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Turbulence distortion and blockage in the
induction zone of a horizontal axis turbine

Kevin Gouder1,†, Ian A. Milne2 and Mike Graham1

1Department of Aeronautics, Imperial College, London SW7 2AZ, UK
2Oceans Graduate School, The University of Western Australia, Crawley 6009, Australia

(Received 24 December 2023; revised 12 April 2024; accepted 5 June 2024)

Wind tunnel measurements of the incident turbulent velocity fields and axial forces on a
horizontal axis turbine and porous disc analogues are reported. The models were tested in
both a simulated atmospheric boundary layer (ABL) and in grid turbulence, allowing for
a range of turbulence length scale to rotor diameter ratios to be considered. A theoretical
framework to account for the combined effect of distortion and potential flow blocking
in the induction zone is presented. In the case of very large length-scale turbulence to
diameter ratios, where distortion effects are minimal, a quasi-steady approach is adopted
for the effect of blocking. For the small length-scale ratio limit, the method is developed
from the classical analyses for rapid distortion of turbulence and blockage from flow
through a porous sheet of resistance. For general length-scale ratios, an efficient prediction
method based on interpolation between the two length-scale ratio extremes is established.
For very large length-scale ratios, a quasi-steady theory without distortion is appropriate
for a rotor or disc in a simulated ABL. The small length-scale theory is applicable for
tests conducted in grid turbulence. The results of the study can inform the prediction
and interpretation of typical measurements of turbulence within the induction zone and
the fluctuating loads on a rotor, at both prototype and full scale. This is of particular
importance to fatigue load assessments.

Key words: turbulent boundary layers, turbulence theory

1. Introduction

Turbulence in the atmospheric boundary layer (ABL) and wakes of upstream rotors causes
buffeting on turbines. Since the incident turbulence is not fully correlated over the turbine
rotor, critical components can be subjected to O(108) load cycles in a lifetime (Manwell,
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McGowan & Rogers 2009). As turbines have continued to increase in size to provide
further gains in energy production, these loads have become increasingly challenging to
predict and manage. Accordingly, the interaction of turbines with the atmosphere, wakes
and other sources of complex inflow, and its implication to turbine loading is regarded as
a grand research challenge for wind energy (Veers et al. 2019).

Wind turbine rotors normally operate at high tip-speed ratio Λ (= ΩR/U∞) with

Λ �
√

v2/u2, where Ω is the rotor speed, R is the tip radius, U∞ is the free-stream
wind speed, u is the fluctuating streamwise ABL velocity and v any fluctuating transverse
ABL velocity in the rotor plane. As such, the fluctuating lift force that governs the
blade loading is mainly dependent on the streamwise turbulence velocity as opposed to
the transverse components. Therefore, for load assessments, it is critical to ensure that
both the magnitudes (intensities) and scales of the streamwise velocity components are
appropriately characterised. Correlations for turbulence intensities and length scales are
available to guide wind turbine designers to predict the free-stream flow within the ABL
(see, e.g., ESDU85020 2002). Comparisons of measurements of fluctuating wind velocity
in the induction zone of a wind turbine and the blade loads and power by Howard &
Guala (2016), for instance, have emphasised the impact of the turbulent flow. Inherent in
most conventional turbine loading assessments performed either stochastically, or more
commonly, in the time domain using synthesised time histories and blade element theory,
is the assumption that the rotor is subjected to an undisturbed (free-stream) turbulence
field with adjustments made only to the mean flow (Burton et al. 2021).

In reality, a free-stream turbulent flow approaching a rotor is subjected to both distortion
(stretching of the vortical elements from mean shear) and blocking, which the rotor blades
must react to. Observing this distortion and blocking has in the past proved challenging.
However recently, measurements of the turbulent flow field approaching commercial
horizontal axis wind and tidal turbine rotors have been made using unobtrusive sensing
techniques such as light detection and ranging (LiDAR) and acoustic doppler current
profilers (ADCPs). These have demonstrated that the low frequency turbulent content
(large eddies), in particular, is modified through the induction zone (Pena, Mann &
Dimitrov 2017; Mann et al. 2018; Milne & Graham 2019). Field experiments of full-scale
wind turbines have demonstrated that the rotors can be particularly sensitive to these
energy scales (Chamorro 2015). Depending on the operational state of the rotor, distortion
and blocking of the flow and its subsequent influence on the unsteady aerodynamic
effects of dynamic inflow and dynamic stall, can amplify or attenuate the unsteady loads.
The ability to predict the changes to the turbulent flow field approaching a rotor has
significant practical implications. Notably, it can allow for more informed turbine loading
assessments and improved controller design, particularly when exploiting measurements
of the upstream flow.

On the basis that the turbulence distortion occurs rapidly in the expanding rotor inflow,
Graham (2017) applied rapid distortion theory (RDT) to compute changes to the turbulent
velocity directly from the distorted vorticity field as it is convected up to the plane of the
rotor disc. Predictions were made for both the turbulence intensities and spectra for general
ratios of turbulence integral length scale to the rotor diameter, including the small-scale
limit using the linearised framework of Batchelor & Proudman (1954). Milne & Graham
(2019) combined the RDT model with a theoretical prediction for the additional effect of
the fluctuating potential flow field on the turbulence (blockage) to the turbulent streamwise
velocities occurring over the inflow region. These predictions of the changes to the
spectra and intensities accounting for the combined effects were found to be qualitatively
consistent with the full-scale measurements from wind and turbine rotors. The relative
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Turbulence in the induction zone of a horizontal axis turbine

importance of distortion and blockage to the modification of the turbulent flow field within
the induction zone depends strongly on the ratio of the integral length scale Lx of the
turbulence to the turbine diameter (Lx/D). As wind turbines have continued to increase
in size, this ratio has decreased. It has approached typical ratios (approaching 1) for tidal
turbines, giving rise to more appreciable effects of distortion and blocking. Predicting
the effect of distortion and blocking on a wide range of relevant Lx/D ratios, however,
requires significant computation. Developing a model capable of efficient computations
through approximations of the theoretical results is therefore desirable for its application
in practice.

Further, while field observations have provided qualitative evaluations of theoretical
predictions for the effect of distortion and blockage, there remains a need for high
quality experimental data to facilitate more extensive validation. Appropriately scaled and
carefully designed laboratory experiments can allow for a more controlled flow and remove
the influence from external systems, e.g. speed or pitch controllers on the induction.
Deskos et al. (2020) have reported on a series of experimental results in a current flume
to investigate changes to the turbulence intensities and power spectra upstream of a rotor
that were compared with predictions from a quasi-steady blockage theory. The ability to
generate a wide range of Lx/D scales and acquire measurements of the spatial variation of
the turbulent flow field in a flume is however challenging. Flow conditions representative
of small length-scale isotropic turbulence or larger-scale ABL turbulence may be more
readily reproduced and measured in a wind tunnel using carefully designed roughness
elements and installations of wire grids. Hot-wire acquisition techniques can also be used
to directly sample throughout the induction zone at high resolution. Further, laboratory
testing can permit the use of a porous disc as an analogy to a rotor. For lightly loaded rotors
(i.e. corresponding to sufficiently small induction factors), the elimination of the blades
and nacelle from the problem can provide a set up more representative of the actuator disc
for which the predictions by, e.g., Graham (2017) are inherently based on. Since differences
in turbulence coherence can be expected between a rotor and disc, testing in a wind tunnel
can assist in informing the conditions in which the theoretical predictions are likely to be
most valid.

To this end, the objectives of this paper are to measure the inflow turbulence structure
and loading on a horizontal axis rotor and porous disc analogues in a wind tunnel and to
subsequently evaluate the applicability of theoretical-based predictions that can be applied
in engineering practice. The paper proceeds as follows. Section 2 describes the design of
the experiment in which porous discs and a model rotor were tested in grid turbulence and a
simulated ABL. These tests give a range of length-scale ratios and different intensities and
induction coefficients. The mean flow and structure of the free-stream incident turbulence
are characterised in §§ 3 and 4, respectively. Sections 5 and 6 outline the theoretical
models for prediction of the inflow turbulence and resulting fluctuating axial forces on
the rotor. The turbulence in the induction zone and response of the rotor/actuator disc to
this is first considered for very large and very low turbulence length scale to disc diameter
ratios. For general cases between these two extremes, distortion of the turbulent inflow is
obtained by interpolating the very small length-scale ratio result using the behaviour of the
low frequency spectrum limit computed previously in Graham (2017). The potential flow
(blockage) response of the actuator disc is presented as the two above alternatives for small
and large length-scale ratios and a simple interpolation is suggested. In § 7 the theoretical
framework is tested against the wind tunnel tests that give a range of length-scale ratios
and different intensities and induction coefficients. Finally, the models of the potential
flow response of the actuator disc to the distorted turbulent inflow are used, assuming
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homogeneity over the face of the disc but taking account of the reduced transverse
coherence, to compute predictions of the spectra and intensities of the fluctuating axial
forces induced. These predictions are similarly tested against force measurements for the
above cases. The key findings of the study are summarised in § 8.

2. Experiment

2.1. Facility and arrangement
The experiments were conducted in the 10′ × 5′ closed-loop wind tunnel at the
Department of Aeronautics at Imperial College, London. The wind tunnel test section
is nominally 3.048 m wide ×1.524 m high (10′ × 5′) and 20 m long. Both the wind
tunnel speed and air temperature are closed-loop controlled. The test models comprised
a three-bladed rotor and two porous discs of different diameters with similar porosity
designed to provide a similar resistance of the rotor at the tip-speed ratio of the tests. Both
the rotor and discs were aligned normal to the flow. Throughout each test the actuator
conditions were fixed, thus simulating below rated conditions for a horizontal axis wind
turbine for which this normally applies.

