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ON TRANSLATION PLANES WHICH ADMIT 
SOLVABLE AUTOTOPISM GROUPS HAVING A 

LARGE SLOPE ORBIT 

VIKRAM JHA 

0. Introduction. Our main object is to prove the following result. 

THEOREM C. Let A be an affine translation plane of order qr ^ q2 such 
that /QO, the line at infinity, coincides with the translation axis of A. Suppose 
G is a solvable autotopism group of A that leaves invariant a set A of q + 1 
slopes and acts transitively on l^ \ A. 

Then the order of A is q2. 

An autotopism group of any affine plane A is a collineation group G 
that fixes at least two of the affine lines of A; if in fact the fixed elements 
of G form a subplane of A we call G a planar group. When A in the 
theorem is a Hall plane [4, p. 187], or a generalized Hall plane ([13]), G can 
be chosen to be a planar group. But there are also many planes, which 
satisfy the hypothesis of the theorem, in which it is impossible to choose G 
to be a planar group; for instance deriving a Walker plane [19], or a 
suitably chosen semifield plane [9, Section 4], leads to such examples. 
However, when q is a prime, then the only known possibilities for A in 
Theorem C are the Hall planes, the derived Walker planes (when q = — 1 
mod 6) and the recently discovered Cohen-Ganley planes [1], which exist 
whenever q = ± 2 mod 5. 

The main corollary of Theorem C may be described in terms of spreads 
in projective spaces. Recall that a spread 2 in a projective space P = 
PG(2r — 1, q) is a collection of r — 1 dimension subspaces such that every 
point of P lies in a unique member (or 'component') of 2 . Also Aut 2 is 
the group of collineations of P that permutes the components of 2 among 
themselves. Theorem C yields the following characterization of the 
spreads associated with the finite Hall planes. 

COROLLARY D. Let 2 be a spread in P = PG(2r — 1, q) with r > 1. 
Suppose G is a solvable subgroup of Aut 2 that fixes individually each 
member of a set A consisting ofq+\ components of 2 . Then G is transitive 
on 2 \ A only if all the following conditions hold. 
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(i) P = PG(3, q)\ 
(ii) A is a reguius; and 

(iii) (2 \ A) U A' is a regular (Desarguesian) spread where A' is the 
opposite reguius of A. 

Remark. If the solvability hypothesis on G is dropped then the only 
known counterexamples to Corollary D are two well-known spreads in 
PG(1, 2): the Lorimer-Rahilly spread [16] and its transpose the 
Johnson-Walker spread. If additionally we replace the assumption that G 
acts trivially on A, by the weaker assumption that G fixes A globally, then 
there arise many infinite families of counterexamples to the corollary 
(Section 4). 

The proof of our main result (Theorem C) follows from a study of 
certain autotopism groups undertaken in Section 2. Specifically, Section 2 
considers an affine translation plane A of order qr> q which admits an 
autotopism group H of order uap@ where 

(i) p is the characteristic of A; and 
(ii) u is a /7-primative divisor of qr l — 1. 

Our main conclusion is that when qr ^ 16, H is a planar group. This 
fact allows us to gain further information about H that we require in the 
proof of Theorem C. A side effect of our analysis has a slight bearing on 
an old conjecture of Hughes [4, p. 178] which asserts that the full 
autotopism group of a finite semifield plane must be solvable. 

COROLLARY 2.8. Let G be the autotopism group of a finite semifield plane 
of order pr > / r , where p is a prime. Suppose that u is a primitive divisor of 
p' ! — 1 such that pu divides \G\. 

Then G is a non-solvable group. 

The following result a consequence of Foulser's dimension theorem for 
subplanes [3. Corollary 3.5], is required in the proof of Theorem B. 

THEOREM A. Let A be an off ne translation plane oj order qr > q and 
characteristic p. Suppose P is a planar p-group oj A such that its fixed plane 
AP has order at least q. 

Then \P\ = qr~ is only possible when qr = 16 or An is a Desarguesian 
Baer subvlane of A. 

