
TPLP: Page 1–27. c© The Author(s), 2024. Published by Cambridge University Press. This is an

Open Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution

and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000152

1

Optimal Matching for Sharing and Linearity
Analysis

GIANLUCA AMATO and FRANCESCA SCOZZARI
University of Chieti–Pescara, Pescara, Italy

(e-mails: gianluca.amato@unich.it, francesca.scozzari@unich.it)

submitted 27 October 2022; revised 12 January 2024; accepted 26 June 2024

Abstract

Static analysis of logic programs by abstract interpretation requires designing abstract operators
which mimic the concrete ones, such as unification, renaming, and projection. In the case of goal-
driven analysis, where goal-dependent semantics are used, we also need a backward-unification
operator, typically implemented through matching. In this paper, we study the problem of
deriving optimal abstract matching operators for sharing and linearity properties. We provide an
optimal operator for matching in the domain ShLinω, which can be easily instantiated to derive
optimal operators for the domains ShLin2 by Andy King and the reduced product Sharing× Lin.

KEYWORDS: static analysis, sharing, linearity, matching

1 Introduction

In the field of static analysis of logic programs, sharing information is one of the

most interesting and widely used property. The goal of sharing analysis is to detect

sets of variables which share a common variable. For instance, in the substitution

{x/f(z, a), y/g(z)}, the variables x and y share the common variable z. Sharing may

also track and infer groundness in the same way as the Def domain (de la Banda and

Hermenegildo, 1993; Armstrong et al., 1998). Typical applications of sharing analysis

are in the fields of optimization of unification (Søndergaard, 1986) and parallelization of

logic programs (Hermenegildo and Rossi, 1995).

It is widely recognized that the pioneering abstract domain Sharing (Langen, 1990;

Jacobs and Langen, 1992) is not very precise, so it is often combined with other domains

for tracking freeness, linearity, groundness, or structural information (see Bagnara et al.

(2005); Codish et al. (1995) for comparative evaluations).

Any domain for static analysis of logic programs must be equipped with four standard

operators: renaming, projection, union, and unification. The theory of abstract inter-

pretation (Cousot and Cousot, 1979, 1992a) ensures the existence of the optimal (best

correct) abstract operator for each concrete operator. Nevertheless, while finding opti-

mal operators for renaming, projection, and union is trivial most of the time, devising

an optimal abstract unification is much harder.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152
https://orcid.org/0000-0002-6214-5198
https://orcid.org/0000-0002-2105-4855
mailto:gianluca.amato@unich.it
mailto:francesca.scozzari@unich.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000152&domain=pdf
https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari2

Fig. 1. The role of forward and backward unification in goal-dependent analysis.

Amato and Scozzari (2010, 2014) have proposed a new (infinite) domain ShLinω that

precisely represents the interaction between sharing and linearity properties, while dis-

charging other structural, irrelevant information. All the abstract operators for ShLinω

are shown to be optimal. From ShLinω, the authors derive, for the first time, optimal

abstract unification for well-known domains combining sharing and linearity, such as

ShLin2 (King, 1994) and Sharing× Lin (Muthukumar and Hermenegildo, 1992).

In this paper, we extend the ShLinω framework to the case of goal-dependent analysis.

In this setting, the unification operator is used twice (see Figure 1):

forward unification: performs parameter passing by unifying the goal and the call

substitution with the head of the chosen clause. The result is called entry

substitution.

backward unification: propagates back to the goal the exit substitution (i.e., the result

of the sub-computation), obtaining the answer substitution.1

Despite its name, backward unification may be implemented through matching ,

exploiting the property that the exit substitution is always more instantiated than the

call substitution. Analyses with matching are strictly more precise than analyses which do

not use matching (see Bruynooghe (1991) and Amato and Scozzari (2009) for a thorough

discussion of the problem). This idea has been implemented in real abstract interpreters

such as GAIA (Le Charlier and Van Hentenryck, 1994) and PLAI (Muthukumar and

Hermenegildo, 1992).

However, except for Amato and Scozzari (2009), none of the papers that are based on

matching (Bruynooghe, 1991; Hans and Winkler, 1992; Muthukumar and Hermenegildo,

1992; Le Charlier and Van Hentenryck, 1994; King and Longley, 1995) has ever proved

optimality of the proposed abstract operators. In particular, there is no known optimal

matching operator for any domain combining sharing and linearity.

The lack of optimal operators brings two kinds of disadvantages: first, the analysis

obviously loses precision when using suboptimal abstract operators; second, computing

approximated abstract objects can lead to a speed down of the analysis. The latter is

typical of sharing analysis, where abstract domains are usually defined in such a way

that the less information we have, the more abstract objects are complex. This is not

the case for other kinds of analyses, such as groundness analysis, where the complexity

1 We follow Cortesi et al. (1996) for the terminology of forward and backward unification. Bruynooghe
(1991) and Hans and Winkler (1992) use procedure entry and procedure exit . Muthukumar and
Hermenegildo (1991) use call to entry and exit to success.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 3

of abstract objects may grow according to the amount of groundness information they

encode. Moreover, knowing the optimal abstract operator, even if we do not plan to

implement it, is useful to understand the potentiality and limits of the abstract domain

in use and to guide the search for a more precise (or more efficient) domain.