The models were first tested in a nominally clean uniform flow of the wind tunnel
test section in a 10 m s−1 wind speed that served to establish their mean characteristics.
Subsequent tests were conducted in two different turbulent flow regimes: (1) a 1 : 400
scaled, simulated turbulent ABL with a mean hub height wind speed of 10 m s−1; and
(2) a uniform mean flow, 10 m s−1 of homogeneous, small-scale, turbulence generated
by a planar square mesh grid (M = 125 mm). The ABL was designed according to the
Engineering Sciences Data Unit (ESDU) method (ESDU82026 2002) assuming neutral
conditions. A roughness length of z0 = 0.01 m was adopted from which the mean wind
speed and streamwise intensity profiles were obtained. A boundary layer with similar
characteristics was generated in the wind tunnel using Counihan spires (Counihan 1969)
and a fence, and developed over a 15 m rough floor fetch. Figure 1 shows that despite a
slightly weaker near-surface mean shear compared with the ESDU profiles, there is a good
match in the wind tunnel for the mean velocity and intensity profiles across the rotor plane.
The distribution of the ESDU values of the von Kármán length scale, which quantifies the
scale of the largest eddies in the flow, varied significantly (Han et al. 2014) in response to
small changes in z0. At the planned rotor hub height of 150 m (375 mm), the length scale
ranged between 140 m and 320 m. In the wind tunnel the von Kármán length scale was
measured as 0.41 m, which is equivalent to 164 m at full scale. Figure 2 shows the wind
tunnel set-up for these experiments, comprising the spires, fence and roughness fetch, and
a biplanar grid (shown outside the wind tunnel) that replaced the Counihan arrangement
for the tests in grid generated turbulence.

For the experiments in the ABL, all the models were tested in the same position in
the wind tunnel. This was around 15 m downstream of the spires, at mid-width of the
test section, and at an effective hub height of 375 mm (equivalent to 150 m at full scale).
A right-angle hot-wire probe was mounted on a probe holder, with the sensor at hub height.
The circular stem of the probe was approximately 2 mm in diameter and about 50 mm
long, while the probe holder was approximately 4 mm in diameter and about 200 mm
long. As such, it was assumed to have minimal effect on the mean and turbulent flow at
the measured point. The probe was able to translate along x, at hub height, by means of a
rail mounted on the floor upstream of the rotor rig.

For the experiments behind the grid, the models were mounted such that the hub was
at the mid-width and mid-height of the test section. The right-angle hot-wire probe, on

1000 A25-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.713


Turbulence in the induction zone of a horizontal axis turbine

0.4
0

0.125

0.250

H
ei

g
h
t 

Z 
(m

),
 l

ab
 s

ca
le

H
ei

g
h
t 

Z 
(m

),
 f

u
ll

 s
ca

le

0.375

0.500

0.625

0.750

0

0.125

0.250

0.375

0.500

0.625

0.750

0.6 0.8 1.0

U/Uhub height Iu(%)

1.2 1.4
0

50

100

150

200

250

300

0

50

100

150

200

250

300

0 5 10 15 20

(b)(a)

Figure 1. Vertical profiles of the mean velocity (a) and streamwise turbulence intensity (b). The circular
symbols denote hot-wire data acquired in the wind tunnel for the installed fetch. The ESDU values for
z0 = 0.01 m at full scale are shown by the solid red line, with the dashed lines corresponding to the ±10 %
limits. The dashed horizontal line at Z = 375 mm (150 m at full scale) represents the hub height for the rotor
and porous discs. Both figures have a left wind tunnel scale axis and a right full scales axis, assuming 1 : 400
scaling.

its probe holder, was at hub height and fixed at 12.5M. The rotor rig was able to translate
downstream of the fixed hot-wire sensor.

The geometric blockage ratio based on the frontal area of the models in the wind tunnel
working section was 4.3 % for the rotor, and 3.5 % and 1.0 % for the large and small
porous discs, respectively. The upstream wind speed at hub height was measured with a
Pitot-static probe and a Furness FCO560 micromanometer, with the latter also recording
the wind temperature and atmospheric pressure. For the tests in grid turbulence, the Pitot
probe was placed upstream of the grid. For the ABL experiments, it was 3.5D ahead and
2.5D to the side from the centres of the test models.

2.2. Porous discs and rotor
Figure 2 shows a schematic of models of the porous discs and the D = 500 mm diameter
three-bladed turbine. The two porous discs were of D = 450 mm and 245 mm and
fabricated from 4 mm thick medium-density fibreboard. In both discs, 12 mm diameter
holes were spaced equidistant both radially and azimuthally. The ratio of the open area
to total area for the small disc was 52.9 %. This ratio was slightly larger for the larger
disc, 55.5 %, due to the smaller distance between the outermost array of holes and the disc
perimeter.

The turbine was designed using conventional blade element momentum theory. The
spanwise chord length and twist angle distributions were based on a design tip-speed ratio
of Λ = 4.0. The low Reynolds number SG6051, SG6043 and SD2030 airofoil sections
(Selig, Donovan & Fraser 1989; Giguère & Selig 1998) were blended along the blade span
outward from the 42 mm diameter hub. The Reynolds numbers of the large and small
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Figure 2. Set-up of the wind tunnel experiments. (a) The Counihan spires, fence and the ground roughness
fetch are shown in the background. The rotor rig, comprising torque and r.p.m. sensors, electromagnetic brake
and forward-reaching shaft are in the foreground. The large porous disc is seen mounted onto the shaft,
which for this case, was locked from rotating. Shown outside the wind tunnel, on the right of the image,
is a two-dimensional turbulence generation grid, which replaced the spires, fence and roughness when the
grid turbulence experiments were conducted. Immediately ahead of the porous disc, the vertical hot-wire probe
holder, with a right-angle hot-wire probe, is shown mounted on a linear rail, which enabled the distance between
the sensor and the model (rotor or disc) to be varied. The general sign convention is shown. (b) End and front
views of the rig with the large porous disc, showing the sign convention and origins. Here x = 0 lies at the
streamwise location of the upstream face of the porous disc for the disc measurements, or at the streamwise
location of the blade quarter chord for the rotor measurements; Z = 0 lies on the tunnel roughness floor for
coordinates related to the ABL; z = 0 lies at the centre of the porous plate or rotor. For two-point velocity
correlations, the main hot wire was held at hub height, and a second hot wire was introduced, traversing
vertically (shown in the end view) or transversally (shown in the front view) relative to the first wire, with
separation �z or �y. (c) The rotor and two porous plates used in these experiments. The central grey region on
the porous plates shows the extent of the hub.

porous discs, based on the wind speed at hub height and their diameters, were 3 × 105

and 1.63 × 105, respectively. The Reynolds number of the rotor, based on the tangential
velocity and the chord at 0.75R (where R = D/2), was 6.35 × 104.

For the hot-wire velocity measurements upstream of the rotor and discs, the models were
mounted on a rig comprising an in-line Magtrol torque-r.p.m (revolutions per minute)
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sensor and a Magtrol proportional–integral–derivative (PID) controlled electromagnetic
brake. For the rotor case, this was used to provide a constant rotational speed of
1500 r.p.m., equivalent to a tip-speed ratio of Λ = 3.93. For the discs cases, the shaft was
locked from spinning. In both the discs and rotor cases, the shaft extended approximately
360 mm ahead of the rig platform. The lowest structural resonance (pitching) of the models
attached to the support system corresponded to a frequency of about 25 Hz for the large
disc and the rotor. It was significantly higher for the small disc.

The streamwise velocity component of the turbulence was measured upstream of the
discs and rotor using a Dantec 55P14 miniature right-angle hot-wire probe driven by a
Dantec streamline constant temperature anemometer. For the models in grid turbulence,
the hot-wire velocity data were recorded for 90 s. Data were acquired for 210 s in the
ABL flow. The model plane, i.e. x = 0, was defined as the streamwise location of the disc
front face for the porous disc measurements. It was at the rotor blade quarter chord for
the rotor measurements. For the spanwise correlation measurements, in the absence of the
models, two 55P14 probes were mounted on a spanwise rail, with the two sensors at hub
height, in the location of the plane of the model. One sensor was kept fixed on the axis at
hub height, while the other was traversed horizontally by �y. For the vertical correlation
measurements, also in the absence of the models, a similar arrangement was adopted.
Specifically, one sensor was kept fixed on the axis at hub height while the other was
traversed vertically above it by �z. In all cases, data were acquired at 60 kHz. Calibration
was carried out against a Pitot-static probe in the free stream.

For the axial force measurements, two methods were used. In method 1 the porous discs
were mounted directly on an ATI F/T Sensor: Nano17 Titanium SI 32-0.2 model, and
therefore, the model overhang distance (ahead of the load cell) was kept to a minimum,
minimising torque loads. It was not possible to mount the rotor in this arrangement, due to
the risk this would impose on the small load cell. The Nano17 load cell was then mounted
onto the rotor rig shaft, again locked from spinning. In method 2 the rotor rig was modified
(the torque and electromagnetic brake were removed) and an ATI F/T Sensor: Gamma
SI-130-10 was mounted instead. A forward-reaching sting, mounted at its root onto the
Gamma load cell, accepted the models at its tip. Axial load tests on the rotor using this
method, since the rotating shaft was replaced by a sting, necessitated the rotor to be free
spinning and the electromagnetic brake removed. In this case, the nominal 1500 r.p.m.
was maintained by adjustable blade tip drag devices. These comprised small steel screws
projecting a short length from the blade tip. This passively controlled the rotational speed
without adding significant mass to the live part of the model.

In both methods, the mean and fluctuating axial (drag) force induced by the mean and
turbulent flows on the whole rotor and each porous disc were measured. The data sampling
rate for both the Nano and Gamma load cells was set at 10 kHz. The acquisition duration
of the axial load data for the models in grid turbulence and ABL flow was 90 s and 210 s,
respectively. These axial load data were then low-passed filtered. Specifically, for cases in
grid turbulence, the small disc data were filtered using a cutoff frequency of fc = 100 Hz.
The large disc and rotor data were filtered using fc = 25 Hz. For cases in ABL flow,
fc = 100 Hz. The low-pass filtering of load-cell data is discussed in more detail in § 7.