Special cases of Theorem A follow from [5, Section 6] (e.g., when A^ is a 
kern plane or An n / ^ is a Desarguesian net). In particular the following 
known instance of Theorem A ( [2. Corollary 3] ) will be needed in its 
f- - r . 

1. RESULT. Let B be a Baer subvlane of an affine translation plane A of 
order nL. Suppose A admits a collineation croup of order n that fixes B 
eiementwise. Then B is a Desarguesian plane. 
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We shall need to assume that the reader is familiar with translation 
planes and their connection with spreads and quasifields [4, 15, 16]. Apart 
from standard notation we wish to emphasize the following 

Conventions, (a) Let G be a permutation group of the finite set A. Then 
Gx denotes the elementwise stabilizer of X Q A and J^(G) is the set of 
fixed points of G. But if A is an affine plane and G is a planar group we 
usually write AG, instead of J^(G), for the fixed plane of G. 

(b) The integer q > 1 is always a power of the prime p and a Sylow 
/^-subgroup of any finite group G is called an Sp subgroup of G. If u is 
another prime then a {u, p) subgroup of G is required to have order uapP, 
where a and /? are integers. 

(c) If A is an affine plane then we denote its line at infinity by l^ and we 
call A an affine translation plane if the group of /^ elations is transitive on 
the affine points of A. 

Remark. In Theorem C we considered planes of order qr. In this 
theorem, and in fact throughout the paper, there is no need to consider r 
to be an integer; it is sufficient for r to be a positive rational number 
(usually â 2) such that qr is an integer. 

1. An upper bound for planar /^-groups. The object of this section is to 
prove Theorem A. We do this using an inductive argument based on the 
following theorem of Foulser [3, Corollary 3.5]. 

1. DIMENSION THEOREM. Let II be a p-group oj automorphisms of a finite 
quasifield Q, whose characteristic is p. Then dim jF(ll)|dim Q, where 
dimensions are given relative to the prime field in Q. 

We shall carry out our induction on the 'p- t r ipl e s ' defined below. 

2. Definition. Let q be a power of the prime/? and suppose r > 1. Then 
(q, r, p) is a p-triple if there exists (Qy F, II) satisfying the following 
conditions: 

(i) Q is a quasifield of order qr and F is a subquasifield of order q\ 
and 

(ii) II is a nontrivial /7-group in (Aut Q)F such that ^(IT) = F and 

m i ^ ' - 1 . 
(Note. Foulser's dimension theorem mentioned above forces r to be an 

integer.) 

3. PROPOSITION. The only p-triples are those of type (q, 2, p) or 
(2, 4, 2). 

Proof of Proposition 3. We proceed by induction on r. Let r = R ( > 2) 
be the smallest integer associated with a counterexample to the 
proposition. This means that there exists a p-triple (q, R,p)¥= (2, 4, 2). Let 
(<2, F, II) be chosen to satisfy conditions 2(i) and (ii), relative to (q, R,p). 

https://doi.org/10.4153/CJM-1984-044-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-044-0


772 VIKRAM JHA 

Also choose V to be a GF(p) subspace of (Q, + ) satisfying the following 
requirements: 

0)1 H =P* 
(2) V D F\ and 
(3) F i s left invariant by the group II. (The existence of F follows from 

the fact that the number of subspaces of (Q, + ) that satisfy (1) and (2) is 
relatively prime to |H|.) 

We now break up our argument into a series of lemmas and the notation 
introduced in each lemma is in force until Proposition 3 is proved. 

4. LEMMA. Let H\ be the kernel of the restriction map a.Ii —» Yl\V. Also 
let Fx = J ^ n O . Then 

(a) | n , | è qR~2 > 1; 
(b) Q D F\ D F {and the subspace F\ is also a subquasifield of Q)\ 
(c) II leaves F\ invariant. 

Proof. Since a(II) is semiregular on V \ F we have 

in,| = in|/ |«(n)| ^ \n\/q. 
Now (a) follows because our hypothesis states |II| = qR~~l and R > 2. 
Part (b) is immediate and (c) is valid because II \ is normal in II. 

