V (X0) ∪ V (Y2, . . . , Yn) corresponds to a point module. That is, if W

is a codimension-1 subspace of T1 with either X0 ∈W or Y2, . . . , Yn ∈W
we must show that T/WT is a point module. If X0 ∈W then T/WT is

isomorphic to the right module over T/X0T defined by factoring out the

image of W . Since T/X0T is commutative any codimension-1 subspace of

(T/X0T )1 defines a point module, so T/WT is a point module over T .

Now suppose that Y2, . . . , Yn ∈W . Then T/WT is isomorphic to the

right module over V given by factoring out the image of W . As V is

isomorphic either to the Jordan plane or to k[X0, X1], we see likewise that

any codimension-1 subspace of T1 that contains Y2, . . . , Yn defines a point

module.

The natural map T → V induces a graded homomorphism ζ : T [X−1
0 ]→

D, where D =Qgr(V ) = V [v−1 : v ∈ V is nonzero and homogeneous]. Let

u=X1X
−1
0 and let t=X0. It is well known that D ∼= k(u)[t, t−1; σ], where

σ(u) = u− a. To check this we verify that we have X1X0 = ut2 = t(u+ a)t=

X0(X1 + aX0).

Our next result computes ζ(R)⊆ k(u)[t; σ]. To prove Theorem 6.1, the

case a= 0 is the only one needed, but we give the general result because it

is of independent interest.

Proposition 6.6. We have ζ(R)∼= V (n), the nth Veronese of V .

Proof. Recall that R=R(n, a), where n> 1. Note also that the subring

of R generated by X0, . . . , Xk is isomorphic to R(k, a) for all 16 k 6 n. We

abuse notation and write R(1, a)⊆R(2, a)⊆ · · · ⊆R(n, a), and use this to

prove the theorem by induction on n. Likewise, we write A(1, a)⊆A(n, a).

We show, for all k, that ζ(Xk) ∈ k[u] · t and, more specifically, that

(6.7) ζ(Xk)t
−1 ∈ k[u] and has leading term

1

k!
uk.
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We need a subsidiary lemma. Recall that the underlying space of R

is the commutative ring A, with multiplication indicated by ∗ in R and

juxtaposition in A. When we write an expression like Xj
1 , we mean the

commutative power; we write X∗j1 to mean the noncommutative power.

Lemma 6.8. For 06 k 6 n, the following hold.

(1) For any f ∈R(1, a), we have

Xk ∗ f −Xkf ∈
k−1∑
i=0

Xi ∗R(1, a) =
k−1∑
i=0

XiA(1, a).

(2)
k∑
i=0

Xi ∗R(1, a) =

k∑
i=0

XiA(1, a).

Proof. Again, we induct on k; the result is trivial for k = 0. Assume we

know the result for k.

(1) We may assume that f is e-homogeneous. We have

Xk+1 ∗ f −Xk+1f =

k+1∑
i=1

Xk+1−i

(
Γ

i

)
(f).

Each Xk+1−i
(

Γ
i

)
(f) is a scalar multiple of Xk+1−if . Thus the right-hand

side is in
∑k

i=0 XiA(1, a) =
∑k

i=0 Xi ∗R(1, a) by induction.

(2) follows directly from (1).

Since ζ(X0), ζ(X1) ∈ k[u][t; σ] we obtain that ζ(R(1, a))⊆ k[u][t; σ].

Since ζ is graded, we have ζ(Xj
1) = fj(u)tj . We have ζ(X∗j1 ) = (ut)j =

u(u− a)(u− 2a) · · · (u− (j − 1)a)tj , which has leading term ujtj . We

immediately obtain from Lemma 6.8(1) (and an elementary induction) that

(6.9) fj = uj + (lower order terms) ∈ k[u].

Assume now that we have shown that (6.7) holds for 0, . . . , k − 1, and

consider the image of Xk
0Xk =X

∗(k)
0 ∗Xk under ζ. Recall that

Yk =Xk +
k∑
p=1

(−1)pXk−pX
p
1

p!Xp
0

.

https://doi.org/10.1017/nmj.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.29


62 C. LECOUTRE AND S. J. SIERRA

Thus

(6.10) ζ(Xk
0Xk) = ζ

Xk
0Yk +

k∑
p=1

(−1)p+1Xk−p
0 Xk−pX

p
1

p!

 .

We know that ζ(Xk
0Yk) = 0 since ζ(Yk) = 0. Applying (6.7), Lemma 6.8(1),

and (6.9), we obtain that

ζ(Xk−p
0 Xk−pX

p
1 ) =

1

(k − p)!
(uk + lower terms)tk+1.

Thus (6.10) reduces to

ζ(Xk
0Xk) =

 k∑
p=1

(−1)p+1

p!(k − p)!

 uk + lower terms

 tk+1.

Since commuting with t does not effect the leading term of a polynomial in

u, it follows that

ζ(Xk) = t−kζ(Xk
0Xk) =

 k∑
p=1

(−1)p+1

p!(k − p)!

 uk + lower terms

 t,

and that ζ(Xk)t
−1 ∈ k[u]. Finally,

k∑
p=1

(−1)p+1

p!(k − p)!
=

k∑
p=0

(−1)p+1

p!(k − p)!
+

1

k!
=

1

k!
,

as needed. We have thus established (6.7) for Xk.

It follows from (6.7) that

(6.11) ζ(R(k, a))1 = k · {t, ut, . . . , ukt}

for all k.

To complete the proof of the proposition, we must identify the ring S =

ζ(R) = k〈t, ut, . . . , unt〉 ⊆ k(u)[t; σa]. Denoting the point [1 : 0] ∈ P1 by ∞,

we may identify S1 with global sections of the sheaf OP1(n∞), multiplied

by t. It is then clear that S is isomorphic to the nth Veronese of the twisted

homogeneous coordinate ring (see [AVdB90]) B(P1,O(1), σa/n). We have

that B(P1,O(1), σa/n) is isomorphic to the Jordan plane if a 6= 0 and to

k[X0, X1] if a= 0 by [Rog14, Example 4.13]. Thus, no matter the value of

a we have S ∼= V (n).

https://doi.org/10.1017/nmj.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.29


A NEW FAMILY OF POISSON ALGEBRAS AND THEIR DEFORMATIONS 63

Note that we have constructed above the homomorphism R(n, a)→
R(1, a/n)(n) that was predicted at the end of Section 2. Taking associ-

ated graded rings, we obtain also the predicted Poisson homomorphism

A(n, a)→A(1, a/n)(n). Further, if we let 16 k 6 n, then factoring out

X0, . . . , Xn−k and applying this construction to the factor we obtain a

surjection R(n, a)→R(1, (a+ n− k)/k)(k) and thus a P1 of point modules

corresponding to point modules of R(1, (a+ n− k)/k). These modules are

all predicted by the discussion in Section 2. In a sense the striking content

of Theorem 6.1 is that there are no other point modules for R(n, a).

We now prove Theorem 6.1.

Proof of Theorem 6.1. By Theorem 5.4, it suffices to prove the result for

right point modules. We prove the result by induction on n, first noting

the result is trivial for n= 1, since point modules over R=R(1, a) are

in bijection with codimension-1 subspaces of R1 for any a. Thus we may

suppose that n > 1. Since R(n, a) is a Zhang twist of R(n, 0) (Theorem 4.2),

by [Zha96] it suffices to prove the result for R=R(n, 0).