For this reason, in this paper, we define a matching operator for ShLinω and prove its

optimality. Moreover, from this operator, we derive, for the first time, optimal matching

operators for domains combining sharing and linearity information, such as ShLin2 and

Sharing× Lin.

2 Notations

We fix a first order signature that includes a constant symbol and a function symbol of

arity at least two; otherwise, every term has at most one variable, and the structure of

terms is trivial (we need this assumption in the proofs of optimality). The signature also

includes a denumerable set of variables V. Given a term or other syntactic object o, we

denote by vars(o) the set of variables occurring in o. Given a set A, we denote by P(A)

the powerset of A and by Pf (A) the set of finite subsets of A.

2.1 Multisets

A multiset is a set where repetitions are allowed. We denote by {{x1, . . . , xm}} a multiset,

where x1, . . . , xm is a sequence with (possible) repetitions, and by {{}} the empty multiset.

We will often use the polynomial notation vi11 . . . vinn , where v1, . . . , vn is a sequence

without repetitions, to denote a multiset A whose element vj appears ij times. The set

{vj | ij > 0} is called the support of A and is denoted by ��A��. We also use the functional

notation A : {v1, . . . , vn}→N, where A(vj) = ij .

In this paper, we only consider multisets whose support is finite. We denote with

Pm(X) the set of all the multisets whose support is any finite subset of X. For example,

a3c5 and a3b2c1 are elements of Pm({a, b, c}). The fundamental operation for multisets

is the sum, defined as

A�B = λv ∈ ��A�� ∪ ��B��.A(v) +B(v) .

Note that we also use � to denote disjoint union for standard sets. The context will allow

us to discern the proper meaning of �. Given a multiset A and X ⊆ ��A��, the restriction
of A over X, denoted by A|X , is the only multiset B such that ��B��=X and B(v) =A(v)

for each v ∈X.

2.2 The domain of existential substitutions

We work in the framework of existential substitutions (Amato and Scozzari, 2009), which

allows us to simplify those semantic definitions which are heavily based on renaming

apart objects and to avoid variable clashes. In this framework, all the details concerning

renamings are moved to the inner level of the semantic domain, where they are more

easily manageable. We briefly recall the basic definitions of the domain.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari4

The set of substitutions, idempotent substitutions, and renamings are denoted by

Subst , ISubst , and Ren, respectively. Given θ1, θ2 ∈ Subst and U ∈Pf (V), the preorder

	U is defined as follows:

θ1 	U θ2 ⇐⇒ ∃δ ∈ Subst .∀x∈U. θ1(x) = δ(θ2(x)) .

The notation θ1 	U θ2 states that θ1 is an instance of θ2 w.r.t. the variables in U . The

equivalence relation induced by the preorder 	U is given by

θ1 ∼U θ2 ⇐⇒ ∃ρ∈Ren.∀x∈U. θ1(x) = ρ(θ2(x)) .

Let ISubst∼U
be the quotient set of ISubst w.r.t. ∼U . The domain ISubst∼ of existential

substitutions is defined as the disjoint union of all the ISubst∼U
for U ∈Pf (V), namely:

ISubst∼ =
⊎

U∈Pf (V)

ISubst∼U
.

In the following, we write [θ]U for the equivalence class of θ w.r.t. ∼U . The partial order

	 over ISubst∼ is given by

[θ]U 	 [θ′]V ⇐⇒ U ⊇ V ∧ θ	V θ′ .

Intuitively, [θ]U 	 [θ′]V means that θ is an instance of θ′ w.r.t. the variables in V , provided

that they are all variables of interest of θ.

To ease notation, we often omit braces from the sets of variables of interest when they

are given extensionally. So we write [θ]x,y or [θ]xy instead of [θ]{x,y} and ∼x,y,z instead

of ∼{x,y,z}. When the set of variables of interest is clear from the context or when it is

not relevant, it will be omitted. Finally, we omit the braces that enclose the bindings of

a substitution when the latter occurs inside an equivalence class; that is, we write [x/y]U
instead of [{x/y}]U .

2.2.1 Unification

Given U, V ∈Pf (V), [θ1]U , [θ2]V ∈ ISubst∼, the most general unifier between these two

classes is defined as the mgu of suitably chosen representatives, where variables not of

interest are renamed apart. In formulas:

mgu([θ1]U , [θ2]V) = [mgu(θ′1, θ
′
2)]U∪V , (1)

where θ1 ∼U θ′1 ∈ ISubst , θ2 ∼V θ′2 ∈ ISubst , and (U ∪ vars(θ′1))∩ (V ∪ vars(θ′2))⊆U ∩ V .