5. LEMMA. There exist integers r, t (both >1) such that 

( a ) * = rt\ ( b ) | Ô | = \Fx\
r;and 

(c) 1^1 = \F]< = ql. 

Proof. Let Yl2 be the subgroup of (Aut F\)F induced by II on the II 
invariant quasifield F\, defined in Lemma 4. Thus by definition 2(ii), 
^"(n2) = F and so the dimension theorem (Result 1) yields (c). Part (b) 
follows if the dimension theorem is applied to Uh since^(TL\) = F\. Now 
(a) follows from (b) and (c). 

6. LEMMA. F\ is a Baer extension of F. 

Proof. Otherwise Lemma 5(c) shows that t ~ 3 and so Lemmas 4(a) and 
5 imply: 

(1)11! g qR~2 = 0'C-(2/O) > \Fl\r-im 

Hence ( \F\\, r, p) qualifies as a p-triple relative to (Q, F\, U\), because 
of Lemma 5(b). To avoid contradicting our inductive hypothesis we 
therefore must have r = 2, since \F\\ ¥= 2. Now Q is a Baer extension of F\ 
and the semiregularity of IIj on Q \ F\ shows that |IIi| = \F\\. But this 
contradicts statement (i) because r = 2. So the lemma is valid. 

7. L E M M A . \Q\ = \FX\2 = \F]4. 

Proof By Lemmas 5 and 6, \Q\ = \F\\R/1 where R/2 is an integer. But 
Lemmas 4(a) and 6 show that 
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|n,| è qR~2 = \F^R/2-l\ 

Thus (Q, F\, U\) gives a p-triple ( \F\\, R/2,p), contrary to our inductive 
hypothesis unless R/2 = 2 or ( 1^1, R/2,p) = (2, 4, 2). But 1^1 > 2 and 
so R = 4, as stated in the lemma. 

8. COROLLARY. | I I J | = q and the restriction map U —* III/7] induces a 
group of order q on F\. 

Proof. By Lemmas 4(a) and 7 we have |IIi| = q2. But Lemma 7 also 
implies that Q is a Baer extension of F\ and so we can only have |IIi| = q2. 
By Lemma 4 II ! is the kernel of the restriction map IT —> 1117̂ ] and so the 
corollary follows. 

Result 0.1 when applied to Corollary 8 shows that F\ = GF(q2). Hence 
the restriction n|.Fi has order ^ 2 and so Corollary 8 forces q = 2. Now 
Lemma 7 gives (q, R, p) = (2, 4, 2), contrary to our inductive hypothesis. 
Hence Proposition 3 has been proved. 

We now deduce the main result of this section using Proposition 3. 

THEOREM A. Let the quasifield Q have order qr where the rational number 
r > 1 and let p be the characteristic of Q. Suppose U is a p-group in Aut Q 
such that 

(i) |II| ^ qr~X\ and 
( i i ) | ^ ( I I ) | ^ q. 

Then either Q is a Baer extension of GF(q) or ^F(U) = GF(2) and 

161 = 16. 

Proof We may choose a rational number m ^ 1 such that \^(H) \ = qm. 
So by Foulser's dimension theorem (Result 1) there is a positive integer R 
such that mR = r. Hence 

(i) |II| â qr~X = qm(R~x/m) â \^{U)\R~\ 

Thus we have a p-triple ( \^(Ii) |, R,p) and so Proposition 3 gives \Q\ = 
16, | J ^ n ) | = 2 or R = 2. In the latter event ^(U) is a Baer quasifield and 
now the semiregularity of n on Q \^(U) shows |II| ^ | ^ ( n ) |. Thus the 
relations (i) collapse into equalities and so \^(H) \ = q. Result 0.1 shows 
that J^(n) is a field and so Theorem A is proved. 