Let M =R/J be a point module, and recall the definition of the

homomorphism ζ from just before Proposition 6.6. We claim that J = J1R.

If X0 6∈ J then by Lemma 6.3 M is X0-torsionfree and by Proposition 6.4, M

is also an X0-torsionfree T -point module. Thus MYk = 0 for k ∈ {2, . . . , n}
by Proposition 6.2, soM is annihilated by ker ζ. By Proposition 6.6, R/ ker ζ

is isomorphic to k[X, Y ](n). The claim follows from the fact that if J is a

right ideal of k[X, Y ](n) such that (k[X, Y ](n))/J is a point module, then J

is generated in degree one.

We may thus view the point scheme X of R as contained in P(R∗1), where

M =R/J corresponds to the codimension-1 subspace J1 ⊆R1. By slight

abuse of notation, we regard a point module M as a closed point of the point

scheme X ⊆ P(R∗1). Let Z(1) be the Zariski closure of {M =R/J | X0 6∈ J}.
Then ker ζ ⊆ J for all M =R/J in Z(1). Thus Z(1) is isomorphic to the

point scheme of R/ ker ζ ∼= k[X, Y ](n), which is the image of the degree n

Veronese map from P1→ Pn; in other words, a degree n rational normal

curve in P(k[X, Y ]∗n) = P(R∗1).

It remains to consider the case of point modules annihilated by X0. By

induction (using Proposition 3.7 as usual), these form a bouquet of n− 1

rational normal curves in V (X0), and the result follows.

Remark 6.12. Let a, b ∈ k, and let φb be the automorphism of R(n, a)

defined in Lemma 4.3. It is easy to see that φb extends to an automorphism of
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R(n, a)[X−1
0 ] =:R◦(n, a). By Corollary 4.7, we have φbR◦(n, a)∼=R◦(n, a+

b). Let ∗a denote multiplication inR(n, a). Since [X0, Yk] = 0 inR◦(n, a+ b),

we have

φb(Yk) ∗a X0 = φb(X0) ∗a Yk =X0 ∗a Yk = Yk ∗a X0,

so φb(Yk) = Yk. It follows that ker ζ is φb-invariant. One can use this to give

an alternate proof of the X0-torsionfree case of Theorem 6.1.

§7. Primes of R and Poisson primes of A

The results of the previous section construct surjections from R(n, a) to

R(1, a′)(n−k) for all 06 k < n (where a′ depends on a, n, and k). The kernels

of these maps are of course prime ideals, and are in some sense independent

of a: for example, the kernel of the map R(n, a)→R(1, a/n)(n) is generated

by Y2, . . . , Yn no matter the value of a. (This is a slight abuse of notation,

since Y2, . . . , Yn are in the localization R(n, a)[X−1
0 ].) We see that, similar to

the above, the d-graded prime spectrum of R(n, a) is largely independent

of a. On the other hand, the ungraded primes of R(n, a) depends very

sensitively on a.

First, though, we explore the connection between primes of R(n, a) and

Poisson primes of A(n, a). It is well known that there is often a close

relationship between prime ideals of a noncommutative ring R and Poisson

primes of its semiclassical limit. Fix n and a and let R=R(n, a) with

multiplication ∗a. Let A=A(n, a) with Poisson bracket {−,−}a. We show

that SpecR= PSpecA in the strongest possible sense. That is, we prove:

Theorem 7.1. Let P ⊆A=R. Then:

(1) P ∈ SpecR if and only if P ∈ PSpecA, and further every prime ideal

of R is completely prime;

(2) P is a primitive ideal of R if and only if P is a Poisson primitive ideal

of A.

In the statement of Theorem 7.1, recall that an ideal I of a ring R is

called left (respectively right) primitive if it is the annihilator of a simple

left (respectively right) R-module. Thanks to Theorem 5.4 the two notions

coincide for the ring R(n, a) and we do not specify left or right for a primitive

ideal in this article. An ideal P of a Poisson ideal A is called Poisson

primitive if it is the largest Poisson ideal contained in a maximal ideal

of the commutative ring A.
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We further give a stratification of SpecR= PSpecA, and show the strata

are homeomorphic to commutative (projective, projective-over-affine, or

affine) varieties. We compute also the d-homogeneous primes of R, and

show that (if a 6∈ Z) they do not depend on the precise value of a.

Jordan’s work [Jor14] on Poisson algebras and Ore extensions is crucial to

this section. The following is a slight strengthening of [Jor14, Theorem 3.6].

Proposition 7.2. Let B be a Noetherian k-algebra that is a domain

and let δ be a nonzero derivation of B. Let R=B[z; δ], which we write as

the left B-module R=
⊕

n>0 Bz
n, with multiplication ∗ such that

(7.3) z ∗ b= b ∗ z + δ(b) for b ∈B.

Let A be the Poisson–Ore extension (B[z], {−,−}δ) (see [Jor14, Lemma

3.1]); as a ring A=B[z], with Poisson bracket defined by

(7.4) {azm, bzn}δ = (maδ(b)− nbδ(a))zm+n−1.

Let P ⊆R=A. Then: P ∈ SpecR if and only if P ∈ PSpecA. Further, if

P ∈ SpecR= PSpecA, then either P ⊇ δ(B) or P is generated by the δ-

invariant prime ideal P ∩B of B.

For the proof of Proposition 7.2, recall that a δ-ideal I of B is an ideal I

with δ(I)⊂ I. The δ-ideal I is δ-prime if for all δ-ideals J, K of B, we have

that JK ⊆ I implies that J ⊆ I or K ⊆ I. Since char k = 0, a δ-prime ideal

of B is prime by [Goo06, Lemma 1.1].

Proof of Proposition 7.2. This proof is largely a recapitulation of the

proof of [Jor14, Theorem 3.6], pointing out that the homeomorphism

constructed there is in fact the identity map. Let J = δ(B)B. For any δ-

ideal Q of B, we have Q ∗R=R ∗Q=QA=Q[z] (using the identification

of R with A as left B-modules). In particular, this holds for Q= J .

Let P ⊆A=R and suppose that either P ∈ SpecR or P ∈ PSpecA. If

J ⊆ P then P ⊇ JA= J ∗R=R ∗ J . From (7.3), the two multiplications on

the graded vector space A/JA=R/J ∗R are equal, and the induced Poisson

bracket on A/JA is trivial. Let C =R/J ∗R=A/JA. Then J ⊆ P ∈ SpecR

holds if and only if P/J ∗R= P/JA ∈ Spec C = PSpec C, if and only if

J ⊆ P ∈ PSpecA.

Now suppose that J 6⊆ P and let Q= P ∩B; note Q is a δ-prime ideal of

B. By [Jor14, Lemma 3.2], if P ∈ PSpecA then P =QA=Q ∗R, and thus
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P ∈ SpecR. But by [Jor14, Lemma 3.3], if P ∈ SpecR then P =Q ∗R=QA

and P ∈ PSpecA.

Finally, we note that the results in [Jor14] are stated for k = C, but are

valid over any field of characteristic 0.

We now prove Theorem 7.1. Recall from Section 3 that R◦ =R[X−1
0 ] and

A◦ =A[X−1
0 ].

Proof of Theorem 7.1. (1) If n= 1 the result is well known. So let n > 1

and let P ⊆A=R.