The last condition is needed to avoid variable clashes between the chosen representatives

θ′1 and θ′2. It turns out that mgu is the greatest lower bound of ISubst∼ ordered by 	.
A different version of unification is obtained when one of the two arguments is an

existential substitution and the other one is a standard substitution. In this case, the

latter argument may be viewed as an existential substitution where all the variables are

of interest:

mgu([θ]U , δ) =mgu([θ]U , [δ]vars(δ)) . (2)

Note that deriving the general unification in (1) from the special case in (2) is not possible.

This is because there are elements in ISubst∼, which cannot be obtained as [δ]vars(δ) for

any δ ∈ ISubst .

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 5

This is the form of unification that is better suited for analysis of logic programs,

where existential substitutions are the denotations of programs while standard substitu-

tions are the result of unification between goals and heads of clauses. Devising optimal

abstract operators for (2) in different abstract domains is the topic of Amato and Scozzari

(2010).

2.2.2 Matching

Given U1, U2 ∈Pf (V), [θ1]U1
∈ ISubst∼, and [θ2]U2

∈ ISubst , the matching of [θ1]U1
with

[θ2]U2
(Amato and Scozzari, 2009) is defined in the same way as unification, as soon

as none of the variables in U1 get instantiated in the result. If this is not the case, the

matching is undefined.

Definition 2.1 (Matching).

Given [θ1]U1
, [θ2]U2

∈ ISubst∼, we have that

match([θ1]U1
, [θ2]U2

) =

⎧⎨
⎩mgu([θ1]U1

, [θ2]U2
) if θ1 	U1∩U2

θ2,

undefined otherwise.
(3)

Note that the condition θ1 	U1∩U2
θ2 is equivalent to [θ1]U1

=mgu([θ1]U1
, [θ2]U2

)|U1

(Amato and Scozzari, 2009).

Example 2.2.

If we unify [θ1]x,y = [x/a, y/b]x,y with [θ2]y,z = [z/r(y)]y,z, we obtain [θ3]x,y,z =

[x/a, y/b, z/r(b)]x,y,z. Note that the variables y and z in θ3 are instantiated w.r.t. θ2;

therefore, match([θ2]y,z, [θ1]x,y) is undefined. However, x and y in θ3 are not instantiated

w.r.t. θ1; therefore, match([θ1]x,y, [θ2]y,z) = [θ3]x,y,z.

Most of the time, when matching is applied in goal-dependent analysis of logic pro-

grams, we have that U1 ⊆U2. This is because U1 is the set of variables in a clause, while

U2 contains both the variables in the clause and in the call substitution. Nonetheless, we

study here the general case so that it can be applied in any framework.

2.2.3 Other operations

Given V ∈Pf (V) and [θ]U ∈ ISubst∼, we denote by ([θ]U)|V the projection of [θ]U on the

set of variables V , defined as:

([θ]U)|V = [θ]U∩V . (4)

2.3 Abstract interpretation

Given two sets C and A of concrete and abstract objects, respectively, an abstract inter-

pretation (Cousot and Cousot, 1992b) is given by an approximation relation �⊆A×C.

When a � c holds, this means that a is a correct abstraction of c. We are interested in

the case when (A,≤A) is a poset and a≤A a′ means that a is more precise than a′. In
this case, we require that if a � c and a≤A a′, then a′ � c, too. In more detail, we require

what Cousot and Cousot (1992b) call the existence of the best abstract approximation

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari6

assumption; that is, the existence of a map α :C→A such that for all a∈A, c∈C, it

holds that a � c ⇐⇒ α(c)≤A a. The map α is called the abstraction function and maps

each c to its best approximation in A.

Given a (possibly partial) function f :C→C, we say that f̃ :A→A is a correct

abstraction of f , and write f̃ � f , whenever

a � c⇒ f̃(a) � f(c) ,

assuming that f̃(a) � f(c) is true whenever f(c) is not defined. We say that f̃ :A→A

is the optimal abstraction of f when it is the best correct approximation of f , that is,

when f̃ � f and

∀f ′ :A→A. f ′ � f ⇒ f̃ ≤A→A f ′ .

In some cases, we prefer to deal with a stronger framework, in which the domain C is

also endowed with a partial order ≤C and α :C→A is a left adjoint to γ :A→C, that

is,

∀c∈C.∀a∈A.α(c)≤A a ⇐⇒ c≤C γ(a) .

The pair 〈α, γ〉 is called a Galois connection. In particular, we will only consider the case

of Galois insertions , which are Galois connections such that α ◦ γ is the identity map. If

〈α, γ〉 is a Galois insertion and f :C→C is a monotone map, the optimal abstraction f̃

always exists, and it is definable as f̃ = α ◦ f ◦ γ.

3 Abstract matching over ShLinω

The domain ShLinω (Amato and Scozzari, 2010) generalizes Sharing by record-

ing multiplicity of variables in sharing groups. For example, the substitution

θ= {x/s(u, v), y/g(u, u, u), z/v} is abstracted on Sharing into {uxy, vxz}, where the

sharing group uxy means that θ(u), θ(x), and θ(y) share a common variable, namely u.