2. Autotopism {w, p} groups. Throughout this section A is an affine 
translation plane of order qr > 16 and characteristic/?. In addition we 
shall always assume that qr~1 — 1 possesses a primitive divisor u; thus u is 
a prime divisor of qr~x — 1 but not of ps — 1 whenever qr~l > ps = p. 
Our object is to study autotopism {w, p} subgroups of A, because of the 
relevance of such groups to Theorem C. Such a group H need not be 
planar if qr = q2\ for instance a Hall plane of order q2 contains a 

https://doi.org/10.4153/CJM-1984-044-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-044-0


774 VIKRAM JHA 

nonplanar autotopism group of order pu (generated by a Baer /^-element 
and a kern homology of order u). However, if qr > q1 then we shall show 
that H must be a planar group and, when qr~~l { |//|, we also have 
H ç TL(1, qr~~]); in fact considerable information about H can be gained 
even when qr~~l\\H\, but we shall not analyse this situation as it is not 
relevant to our main objectives. We summarize most of our conclusions in 
the following result. 

THEOREM B. Let H denote an autotopism group of the plane A and assume 
that \H\ = uapP, with a/3 ¥= 0. Also let P and U denote (resp.) Sp and Sl{ 

subgroups of H. Then the following statements are valid provided that 

qr > q2-
(a) H is a planar group. 
(b) Suppose U ^ V T̂  1. Then Ay = Av and both planes have order q. 

Moreover U is cyclic such that Cfj(V) = U. 
(c) The following conditions are pairwise equivalent. 

(i) KJJ Pi /QO is H invariant: 
(ii) H contains a non-trivial normal u-group; 

(iii) U<*H\ 
(iv) / / ç r L ( l , ^ r l ) ; 
(v) qr~x \\H\\ 

(vi) P fixes some points of l^ \ (l^ Pi An). 

Remarks, (i) As far as Theorem C is concerned, the only bit of part (c) 
that we require is (i) ^> (vi); however the proof of this fact involves 
proving most of the other implications of part (c). 

(ii) Applications of Theorem B to planes with shears are considered at 
the end of this section. 

The main tool in the proof of Theorem B is the following lemma on 
vector spaces. 

1. LEMMA. Let V be an elementary abelian group of order qr ^ q1 and 
suppose U is any non-trivial u-group in Aut (V, + ) . Then the following 
statements are valid. 

(a) \.<F(U) | = q. 
(b) U is semiregular on V \ ^(U). 
(c) U is cyclic. 
(d) if r > 2 then V = ^F(U) © Cv where Qj is the only U submodule of 

V disjoint from ^(U). 
(e) If r > 2 and W is a JJ-submodule of V then either W Q ^(U) or 

|W| ^ qr~\ 

Proof. By Maschke's theorem [17, Theorem 15.1] V = &(U) © C where 
C is some U module. As U is fixed point free on C we get 
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( ^ - l ) wherepm = \&(U) 

Since u is also a primitive divisor of qr l — 1 the condition above 
implies that q i? pm and also that 

(£-«--)• 
Now we contradict the primitivitv of u unless q = pm. Hence part (a) is 

valid and part (b) follows immediately by applying part (a) to the cyclic 
subgroups of U. In particular U is faithful and semiregular on C. Hence U 
is a Frobenius complement [16, Lemma 4.2]. Since u is also odd (being a 
primitive divisor), the Frobenius complement U is cyclic [17, Theorem 
18.1 (4) ] and part (c) is verified. To prove part (d) we assume r > 2. The 
existence of the ^/-module Qj is again guaranteed by Maschke's theorem 
and so to prove the uniqueness assume there are two distinct (7-modules 
C'i and C2 such that 

V = &(U) © C for/ = 1, 2. 

Now C\ H C2 ^ 0 because then qr ^ g2 ( r _ 1 ) , contradicting the condition 
r > 2. But since £/is fixed point free on the non-zero points of C\ C\ C2 we 
now find 

(|c, n c2\ - l) 
and so by the primitivitv of u we have 

|c, n c2\ ^ q' l. 
But each Cz has order qr~~] and so we contradict the assumption that 

C\ ^ C2. Hence (d) is valid. Finally, to verify (e), assume that a ^/-module 
W £#{£ / ) . Now Maschke's theorem shows that W contains a subspace 
\(¥= 0) on which U is fixed point free. So by the primitivitv of u we again 
have |XI = qrX • Hence the lemma is valid. 