First suppose that X0 6∈ P . Let P ◦ := P [X−1
0 ] = P +X−1

0 P + · · · ⊆A◦ =

R◦. If P ∈ SpecR or P ∈ PSpecA then P = P ◦ ∩A. So it suffices to prove

that P ◦ ∈ SpecR◦ ⇐⇒ P ◦ ∈ PSpecA◦. This is an immediate application of

Lemma 3.26 and Proposition 7.2. That prime ideals of R◦ are completely

prime is shown in [Sig84] (see also [Jor14, Remark 3.7]) and the rest of (1)

follows immediately for P .

Now suppose that X0 ∈ P . If P ∈ SpecR or P ∈ PSpecA then X0 ∗R=

X0A⊆ P , and (1) follows by induction, considering the image of P in

PSpecA/〈X0〉= SpecR/〈X0〉.
For (2) the case X0 6∈ P follows from [Jor14, Corollary 4.4], applied to

P ◦ ⊆R◦ =A◦, and the case X0 ∈ P follows by induction, as above.

We turn now to describing the topological space SpecR= PSpecA. We

note that this space has a natural stratification: for 06 j 6 n+ 1, let

Specj(R) = {P ∈ Spec(R) |Xi ∈ P if and only if 06 i < j}.

It is immediate that SpecR is the disjoint union of the Speci(R). By Propo-

sition 3.7, we have Specj R
∼= Specj−1 R(n− 1, a+ 1). Thus to describe the

primes of R explicitly, it suffices by induction to describe the open stratum

Spec0 R. We have Spec0(R)∼= SpecR◦ = PSpecA◦, using (the proof of)

Theorem 7.1.

Before describing PSpecA◦ = SpecR◦, we establish some notation. Let

K be a commutative ring. By PK(2, . . . , n) we denote the weighted

projective space P(2, . . . , n) with base SpecK: explicitly, PK(2, . . . , n) =

ProjK[Y2, . . . , Yn] (see [Har77, page 76]), where K is assumed to be

concentrated in degree 0, and deg Yi = i.

If C is a graded ring, let Specgr(C) be the set of prime graded ideals of

C, under the Zariski topology; if C has multiple gradings, say d and e, we

write Specd−gr(C) or Spece−gr(C) to indicate which grading is being used.

Likewise, let PSpecd−gr(A
◦) = {d-graded Poisson primes of A◦}.
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For n> 2 let C(n) = k[Z2, . . . , Zn], graded with deg Zi = i. Let X(n) =

Specgr C(n). Note that X(n) = Pk(2, . . . , n) t {C(n)+ = 〈Z2, . . . , Zn〉} and

is (n− 2)-dimensional.

The structure of PSpecA◦ = SpecR◦ depends sensitively on the value of

a, as shown in the next result.

Theorem 7.5. Assume that n> 2.

(1) If a 6∈Q, then PSpecA◦ is homeomorphic to X(n). Further, all primes

of R◦ and Poisson primes of A◦ are d-graded.

(2) If a ∈Q×, then PSpecA◦ is homeomorphic to the rational affine variety

Spec Z, where Z is the Poisson center of A◦, and has dimension

(n− 1). Further, PSpecd−gr(A
◦) is homeomorphic to X(n).

(3) If a= 0, then PSpecA◦ is the disjoint union of a stratum homeomorphic

to Pk[X±1
0 ](2, . . . , n) and PSpecA◦/(Y2, . . . , Yn)∼= A2 r V (X0) and has

dimension max{n− 1, 2}. We have that PSpecd−gr(A
◦) is the disjoint

union of a stratum homeomorphic to P(2, . . . , n) and a stratum home-

omorphic to A1.

(4) Further, as long as a 6= 0, then PSpecd−gr(A
◦) does not depend on a:

that is, an ideal P of k[X0, . . . , Xn] is a Poisson prime of some A(n, a)◦

(with a 6= 0) if and only if P is a Poisson prime of all A(n, a)◦.

We immediately obtain:

Corollary 7.6. Let n> 1 and let a ∈ k. Then SpecR(n, a)∼=
PSpecA(n, a) is a union of quasiprojective rational varieties and has

dimension:

• max{n− 2, 1} if a 6∈Q;

• max{n− 1, 1} if a ∈Q and (n, a) 6∈ {(2,−1), (1, 0)};
• 2 if (n, a) ∈ {(2,−1), (1, 0)}.

Proof. Combine Theorem 7.5, Proposition 3.7, and Example 3.16.

Example 7.7. In the case a ∈Q×, it is not necessarily true that Poisson

primes of A◦ are centrally generated. For example, let n= 2 and a=−7/4.

Recall that Y2 =X2 − (X2
1/2X0). Then ∆(Y2) = 0 and Γ(Y2) = (1/4)Y2. By

Proposition 3.21, Y2 is Poisson normal in A◦.

We see that the Poisson center of A◦ is Z = k[X0Y
7

2 ], so the Poisson ideal

〈Y2〉 of A◦ is not centrally generated. However, Y2 is the unique Poisson

prime of A◦ with 〈Y2〉 ∩ Z = 〈X0Y
7

2 〉.
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The situation in the example is typical. Theorem 7.5(2) will follow from:

Proposition 7.8. Assume that a ∈Q×. The map

φ : PSpecA◦ → Spec Z

P 7→ P ∩ Z

is a homeomorphism. The inverse map is defined by

ψ : Spec Z → PSpecA◦

Q0 7→
√
Q0A◦.

Further, Spec Z is a rational variety of dimension n− 1.

As an immediate consequence, we have:

Corollary 7.9. If a ∈Q×, the map P 7→ P [X−1
0 ] ∩ Z induces a home-

omorphism between PSpec(A) r V (X0)∼= PSpec(A◦) and Spec(Z).

Proposition 7.8 will follow from a general lemma on gradings of localized

polynomial rings.

Lemma 7.10. Let B = k[X±1
0 , X1, . . . , Xm], where deg Xi = ai ∈ Z.

Assume that a0 6= 0. Write the Z-grading on B as B =
⊕

n∈Z Bn, and let

Z =B0.

Let Q0 ∈ Spec Z and let N =
√
Q0B. Then:

(1) N is prime;

(2) Kdim(B/N) = 1 + Kdim(Z/Q0).

(3) The map Q0 7→
√
Q0B gives a homeomorphism η : Spec Z→ Specgr(B).

The inverse map is given by Q 7→Q ∩ Z. Further, Spec Z is a rational

variety of dimension n− 1: that is, the fraction field Frac(Z) of Z is

isomorphic to k(t0, . . . , tn−2).

Proof. (1) Let B′ =
⊕

k∈Z Bka0
∼= Z[X±1

0 ]. Suppose that N is not prime;

then there are x, y 6∈N with xy ∈N , so (xy)m ∈Q0B and (xy)mp ∈Q0B
′

for some m, p ∈ Z>1. Thus either xmp or ymp is in Q0B, since Q0B
′ ⊆Q0B

is a prime ideal of B′. This is a contradiction.

(2) Since B is module-finite over B′, therefore B/Q0B is module-

finite over B′/Q0B
′ ∼= (Z/Q0)[X±1

0 ]. Thus KdimB/N = KdimB/Q0B =

KdimB′/Q0B
′ = 1 + Kdim Z/Q0.
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(3) Let C = Z rQ0 and let T =BC−1/NC−1. Since N is graded and

prime, T is a graded domain. Let d= min{k ∈ Z>0 | Tk 6= 0} and let 0 6=
x ∈ Td.