3. Mean velocity in the induction zone

The mean velocity in the induction zone is first characterised, given its fundamental effect
on the inflow turbulent field. Vortex cylinder theory (Conway 1995), which is consistent
with the actuator disc momentum theory (Betz 1920), and was assumed for the previous

1000 A25-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.713


K. Gouder, I.A. Milne and M. Graham

ABL, rotor, Lx/D = 0.6 Grid, rotor, Lx/D = 0.064

ABL, large porous plate, Lx/D = 0.67

ABL, small porous plate, Lx/D = 1.24

Grid, large porous plate, Lx/D = 0.071

Grid, small porous plate, Lx/D = 0.13

0

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.5 1.0 1.5

Normalised streamwise distance –x/D

U
/
U

∞
U

/
U

∞
U

/
U

∞

Normalised streamwise distance –x/D
2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

(e) ( f )

(b)(a)

(d )(c)

Figure 3. Mean streamwise velocity for the rotor, large porous disc and small porous disc tested in the ABL
(a,c,e) and grid turbulence (b,d, f ). Circular markers show data from hot wire. The solid line is a best fit of
(3.1), iterating on a0, to hot-wire data. The dashed line is computed using a0 based on the thrust measurements.

distortion calculations by Graham (2017), is known to provide a good prediction of the
mean streamwise velocity U along the axis in the induction zone of a horizontal axis rotor
with uniform disc loading. This is similarly the case for a porous disc with a spatially
uniform coefficient of resistance. The theory predicts that at the disc face, x = 0, the mean
axial velocity will be uniform everywhere through the disc r ≤ R. Through the induction
zone the mean streamwise velocity along the disc axis (i.e. r = 0 and x < 0) is given by

U (x, r = 0) = (1 − a(x))U∞, (3.1)

where the axial induction factor on the axis, a(x) = a0(1 + x/
√

R2 + x2), with a0 the value
of the disc induction factor. Since there is uniformity across the disc face,

U (x = 0, r ≤ R) = (1 − a0)U∞. (3.2)

Batchelor & Proudman (1954) originally defined a contraction coefficient, c = U/U∞,
for accelerating turbulent flow passing through a contracting duct. Here it is defined
for the slowing, diverging flow upstream of the rotor disc for which c < 1. At the
disc c = c0 = 1 − a0, noting that a0 is directly related to the pressure drop coefficient
K = �p/(1

2ρU(0)2) (where �p is the pressure difference across the disc and ρ is the fluid
density), through the expression K = 4a0/(1 − a0).

Figure 3 shows the mean velocity measurements normalised by the upstream mean
velocity at the same height along the axis through the induction zone upstream of the discs
and rotor. Values of induction coefficients a0 can be calculated for each of the models from
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Figure 4. Two-point velocity correlation for the grid turbulence flow and its computation from integrated
coherence.

either fitting the Betz (1920) actuator disc mean velocity formula (3.1) or by evaluating a0
directly from the mean axial force measurements. The velocity measurements along the
axis and the theoretical lines given by (3.1) to fit them fall below the (dashed) lines, which
are similarly calculated from the force measurements. The discrepancy increases towards
the disc and is much larger for the small porous plate than for the other two. We believe
that this is due to the greater solidity of the hub region of the discs and rotor, which is
relatively more extensive in the case of the small porous plate. We have therefore taken the
value of a0 given by the force measurements to be the more reliable for the prediction of
induction zone turbulence intensities and force spectra.

It is noted that in the case of the ABL there is a small downward deviation of the mean
flow streamlines ahead of the disc due to the interaction of the mean shear with the disc
resistance. However, this deviation can be shown to be very small (Conway 1995), and has
not been taken into account in the present work.

4. Representation of the incident turbulence

4.1. Spectral models and grid turbulence
The von Kármán empirical spectrum function for isotropic turbulence is often taken for
convenience to represent free-stream turbulence. This is the case when there is no mean
shear such as in homogeneous turbulence downstream of a grid (e.g. Bearman 1972) or
if the mean shear is weak. Accordingly, it is used for comparison with the present tests
in grid turbulence and, subsequently, for the theoretical prediction models. The spectrum
model (von Kármán 1948) specifies the triple-wavenumber energy spectrum function that,
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assuming isotropy, gives the following for the streamwise velocity components:

ΦVK
11∞ (κ∞) = 1

4π

(
1.339Lx∞τ ∗

∞/κ∗2
∞
)2 Cu2∞κ∗4∞(

1 + κ∗2∞
)17/6 . (4.1)

Here u2 is the variance of the fluctuating streamwise velocity, Lx∞ is the streamwise

integral length scale, κ∗∞ = 1.339Lx∞κ∞, κ∞ = (κ1, κ2, κ3), τ ∗∞ =
√

κ∗
2

2 + κ∗
3

2 and

C = (220/9)Lx∞; ∞ denotes free-stream conditions. The single wavenumber φVK
11∞(κ1)

spectrum of streamwise velocity can be derived from (4.1) by integrating over the
transverse wavenumbers as

φVK
11∞(κ1) =

∫ ∞

−∞

∫ ∞

−∞
ΦVK

11∞ (κ∞) dκ2 dκ3. (4.2)

The wavenumber φVK
11∞(κ1) is more commonly expressed as a frequency spectrum. By

assuming Taylor’s hypothesis of effectively frozen turbulence convection to relate the axial
wavenumber κ1 to the frequency by f (= κ1U∞/2π), it is given by

S11∞( f ) = 4Lx∞u2∞

U∞

[
1 +

(
1.339Lx∞f

U∞

)2
]5/6 . (4.3)

In this case the convection velocity of the turbulence is assumed to be the uniform mean
velocity U∞.

Since the triple-wavenumber spectrum (4.1) is axisymmetric, the transverse
coherence coefficient C11(�r, κ1), which gives the correlation between wavenumber κ1
(i.e. frequency) components separated a transverse distance �r in any direction in the
( y = r2, z = r3) plane, can be obtained from the Fourier transform of ΦVK

11∞ with respect
to either transverse wavenumber κj, j = 2 or 3, yielding

C11(�rj, κ1) = 4
∫∞

0

∫∞
0 ΦVK

11∞(κ∞) cos(�rjκj) dκ2 dκ3

φVK
11∞(κ1)

, (4.4)

taking account of the symmetry of the integrals with respect to wavenumber.
Similarly, the transverse correlation coefficient R11(�r) is obtained by integrating over

the streamwise wavenumber, giving

R11(�rj) = 8
∫∞

0

∫∞
0

∫∞
0 ΦVK

11∞(κ∞) cos(�rjκj) dκ1 dκ2 dκ3

u2∞
, (4.5)

as plotted, for example, in Figure 4.
Both of the above integral expressions can be evaluated analytically for the von Kármán

form of the spectrum to provide quantification of the spatial structure of the turbulence.
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The resulting expression for the transverse correlation is

R11(�r∗) = 1
Γ (1/3)

(
�r∗

2

)1/3 {
K1/3(�r∗) − �r∗K2/3(�r∗)

}
, (4.6)

where Kα is the modified Bessel function of the second kind and �r∗ (= r/1.339Lx∞) is
the non-dimensional transverse separation. The corresponding coherence is

C11(�r, κ1∞) = 2
Γ (5/6)

(
(1 + κ∗2

1∞)1/2�r∗

2

)5/6

×
{

K5/6

(
(1 + κ∗2

1∞)1/2�r∗
)

− (1 + κ∗2
1∞)1/2�r∗

2
K1/6

(
(1 + κ∗2

1∞)1/2�r∗
)}

. (4.7)

The expressions given above for frequency spectra, correlations and coherences are also
given, for example, in Burton et al. (2021, §§ 2.6.4 and 2.6.7) and Harris (1970).

In the case of tests in grid generated turbulence, the expression for the von Kármán
energy spectrum function ΦVK

11∞ as given in (4.1) will be used as an adequate representation
of the turbulence incident on the rotor. At distances greater than about 10 grid meshes
downstream of a grid, turbulence can be assumed to be approximately homogeneous.
However, it is statistically axisymmetric rather than isotropic, with u2 being considerably
larger than the respective components in the transverse and vertical directions (v2 and
w2). Because of its anisotropy, the transverse turbulence length scales Ly∞,z∞ are also
less than the isotropic prediction of half of the streamwise length scale given by the
autocorrelation function. In the present tests the ratio was found to be about 3/8, in
agreement with other grid turbulence measurements in the literature; see, e.g., Jackson,
Graham & Maull (1973). Therefore, since the transverse correlation of the turbulence over
the disc has the largest influence on the axial force, the streamwise integral length scale
used here in the calculations for the grid turbulence cases was obtained from a best fit to
the measured data for R11( y) = u(x0, y0, z0)u(x0, y0 + y, z0)/u2(x0, y0, z0) in (4.6), which
is an excellent match.

The corresponding transverse coherence, like the transverse correlation, is independent
of transverse direction. This is shown by figure 5 with the wind tunnel measurements for
the grid generated turbulence. The measurements were taken with horizontal separations
only in this case. The square mesh grid having the same pattern in both horizontal and
vertical directions, the vertical separation equivalents were not measured but assumed to
be the same as the horizontal ones. Previous work with other regular grids had shown the
turbulence becoming statistically axisymmetric as it developed downstream of the grid.

4.2. The ABL turbulence
The von Kármán representation is less adequate for ABL turbulence and its simulation
in wind tunnels (see comparisons by Deaves & Harris (1978) with full-scale data). In
the case of simulated ABL turbulence, we have found, as have others (Counihan 1970;
Fordham 1985; Hutchins & Marusic 2007; Fang & Porté-Agel 2015), that the transverse
correlations and coherences of streamwise turbulence velocity with horizontal separation
and those with vertical separation are different. Specifically, the measured data for the
vertical separation correlation and coherences can still be scaled to fit the predictions of
the von Kármán spectrum reasonably well, for a suitable value of the streamwise integral
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Figure 5. Horizontal coherence for select frequencies in grid turbulence flow. Lines: computed coherence;
markers: coherence from hot-wire data.

length scale Lx∞. However, those for horizontal separation cannot. Our measurements,
in agreement with the literature, show a much more strongly negative correlation and
coherences for larger horizontal separations than are predicted for isotropic turbulence.
It is postulated that these stronger negative regions may be attributable to side-by-side
low- and high-speed streaks that have a tendency to form in the outer layer of turbulent
boundary layers.

Mann (1994) has derived theoretically a description of ABL turbulence subject to
the effects of mean shear (following Durbin 1981) and blockage by the presence of
an impermeable ground plane (Hunt & Graham 1978), assuming RDT. In the present
measurements, corresponding to a rotor hub height larger than one turbulence length
scale above the ground, the ground proximity effect would be expected to be weak and
the distortion appear to be primarily due to the mean shear. Calculation of the resulting
spectrum function and corresponding correlations and coherences that are required to
calculate the rotor or disc axial force spectra are more complicated with this theoretical
model and would require multiple integrations. A major aim of the present work is the
efficient prediction of axial force spectra for rotors and analogous porous discs in ABL
turbulence for which an adequate representation of the transverse coherences is essential.
We have therefore opted to seek a minimal extension of the empirical von Kármán
spectrum function Φ11 sufficient to give an improved fit for the measured streamwise
velocity coherences of the ABL turbulence while still allowing the analytic integration
of (4.4) and (4.5), which are possible with this form of the spectrum function. The
numerator of Φ11 is adjusted such that the negative component of transverse correlation
and coherence with horizontal separation is enhanced to fit the measured data while
not affecting the vertical separation data. Specifically, the second (negative) term in the
horizontal, transverse coherence is multiplied by a factor η(κ∗

1 ) = 1 + η0/(1 + κ∗2
1 ) such
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that

C11 (�y, κ1∞) = 2
Γ (5/6)

(
(1 + κ∗2

1∞)1/2�y∗

2

)5/6

×
{

K5/6

(
(1 + κ∗2

1∞)1/2�y∗
)

− η(κ∗
1∞)

(1 + κ∗2
1∞)1/2�y∗

2
K1/6

(
(1 + κ∗2

1∞)1/2�y∗
)}

.