It is more convenient to apply Lemma 1 to spreads of order qr, rather 
than directly to the translation plane A. So the next few lemmas are 
concerned with a spread theoretic version of Theorem B. 

2. LEMMA. Let F be a spread 0/ order qr > qA admitting an autotopism 
group H of order uap^ where aft ¥" 0. Then 

(i) H is a planar group; 
(ii) the fixed plane of anv nontrivial u-subgroup of H has order q: 

(hi) H acts taithtullv on À. where X denotes one ot the components of F that 
is left invariant bv H: and 

(IV) the commutator [a. 0] ¥^ 1 whenever o and 0 are nontrivial p and u 
elements iresp.) in hi. 
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Proof. As H is an autotopism group we may assume it leaves invariant at 
least two distinct components of T, which we shall label X and \x. Let U ¥= 
1 be any w-group in H and write 

L = X n &(U) and M = LL n J*"(t/). 

Now by Lemma 1, |L| = g = \M\ and so part (ii) is valid. To prove that H 
itself is planar we first consider the following situation. 

Case A. When H contains a nontrivial normal w-subgroup U. 
Let U be an Su subgroup of H that contains U and let P be any Sp 

subgroup of H. Now by part (ii) the plane Ag = Av and so P leaves kjj 
invariant. But the H invariant components X and fi are in Ag and so P 
induces a planar group on Ag. Hence H = (P, U) is also a planar group. 
Now to complete the proof of part (i) it remains to consider the negation 
of case A. 

Case B. H does not contain any normal nontrivial w-group. 
As H is solvable it now must contain an elementary abelian normal 

/?-group K ¥= I. Now K is certainly planar and H leaves A^ invariant and 
hence also k = X n &{K). Now by Lemma 1(e) either k Q ^(Û) n X or 
\k\ ^ qr~\ whenever U is any Su subgroup of H. But since r > 2, \k\ = 
qr~l contradicts the Baer condition for A^ and so 

k Q ^(U) n A. 

Similarly 

ix O &(K) ç ^(U) n /x 

and so A^ Q Kg. Now any Sp subgroup P normalizes K and so induces a 
planar group on AK. Hence H = (U, P) fixes elementwise a subplane of 
A u and part (i) is proved. Part (hi) is an immediate corollary. Finally, to 
verify part (iv), assume that 06 = 6a. Now by Lemma 1(d) 

X = &(0) © Ce 

where C$ is the unique 6 module in X disjoint from J^(#). The uniqueness of 
CQ shows that its normalizer a also fixes C# and hence 

\&(o) n Q | > 1. 

But now 6 leaves ^{a) n C$ invariant and so by Lemma 1(e), 

W{o) O Q| ë qr-\ 

contradicting the Baer condition for the plane Aa. Hence the proof of the 
lemma is complete. 

Until the proof of Theorem B is complete we shall continue assuming 
the notation and hypothesis of Lemma 2. 
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L E M M A 3. If U is an Su subgroup of H then the following conditions are 

pairwise equivalent. 

(1) U<3H. 
(2) H contains a normal u-group ^ 1. 

(3) H c TL(l,qr-1). 

(4)qr-lH\H\. 

Proof (1) => (2) is vacuous. To prove (2) => (3) assume that UQ <3 / / 
where {70 is

 a nontrivial w-group in H. Now by Lemma 1, X = F0 © C0 

where JF0 = ^(UQ) D \ and C0 is the only nonzero UQ module disjoint 
from F0. SO the planar group H leaves Q invariant and, because of the 
Baer condition for subplanes, acts faithfully on Q . Since UQ is a cyclic 
(Lemma 1(c) ) normal subgroup of H which acts irreducibly on C0 we find 
[17, Proposition 19.8] that H Q TL(1, qr~x). Hence (2) => (3) is valid 
while (3) =» (1) and (4) are easily verified. It is now sufficient to verify that 
(4) =» (2). Assume (2) is false. Since H is solvable it must now contain a 
normal p-group K ^ 1 and now Lemma 2(iv) implies that u\(\K\ — 1). 
Hence the primitivity of u implies that qr~l\\K\, contrary to the hypothesis 
of condition (4). Hence the lemma is valid. 