We claim that T ∼= Frac(Z/Q0)[x±1]. Certainly T0 = ZC−1/Q0C−1 ∼=
Frac(Z/Q0). Now, X0 and X−1

0 map to nonzero elements of T under

the natural map B→ T . By abuse of notation, let X0 also denote the

image of X0 in T . A straightforward combinatorial argument shows that

T =
⊕

k∈Z Tkd. In particular, a0 = d` for some ` and so x`(X0)−1 ∈ T0 is

invertible. Thus x is invertible in T . It follows that Tdk = T0x
k for all k,

completing the proof of the claim.

Since T ∼= Frac(Z/Q0)[x±1] is a Laurent polynomial ring over a field, it

has no nontrivial graded ideals. Now, Specgr T is in bijection with

{Q ∈ Specgr B |Q⊇N, Q ∩ C = ∅}= {Q ∈ Specgr B |Q ∩ Z =Q0},

where we have used part (1) of the lemma. Thus there is only one such Q,

namely N .

Define θ : Specgr B→ Spec Z by θ(Q) =Q ∩ Z. The argument above

shows that if Q ∈ Specgr B, then Q= ηθ(Q). Since θη is easily seen to be the

identity on Spec Z, therefore θ = η−1. As η and θ clearly preserve inclusions,

they are continuous and thus homeomorphisms.

Since Z is a normal semigroup algebra, Spec Z is rational.

We next give an explicit characterization of Poisson primitive ideals of A◦

if a ∈Q. By Theorem 7.1 these are the same as the primitive ideals of R◦.

Recall from the end of Section 3 that we define a grading A◦ =
⊕

e∈k A
◦(e)

by setting A◦(e) to be the e-eigenspace of Γa. Moreover, notice that (A◦)∆

is an e-graded subalgebra of A◦.

Corollary 7.11. If a ∈Q× then PSpecA◦ is homeomorphic to Spec Z.

Furthermore, a Poisson prime P of PSpecA◦ is Poisson primitive if and

only if P ∩ Z is a maximal ideal of Z.

Proof. Let B = k[X±1
0 , Y2, . . . , Yn] = (A◦)∆. Let Z be the Poisson center

of A◦. By Proposition 3.21, Z =BΓa =B(0). Since a 6= 0, X0 ∈ δ(B) so no

nontrivial ideal of A◦ can contain δ(B). By Proposition 7.2, there is an

inclusion-preserving bijection ρ between PSpecA◦ and the set of δ-prime

ideals of B, defined by ρ(P ) = P ∩B. Note that a δ-prime of B is the same

as an e-graded prime of B. Thus by Lemma 7.10 the map φ= θρ : SpecA◦→
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Spec Z is a homeomorphism. The inverse to φ is

ψ = ρ−1η :Q0 7→A◦(
√
Q0B) =

√
Q0A◦.

By [Jor14, Corollary 4.4], P ∈ PSpecA◦ is Poisson primitive if and only if

P ∩B is a δ-primitive ideal of B, that is, P ∩B is the largest δ-stable ideal

of B contained in some maximal ideal M . Since an ideal of B is δ-stable

⇐⇒ it is Γa-stable, a δ-primitive ideal of B is a maximal e-graded ideal

of B, and by Lemma 7.10 these are precisely ideals of the form ψ(M0) for

M0 = P ∩B ∩ Z = P ∩ Z ∈maxspec Z.

We next assume that a 6= 0, and consider d-graded Poisson primes of

A◦, which by Theorem 7.1 may be identified with d-graded primes of R◦.

For 26 i6 n, let Zi = YiX
−1
0 and C = k[Z2, . . . , Zn]. The e-grading on A◦

restricts to C, with e(Zi) = i.

Proposition 7.12. If a 6= 0, then PSpecd−gr(A
◦) is homeomorphic to

Spece−gr(C)∼=X(n). Further, as long as a 6= 0, then PSpecd−gr(A
◦) does

not depend on a in the sense of Theorem 7.5(4).

Proof. Note that C is precisely B0 = {b ∈B | b is d-homogeneous

of degree 0}. As in the proof of Corollary 7.11, there is an inclusion-

preserving bijection between PSpec(A◦) and Spece−gr(B), and it is clear

that this bijection takes d-graded primes to d-graded primes: in other

words, PSpecd−gr(A
◦) is homeomorphic to the set of (d, e)-bigraded primes

of B, via the map P 7→ P ∩B. Since B = C[X±1
0 ] is strongly d-graded,

we have Specd−gr(B)∼= Spec C. Thus PSpecd−gr(A
◦) is homeomorphic to

Spece−gr(C) via P 7→ P ∩ C. But Spece−gr(C) is homeomorphic by definition

to X(n).

For the final statement, note that the definition of C, the e-grading on C,

and the restriction homeomorphism PSpecd−gr(A
◦)→ Spece−gr(C) do not

depend on the value of a.

The result above is particularly strong if a 6∈Q, since we then have:

Proposition 7.13. If a 6∈Q, then all Poisson primes of A◦ are d-

graded.

Proof. We have seen that PSpec(A◦)∼= Spece−gr(B), where B =

k[X±1
0 , Y2, . . . , Yn]. Let S = {e(b) | b ∈B}, which is clearly equal to Za+ N.

Since a 6∈Q, we have S∼= Z⊕ N as a semigroup, and it follows that if b ∈B
is e-homogeneous then b is d-homogeneous.
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We now combine the previous results to prove Theorem 7.5.

Proof of Theorem 7.5. (1) follows from Propositions 7.12 and 7.13, and

(2) is Corollary 7.11 and Proposition 7.12 again.

For (3), let B+ =
∑
BYi; we have B+ = δ(B)B. Note that by Proposi-

tion 7.2, PSpecA◦ is equal to the disjoint union of:

(7.14) {P =QA◦ | Q 6⊇B+ is a δ-prime ideal of B}

and

(7.15) {P | P is a prime ideal of A◦ with P ⊇B+}.

As we have repeatedly seen above, δ-prime ideals of B are the same as

e-graded ideals: that is, (7.14) is homeomorphic to

{Q ∈ Spece−gr B | Q 6⊇B+} ∼= ProjB = Pk[X±1
0 ](2, . . . , n).

On the other hand, (7.15) is clearly homeomorphic to the spectrum of

A◦/(Y2, . . . , Yn)∼= k[X±1
0 , X1] (with trivial Poisson bracket).

Finally, (4) follows from Proposition 7.12.

Corollary 7.16. If a 6∈ {−n+ 1, . . . ,−1, 0} then PSpecd−gr A(n, a) =

Specd−gr R(n, a) does not depend on a. In particular SpecR(n, a)∼=
SpecR(n, b) for any a, b /∈Q.

Proof. Combine Theorem 7.5(4), Proposition 3.7, and induction. The

second assertion follows from Proposition 7.13.