In ShLinω the same substitution would be abstracted as {uxy3, vxz}, with the additional

information that the variable u occurs three times in θ(y). For the sake of completeness,

in the following section, we recall the basic definitions.

3.1 The domain ShLinω

We call ω-sharing group a multiset of variables, that is, an element of Pm(V). Given

a substitution θ and a variable v ∈ V, we denote by θ−1(v) the ω-sharing group λw ∈
V.occ(v, θ(w)), which maps each variable w to the number of occurrences of v in θ(w).

Given a set of variables U and a set of ω-sharing groups S ⊆Pm(U), we say that [S]U
correctly approximates a substitution [θ]W if U =W and, for each v ∈ V, θ−1(v)|U ∈ S. We

write [S]U � [θ]W to mean that [S]U correctly approximates [θ]W . Therefore, [S]U � [θ]U
when S contains all the ω-sharing groups in θ, restricted to the variables in U .

Definition 3.1 (ShLinω).

The domain ShLinω is defined as

ShLinω = {[S]U |U ∈Pf (V), S ⊆Pm(U), S �= ∅⇒ {{}} ∈ S} , (5)

and ordered by [S1]U1
≤ω [S2]U2

iff U1 =U2 and S1 ⊆ S2.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 7

The existence of the empty multiset, when S is not empty, is required in order to have a

surjective abstraction function.

In order to ease the notation, we write [{{{}}, B1, . . . , Bn}]U as [B1, . . . , Bn]U by omit-

ting the braces and the empty multiset, and variables in each ω-sharing group are sorted

lexicographically. Moreover, if X ∈ ShLinω, we write B ∈X in place of X = [S]U ∧B ∈ S.
Analogously, if S′ ∈ ShLinω, we write S′ ⊆X in place of X = [S]U ∧ S′ ⊆ S. The best

correct abstraction of a substitution [θ]U is

αω([θ]U) = [{θ−1(v)|U | v ∈ V}]U . (6)

Example 3.2.

Given θ= {x/s(y, u, y), z/s(u, u), v/u} and U = {w, x, y, z}, we have θ−1(u) = uvxz2,

θ−1(y) = x2y, θ−1(z) = θ−1(v) = θ−1(x) = {{}}, and θ−1(o) = o for all the other variables

(w included). Projecting over U , we obtain αω([θ]U) = [x2y, xz2, w]U .

3.2 Matching operator

In the matching operation, when [θ1]U1
is matched with [θ2]U2

, sharing groups in θ1
and θ2 are joined together in the resulting substitution. However, not all combinations

are allowed. Assume αω([θi]Ui
) = [Si]Ui

for i∈ {1, 2}. If match([θ1]U1
, [θ2]U2

) is defined,

θ1 will not be further instantiated and thus αω(match([θ1]U1
, [θ2]U2

)|U1
)⊆ S1. Moreover,

the sharing groups in S2 which do not contain any variable in U1 are not affected by the

unification, since the corresponding existential variable does not appear in θ2(v) for any

v ∈U1.

Example 3.3.

Let θ1 = {x/r(w1, w2, w2, w3, w3), y/a, z/r(w1)} with U1 = {x, y, z} and θ2 = {x/r
(w4, w5, w6, w8, w8), u/r(w4, w7), v/r(w7, w8)} with U2 = {u, v, x}. We have that

[θ]U =match([θ1]U1
, [θ2]U2

) = [u/r(w1, w7),v/r(w7, w3),

x/r(w1, w2, w2, w3, w3), y/a, z/r(w1)]U ,

with U = {u, v, x, y, z}. At the abstract level, we have [S1]U1
= αω([θ1]U1

) = [x2, xz]U1
,

[S2]U2
= αω([θ2]U2

) = [uv, ux, vx2, x]U2
, and [S]U = αω([θ]U) = [uv, uxz, vx2, x2]U .

Note that the new sharing group uxz has the property that its restriction to U1 is in S1.

More generally, if we abstract θ1 w.r.t. the variables in U1, we get αω([θ]U1
) = [x2, xz]U1

.

This is equal to [S1]U1
, showing that no new sharing group has been introduced by the

matching operation relative to the variables in U1. Moreover, the sharing group uv, which

does not contain variables in U1, is brought unchanged from S2 to S.

Following the idea presented above, we may design an abstract matching operation for

the domain ShLinω.

Definition 3.4 (Matching over ShLinω).

Given [S1]U1
, [S2]U2

∈ ShLinω, we define

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari8

matchω([S1]U1
, [S2]U2

) = [S′
2 ∪ {X ∈Pm(U1 ∪U2) |

X|U1
∈ S1 ∧X|U2

∈ (S′′
2)

∗}]U1∪U2

where

S′
2 = {B ∈ S2 |B|U1

= ∅} S′′
2 = S2 \ S′

2 S∗ = {�S | S ∈Pm(S)} .

We now show an example of computing the matching over ShLinω.

Example 3.5.