We now use Theorem A to extend the list of equivalent conditions given 
in the previous lemma. 

L E M M A 4. Let U be an Su subgroup ofH. Then the following conditions are 
pairwise equivalent, when qr ¥= 16. 

(1) U<3H. 
(2) The plane A^ is invariant under H. 
(3) An n /QO is H invariant. 

Proof (1) => (2) => (3) are immediate, while (3) => (2) follows from the 
fact that (A(j n l^) U AH is a generating set for Ay. Finally, to verify 
(2) =» (1), assume (2) and consider the kernel TV of the restriction map 
H —» H\Ay. Since U is also an Su subgroup of JV it is sufficient to check 
that t / O N. If U = N we are done, so assume that up\\N\. Now by Lemma 
3, applied to N, we have g'^llAfl unless U <I N. Thus (1) is false only 
when the elementwise stabilizer of Ay is divisible by qr~x. But Ay has 
order q and so Theorem A can be applied. This yields qr = q2 or 16, 
contrary to our assumptions. The lemma follows. 

It will now be convenient to state the following simple fact on projective 
planes. 

Remark 5. Suppose Pj and P 2 are subplanes of a projective plane P and 
that they intersect in a (nondegenerate) subplane P 0 . Also let / by any line 
of P 0 . Then 

Pi n / ^ P 2 n / = ) P , 2 P 2 . 
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Proof. Each P, is generated by the points of (P7 n /) U P0. 

LEMMA 6. Suppose U is an Su subgroup and P an Sp subgroup of H. Then 
the following conditions are equivalent. 

(1) P fixes some point of lOQ\ (loo ^ ^u)-
(2) loo H A (j is H invariant. 

Proof Assume if possible that (1) holds while (2) is false. Now 
appropriate conditions listed in Lemmas 3 and 4 show that H does not 
contain a normal w-subgroup ¥= 1. So by the solvability of H it contains a 
nontrivial normal/7-group K. Since P contains AT, condition (1) shows that 
AK T̂  Av. Hence 

AK n X ^ Aa n X, 

e.g., use Remark 5. But since K <3 //, A^ Pi X is now seen to be a 
£7-submodule of X distinct from Au n X. Now Lemma 1(e) contradicts the 
Baer condition for the plane A^. Hence (1) => (2) is valid. To prove the 
converse assume / ^ Pi Au is //-invariant. Now by Lemma 4, U <3 H and 
so by Lemma 1(d), 

A = (A6. n A) e a 
where Q/ is H invariant. But now clearly &(P) n Cv ^ 0 and so A^ ^ A ŷ. 
Hence Remark 5 shows that (1) must occur and so the lemma is proved. 

It is clear that Lemmas 1 to 6 constitute a proof of Theorem B. When 
q = p we can sharpen the conclusions of Theorem B bv showing that A 
satisfies the additional properties listed below: in particular A must now 
have odd order. 

7. COROLLARY. Let A be an affine translation plane of order pr > Max 
(p , 16) and suppose u is a primitive divisor of pr — 1. Assume A admits 
an autotopism group of order uap^ with afi = 1. Then all the following 
statements are valid: 

H)P > 2 ; 
(ii) p \r — 1 ; and 

(iii) A does not admit affine elations. 

ProoJ. If A admits a planar/?-group of order/»' { then Theorem A leads 
to a contradiction. Otherwise Theorem B implies that our autotopism 
group of order uap^ is in FL(L pr~~]). This is onlv possible if p\r — 1 and 
so (ii) holds. Now p = 2 is impossible because A cannot admit Baer 
involutions. Hence (i) applies. By [3, Theorem 4.2], affine elations and 
planar /^-elements cannot coexist in A unless p\r, contradicting (ii). So the 
corollary is valid. 