§8. Dixmier–Moeglin equivalences and skewfields

In this section we show that the algebra R(n, a) satisfies the Dixmier–

Moeglin equivalence (DME). Recall that primitive ideals are annihilators

of simple modules. In particular they are not easily distinguished among

the primes. The DME characterizes them with algebraic and topological

properties. A prime ideal P in a Noetherian ring R is said rational provided

that the field Z(FracR/P ) is algebraic over the ground field, and is said

locally closed if the point {P} is locally closed in SpecR (with respect to the

Zariski topology). We say that the Dixmier–Moeglin equivalence holds for a

given Noetherian algebra if the sets of primitive ideals, locally closed ideals

and rational ideals coincide. This idea originated in the work of Dixmier and

Moeglin who showed that for any finite-dimensional complex Lie algebras,

theses sets are equal.
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Thanks to our result on the DME we prove a transfer result which says

that the Poisson algebra A(n, a) satisfies a similar equivalence, the so-called

Poisson Dixmier–Moeglin equivalence (PDME), which we recall later. To

prove our results on the DME we relate R(n, a) to the enveloping algebra

of a solvable Lie algebra sitting inside the localization R(n, a)◦. With the

Gelfand–Kirillov conjecture [GK66, Section 5] in mind, this motivated us to

investigate the skewfield of fractions of R(n, a) at the end of this section.

Let R=R(n, a) and recall that R◦ =R[X−1
0 ]. We denote by T the subal-

gebra of R◦ generated by X0, X1, Y2, . . . , Yn. Setting C := k[X0, Y2, . . . , Yn]

we have that T = C[X1; δ], where δ =X0Γa is a derivation of the com-

mutative ring C. Moreover, we set Y0 :=X0 and we denote by ga the n-

dimensional solvable Lie algebra with basis elements Y0, X, Y2, . . . , Yn and

Lie brackets

(8.1) [X, Yi] = (a+ i)Yi [Yi, Yj ] = 0 for all i, j.

In particular sending Yi to Yi and X to Y −1
0 X1 we obtain the isomorphism

(8.2) U(ga)[Y
−1

0 ]∼= T [Y −1
0 ]∼=R◦.

We now state the main result of this section.

Theorem 8.3. The algebra R(n, a) satisfies the DME for any a ∈ k and

n> 1.

The proof of Theorem 8.3 relies on the following lemmas.

Lemma 8.4. Let P ∈ SpecR and suppose that X0 ∈ P . Then P is locally

closed in SpecR if and only if P/〈X0〉 is locally closed in SpecR/〈X0〉.

Proof. This follows from the isomorphism (R/〈X0〉)/(P/〈X0〉)∼=R/P .

For P ∈ SpecR with X0 /∈ P , we set P ◦ := P [X−1
0 ] ∈ SpecR◦.

Lemma 8.5. Let P ∈ SpecR and suppose that X0 /∈ P . Then P is locally

closed in SpecR if and only if P ◦ is locally closed in SpecR◦.

Proof. It is enough to prove the lemma for P = 〈0〉. Recall that 〈0〉 is

locally closed if and only if 〈0〉 6=
⋂
{Q ∈ SpecR |Q 6= 〈0〉}. We set

I1 =
⋂

〈0〉6=Q∈SpecR

Q and I2 =
⋂

〈0〉6=T∈SpecR◦

T.
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Suppose that I1 6= 〈0〉 and let 〈0〉 6= U ∈ I1. Then U ∈ I2 and I2 6=
0. Reciprocally if I2 6= 〈0〉, then there exists U nonzero inside⋂
〈0〉6=Q∈SpecR and X0 /∈Q Q (recall that prime ideals are completely prime in

R, see assertion (1) of Theorem 7.1). Then UX0 belongs to any nonzero

Q ∈ SpecR and I1 6= 〈0〉.

We can now prove Theorem 8.3.

Proof of Theorem 8.3. We proceed by induction on n. It is well known

that the Jordan plane R(1, a) (a 6= 0) and the commutative polynomial ring

R(1, 0) satisfy the DME, so that the base case n= 1 is true. Suppose that

R(n− 1, b) satisfies the DME for any b ∈ k and n > 1. By [BG02, II.7.17] the

algebra R satisfies the (noncommutative) Nullstellensatz. Then by [BG02,

II.7.15] we have the implications locally closed ⇒ primitive ⇒ rational. It

remains to prove that rational implies locally closed.

Let P ∈ SpecR be rational. Suppose first that X0 ∈ P . Then

Z

(
Frac

R/〈X0〉
P/〈X0〉

)
∼= Z

(
Frac

R

P

)
and P/〈X0〉 is rational in R/〈X0〉. Since R/〈X0〉 ∼=R(n− 1, a+ 1) satisfies

the DME by the induction hypothesis, the prime P/〈X0〉 is locally closed.

We conclude that P is locally closed by Lemma 8.4.

Suppose now that X0 /∈ P . Then

Z

(
Frac

R◦

P ◦

)
∼= Z

(
Frac

R

P

)
and P ◦ is rational in R◦. Since the algebra U(ga) satisfies the DME over k
by [IS80], the localization U(ga)[X

−1
0 ]∼=R◦ satisfies the DME. Then P ◦ is

locally closed in SpecR◦ and we conclude that P is locally closed in SpecR

by Lemma 8.5.

The second main theorem of the section is that A(n, a) satisfies the

Poisson Dixmier–Moeglin equivalence, which we define here. Recall from

Section 7 that a Poisson primitive ideal is by definition the largest Poisson

ideal contained inside a maximal ideal. Let A be a Poisson k-algebra and

P ∈ PSpec(A). The ideal P is said locally closed if the point {P} is a locally

closed point of PSpec(A) and is said Poisson rational provided the field

ZP
(

Frac(A/P )
)

is algebraic over the ground field k. We say that the Poisson

Dixmier–Moeglin equivalence holds for the Poisson algebra A if the sets
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of Poisson primitive ideals, of locally closed Poisson ideals and of Poisson

rational ideals coincide. Our proof proceeds via a transfer result for the

PDME.

Theorem 8.6. The algebra A(n, a) satisfies the PDME for any a ∈ k
and n> 1.

Recall that we set A◦ :=A[X−1
0 ]. We first prove two lemmas. An algebra

is catenary if for every pair of distinct prime ideals P ⊂Q all saturated

chains of prime ideals from P to Q have the same length.

Lemma 8.7. Let S be a catenary and Noetherian k-algebra with finite

GK dimension and let P ∈ Spec S. Then

{Q ∈ Spec S | ht(Q) = ht(P ) + 1} is finite ⇒ P is locally closed,

where ht(P ) is the height of P , that is, the supremum of the length of chains

of prime ideals descending from P .

Proof. Since S is catenary we can assume that P = 〈0〉. Suppose that

S has only finitely many height one prime ideals, namely, P1, . . . , P`.

Since S has finite GK dimension, it satisfies the DCC on prime ideals.

In particular any nonzero P ∈ Spec S contains one of the Pi and therefore

{〈0〉}= Spec S \ V (∩iPi) is open in its closure.

Lemma 8.8. The ring R=R(n, a) is catenary for any a ∈ k and n ∈
Z>0.

Proof. Thanks to [BG02, II.9.5], Lemma 3.6 and the proof of Theo-

rem 3.8, we only need to prove that SpecR has normal separation, that is,

for every distinct pair P ⊂Q of comparable primes in R the ideal Q/P of

R/P contains a nonzero normal element of R/P .

We proceed by induction on n. Let P ⊂Q be a pair of comparable primes

in R. The proof split into three cases.

First assume that X0 ∈ P , so that X0 ∈Q. Then P/〈X0〉 ⊂Q/〈X0〉 inside

R/〈X0〉 ∼=R(n− 1, a+ 1), and we are done by induction.