(4.8)

The vertical coherence remains unchanged, as in (4.7),

C11 (�z, κ1∞) = 2
Γ (5/6)

(
(1 + κ∗2

1∞)1/2�z∗

2

)5/6

×
{

K5/6

(
(1 + κ∗2

1∞)1/2�z∗
)

− (1 + κ∗2
1∞)1/2�z∗

2
K1/6

(
(1 + κ∗2

1∞)1/2�z∗
)}

. (4.9)

The modified triple-wavenumber spectrum function corresponding to these two
coherence functions can be shown, as outlined in Appendix B, to be

Φ11∞ (κ∞) = C0

⎧⎪⎨⎪⎩ΦVK
11∞ (κ∞) − 5η0(1.339Lx∞)2Lx∞u2

1∞
3πU∞

⎡⎢⎣1 + κ∗2∞ − 11
3

κ∗2
2∞ + 5

3
κ∗2

3∞
(1 + κ∗2

1∞)(1 + κ∗2∞ )17/6

⎤⎥⎦
⎫⎪⎬⎪⎭ , (4.10)

where C0 = 81/(81 − 6η0). The modification (second) term has been arranged so that the
spectra all revert to their isotropic form at high frequencies and the possibility of analytical
integration has not been compromised. The single wavenumber (frequency) spectrum that
follows from integrating Φ11∞ in (4.10) over all κ2∞ and κ3∞ is

S11∞(κ1∞) = 81 − 15η0/(1 + κ∗2
1∞)

81 − 6η0
SVK

11∞(κ1∞). (4.11)

The corresponding empirical correlations can be determined by integrating numerically
each coherence with respect to frequency. These coherences and correlations are compared
with the measured data from the wind tunnel ABL in figures 6 and 7. An optimisation
routine, varying η0 and Lx∞, fitted both theoretical spanwise and vertical correlations,
obtained from integrating the coherences, to the corresponding two-point experimental
data. This yielded the best-fit values as η0 = 2.0 and Lx∞ = 0.3 m, the latter being
approximately 3/4 of the autocorrelation value as for the grid turbulence. The results show
much improved agreement across most separation distances, though weaker agreement at
small �y is acknowledged. In the ABL case, as in the grid turbulence case, the length scale
Lx∞ is derived from fitting the measured transverse correlation data to the corresponding
empirical expressions.

With this best-fit value of η0 = 2.0 the prefactor in (4.11) is (27 − 10/(1 + κ∗2
1∞))/23.

For low wavenumbers, this tends to 17/23 and, therefore, reduces the spectrum energy
density below SVK

11∞(κ1∞) and, for high wavenumbers, tends to 27/23 equalling C0 and
giving a modest amplification. The cross-over wavenumber at which the power spectral
density (PSD) is unchanged is given by κ∗

1∞ = √
(3/2).
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Figure 6. Horizontal separation (y direction) and vertical separation (z direction) two-point velocity
correlations for the ABL flow. Horizontal separation (y direction) correlation: blue circular markers are
correlation data from hot wire and the solid line is the correlation from integration of the coherence. Vertical
separation (z direction) correlation: black diamond markers are correlation data from hot wire and the dashed
line is the correlation from integration of the coherence.
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Figure 7. Horizontal separation (a) and vertical separation (b) coherence in ABL flow for select frequencies.

5. Turbulence intensity in the induction zone of an actuator disc

The turbulent velocity is modified through the induction zone approaching an actuator
disc. Its modification is a result of two effects: firstly, the fluctuating (blocking) flow field
of the disc in response to the incident turbulence; secondly, the consequence of the mean
velocity gradients generated by the disc resistance on the turbulent vorticity.
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Turbulence in the induction zone of a horizontal axis turbine

The fluctuating (vector) velocity field of the inflow turbulence is therefore decomposed
into two parts,

u(x) = up(x) + uζ (x), (5.1)

where up(x) is the perturbation velocity due to the blocking action of the disc and uζ (x) is
the streamwise fluctuating velocity distorted by the mean flow gradients in the induction
zone. In the limit of zero disc resistance (a0 = 0) up → 0 and uζ → u∞. Here up is the
gradient of a potential φp, satisfying Laplace’s equation

∇2φp = 0. (5.2)

Therefore,

∇ × u = ∇ × uζ = ζ , (5.3)

with

∇2uζ = −∇ × ζ . (5.4)

The vorticity ζ in the inflow turbulence moves with the fluid particles. It is subject
to compression, extension and rotation of the vortex lines as they are convected along
the diverging streamlines of the mean flow in the induction zone of the actuator disc. This
results in distortion of uζ that can be calculated by integrating (5.4) over the flow field. The
potential part up of the fluctuating flow field is that which is associated with the pressure
field due to the blocking action of the disc. This part can be calculated from solutions of
the Laplace equation (5.2), satisfying boundary conditions on u(x = 0) at the disc.

Using the above split, in the following sections the theoretical framework for predicting
the intensity of the streamwise component u of the fluctuating velocity through the
induction zone is established. This is on the basis that the fluctuating axial force induced
on a high tip-speed ratio rotor, as well as on porous discs, is dominated by this velocity
component. The incident free-stream turbulence is assumed to be uniform and statistically
homogeneous. In the absence of the disc, the turbulence intensity u2∞ and length scale
Lx∞ may be taken as constant. We note that this assumption is expected to be appropriate
for large commercial scale wind turbines, but less so for smaller turbines since in the shear
dominated surface the intensity and length scales both change strongly with height. The
turbulence will be taken to be specified by its value at the location of the centre of the
actuator disc in its absence. Additionally, the disc axis will be assumed to be aligned with
the mean wind direction. Before presenting the general case, asymptotic conditions are
first considered. These correspond respectively to the cases of very small and very large
ratios of turbulence length scale to disc diameter.

5.1. Calculation of the effects of distortion and blocking when Lx∞/D � 1
If the turbulence length scale is much larger than the length scale D of the disc, distortion
becomes negligible (Graham 2017) and, therefore,

uζ → u∞. (5.5)

Also, for L1 � 1, the potential flow field due to the disc resistance to the turbulence reverts
to a quasi-steady extension of the mean flow (Mann et al. 2018). Therefore, for x ≤ 0, the
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perturbation to the fluctuating flow on the upstream axis due to disc resistance is

up = −a0

(
1 + x√

R2 + x2

)
u∞. (5.6)

Hence, the velocity on the upstream axis is

u =
[

1 − a0

(
1 + x√

R2 + x2

)]
u∞. (5.7)

Equation (5.6) provides the quasi-steady prediction for the perturbation due to blocking
of the time-dependent flow field of the disc. It is what is normally assumed for predicting
the turbulence in the induction zone and also the unsteady rotor forces that the turbulence
induces. The combination, (5.7), of quasi-steady perturbation with undistorted incident
turbulence has been found to give reasonably good agreement with measured data (Mann
et al. 2018) when Lx∞ > D.

This has typically been assumed to be the case for all wind turbines in the turbulent
ABL. However, with blade lengths of large offshore wind turbines now exceeding
100 m this condition is not always fulfilled by the ABL turbulence. It is even less
applicable within large wind farms containing large amounts of wake turbulence. Further,
stratification can significantly reduce the integral length scales and the streamwise
intensity under stable conditions typical of night time. In these cases, the Lx∞/D � 1
regime can be more easily achieved. Here Lx∞ may also not be greater than D for many
cases of horizontal axis turbines in relatively shallow turbulent flows, which can occur in
certain ABLs and tidal streams (e.g. Milne et al. 2013; Milne, Sharma & Flay 2017; Milne,
Graham & Coles 2021).

5.2. Calculation of the effects of distortion and blocking when Lx∞/D 
 1
Next we consider the other extreme of small length-scale turbulence. This is a less realistic
case but applies to some tests that have been carried out in grid turbulence within the
literature (Ebdon et al. 2021; Slama et al. 2021). It is of theoretical interest because it is
a case of rapid flow expansion that satisfies the conditions for the classical RDT theory
(Batchelor & Proudman 1954) and analytic results can be obtained.

When Lx∞/D 
 1, the distortion of the whole turbulent vorticity field that generates
the distorted velocity at any given point may be considered to be locally homogeneous.
The RDT theory (Batchelor & Proudman 1954) for turbulent flow through a contracting
duct, c > 1, applies directly. However, many of the effects are reversed since the range is
0.5 < c < 1. (The theory is not applicable to high induction coefficient flows for which
c < 0.5 because of wake instability Castro 1971). When the turbulence length scale is very
small, the distortion applies locally. The spectrum of the distorted turbulence at any point
along the axis upstream of the rotor depends only on the ratio of the mean axial velocity
U(x) at that point to the free-stream velocity. Therefore, the distortion depends only on
the local value of a(x). At the disc face (x = 0), actuator disc theory predicts uniform
streamwise mean velocity. It follows that the distortion is constant over the whole face of
the disc, with a(r) = a0 for all r < R.

Following the analyses of Batchelor & Proudman (1954), also repeated in Graham
(2017), the ratio μ(a0, κ) of the triple-wavenumber spectrum of the streamwise turbulent
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velocity after distortion to that far upstream before distortion is

μ = Φ11 (κ)

Φ11∞ (κ∞)
= κ4∞

κ4 . (5.8)

Here, κ is now the vector of distorted wavenumbers (κ1, κ2, κ3) and κ∞ the vector of
corresponding undistorted wavenumbers. Due to compression of the waves, the slowing
and diverging mean flow increases the axial wavenumbers. The transverse wavenumbers
are decreased by the associated transverse expansion. The relations are κ1 = κ1∞/c,

κ2 = √
cκ2∞, κ3 = √

cκ3∞ and, therefore, τ =
√

κ2
2 + κ2

3 = √
cτ∞. The subscript ∞

designates undistorted far upstream values and c(x) is the local contraction coefficient
at any point x ≤ 0 along the axis.