A consequence of Corollarv 7 (that we shall not use) is that autotopism 
(w, p) groups tend to be nonsolvable, especially in planes admitting 
shears. 
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8. COROLLARY. Let u be a primitive divisor ofpr~ — 1 and assume p' > 
Max (/r, 16). Suppose A is an affine translation plane admitting an 
autotopism group G such that pu\\G\. 

Then G is nonsolvable if p = 2 or A admits affine elations. 

Proof. If G is solvable it has a Hall (u,p) subgroup [17, Theorem 11.1] to 
which we may apply Corollary 7. 

3. Main theorems. We shall now prove Theorem C and Corollary D. 
The following simple fact will be used in our proof. 

Remark 1. Let Tbe a finite transitive group acting on a set Œ and let m 
be any prime divisor of |S2|. Then the Sm subgroups of T are fixed point 
free on 12. 

LEMMA 2. Let A be an affine translation plane with characteristic p and 
order qr > q . Suppose G is a solvable autotopism group of A that leaves 
invariant a set A of q 4- 1 slopes and acts transitively on l^ \ A. Then 
qf-\ _ j cannot have a primitive divisor when qr ¥= 16. 

Proof To get a contradiction suppose u is a primitive divisor of 
qi—\ _ ! j k e transitivity of G now implies that^w is a divisor of \G\ and 
so, by the solvability hypothesis, G contains a Hall subgroup H of order 
u

apP with aft ^ 1 [17, Theorem 11.1]. By Theorem B, parts (a) and (b), we 
find that the Su subgroups of H are planar groups with fixed planes of 
order q. But now Remark 1 implies that every Su subgroup of H fixes A 
identically. Next consider the action of P, an S^ subgroup of 77, on the line 
lr^. This time Remark 1 shows that 

&(P) n /oo c A 

and so condition c(vi) of Theorem B fails. So Theorem B (cf. condition 
c(i) ) shows that if U is an Su subgroup of H then H cannot leave A = 
Ajy n /oo invariant. This contradicts the invariance of A under G and so 
the lemma is proved. 

We can now complete the proof of our main result using the argument 
of [6, Proposition 3.5]. 

THEOREM C. Let A be an affine translation plane of order qr = q~. 
Suppose G is a solvable autotopism group of K that leaves invariant a set A of 
q 4- 1 slopes and acts transitively on l^ \ A. Then A is a plane of order 

a1. 
Proof. When A has order 16 the theorem can be verified by using the 

techniques of Johnson. Ostrom and Walker (e.2. [101 V (Alternativelv, this 
case can be handled by using the recently completed classification of all 
translation planes of order 16, due to Riefart and Dempwolff [18].) So to 
get a contradiction we mav assume that 
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qr > Max (16, q2). 

Now Lemma 2 shows that qr~x — 1 has no primitive divisors and so by 
Zsigmondy's theorem ( [20], [16, p. 63] ), qr = p3 where p is a Mersenne 
prime. Thus G contains a 2-group S of order 2 X + 1 where p + 1 = 2X. Now 
consider the action of S on one of the sides / of the autotopism triangle 
associated with G. Since / has/?3 — 1 nonzero affine points and 2\\p3 — 1, 
we may conclude that S has an orbit of length at most 2 in this set of 
p3 — 1 points. Hence G has a 2-subgroup S\ of order 2X which fixes at 
least three points in the projective closure of A. By similarly considering 
the action of Si on another side m, of the autotopism triangle fixed by G, 
we find that Si contains a subgroup S2 of order 2X~\ such that S2 fixes at 
least three points on m. Hence S2 must be trivial as A cannot admit Baer 
involutions. Thus/? + 1 = 3 , contrary to our assumption that qr > 16. 
The result follows. 

It is obvious that the following corollary is equivalent to Corollary D 
mentioned in the introduction. 

COROLLARY D. In addition to the hypothesis of Theorem C assume that 
GF(q) is in the kern of A and that G|A = identity. Then A is a Hall 
plane. 