Consider [S1]U1
= [x2, xz]xyz and [S2]U2

= [uv, ux, vx2, x]uvx as in Example 3.3. We show

that from the definition of matchω, it holds

matchω([S1]U1
, [S2]U2

) = [uv, uxz, xz, u2x2, ux2, vx2, x2]uvxyz .

First, we have that S′
2 = {uv} and S′′

2 = {ux, vx2, x}. Apart from uv, which directly

comes from S′
2, all the other ω-sharing groups in the result may be obtained by choosing

a multisetM of sharing groups in S′′
2 and summing them together, obtaining �M. Then,

we consider if it is possible to add to �M some occurrences of the variables y and z, for

instance, n occurrences of y and m of z, in such a way that (�M)� {{ynzm}} restricted
to U1 is a sharing group in S1.

We start by consideringM with a single ω-sharing group.

• If M= {{ux}}, then �M= ux but (�X)|U1
= x /∈ S1. However, we can add the

variable z to get uxz ∈ S1; hence uxz is an ω-sharing group in the result of matchω.

• If M= {{vx2}}, then �M= vx2 and (�M)|U1
= x2, which is already an element of

S1. Therefore, vx
2 is in the result of matchω.

• IfM= {{x}}, then �M= x, but (�M)|U1
= x /∈ S1. However, we can add the variable

z to get xz ∈ S1; hence xz is in the result of matchω.

We now consider the cases when M has two (possibly equal) elements. Note that if

M contains vx2, it cannot contain anything else; otherwise, �M would contain at least

three occurrences of x, and no sharing group in S1 could be matched. Therefore, the only

choices are

• ifM= {{ux, ux}}, then �M= u2x2 and (�M)|U1
= x2, which is already in S1; hence

u2x2 is in the result of matchω;

• ifM= {{x, x}}, then �M= x2 and (�M)|U1
= x2, which is already in S1; hence x2

is in the result of matchω;

• if M= {{ux, x}}, then �M= ux2 and (�M)|U1
= x2, which is already in S1; hence

ux2 is in the result of matchω.

In theory, we should also consider the case whenM has more than two elements, but in

the example, this would not lead to new results, for the same reason why vx2 may only

be used alone.

We will prove that matchω is correct and therefore comes as no surprise that

αω(match([θ1]U1
, [θ2]U2

]))) = [uv, uxz, vx2, x2]U ≤ [uv, uxz, xz, u2x2, ux2, vx2, x2]U .

The lack of equality means that matchω is not (α-)complete (Giacobazzi et al., 2000;

Amato and Scozzari, 2011). We will show later that it is optimal.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 9

We try to give the intuition behind the definition of match, especially in the context of

the backward unification. First note that the operator is additive on the first argument,

namely:

matchω([S1]U1
, [S2]U2

) =

[⋃
B∈S1

matchω([{B}]U1
, [S2]U2

)

]
U1∪U2

This immediately implies that we can reason on matching considering one sharing

group at a time. Given a sharing group B ∈ S1, which represents the exit substitution

from a sub-computation, we try to guess which of the sharing groups in S2 are part of the

entry substitution that has generated the sub-computation ending with B. In the simple

case, when U1 ⊇U2, we simply check that B can be generated by the sharing groups in

S2; that is, there exists S ∈Pm(S2) such that B|U2
=�S.

The difficult case is when U2 contains some variables that are not in U1. These variables

come from the call substitution; they are removed from the abstraction before entering

the sub-computation and now should be re-introduced as precisely as possible. In this

case, we build a new sharing group X such that X|U1
coincides with B and X|U2

is

generated by S2; namely, there exists S ∈Pm(S2) such that X|U2
=�S. This condition

ensures that we pair each exit substitution θ1 (in the concretization of B) with some

entry substitution θ2 (in the concretization of S), which is less instantiated than θ1.

Note that, although the abstract unification operator mguω defined in Amato and

Scozzari (2010) takes an abstract object and a substitution as inputs, the operatormatchω
is designed in such a way that both the arguments are abstract objects. The reason for

this choice is that these are the variants needed for static analysis of logic programs.

However, it would be possible to devise a variant of mguω with two abstract arguments

and variants of matchω with one abstract argument and a concrete one.

In order to prove the correctness of matchω, we first extend the definition of θ−1 to

the case when it is applied to a sharing group B, elementwise as

θ−1(vi11 · · · vinn) =
⊎
{{(θ−1(v1))

i1 , . . . , (θ−1(vn))
in}} . (7)

It turns out that

(η ◦ θ)−1(B) = θ−1(η−1(B)) , (8)

a result that has been proved in Amato and Scozzari (2010).

Example 3.6.

Given η= {x/s(y, u, y), z/s(u, u), v/u} and θ= {v/a, w/s(x, x)}, we have η ◦ θ=
{v/a, w/s(s(y, u, y), s(y, u, y)), x/s(y, u, y), z/s(u, u))} and (η ◦ θ)−1(u) = uw2xz2. The

same result may be obtained as θ−1(η−1(u)) since η−1(u) = uvxz2 and

θ−1(uvxz2) =�{{θ−1(u), θ−1(v), θ−1(x), (θ−1(z))2}}
=�{{u, {{}}, xw2, (z)2}}= uw2xz2 .