Next assume that X0 /∈Q, so that X0 /∈ P . Then P ◦ ⊂Q◦ inside R◦ ∼=
U(ga)[X

−1
0 ]. Since ga is solvable Spec U(ga) has normal separation by

[GW89, Theorem 12.19]. It is then easy to see that Spec U(ga)[X
−1
0 ]∼=R◦

has normal separation. Hence there exists a nonzero normal element U in

Q◦/P ◦ ∼=Q/P [X−1
0 ] (where we denote again by X0 its image in the quotient
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Q/P ). In particular there is an integer `> 0 such that UX`
0 is a nonzero

normal element in Q/P (recall that X0 is normal in R).

Finally suppose that X0 /∈ P and X0 ∈Q. Then X0 ∈Q \ P and is normal

modulo P as it is already normal in R.

We now prove Theorem 8.6.

Proof of Theorem 8.6. By [Oh99, Propositions 1.7, 1.10] we have the

implications Poisson locally closed⇒ Poisson primitive⇒ Poisson rational.

Let P be a Poisson rational ideal of A. Then by [BLLM, Theorem 8.3] the

set {Q ∈ PSpecA | ht(Q) = ht(P ) + 1} is finite. Since PSpecA= SpecR,

the set

{Q ∈ SpecR | ht(Q) = ht(P ) + 1}= {Q ∈ PSpecA | ht(Q) = ht(P ) + 1}

is finite. By Lemma 8.7 we conclude that P is locally closed in SpecR, hence

P is locally closed in PSpecA since PSpecA= SpecR.

To end the section we investigate the structure of the skewfield of fractions

FracR of the Noetherian domain R.

Recall the definition of the solvable Lie algebra ga from (8.1). By Equation

(8.2), R◦ is isomorphic to a localization of the enveloping algebra U(ga).

Then by [BGR73, Jos77, McC74], the skewfield FracR is isomorphic to a

Weyl skewfield, when k is algebraically closed and when the Lie algebra ga
is algebraic. From [GK66, Section 8] we note that this algebra is algebraic if

and only if a ∈Q. In that case we provide an explicit description of this

Weyl skewfield, and we show that FracR is not isomorphic to a Weyl

skewfield when a /∈Q. Moreover, we prove these results over a field of

characteristic zero that is not necessarily algebraically closed. Recall that

R◦ =B[X1;X0Γa], where B = k[X±1
0 , Y2, . . . , Yn].

For any field K and ε, a ∈K, let hε,a(K) be the 3-dimensional solvable Lie

algebra over K with basis {x, y, z} and Lie bracket [x, y] = εy, [x, z] = az

and [y, z] = 0.

Proposition 8.9. We have FracR∼= Frac U(ga)∼= Frac U(hε,a(K))

where K =
(
Qgr(B)

)
0

is a field of transcendence degree n− 2 over k, and

where ε= 2 if n= 2 and ε= 1 if n > 2.

Proof. We define a Z2-grading f on B as follows. Set f(X±1
1 ) = (±1, 0)

and f(Yi) = (1, i) for all i= 2, . . . , n. This is a combination of the d-grading

and the ε-grading. Note that if u ∈B has degree (0, 0), then u ∈ ker Γa.
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We now form the graded quotient ring E :=Qgr(B) of B by inverting all its

homogeneous elements

E =B[h−1 | h f -homogeneous].

Note that E is also Z2-graded by a grading denoted f again. It is a standard

fact that E ∼=K[s±1, t±1], where K = E(0,0) is a field such that

trdegk K = trdegk B − 2 = n− 2,

and where 0 6= s ∈ E(1,0) and 0 6= t ∈ E(0,ε). By definition ε := min{α>
1 | E(0,α) 6= 0}. For instance we can choose s=X0 and t= Y2X

−1
0 when

n= 2, or t= Y3Y
−1

2 when n > 2. Thus we have

FracR= Frac E[X1;X0Γa] = FracK[s±1, t±1][X1;X0Γa].

For u ∈K we have X1u− uX1 = Γa(u) = 0 since f(u) = (0, 0), and u

commutes also with s and t since E is commutative. Moreover, we get

X1s− sX1 =X0Γa(X0) = aX2
0

X1t− tX1 =X0Γa(t) = εX0t.

We conclude by setting X ′1 :=X1X
−1
0 that X ′1s− sX ′1 = aX0 = as and

X ′1t− tX ′1 = εt. Since s, t ∈B we have st= ts and the result follows by

setting x :=X ′1, y := t and z := s.

Remark 8.10. Generators of the field K can be obtained by solving the

system of equations {
u0 + u2 + · · ·+ un = 0,

2u2 + 3u3 + · · ·+ nun = 0.

Setting Y0 :=X0 and Zi := YiY
−(n−i)
n−1 Y n−i−1

n for i ∈ {0, 2, . . . , n− 2} we

have K = k (Z0, Z2, . . . , Zn−2). Note that K is purely transcendental over

k of transcendence degree n− 2.

Theorem 8.11. When a ∈Q the skewfield FracR is isomorphic to the

first Weyl skewfield D1(F ) over a field F of transcendence degree n− 1 over

k. When a /∈Q, we have Z(FracR) =K, and FracR is not isomorphic to

any Weyl skewfield.
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Proof. The skewfield of the enveloping algebra of the Lie algebra hε,a(k)

is either isomorphic to the first Weyl skewfield over a field of transcendence

degree 1 over k when a is rational, or has a trivial center when a is

irrational. This is a classical fact that can be found in [GK66, Section 8]

and [Ric02, Proposition 1.2.4.1 and Remark after]. The result follows from

Proposition 8.9 and the isomorphism U(hε,a(K))∼= U(hε,a(k))⊗k K.

Remarks 8.12.

(1) Let a ∈Q and suppose that a= p/q ∈Q with gcd(p, q) = 1 (when a= 0

we have p= 0 and we set q = 1). Setting Z :=Xq
0Y

p
2 Y
−p

3 we obtain

F = k(Z, Z0, Z1, . . . , Zn−2)

where the Zi’s are defined in Remark 8.10.

(2) For a, b ∈Q it is clear that FracR(n, a)∼= FracR(n, b) since both are

isomorphic to a Weyl skewfield over a field of transcendence degree

n− 2. When a /∈Q and b=±a+ n for some n ∈ Z, it is easy to

verify that the skewfields FracR(n, a) and FracR(n, b) are isomor-

phic. However, it remains unclear whether or not this condition is

also necessary for an isomorphism FracR(n, a)∼= FracR(n, b) when

a, b /∈Q.

Using similar methods we can prove the following result about the Poisson

structure of the field Frac(A). For a Lie algebra g we denote by S(g)

its symmetric algebra that we endow with the so-called Kirillov–Kostant–

Souriau Poisson bracket, that is the Poisson bracket obtained by extending

by bi-derivation and bi-linearity the Lie bracket of g inside S(g)

{X, Y } := [X, Y ]g

for any X, Y ∈ g.

Theorem 8.13. As Poisson algebras, we have FracA∼= Frac S(ga)∼=
Frac S(hε,a(K)). Moreover, if a ∈Q then FracA is isomorphic to the field of

fractions of the Poisson algebra P = F [X, Y ], where {X, Y }= 1 and where

F is the field described in Remark 8.12. When a /∈Q, the Poisson center of

FracA is K and FracA is not isomorphic to Frac P.