Proof. By Theorem C A has order q2. So every Sp subgroup S of G is 
planar and \ s is a Baer subplane such that A is its slope set. There are now 
two cases to consider: 

(i) G leaves invariant a Baer subplane AQ such that AQ n / ^ = A; or 
(ii) there exist distinct Sp subgroups of G, say S and T, such that \ s and 

\ T are distinct Baer subplanes (containing A). 
If possibility (i) occurs then the /?-complement of G leaves A0 invariant. 

There is no loss in generality if we allow G to contain a group of kern 
homologies of order q — 1; hence the/?-complement in G contains a (Hall) 
subgroup H whose order is divisible by (q — l)2. So the representation 
H —» H\A0 has kernel divisible by q — 1. Thus GA(), the elementwise 
stabilizer of A0, is a group of order q(q — 1) and so A must be a Hall plane 
(e.g., [5, Theorem 5] ). 

Next consider case (ii). Obviously there are now q + 1 Baer subplanes 
across the partial spread associated with A and so A is derivable. Also G 
inherts to a group G which contains several shears groups of order q. Now 
the Hering-Ostrom theorem [15, Theorem 35.10] contradicts the solvabili­
ty of G unless q2 = 32 and G = SL(2, 3). Hence A must be a Hall plane 
[15, Theorem 49.6]. This completes the proof of the corollary. 

4. Concluding remarks. Bearing in mind the hypothesis of Theorem B, it 
is natural to consider the classification of all spreads T which satisfy the 
following more general conditions. 
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Hypothesis (H). T is a spread in PG(2r — 1, q) admitting an 
automorphism group G such that Aut G fixes globally a set A of q + 1 
components and acts transitively on T \ A. 

There are now very many known spreads in PG(3, q) that satisfy 
hypothesis (//); many families of such examples can be constructed by 
using the procedure of Cohen and Ganley [1, Theorem 7.1]. Thus, contrary 
to our earlier expectations (e.g., see [7] or [8, problem A] ), we now feel 
that the spreads in PG(3, q), satisfying hypothesis (7/), are probably too 
numerous to classify. So we raise a slightly modified version of our earlier 
question [8, problem A]. 

Problem (P). Classify all spreads T satisfying hypothesis (H) when 
r ^ 3. 

The case when r = 3 always occurs in Desarguesian spreads of order 23s 

with G = SL(2, 2s). Moreover, Kantor has recently constructed many 
families of spreads of even order q3 (with q = 2 2 m + 1 , m > 1) that also 
satisfy hypothesis (# ) , with G = SL(2, q) [11, Case (3), p. 252]. But when 
r = 4 there are only three known spreads which satisfy hypothesis (H). 
These are the Lorimer spread of order 16, its transpose and the 
(unpublished) Denniston-Walker spread in PG(7, 8). (In the last case, G is 
a normal extension of Z73 by SL(2, 8).) So as a supplement to problem (P) 
we raise the following 

Question. Does hypothesis (//) imply r ^ 4 and is r ^ 3 only possible 
when q is even? 

Let us briefly reconsider hypothesis (H) for r ^ 2, when q is prime. We 
now have far fewer examples. It turns out that if the order of T exceeds 16 
then the only known possibilities for T are the "Cohen-Ganley systems" in 
PG(3, p) and the spreads derived from them. Here by a Cohen-Ganley 
system we mean any spread of order p2 constructed by the procedure 
described in Cohen et al. [1, Theorem 7.1]. At present there are only three 
known infinite families of C.G. systems, viz. Hall spreads, spreads derived 
from Walker spreads and the Cohen-Ganley spreads [1, Section 6]. Thus 
the following question related to problem (P) may admit a complete 
solution, at least modulo the C.G. systems. 

Problem (Q). Classify all translation planes of order pr that admit 
collineation groups with a slope orbit of length pr — p. 

We end by noting that further work on the type of problems discussed 
in this article must take into account the bizzare translation planes of 
Kantor [12], that have order q3, and exist whenever q is a square prime 
power. Each of these planes admits a collineation group G with a slope 
orbit of length q3 — q (cf. Theorem C) and yet they do not satisfy 
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hypothesis (//), at least relative to q, because the corresponding kern 
subplanes have order qi/Z. 
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