Because turbulence of a small length scale Lx∞ 
 D decays significantly through the
streamwise length of the inflow region of the rotor disc (∼ D), the reference undistorted
turbulence state, for example, the intensity u2∞, is therefore taken to be the state that it
would have had at the location x = 0 of the disc in its absence.

After distortion, for Lx∞ → 0, the frequency spectrum, S11(κ1), can be computed by
integrating Φ11 over κ2 and κ3, either by numerical integration or by evaluating the integral
analytically in terms of hypergeometric functions. It is more straightforward to evaluate
the mean square intensity analytically. By integrating the triple-wavenumber spectrum of
the turbulence over all three wavenumbers in polar coordinates, the following analytic
expression (Batchelor 1960, p. 73, equation (4.3.17)), is obtained:

u2
ζ

u2∞
= 3

4c2

{
β2 − 1

β3 tan−1 β + 1
β2

}
. (5.9)

Here β2 = 1/c3 − 1 = 1/(1 − a)3 − 1. This result is due to distortion only and does not
consider the blocking up, which is only effective at or very close to the disc face in this
limit. It shows that distortion increases the streamwise intensity.

The effect of blocking is now considered. For small turbulence length scales, except
close to the outer edge (blade tips), the flow passing through the disc senses its blocking
effect locally as a uniform porous sheet of resistance over the plane x = 0. Analysis to
predict the effect of a sheet of resistance (such as a wire-mesh gauze) of effectively infinite
extent on a turbulent flow passing through it has been given by Batchelor (1960, p. 61).
This analysis, in addition to the resistance pressure jump imposed across the sheet, allows
for a specified degree of refraction of the streamlines passing through it. The actuator
disc model used here is assumed to exert only resistance to the flow with no refraction
of streamlines at the disc. To calculate the blocking potential flow caused by the disc, the
analysis is applied as for the gauze, but with the following changes.

(i) The axial mean velocity through the actuator disc is (1 − a0)U∞, instead of the
value of U∞ for an infinite gauze (or, equivalently, a gauze across a duct). This is to
account for the effect of the finite extent of the disc on the mean flow.

(ii) In the far wake, where the pressure field returns to ambient, the axial mean velocity
is now (1 − 2a0)U∞ rather than U∞ for the infinite gauze. This accounts for the
mean flow wake of the disc.

(iii) The pressure depends on ∂φ/∂t and, hence, on the frequency ω of each
wavenumber component that remains invariant, unaffected by distortion. However,
the axial wavenumber changes from κ1∞ to κ1 = κ1∞/(1 − a0) and the transverse
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wavenumbers change to κ2 = √
1 − a0κ2∞ and κ3 = √

1 − a0κ3∞ due to the
distortion, following the assumptions of RDT theory for small-scale turbulence
convecting through a contracting or expanding mean flow.

Assuming weak turbulence (u/U 
 1), the linearised equations for the fluctuating
pressures either side of the disc are{

∂

∂t
+ U

∂

∂x

}
φ1 = 1

ρ
( p∞ − p1) + (U∞ − U)u1∞, (5.10){

∂

∂t
+ U

∂

∂x

}
φ2 = 1

ρ
( p∞ − p2) + (Uw − U)u2∞, (5.11)

where U = (1 − a0)U∞ at the disc, Uw = (1 − 2a0)U∞ in the wake and subscripts 1 and
2 refer to x ≤ 0 and x ≥ 0, respectively. The linearised equation for the fluctuating pressure
jump �p = ( p1 − p2) at the disc is

�p = ρKU
(

u1∞ + ∂φ1

∂x

)
, (5.12)

where K = 4a0/(1 − a0) and φ1 and φ2 are the fluctuating velocity potentials of
the perturbation up on the upstream and downstream side, respectively, caused by
the resistance of the disc. The velocity components satisfy mass-flow continuity for
the upstream and downstream velocities. Hence, ∇2φj = 0 and ∂uj∞/∂x + ∂vj∞/∂y +
∂wj∞/∂z = 0 for j = 1 and 2. Also velocities are continuous through the disc. Hence,
u1∞ + ∂φ1/∂x = u2∞ + ∂φ2/∂x and correspondingly for the transverse directions. The
velocity u1∞ = uζ , the incident velocity after distortion, which can be written as

uζ = ûζ exp(i(ωt − κ1x − κ2y − κ3z)). (5.13)

Therefore, since φ1 and φ2 satisfy the Laplace equation as above,

φ1 = φ̂1 exp(τx + i(ωt − κ2y − κ3z)), (5.14)

φ2 = φ̂2 exp(−τx + i(ωt − κ2y − κ3z)), (5.15)

where φ̂j is the amplitude of φj. Assuming that Taylor’s hypothesis is valid upstream of the
disc’s effective induction zone, the frequency ω = κ1∞U∞ (rad s−1). Taylor’s hypothesis
is considered to be fairly accurate in homogeneous turbulence in a flow with no mean shear
such as is the case for the present grid turbulence, but it is less certain where there is mean
shear such as in the ABL. Favre, Gaviglio & Dumas (1967) have measured space–time
correlations of turbulent velocity in a boundary layer and shown that Taylor’s hypothesis
is reasonable in this turbulent shear flow for the lower wavenumber components of the
turbulence and with a mean velocity near the middle of the boundary layer taken as
the appropriate convection velocity. We assume this to be the case for the present ABL
measurements and take the mean velocity at the hub height as the convection velocity. The
component of the fluctuating streamwise velocity at each wavenumber κ incident at the
disc after distortion can therefore be written as

uζ = ûζ exp(i(κ1∞U∞t − κ1x − κ2y − κ3z)), (5.16)

with (κ1, κ2, κ3) now being the wavenumbers after the effect of distortion, = (c−1κ1∞,√
cκ2∞,

√
cκ3∞). A solution can be obtained from the above set of equations,
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Figure 8. Streamwise root-mean-square (r.m.s.) ratio upstream of an actuator disc, induction factor a0 = 1/3.
Ratio Lx∞/D marked on curves. Top (red), thick solid line: Lx∞/D → 0, (5.9); bottom (red) dashed line:
quasi-steady, Pena et al. (2017), Lx∞/D → ∞; thin solid black lines: interpolation 1, interpolation of both
distortion and blocking; thin dash-dotted black lines: interpolation 2, (5.30).

(5.10)–(5.15), for the potential φ1(x) of the ‘backflow’ induced by the pressure field
upstream of the disc. It follows that the backflow velocity is given by

up (x) = ∂φ1

∂x
= −a0τ (τ − iκ1) ûζ (0)

τ 2 − 2ia0κ1τ + κ1κ1∞
eτx exp(i (ωt − κ2y − κ3z)). (5.17)

Combining the two effects, the total streamwise fluctuating velocity wavenumber
component u(x, κ) at x ≤ 0 on the upstream axis of the rotor is obtained as the sum of
the component amplitudes ûζ and ûp,

u (x) =
[

ûζ (x) exp(−iκ1x) − a0τ (τ − iκ1) ûζ (0)

τ 2 − 2ia0κ1τ + κ1κ1∞
exp(τx − iωT)

]
× exp(i (ωt − κ2y − κ3z)). (5.18)

There is a time difference T between the two terms on the right-hand side of (5.18). This
arises due to the time for convection between the evaluation point x on the upstream
axis and the disc face at which the blocking potential flow field is generated. Since
incompressible flow is assumed, this pressure field is generated throughout the flow
without any propagation time lag. The effect of T is small except at high frequency and
will be neglected here.
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5.3. Calculation of the effects of distortion and blocking in general length-scale cases
The total fluctuating streamwise velocity u(x, t) in the inflow region is a typical
measurement made in both the field and wind tunnel tests. Evaluating the distorted
velocity uζ (x, t) for intermediate length-scale ratios Lx∞/D is however computationally
expensive. Therefore, values have been obtained here by interpolating between the two
limits Lx∞/D → 0 and Lx∞/D → ∞.

The largest distortion effect occurs at the low frequency end of the spectrum. Since the
spectrum is flat here, the ratio of post-distortion spectrum to pre-distortion spectrum for
zero frequency, which is less computationally expensive to calculate (Graham 2017), is
used as the function to interpolate the post-distortion spectra. The intensities for general
length-scale ratios and values of induction factor are interpolated between the limiting
case of the spectrum SB

11(κ1) derivable from the Batchelor (1960) theory for Lx∞/D 
 1
and the undistorted free-stream spectrum S11∞(κ1), which applies when Lx∞/D � 1:

Sζ
11(κ1) = g0SB

11(κ1) + (1 − g0)S11∞(κ1). (5.19)

The interpolation function g0 is given by

g0(Lx∞/D) = 0.8( f0(Lx∞/D) − 1), (5.20)

where

f0(Lx∞/D) = Sζ
11(κ1 = 0)

S11∞(κ1 = 0)
(5.21)

and fκ(x) represents the distortion factor at x. The factor 0.8 normalises the limiting value,
(1/c2 − 1), of the right-hand side when Lx∞/D = 0.

Values of f0(Lx∞/D) have been computed and presented (see Graham 2017, figure 8)
for a range of Lx∞/D when a0 = 1/3. For small turbulence length scales and a0 = 1/3,
f0(Lx∞/D → 0) → 1/c2 = 1/(1 − a0)

2 = 2.25. For large length scales, Lx∞/D � 1,
f0 → 1.0, for all a0. A rational approximation of the function g0(Lx∞/D) over the range
0 ≤ Lx∞/D ≤ 5 is

g0(Lx∞/D)

= −0.24346L5
D + 1.01543L4

D − 3.0913L3
D + 1.65344L2

D − 0.02736LD + 1.0251

−1.81856L5
D + 5.55776L4

D − 14.8328L3
D + 14.0444L2

D − 3.1816LD + 1.0
,

(5.22)

where LD is Lx∞/D and noting that a pole near LD = 1.1 must be avoided.
Equation (5.19) with (5.21) and (5.22) satisfies the necessary limit conditions for the

interpolated velocity spectra, specifically

Sζ
11(Lx∞/D, c = 2/3, κ1 = 0) = 1

c2 S11∞(κ1 = 0), (5.23)

Sζ
11(Lx∞/D → ∞, c, κ1) = S11∞(κ1∞), (5.24)

Sζ
11(Lx∞/D → 0, c, κ1) = S11,0(κ1), (5.25)

Sζ
11(Lx∞, c, κ1 → ∞) ∼→ S11∞(Lx∞, c, κ1 → ∞). (5.26)

The mean square intensity is then obtained by integrating (5.19) for the spectrum
Sζ

11(κ1), noting that the interpolation function g0 is independent of wavenumber and using
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Turbulence in the induction zone of a horizontal axis turbine

the triple-wavenumber spectrum integration result in (5.9). Hence, the interpolated mean
square intensity due to distortion alone is

u2
ζ

u2∞
= 3g0

4βc2(x)

[(
1 − 1

β2

)
tan−1 β + 1

β

]
+ 1 − g0. (5.27)

Equation (5.27) evaluated at x = 0, and therefore, with c(x) = c0, provides a prediction of
the intensity of the incident turbulence impacting the rotor disc.