Theorem 3.7 (Correctness of matchω).

matchω is correct w.r.t. match.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari10

Proof

Given [S1]U1
� [θ1]U1

and [S2]U2
� [θ2]U2

such that match([θ1]U1
, [θ2]U2

) is defined, we need

to prove that

matchω([S1]U1
, [S2]U2

) �match([θ1]U1
, [θ2]U2

) .

Assume without loss of generality that dom(θ1) =U1, dom(θ2) =U2, and vars(θ1)∩
vars(θ2)⊆U1 ∩U2. In particular, this implies rng(θ1)∩ rng(θ2) = ∅. By hypothesis

θ1 	U1∩U2
θ2, that is, there exists δ ∈ ISubst such that θ1(x) = δ(θ2(x)) for each x∈

U1 ∩U2, dom(δ) = vars(θ2(U1 ∩U2)) and rng(δ) = vars(θ1(U1 ∩U2)). We have

mgu(θ1, θ2)

= mgu({θ2(x) = θ2(θ1(x)) | x∈U1}) ◦ θ2
[by assumptions on the θi’s]

= mgu({θ2(x) = θ1(x) | x∈U1}) ◦ θ2
= mgu({θ2(x) = θ1(x) | x∈U1 ∩U2}) ◦ (θ1)|U1\U2

◦ θ2
[since vars(θ2)∩ vars((θ1)U1\U2

) = ∅]
= mgu({θ2(x) = δ(θ2(x)) | x∈U1 ∩U2}) ◦ ((θ1)|U1\U2

� θ2)
= δ ◦ ((θ1)|U1\U2

� θ2)
[since dom(δ)∩ vars((θ1)U1\U2

) = ∅]
= (θ1)|U1\U2

� (δ ◦ θ2) .

With an analogous derivation, we obtain

mgu(θ1, θ2) = θ1 � (δ ◦ (θ2)|U2\U1
) .

Now, if η=mgu(θ1, θ2), we need to prove that for each v ∈ V, η−1(v)|U1∪U2
∈

matchω([S1]U1
, [S2]U2

). We distinguish several cases.

• v /∈ rng(θ1) and v /∈ rng(θ2). In this case v /∈ vars(δ) and η−1(v)|U1∪U2
= {{}} ∈

matchω([S1]U1
, [S2]U2

).

• v ∈ rng(θ1) and v /∈ vars(θ1(U2)). In this case v /∈ rng(θ2) and v /∈ vars(δ). We have

η−1(v)|U1∪U2
= θ−1

1 (v)|U1
∈ S1 ⊆matchω([S1]U1

, [S2]U2
).

• v ∈ rng(θ2) and v /∈ vars(θ2(U1)). In this case v /∈ rng(θ1) and v /∈ vars(δ). We

have η−1(v)|U1∪U2
= θ−1

2 (v)|U2
∈ S2. Since v /∈ vars(θ2(U1)), then θ−1

2 (v)|U2
∈ S′

2 ⊆
matchω([S1]U1

, [S2]U2
).

• v ∈ vars(θ2(U1 ∩U2)). In this case v /∈ rng(θ1) and v ∈ dom(δ); therefore,

η−1(v)|U1∪U2
= {{}}.

• v ∈ vars(θ1(U1 ∩U2)). Now, v ∈ rng(δ) and η−1(v)|U2
= θ−1

2 (δ−1(v))|U2
=
⊎

X,

where X ∈Pm(S2) and each sharing group B ∈X is of the form θ−1
2 (w)|U2

for

some w ∈ ��δ−1(v)��. Note that every such w is an element of vars(θ2(U1 ∩U2));

therefore, θ−1
2 (w)|U2

∈ S′′
2 , X ∈Pm(S′′

2), and
⊎

X ∈ (S′′
2)

∗. On the other side, since

η= θ1 � (δ ◦ (θ2)|U2\U1
), we have η−1(v)|U1

= θ−1
1 (v)|U1

∈ S1. Hence, η
−1(v)|U1∪U2

∈
matchω([S1]U1

, [S2]U2
).

This concludes the proof.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 11

Now, we may prove the optimality of matchω. Actually, we prove a stronger property,

a sort of weak completeness of matchω, which will be used later to derive optimality.

Example 3.8.

Consider again the substitutions and sharing groups in Examples 3.3 and 3.5. Recall that

U1 = {x, y, z} and U2 = {u, v, x}. We have seen that, although the sharing groups xz,

u2x2, and ux2 are in matchω([S1]U1
, [S2]U2

), they are not in αω(match([θ1]U1
, [θ2]U2

)).

If matchω were optimal, we should be able to find, for each B ∈ {xz, u2x2, ux2},
a pair of substitutions θ3 and θ4 such that [S1]U1

� [θ3]U1
, [S2]U2

� [θ4]U2
, and B ∈

αω(match([θ3]U1
, [θ4]U2

). Actually, we can do better, keep θ4 = θ2 fixed, and only change

θ3 for different sharing groups.