§9. Examples of spectra

In this final section we study PSpecA(n, a) and SpecR(n, a) for small

values of n. Since these two spectra are equal it is enough to describe

https://doi.org/10.1017/nmj.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.29


78 C. LECOUTRE AND S. J. SIERRA

PSpecA(n, a). Because we give explicit description of these spectra we

assume that k is algebraically closed in this section.

Example 9.1. Let n= 1 and consider A=A(1, a). If a= 0 then

A(1, a) = k[X0, X1] with trivial Poisson bracket and thus

PSpecA= Spec k[X0, X1].

Suppose that a 6= 0. Then A is isomorphic to the Poisson–Jordan plane (see

Example 3.16). It is well known that its Poisson spectrum is

{〈0〉, 〈X0〉, 〈X0, X1 − λ〉 | λ ∈ k}

and that the d-graded primes are 〈X0〉, 〈X0, X1〉. Moreover, only 〈X0〉 is

not Poisson primitive.

Assume that n> 2 and that a ∈Q×. We denote by PSpec1 A(n, a) the set

of Poisson prime ideals of A that contain X0 and by PSpec0 A(n, a) the set of

Poisson prime ideals of A that do not contain X0. Since A(n, a)/〈X0〉 ∼=
A(n− 1, a+ 1) by Proposition 3.7 there is a homeomorphism:

PSpec1 A(n, a)∼= PSpecA(n− 1, a+ 1).

On the other hand by Theorem 7.5 there is a homeomorphism

PSpec0 A(n, a)∼= Spec(Z),

where Z is the Poisson center of A◦ =A(n, a)[X−1
0 ]. Thus to describe

PSpecA(n, a) completely we must study the ring Z. We know that

Kdim Z = n− 1, so we first construct n− 1 algebraically independent

elements of Z.

Write a= p/q with gcd(p, q) = 1 and −p > 0. For i= 2, . . . , n let di =

gcd(p, i)> 0, and set ui = p+ iq/di and vi =−p/di. Note that gcd(ui, vi) =

1. Finally we set

(9.2) Y ′i =Xui
0 Y

vi
i .

By construction e(Y ′i ) = 0, and we have Z ′ := k[Y ′2 , . . . , Y
′
n]⊆ Z.

We can be more precise

Lemma 9.3. Z is a free Z ′-module with basis

(9.4)

S =

{
Xs

0Y
s2

2 · · · Y
sn
n | 06 si < vi, i= 2, . . . , n and ps+

n∑
i=2

uidisi = 0

}
.

In particular its rank is |S|6
∏n
i=2 vi.

https://doi.org/10.1017/nmj.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.29


A NEW FAMILY OF POISSON ALGEBRAS AND THEIR DEFORMATIONS 79

Proof. By the extension of Proposition 3.21 to A◦ we have Z =

(A◦)Γa,∆ =B0 and so

Z = Span

{
Xs

0Y
s2

2 · · · Y
sn
n | s ∈ Z, s2, . . . , sn ∈ N, and as

+
n∑
i=2

(a+ i)si = 0

}

= Span

{
Xs

0Y
s2

2 · · · Y
sn
n | s ∈ Z, s2, . . . , sn ∈ N, and ps

+

n∑
i=2

uidisi = 0

}
.

Let M =Xs
0Y

s2
2 · · · Y sn

n ∈ Z and for i= 2, . . . , n set si = vis
′
i + εi, where

s′i > 0 and 06 εi < vi. Then we rewrite

M = (Y
′s′2

2 · · · Y ′s′nn )(Xs−Ω
0 Y ε2

2 · · · Y
εn
n ),

where Ω =
∑n

i=2 s
′
iui. Since M, Y

′s′2
2 · · · Y ′s

′
n

n ∈ Z ′ we have Xs−Ω
0 Y ε2

2 · · ·
Y εn
n ∈ Z. In particular this shows that a generating set of Z as a module

over Z ′ is given by the set S. The result follows since the elements of S are

linearly independent over Z ′.

Note that it is possible that S = {1}. For example, let n= 2 and set M =

Xs
0Y

s2
2 ∈ S. Then ps+ u2d2s2 = 0, that is, v2s= u2s2 and v2 must divide s2

since gcd(u2, v2) = 1. This implies that s2 = 0 since 06 s2 < v2. Therefore,

Z = Z ′ = k[Y ′2 ] when n= 2.

We next work out PSpecA(2, a) explicitly. By Example 9.1, for a, b ∈
Qr {−1} the sets PSpec1 A(2, a) and PSpec1 A(2, b) are homeomorphic.

More precisely we have

PSpec1 A(2, a) ∼= PSpec1 A(2, b)

∼= {〈X0〉, 〈X0, X1〉, 〈X0, X1, X2 − µ〉 | µ ∈ k}.

The following result explicitly describes the stratum PSpec0 A(2, a).

Proposition 9.5. For a ∈Q× we have PSpec0 A(2, a) = {〈0〉, 〈X0Y2〉,
Pλ | λ ∈ k×}, where

Pλ =

{
〈Xu2

0 Y v2
2 − λ〉 −16 a < 0,

〈(X0Y2)v2 − λXv2−u2
0 〉 a <−1 or a > 0.
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The ideal Pλ is Poisson maximal if and only if −1< a < 0.

Proof. Let A=A(2, a) and let A◦ =A[X−1
0 ]. Let Z be the Poisson center

of A◦. Recall from the discussion after Lemma 9.3 that Z = k[Y ′2 ] where

Y ′2 =Xu2
0 Y v2

2 . We denote by ϕ the bijection between Spec Z and PSpec0 A

sending Q ∈ Spec Z to ϕ(Q) =
√
QA◦ ∩A. It is clear that ϕ(Y ′2Z) = 〈X0Y2〉.

If λ 6= 0, the ideal (Y ′2 − λ)A◦ of A◦ is prime and so ϕ((Y ′2 − λ)Z) =
(
(Y ′2 −

λ)A◦
)
∩A. Since Y ′2 =Xu2−v2

0 (X0Y2)v2 , we have

(9.6) Pλ := ϕ((Y ′2 − λ)Z) =

{
〈Y ′2 − λ〉 u2 − v2 > 0

〈(X0Y2)v2 − λXv2−u2
0 〉 else.

But u2 − v2 = 2
d2

(p+ q) and we have:

(u2 − v2)> 0 ⇐⇒ −16 a < 0.

Thus PSpecA is as described.

If −1< a < 0 then u2 − v2 > 0 and Pλ = 〈Xu2−v2
0 (X0Y2)v2 − λ〉 is comax-

imal with X0 and thus with all primes in PSpec1(A). If a=−1 then

Pλ = 〈X0X2 −X2
1/2− λ〉 is contained in the Poisson ideal 〈X0, X

2
1/2− λ〉.

If a <−1 or a > 0 then v2 − u2 > 0 and Pλ is clearly contained in 〈X0, X1〉.

We deduce the following result.

Theorem 9.7. Let a ∈Q× r {−1}. Then we have

PSpecA(2, a)

= {〈0〉, 〈X0〉, 〈X0, X1〉, 〈X0, X1, X2 − µ〉, Pλ, 〈X0Y2〉 | µ ∈ k, λ ∈ k×}

where the ideals Pλ are described in Proposition 9.5. Moreover, only 〈0〉 and

〈X0, X1〉 are not Poisson primitive. Further, PSpecA(2, a) is homeomor-

phic to PSpecA(2, b) if and only if (a2 + a)/(b2 + b)> 0.