We now consider the effect on the intensity in the induction zone of the perturbation
velocity component up due to the blocking by the resistance of the disc. Here up has
been derived for very small length scales in (5.17) using the gauze theory of Batchelor
(1960). Since this expression depends on wavenumber, when added to uζ , (5.18), it must
be multiplied by its complex conjugate and integrated over all three wavenumbers to obtain
the mean square intensity for the limiting case Lx∞/D → 0. The result is plotted as a solid
red line for the root mean square (r.m.s.) in figure 8. For the largest length-scale ratios,
the blocking perturbation tends towards the backflow given by quasi-steady theory and
uζ → u∞ unaffected by distortion. Therefore, (5.27) is multiplied by a factor (1 − a(x))2

that is independent of wavenumber, so the same factor therefore applies to the mean square
intensity. The result of this is shown in figure 8 as the red dashed line for the largest
length-scale ratio Lx∞/D = 4.0. It shows that a strong reduction in intensity is generated
as the disc is approached, far stronger than the very small increase due to distortion effect
for this comparatively large length scale.

Between these two length-scale limits the backflow up due to resistance may be
interpolated as has been done for the distortion of uζ . For this, we have used a simple
exponential interpolant e−Lx∞/D between (5.17) for Lx∞ = 0 and (5.6) for Lx∞ → ∞. The

results of doing this for
√

u2, which will be referred to as interpolation 1, are plotted as
solid black lines in figure 8 for the range of turbulence length-scale ratios Lx∞/D shown
on the curves. The results for the ratios 0.01 and 0.1 are slightly above the ratio equal to 0
limiting curve because there is a small initial rise in f0(Lx∞/D) (figure 8, Graham 2017).

Interpolation 1 is also shown compared with the measured
√

u2 data from the wind
tunnel experiments in figure 9, for two estimates of the disc/rotor induction factor a0:
(a,c,e) the discs or rotor in ABL, and (b,d, f ) the discs or rotor in grid turbulence, i.e. thin
dashed red lines are for a0 given directly from the mean thrust force measurements and
blue solid lines for a0 obtained by fitting equation (3.1) to the hot-wire measured data.
In the ABL (figure 9a,c,e), i.e. the larger length-scale ratio cases, the effect of distortion
is small and only the strong reduction due to up blocking is apparent. In figure 9(b,d, f ),
for grid turbulence cases, i.e. the smallest length-scale ratios, a large increase in intensity
occurs due to distortion as the axial location approaches the disc. The increase is followed
by a rapid fall in intensity due to the blocking that occurs just ahead of the disc over a
distance similar in size to the length scale Lx of the turbulence. This is to be expected
since, apart from close to the edge of the disc, the potential flow response to small-scale
turbulence eddies will be local and, therefore, on a scale proportional to Lx∞.

In order to avoid evaluation by numerical integration, an interpolation based on length
scale between the large length-scale quasi-steady formula for the potential flow blocking
field ahead of the disc and (5.17) for small length scale is proposed.

To do this, we modify (5.7) for the induction a(x) by replacing the disc radius length
scale R in this equation by a new length scale RL, which varies smoothly over the range of
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Hot wire data
Interpolation 1, a0 from hot-wire data

Interpolation 1, a0 from load cell data

Interpolation 2, a0 from load cell data

Quasi-steady with distortion

Quasi-steady

ABL, rotor, Lx/D = 0.6 Grid, rotor, Lx/D = 0.064

ABL, large porous plate, Lx/D = 0.67

ABL, small porous plate, Lx/D = 1.24

Grid, large porous plate, Lx/D = 0.071

Grid, small porous plate, Lx/D = 0.13
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Figure 9. Streamwise r.m.s. velocity normalised by the no rotor/no disc mean velocity, for rotor and both discs
in (a,c,e) ABL and (b,d, f ) grid turbulence flows. Circular marker: hot-wire data; solid blue line: interpolation
1, i.e. interpolation of both distortion and disc resistance potential flow, using a0 given by fitting actuator
theory to the hot-wire data; thin dashed red line: interpolation 1, i.e. interpolation of both distortion and disc
resistance potential flow, using a0 given by thrust measurements; thick dashed black line: interpolation 2, i.e.
(5.30) requiring no numerical integration, using a0 from thrust measurements; thin dash-dotted green line:
quasi-steady approximation with distortion given by interpolation for the relevant Lx/D; dotted magenta line:
quasi-steady approximation without any distortion assumed.

Lx∞/D with the same exponential variation as used for interpolating the resistance

RL = R(1 − e−Lx∞/D), (5.28)

in (5.7) which is therefore modified to

u →
⎡⎣1 − a0

⎛⎝1 + x√
R2

L + x2

⎞⎠⎤⎦ u∞. (5.29)

Inserting it as the squared factor in (5.27) then gives the following formula for intensity
in the induction zone:

u2

u2∞
=
⎡⎣1 − a0

⎛⎝1 + x√
R2

L + x2

⎞⎠⎤⎦2 {
3g0

4βc2(x)

[(
1 − 1

β2

)
tan−1 β + 1

β

]
+ (1 − g0)

}
.

(5.30)
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Turbulence in the induction zone of a horizontal axis turbine

The results of using (5.30), referred to here as interpolation 2, are shown as black dash-dot
lines in figure 8 for all the length-scale ratio cases labelled. Equation (5.30) agrees with
the limiting cases for the largest and smallest length-scale ratios. The agreement between
the two methods is not perfect close to the disc over the mid-range of length-scale ratios
but they are equally close to the measured results in figure 9 at distances where the
measurements were taken. It should be noted that the modification R → RL causes no
change at the disc face x = 0 and, therefore, has no influence on force prediction.

The above evaluation of the axial velocity component of the turbulence for a range of
turbulence length-scale ratios has been developed mainly to provide a basis for predicting
the fluctuating axial forces on a rotor due to the impact of the turbulence. But the two
interpolation methods given are also intended to provide information about the fluctuating
wind velocity in the near region upstream of a rotor to help in interpretation of LiDAR
and wind monitoring measurements in this region. The results only apply to the upstream
flow and in a region reasonably close to its axis. A similar approach based on the actuator
disc model might be applied downstream but effects of blade wakes and downstream swirl
would also have to be considered.

6. Prediction of axial force spectra induced on an actuator disc

The axial forcing on an actuator disc in response to the turbulent flow field is now
considered. The pressure difference across the disc is given by

�p = ρK (x = 0)

{
uζ (0) + ∂φ1

∂x

}
U = ρK(1 − a0)

{
uζ (0) + ∂φ1

∂x

}
U∞. (6.1)

Spectra of fluctuating axial force on the disc may be calculated by integrating the pressure
drop �p over the whole disc.

Actuator disc theory predicts that the mean velocity is uniform over the disc at the disc
face, x = 0, although not so for x < 0. Therefore, in the limit Lx∞/D → 0 the distorted
streamwise turbulence will again be statistically uniform over the disc when it reaches the
face. We will assume this also for the purposes of computing axial force spectra for cases
with larger values of Lx∞/D. However, it is recognised that in reality tip/boundary effects
on the disc and vertical shear in the ABL mean that this is not exactly true.

For Lx∞/D � 1, the fluctuating loading (minus the time-mean loading) at any point
( y, z),

√
y2 + z2 ≤ R, on the disc is given by the quasi-steady approximation. In this case,

∂φ1/∂x = −a0u1ζ (0) and, therefore,

�p( y, z, t) = ρKu(x = 0, y, z, t)U

= 4a0(1 − a0)ρuζ (0, y, z, t)U∞
= 4a0(1 − a0)ρU∞ûζ exp(i(ωt − κ2y − κ3z)) (6.2)

for each wavenumber component (κ1, κ2, κ3).
Therefore, the axial force

F̂xeiωt = 4a0(1 − a0)ρU∞ûζ eiωt
∫∫

A
e−i(κ2y+κ3z) dA, (6.3)

where A is the area of the disc. The integral over A can be evaluated by taking axes
(s, n) with origin at the centre of the disc and with s aligned with the direction of the
component wavenumber τ and n normal to it. Referring to figure 10, κ2 = τ cos θ and
κ3 = τ sin θ , where θ is measured from the κ2 axis. For any given s on the disc, �p(s)
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R

n

y, κ2

z, κ3

τ

s

θ

Figure 10. Schematic of integration of Fourier wave component over disc.

is independent of n for −
√

(R2 − s2) ≤ n ≤
√

(R2 − s2). Therefore, integrating for each
transverse wavenumber component over the disc gives

∫∫
A

e−i(κ2y+κ3z) dA = 2
∫ R

−R

√
R2 − s2eiτ s dr = 2πR

J1(τR)

τ
(6.4)

and, therefore,

F̂xeiωt = 8πρa0(1 − a0)û(0)U∞
J1(τR)

τR
eiωt, (6.5)

where J1 is a Bessel function of the first kind.
At the other limit, Lx∞/D 
 1, u is given by (5.18), which for zero frequency, (κ1 = 0),

is identical to (5.29). We can therefore follow a similar procedure as used to obtain (5.29)
to predict the axial force spectra for the discs and rotor when applying (5.18).

For turbulence generated by the grid that is statistically axisymmetric, the
triple-wavenumber spectrum of axial loading on the actuator disc depends only on the

transverse wavenumber τ (=
√

κ2
2 + κ2

3 ). The integration can therefore be carried out
axisymmetrically with respect to τ . On the other hand, the turbulence in the simulated
ABL, which is assumed for the present calculations to be statistically homogeneous over
the disc is not axisymmetric as represented by the empirically modified version of the von
Kármán triple-wavenumber spectrum of (4.10). It is therefore necessary in these cases
to carry out the wavenumber integration in polar form κ2 = τ cos θ and κ3 = τ sin θ ,
integrating over the disc with respect to θ first and then the transverse wavenumber τ .