Consider B = xz. Note that B|U1
= xz and B|U2

= x=
⊎X , with X = {{x}}. The shar-

ing group x in θ2 is generated by the variables w5 and w6. Consider the substitution

θ3 = {x/r(a, w, a, a, a), y/a, z/w} where
• the binding x/r(a, w, a, a, a) is obtained by the corresponding binding in θ2 replacing

w5 with a fresh variable w and all the other variables in the range with the constant

symbol a;

• the bindings {y/a, z/w} are chosen according to B|U1\U2
= z.

It is immediate to show that xz ∈ αω(mgu([θ3]U1
, [θ2]U2

)) and [S1]U1
� [θ3]U1

.

As another example, let us consider B = u2x2. In this case, B|U1
= x2 ∈ S1 and B|U2

=

u2x2 =
⊎{{ux, ux}}. The variable that generates the sharing group ux is w4. We proceed as

before and obtain θ3 = {x/r(r(w, w), a, a, a, a), y/a, z/a}. Note that w4 has been replaced

with r(w, w) since two copies of ux are needed to obtain u2x2. Again [S1]U1
� [θ3]U1

and

u2x2 ∈ αω(mgu([θ3]U1
, [θ2]U2

)).

We distill the idea presented above in the following result.

Lemma 3.9 (Completeness on the second argument).

Given [S1]U1
∈ ShLinω and [θ2]U2

∈ ISubst∼, there exist δ1, . . . , δn ∈ ISubst∼ such that

for all i∈ {1, . . . , n}, [S1]U1
� [δi]U1

and

matchω([S1]U1
, αω([θ2]U2

)) =

⎡
⎣ ⋃
i∈{1,...,n}

αω(match([δi]U1
, [θ2]U2

))

⎤
⎦
U1∪U2

Proof

Since we already know that matchω is a correct abstraction of match, we only need

to prove that, given [S1]U1
∈ ShLinω and [θ2]U2

∈ ISubst∼, for any sharing group B ∈
matchω([S1]U1

, αω([θ2]U2
)), there exists [θ1]U1

∈ ISubst∼ such that [S1]U1
� [θ1]U1

and B ∈
αω(match([θ1]U1

, [θ2]U2
)).

In order to ease notation, let U =U1 ∪U2, [S2]U2
= αω([θ2]U2

), and [S]U =

matchω([S1]U1
, [S2]U2

). We may choose θ2 such that dom(θ2) =U2 without loss of gen-

erality. Moreover, S′
2 and S′′

2 are given as in the definition of abstract matching. We

distinguish two cases.

first case) If B ∈ S′
2, there exists v ∈ V such that θ−1

2 (v)|U2
=B. Let X =

vars(θ2(U1 ∩U2)) and take δ= {x/a | x∈X}. Then θ1 = (δ ◦ θ2)|U1
� {x/a | x∈

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari12

U1 \U2} is such that θ−1
1 (v)|U1

= {{}} for each v ∈ V, therefore [S1]U1
�

[θ1]U1
. Moreover, since θ1 	U1∩U2

θ2, we have that matchω([θ1]U1
, [θ2]U2

) is

defined equal to mgu([θ1]U1
, [θ2]U2

) and mgu([θ1]U1
, [θ2]U2

) = [mgu(θ1, θ2)]U since

vars(θ1)∩ vars(θ2)⊆U1 ∩U2. By the proof of Theorem 3.7, we have that

mgu(θ1, θ2) = (θ1)|U1\U2
� (δ ◦ θ2). Since B|U1

= {{}}, then v /∈X =vars(δ), and

therefore, mgu(θ1, θ2)
−1(v)|U = θ−1

2 (v)|U =B. Hence, B is an ω-sharing group in

αω(match([θ1]U1
, [θ2]U2

)), which is what we wanted to prove.

second case) We now assume B|U1
∈ S1 and B|U2

=
⊎

X with X ∈Pm(S′′
2). Then, for

each H ∈ ��X��, there exists vH ∈ V such that θ−1
2 (vH)|U2

=H. Since H ∩U1 �= {{}}
for each H ∈ ��X��, then vH ∈ Y =vars(θ2(U1 ∩U2)). Consider the substitutions

δ= {vH/t(v, . . . , v︸ ︷︷ ︸
X (H) times

) |H ∈ ��X��} � {y/a | y ∈ Y and ∀H ∈ ��X��.y �= vH} ,

η= {w/t(v, . . . , v︸ ︷︷ ︸
B(w) times

) |w ∈U1 \U2} ,

for a fresh variable v. Let us define θ1 = η � (δ ◦ θ2)|U1
. We want to prove that

[S1]U1
� [θ1]U1

. Note that vars(θ1(U1)) = {v}, hence we only need to check that

θ−1
1 (v)|U1

∈ S1. We have that θ−1(v)|U1
= η−1(v)|U1

� (θ−1
2 δ−1(v))|U1

= η−1(v)|U1
�

θ−1
2 ({{vX(H)

H |H ∈ ��X��}})|U1
=B|U1\U2

� (⊎X)|U1∩U2
=B|U1

�B|U1∩U2
=B|U1

which, we know, is an element of S1. Moreover, since θ1 	U1∩U2
θ2 and

vars(θ1)∩ vars(θ2)⊆U1 ∩U2, we have that matchω([θ1]U1
, [θ2]U2

) = [mgu(θ1, θ2)]U .