Proof. The description of PSpecA(2, a) is immediate from Proposi-

tion 9.5. Pictorially, PSpecA(2, a) is given by the following diagrams, where
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lines represent inclusion of ideals.

Note that despite the fact that the algebras A(2, a) are not isomorphic

for different values of a (see Theorem 5.1), their spectra fall generically into

only two nonhomeomorphic families.

Since the topology on PSpecA(2, a) is governed by inclusions, it is clear

that PSpecA(2, a) and PSpecA(2, b) are homeomorphic if and only if a, b

fall into the same case of (9.6), which is if and only if (a2 + a)/(b2 + b)> 0.

Example 9.8. Let a= 1/2. Then p=−1, q =−2, d2 = 1, u2 =−5 and

v2 = 1. Thus

Pλ = 〈X0(X2 − λX5
0 )− 1/2X2

1 〉 ⊆ 〈X0, X1〉.

On the other hand when a=−1/2 we have p=−1, q = 2, d2 = 1, u2 = 3

and v2 = 1. Thus

Pλ = 〈X2
0 (X0X2 − 1/2X2

1 )− λ〉,

which is Poisson maximal. Therefore, the two spectra are not homeomor-

phic.

Remark 9.9. From Theorem 7.5, when a 6∈Q then

PSpecA(2, a) = {〈0〉, 〈X0〉, 〈X0Y2〉, 〈X0, X1〉, 〈X0, X1, X2 − µ〉 | µ ∈ k}.

Note that these are the prime ideals that are Poisson for all values of a.

For all a 6=−1, 0 there are five d-graded Poisson primes of A(2, a): the

ideals

{〈0〉, 〈X0〉, 〈X0Y2〉, 〈X0, X1〉, 〈X0, X1, X2〉}.
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For the remainder of this section, we study PSpecA(3, a) for various

values of a. Again, we are most interested in PSpec0 A(3, a) which is

homeomorphic to Spec Z as above. From Lemma 9.3 we know that Z is

a free module over Z ′ = k[Y ′2 , Y
′

3 ] with basis

S = {Xs
0Y

s2
2 Y s3

3 | 06 si < vi, i= 2, 3 and ps+ u2d2s2 + u3d3s3 = 0}.

Proposition 9.10. The cardinality of S is equal to α :=−p/d2d3.

Proof. Since p=−d2v2 =−d3v3 the equation ps+ u2d2s2 + u3d3s3 = 0

implies that d2 divides s3 (since gcd(d2, u3d3) = 1) and d3 divides s2 (since

gcd(d3, u2d2) = 1). Set s2 := k2d3 and s3 := k3d2. Then the equation ps+

u2d2s2 + u3d3s3 = 0 becomes

(9.11) −αs+ u2k2 + u2k2 = 0.

To solve this Diophantine equation we first set t=−αs+ u2k2 and we solve

t+ u3k3 = 0. We get {
t=−u3k,

k3 = k,

for k ∈ Z. We now solve the Diophantine equation −αs+ u2k2 = t=−u3k.

Since gcd(−α, u2) = 1 there exist m, n ∈ Z such that −αm+ u2n= 1. The

solution of the equation −αs+ u2k2 =−u3k is then{
s=−mu3k + u2`,

k2 =−nu3k + α`,

for k, ` ∈ Z, and the solution of (9.11) is

(9.12)


s=−mu3k + u2`,

k2 =−nu3k + α`,

k3 = k,

for k, ` ∈ Z.

For i= 2, 3 we have 06 ki < α=−p/d2d3 since 06 si < vi. Fix k3 ∈
{0, . . . , α− 1}. Since k2 =−nu3k3 + α` for some ` ∈ Z, there exists a unique

` ∈ Z such that k2 ∈ {0, . . . , α− 1}. The integer s is uniquely determined

by k2 and k3, so we conclude that to each k3 ∈ {0, . . . , α− 1} corresponds

a unique monomial Xs
0Y

s2
2 Y s3

3 ∈ S.
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Since α= 1⇐⇒ S = {1} we deduce the following corollary.

Corollary 9.13. We have Z = Z ′ if and only if α= 1 if and only if

p ∈ {−1,−2,−3,−6}.

From the proof of Proposition 9.10 we observe that

S = {Xs
0Y

d3k2
2 Y d2k3

3 | s ∈ Z, 06 ki < α, and − αs+ u2k2 + u3k3 = 0},

and that a recipe for finding these basis elements consists of computing

m, m′ such that −αm+ u2m
′ = 1, plugging these values into (9.12) and,

for each 06 k3 < α, finding the unique l ∈ Z such that k2 =−m′u3k3 + αl ∈
{0, . . . , α− 1}. We conclude this section with a couple of examples with

α 6= 1 which illustrate possibilities for the ring structure of Z. But first we

describe the d-graded Poisson prime that are common to A(3, a) for any

generic a. By Theorem 7.5 we have PSpecgr A
◦ ∼= Pk(2, 3) t {(Y2, Y3)}. In

particular, for any [α : β] ∈ P1, the element

F[α:β] = α(Y2X
−1
0 )3 + β(Y3X

−1
0 )2

is Poisson central. Multiplying by X6
0 , we obtain a pencil of Poisson normal

sextic elements of A(4, a)

X6
0F[α:β] = α(X3

0X
3
2 − 3

2X
2
0X

2
1X

2
2 + 3

4X0X
4
1X2 − 1

8X
6
1 )

+ β (X4
0X

2
3 +X2

0X
2
1X

2
2 + 1

9X
6
1 − 2X3

0X1X2X3

+ 2
3X

2
0X

3
1X3 − 2

3X0X
4
1X2).

Therefore, the d-graded Poisson prime ideals that are common to A(3, a)

for any a 6=−2,−1, 0 are

{〈0〉, 〈X0〉, 〈X0Y2〉, 〈X2
0Y3〉, 〈X6

0F[α:β]〉, 〈X0, X1〉, 〈X0Y2, X
2
0Y3〉,

〈X0, X1, X2〉, 〈X0, X1, X2, X3〉 | [α : β] ∈ P1} .

Among them the Poisson primitive ideals are 〈X0, X1〉, 〈X0Y2, X
2
0Y3〉 and

〈X0, X1, X2〉, 〈X0, X1, X2, X3〉.

Example 9.14. For a=−5/4 (the algebra in Example 1.1) we have

α= 5, Y ′2 =X3
0Y

5
2 and Y ′3 =X7

0Y
5

3 . Moreover,

S = {(X2
0Y2Y3)i | i= 0, . . . , 4},

with (X2
0Y2Y3)5 = Y ′2Y

′
3 . Thus Z ∼= k[A, B, C]/〈C5 =AB〉.
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Example 9.15. Choose a=−24/5. We have α= 4, Y ′2 =X−7
0 Y 12

2

and Y ′3 =X−3
0 Y 8

2 . We have S = {1, C, D, E}, where C :=X−4
0 Y 3

2 Y
6

3 , D :=

X−5
0 Y 6

2 Y
4

3 and E :=X−6
0 Y 9

2 Y
2

3 . We further set A := Y ′2 and B := Y ′3 . We

have

Z ∼=
k[A, B, C, D, E]

〈C2 =BD, D2 =AB = CE, CD =BE, E2 =AD, DE =AC〉
.
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