If Lx∞/D → ∞ the inflow turbulence remains undistorted, û(0) = û∞, τ = τ∞ and the
factor J1(τR)/τR → 1/2 since the values of τ give the main contribution to the integral
tending to 0. Equation (6.5) then leads to the same result for the axial force spectrum
as quasi-steady theory. For intermediate Lx∞/D, such as the ABL tests, distortion and
reduced coherence over the disc do have some effect. In that case, û(0) = ûζ and
τ = c1/2

0 τ∞ in (6.5). For very small length-scale ratios, Lx∞/D 
 1, (6.1) must be
integrated over the disc face with ∂φ1/∂x given by (5.17). Therefore, the axial force is
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F̂xeiωt = ρK(1 − a0)
2ûζ (0)U∞

{
1 − a0

[
c1/2

0 τ∞(c1/2
0 τ∞ − iκ1∞)

c1/2
0 τ 2∞ − 2ia0c1/2

0 κ1∞τ∞ + κ2
1∞

]}

× J1(c
1/2
0 τ∞R)

c1/2
0 τ∞R

eiωt. (6.6)

If [
c1/2

0 τ∞(c1/2
0 τ∞ − iκ1∞)

c1/2
0 τ 2∞ − 2ia0c1/2

0 κ1∞τ∞ + κ2
1∞

]
= μκ(a0, κ1∞, τ∞) (6.7)

then when κ1∞ → 0, μκ → 1, F in (6.6) simplifies to the quasi-steady formula of (6.5)
but after distortion of û1(0) and τ∞.

The axial force spectrum SFF for the small wavenumber (grid turbulence) case can be
computed by combining (4.1) with (6.6) for the axial force on the disc. After integration
with respect to θ from 0 to π/2 over all transverse wavenumber directions,

SFF( f ) = 32π2R4ρ2a2
0C

∫ ∞

0
|1 − μκa0|2f 2

κ (0)

{
J1(c

1/2
0 τ∞R)

c1/2
0 τ∞R

}2
τ ∗3∞ dτ ∗∞

(1 + κ∗2
1∞ + τ ∗2∞ )17/6

.

(6.8)

Here SFF is the PSD of the axial force per unit frequency f (Hz) (= κ1∞Ū∞/2π), fκ is
the ratio of the amplitudes of the velocity components of the triple-wavenumber velocity
spectrum after distortion at the disc to their undistorted values given in (5.19) and (5.21).

For the ABL turbulence, incorporating the modified triple-wavenumber spectrum
function (4.10),

SFF( f ) = 32π2R4ρ2a2
0C

∫ ∞

0
|1 − μκa0|2f 2

κ (0)

{
J1(c

1/2
0 τ ∗∞R∗)

c1/2
0 τ ∗∞R∗

}2

×
τ ∗3∞

[
1 − η0

22

(
6

τ ∗2∞
− 5

(1 + κ∗2
1∞)

)]
dτ ∗∞

(1 + κ∗2
1∞ + τ ∗2∞ )17/6

. (6.9)

7. Results and discussion

The wind tunnel measurements are first used to evaluate the predicted turbulence
intensities in the induction zone. These intensities, which were computed from integrating
the velocity spectra over wavenumber κ1, are shown for all three models in figure 9. The
velocity spectra correspond to the length-scale ratios and induction factors a0 for each
case as previously described. It should be noted that the computations of the turbulence
carried out for figure 8 in Graham (2017) assumed axisymmetric distortion. This requires
that both the mean velocity field and the incident turbulence are statistically axisymmetric.
These conditions are reasonably true for grid turbulence but not for the ABL. However,
since in the ABL case the distortion is weak, even though the integrations are influenced
by conditions averaged around the axis, the axisymmetric assumptions are reasonable and
should not lead to significant errors.

The wind tunnel tests of the discs and rotor in the simulated turbulent ABL show
that quasi-steady theory for the disc resistance and blocking effect, together with some
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allowance for the weak distortion (Lx∞/D ∼ 1), gave predictions of axial turbulent
velocity (r.m.s.) intensity in reasonably close agreement with the measured data. The
comparisons therefore suggest that quasi-steady theory (as suggested by Mann et al.
2018) with some accounting for distortion (weak in these cases) is adequate for practical
full-scale turbines up to the current rotor diameters (∼ 200 m). For most practical cases
of wind turbine rotors in the ABL (Lx∞ > D), allowing for distortion in the induction
zone, the potential blocking flow effect is therefore adequately represented by quasi-steady
theory. Agreement is likely to be less good when looking at spectra since distortion tends
to increase the lower frequencies while quasi-steady assumption for disc resistance is less
accurate at higher frequencies because of omission of the acceleration term. The use of
(5.17) based on the Batchelor (1960) theory for small-scale turbulence incident on an
infinite gauze is more appropriate for small length-scale ratios. This is likely to be the
case in tests of model turbines in grid generated turbulence in a wind tunnel as here
(Lx∞/D < 0.1).

The computations for a range of length-scale ratios Lx∞/D as provided in figure 8
show that, for the smaller length-scale ratios for which the effects of distortion are most
clearly seen, the intensity of the axial component of turbulence starts to increase due to
the distortion at a distance x upstream of the disc where −x/D ∼ 1. This is true for the
distortion effect at all length scales since it is caused by the mean velocity gradient that
scales on the disc diameter. The other major effect is the rapid reduction in intensity of
the axial component as the disc is approached due to blocking by its resistance. When the
length-scale ratio Lx∞/D of the turbulence is small, this effect is local and on the axis
appears to start as might be expected, a distance from the disc face proportional to Lx∞.
And this will be true everywhere just in front of the disc not too close to the disc edge.
However, if the turbulence length scale is comparable with or larger than the disc diameter,
D, the intensity reduction due to blocking will depend increasingly on the overall geometry
and, hence, D and the reduction will start at a distance scaling on D. In larger length-scale
ratio cases therefore where the distortion is weak and the blocking that is stronger extends
out a distance D, the latter entirely obscures the former and no increase in intensity is seen.
But when the length-scale ratio is small the two effects separate out and an increase due
to distortion followed by a sharp reduction due to blocking is clearly seen (figure 8).

Figures 11 and 12 show the comparisons of the predicted and measured normalised force
spectra in the ABL and grid turbulence. The spectra are presented in a variance preserving
log-linear form that aids in informing the dominant frequencies (scales) underpinning the
turbulence intensities. The length scales in the ABL tests gave ratios Lx∞/D ≥ 0.5, as
typically the case for full-scale turbines in the ABL.

All the unfiltered force measurement spectra contain large, narrow-band peaks in the
high frequency region due to structural resonances, and blade passing and rotational
frequencies in the case of the rotor. For the model tests in the ABL, the input force
data has been filtered by a sixth-order low-pass Butterworth filter set at 100 Hz. This
was well beyond the frequencies of the main turbulence-induced intensity peak. For the
grid turbulence tests, the input force data for the small porous plate was also filtered
by the sixth-order low-pass Butterworth filter set at 100 Hz. However, for the rotor and
large porous plate, the cutoff frequency had to be lowered to 25 Hz to mitigate as far as
possible structural resonances, a slight rotor imbalance at 25 Hz and the lowest frequency
(30 Hz) of the large porous disc in pitch. The decision on where to set the filter cutoff was
a compromise between maintaining data in the main turbulence-induced intensity peak
region and removing as far as possible the unwanted effects of the resonances. Since the
intensity peak in this case was at a much higher frequency, the result of the filter cutoff did
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Figure 11. The PSD of the axial force on the rotor, large porous disc and small porous disc in ABL turbulence.
Blue, thin solid lines joining markers: load-cell data. Red thick solid line: interpolation 1, i.e. interpolation
of both distortion and disc resistance potential flow, using a0 given by thrust measurements; red dashed
line: quasi-steady approximation with distortion; red dash-dotted line: quasi-steady approximation without any
distortion assumed; red dotted line: up blocking (5.17) with distortion. Error bars on the data indicate the data
range from repeat runs.
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Figure 12. The PSD of the axial force on the rotor, large porous disc and small porous disc in grid turbulence.
Blue, thin solid lines joining markers: load-cell data. Red thick solid line: interpolation 1, i.e. interpolation
of both distortion and disc resistance potential flow, using a0 given by thrust measurements; red dashed
line: quasi-steady approximation with distortion; red dash-dotted line: quasi-steady approximation without any
distortion assumed. Error bars on the data indicate the data range from repeat runs.
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not remove all of the effects of the structural resonance while also leading to a significant
reduction of intensity on the high frequency side of the intensity peak as is apparent in
figure 12.

Replacing quasi-steady theory for the blocking by (5.17) (Batchelor 1960, p. 61, theory)
in the ABL cases tested increased the predicted PSDs of force shown in figure 11, both after
the same distortion, by about 15 %. This gives better agreement with the measured results.
The expression for up in (5.17) given by this theory becomes the same as quasi-steady
theory (up = −a0u(0)) when κ1 → 0. The difference in the expression when κ1 > 0 is
mainly due to the ∂φ1/∂t acceleration term in the evaluation of a pressure jump across the
disc, which is not present in quasi-steady theory. It may therefore be that a correction for
the effect of the ∂φ1/∂t term is still required when Lx/D = O(1).

The force spectra for the ABL tests shown in figure 11 have been computed taking
Lx∞ = 0.31 m, which is the value given by fitting the empirical correlation curves in
figure 6 to the measured data. However, conversion from wavenumber κ∗

1∞ to frequency
used the larger turbulence length scale 0.41 m given by the zero frequency spectrum
intercept (autocorrelation), which gave much better agreement for peak frequencies and
amplitudes. The predicted curves have been obtained using the prediction outlined in § 6
with interpolation of distortion and resistance, interpolation 1 equation (6.9), (solid lines),
the quasi-steady theory with interpolated distortion (dashed lines) and the quasi-steady
theory omitting distortion (dot-dashed lines). The first of these agree reasonably well with
the measured spectra for both discs and the rotor while the two quasi-steady curves fall
below in each case. The effect of distortion is seen to move the peaks of the spectra towards
lower frequencies as expected since distortion is more effective at low frequencies. The
quasi-steady predictions of force being lower is at least partly due, as previously discussed,
to the absence of the acceleration term in the pressure implicit in the quasi-steady
formulae.

The measured spectra for the much smaller-scale homogeneous grid turbulence are
compared with those predicted by (6.8) and by the quasi-steady analysis with and without
distortion for the relevant length-scale ratio using the interpolation of μ, (6.7), in figure 12.
The predicted curves use, as previously, the length scale Lx∞ = 0.032 m derived from
fitting the transverse correlation. In these cases the value derived from the zero intercept
of the spectrum (i.e. the autocorrelation) for the relationship between frequency and κ∗

1 was
not used for the curves shown since agreement with the measured data is much better if the
length scale from the correlation is used throughout. The turbulence intensities are strongly
increased by distortion of the small length-scale turbulence, but the most significant effect
is the considerable reduction of the integrated fluctuating axial force on the disc due to the
much narrower coherence of the turbulent eddies. This leads to a very strong dependence
of the peak values of the spectra on the turbulence length scale at a rate approaching
the fourth power and quite small changes in turbulence length scales have a large effect.
The curves of predicted axial force spectra shown for these three grid cases have therefore
been corrected for the small increase (∼ 10 %) in the transverse length-scale ratios Ly/Ly∞
taken from the computed values in Graham (2017, figure 9). In the case of the large porous
disc a significant underprediction of the peak in the spectrum plot is mainly due to the
proximity of the structural resonance frequency as discussed above.

It is apparent from a comparison of the curves for the quasi-steady formulation with
and without distortion that its effect is to move the predicted peaks of these force
spectra towards lower frequencies. Inspection of the formula for μ in (5.8) (Batchelor &
Proudman 1954) for the case Lx∞ → 0 shows that, since c0 < 1, μ > 1 when the
frequency is low and μ < 1 when frequency and, hence, κ1∞ are high so that distortion
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Turbulence in the induction zone of a horizontal axis turbine

reduces the PSD of force at high frequencies. This effect is more apparent for small
length-scale ratio turbulence than for the more practical range where the turbulence length
scale is similar to or greater than the rotor scale.

It should be emphasised that the present predictions treat a rotor as an actuator
disc. The individual blade effects are not considered. The predictions of spectra shown
here are only valid for frequencies below the blade passing frequency. In the present
experiments, particularly for the generally higher frequencies of the grid turbulence
cases, the lowest structural resonances (disc pitching) and the frequency of rotor rotation
(the large, narrow-band peak at about 25 Hz in the rotor spectrum) occurred close to
the high frequency side of the energy peak in the spectrum. The vibration effects are
particularly evident in the large disc results at higher frequencies where there is the largest
relative disparity between the model and measured spectra. Removing them by filtering
affected the shape of this part of the force spectrum. Nevertheless they have shown the
appropriateness of a porous disc as a simulation of a rotor to investigate the effects of
distortion and blockage. It is not clear why the predicted force spectra in small-scale
grid turbulence fit the measured data using the length-scale ratio derived from transverse
correlation throughout, while in the larger length-scale ratio ABL cases a better agreement
for the position and amplitude of the log-linear spectral peaks is obtained by relating
the frequency to dimensionless wavenumber κ∗

1∞ using the frequency spectrum intercept
(i.e. autocorrelation).

It is reiterated that there are many potential benefits when using upstream measurements
to reduce unsteady loads on wind turbine blades and drivetrains. For a given utility scale
wind turbine on flat terrain or the open sea or a tidal turbine, implementation of the
model would require knowledge of the rotor induction factor and spatial structure of the
turbulence in the free stream. The induction factor could be obtained from standard power
or thrust measurements. The turbulence could be measured using an upstream LiDAR
(or an ADCP in the case of a tidal turbine; Milne & Graham 2019). Our wind tunnel
data suggest that measurements up to approximately x/D ≈ 2 ahead of the rotor would be
necessary. Given that the low frequency (large scales) are of primary interest, conventional
sensors with sampling frequencies of around 1 Hz should be sufficient.

8. Conclusion

Wind tunnel measurements of the streamwise velocity field and axial forces for a
fixed-pitch three-bladed model rotor and two porous disc analogues placed in a simulated
turbulent ABL and in homogeneous grid turbulence have been presented. The experiments
enabled a range of turbulence length scale to disc diameter combinations to be investigated
at below-rated conditions. In the grid flow the incident turbulence was found to conform
well to the empirical von Kármán spectral model. The incident turbulence in the simulated
ABL was based on a formulation using Counihan spires and a long rough surface fetch
that has been extensively used in the same wind tunnel for industrial wind engineering. To
permit the underlying triple-wavenumber spectrum function to be determined analytically
necessitated a practical adjustment to the streamwise coherence to account for the bias
between the vertical and horizontal directions.

The new data have been used to evaluate theoretical predictions of the streamwise
turbulence intensities in the induction zone and the spectra of the axial force on a rotor.
The theoretical framework accounts for the two distinct effects of turbulent distortion and
unsteady blockage and invokes the von Kármán spectral model. In the simulated ABL with
Lx∞/D ∼ 1, quasi-steady theory for the disc resistance and blocking effect, together with
some allowance for the weak distortion effects was found to yield predictions in reasonably
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close agreement with the measured data. For tests of model turbulence in grid generated
turbulence, a linearised treatment combining small length-scale rapid distortion of the
incident turbulence and a blockage potential based on an infinite gauze is appropriate.

The increase of the intensity due to distortion starts becoming apparent upstream at
x/D ∼ 1 with the turbulence length scale determining the size of the effect. In contrast,
blocking effects are of similar amplitude but extend upstream a distance that is dependent
on the length scales of both the turbulence and the disc. For small length-scale ratio cases
such as for the grid turbulence tests, blocking effects occur much closer to the disc than
the distortion. For the larger length-scale ratio cases, such as those for the ABL, it extends
a longer distance upstream of the disc similar to that for the distortion, which being weaker
in these cases, is overwhelmed by it.

In ABL flow the normalised force spectra show an increased peak amplitude due to the
greater coherence of the turbulence over the disc relative to its diameter. In the case of
the much smaller grid turbulence, the small disc shows similarly the largest peak in the
normalised force spectrum. There is a reduction of integrated axial disc force intensity in
all disc cases that is the result of the much narrower coherence of the turbulent eddies
generated by the grid relative to these discs. It is also apparent from the comparisons of
predictions with and without distortion that distortion shifts the predicted peaks towards
lower frequencies that agree with the measured data.

These wind tunnel results that are fully controlled complement the growing body
of evidence for operating turbines in the field. The present results help inform the
interpretation of common measurements of turbulence in the induction zone and the
dynamic response of the rotor. They have also shown the appropriateness of a porous
disc as a simulation of a rotor to investigate the effects of distortion and blockage.
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Appendix A. Performance curve of the rotor

The rotor used in these experiments was tested in non-turbulent wind, first allowing the
rotor to free spin, and then progressively applying load through an electromagnetic brake.
As the load increased, the rotor slowed down, reaching a peak in power production at
just below 1400 r.p.m. at 10 m s−1 (Λ = 3.67), subsequently producing less for lower
Λ. The load was removed prior to rotor stall in order to avoid causing cogging in the
electromagnetic brake. Torque and r.p.m. were measured continuously, from which power
was calculated. The CP vs Λ curve is shown in figure 13. Turbulence measurements
presented in this paper were performed with the rotor maintained at Λ = 3.93, 1500 r.p.m.
at 10 m s−1.
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Figure 13. Plot of CP vs Λ for the rotor used in these experiments.

Appendix B. Derivation of modified velocity spectrum function

The relationship of the normalised coherence function C11∞ to the triple-wavenumber
spectrum function Φ11∞ of a quantity (here the streamwise turbulent velocity) is

C11∞(�y, κ1∞) =
∫∞

0

∫∞
0 Φ11∞(κ∗∞) cos(�y∗κ∗

2∞) dκ∗
2∞ dκ∗

3∞∫∞
0

∫∞
0 Φ11∞(κ∗∞) dκ∗

2∞ dκ∗
3∞

, (B1)

since the coherence is symmetric with respect to �y∗ the non-dimensionalised horizontal
separation (= �y/1.339Lx∞). There is a corresponding formula for the vertical separation
coherence C11∞(κ1∞, �z∗).

We write a generally modified spectrum function for streamwise velocity as

Φ11∞ (κ∞) = (1.339Lx∞)2

4πU∞
Cu2

1∞(b1(1 + κ∗2∞ ) + b2κ
∗2
2 + b3κ

∗2
3 )(

1 + κ∗2∞ .
)17/6 , (B2)

with b1, b2 and b3 coefficients to be found. Using standard integral results for the integrals
which occur in (B1) gives

C11∞(�r, κ1∞) = 1
Γ (5/6)

(
(1 + κ∗2

1∞)1/2r∗

2

)5/6

×
{

5b1 + 3b2 + 3b3

11
K5/6

(
(1 + κ∗2

1∞)1/2r∗
)

− (3b1 − 3b2)(1 + κ∗2
1∞)1/2r∗

11
K1/6

(
(1 + κ∗2

1∞)1/2r∗
)}

, (B3)

where �r∗ is either �y∗ or �z∗.
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Putting b1 = 1 − η(κ∗
1∞), b2 = 1 + 8

3η(κ∗
1∞) and b3 = 14

3 − η(κ∗
1∞) gives

C11 (�y, κ1∞) = 2
Γ (5/6)

(
(1 + κ∗2

1∞)1/2�y∗

2

)5/6

×
{

K5/6

(
(1 + κ∗2

1∞)1/2�y∗
)

− η(κ∗
1∞)

(1 + κ∗2
1∞)1/2�y∗

2
K1/6

(
(1 + κ∗2

1∞)1/2�y∗
)}

(B4)

and

C11 (�z, κ1∞) = 2
Γ (5/6)

(
(1 + κ∗2

1∞)1/2�z∗

2

)5/6

×
{

K5/6

(
(1 + κ∗2

1∞)1/2�z∗
)

− (1 + κ∗2
1∞)1/2�z∗

2
K1/6

(
(1 + κ∗2

1∞)1/2�z∗
)}

(B5)

with

Φ11∞ (κ∞) = C0

⎧⎪⎨⎪⎩ΦVK
11∞

(
κ∗
∞
) − 5η0(1.339Lx∞)2Lx∞u2

1∞
3πU∞

⎡⎢⎣ 1 + κ∗2 − 11
3

κ∗2
2

(1 + κ∗2
1 )(1 + κ∗2)17/6

⎤⎥⎦
⎫⎪⎬⎪⎭

(B6)

and C0 = 81/(81 − 6η0).
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