If we define θ=mgu(θ1, θ2), by looking at the proof of Theorem 3.7, we have

that θ= θ1 � (δ ◦ (θ2)|U2\U1
) and θ= (θ1)|U1\U2

� (δ ◦ θ2). By the first equality, it

is immediate to check that θ−1(v)|U1
= θ−1

1 (v)|U1
=B|U1

. By the second equality,

θ−1(v)|U2
= θ−1

2 ({{vX (H)
H |H ∈ ��X��}})|U2

=
⊎X =B|U2

. Therefore, θ−1(v)|U =B.

It is worth noting that, although this proof uses a function symbol of arbitrary arity,

it may be easily rewritten using only one constant symbol and one function symbol of

arity at least two, as required at the beginning of Section 2.1.

Theorem 3.10 (Optimality of matchω).

The operation matchω is optimal w.r.t. match.

Proof

It is enough to prove that for each [S1]U1
, [S2]U2

∈ ShLinω and B ∈matchω([S1]U1
, [S2]U2

),

there are substitutions θ1, θ2 such that [S1]U1
� [θ1]U1

, [S2]U21 � [θ2]U2
and B ∈

αω(match([θ1]U1
, [θ2]U2

). Assume B|U2
=
⊎X where X ∈Pm(S′′

2). Consider a substitu-

tion [θ2]U2
such that [��X��]U2

≤ αω([θ2]U2
)≤ [S2]U2

. It means that, for each H ∈ ��X��,
there is vH ∈ V such that θ−1

2 (vH)|U2
=H. If ��X��= {H1, . . . , Hn}, we may define θ2 as

the substitution with dom(θ2) =U2 and, for each u∈U2,

θ2(u) = t(vH1
, . . . , vH1︸ ︷︷ ︸

H1(u) times

, vH2
, . . . , vH2︸ ︷︷ ︸

H2(u) times

, . . . , vHn
, . . . , vHn︸ ︷︷ ︸

Hn(u) times

) .

By Lemma 3.9, there exists [θ1]U1
, such that [S1]U1

� [θ1]U1
and B ∈

αω(match([θ1]U1
, [θ2]U2

)). Therefore, matchω is the optimal approximation of match.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 13

4 Abstract matching over ShLin2

The domain ShLinω has been inspired by the domain ShLin2, which appeared for the first

time in King (1994). The novelty of ShLin2 was to embed linearity information inside

the sharing groups, instead of keeping them separate like it was in Sharing× Lin.

4.1 The domain ShLin2

Here we recall the main definitions for the domain ShLin2, viewed as an abstraction of

ShLinω, following the presentation given in Amato and Scozzari (2010).

The idea is to simplify the domain ShLinω by only recording whether a variable in

a sharing group is linear or not, but forgetting its actual multiplicity. Intuitively, we

abstract an ω-sharing group by replacing any exponent equal to or greater than 2 with

a new symbol ∞.

A 2-sharing group is a map o : V →{0, 1,∞} such that its support ��o��= {v ∈ V | o(v)
�= 0} is finite. We use a polynomial notation for 2-sharing groups as for ω-sharing groups.

For instance, o= xy∞z denotes the 2-sharing group whose support is ��o��= {x, y, z},
such that o(x) = o(z) = 1 and o(y) =∞. We denote with ∅ the 2-sharing group with

empty support and by Sg2(V) the set of 2-sharing groups whose support is a subset of

V . Note that in King (1994) the number 2 is used as an exponent instead of ∞, but we

prefer our notation to be coherent with ω-sharing groups.

An ω-sharing group B may be abstracted into the 2-sharing group α2(B) given by

α2(B) = λv ∈ V.
⎧⎨
⎩B(v) if B(v)≤ 1,

∞ otherwise.
(9)

For instance, the ω-sharing groups xy2z, xy3z, xy4z, xy5z, . . . are all abstracted into

xy∞z.

There are operations on 2-sharing groups that correspond to variable projection and

multiset union. For projection

o|V = λv ∈ V.
⎧⎨
⎩o(V) if v ∈ V ,

0 otherwise,
(10)

while for multiset union

o� o′ = λv ∈ V.o(v)⊕ o′(v) , (11)

where 0⊕ x= x⊕ 0 = x and ∞⊕ x= x⊕∞= 1⊕ 1 =∞. We will use
⊎{{o1, . . . , on}} for

o1 � · · · � on. Given a sharing group o, we also define the delinearization operator:

o2 = o� o . (12)

This operator is extended pointwise to sets and multisets. The next proposition shows

some properties of these operators.

Proposition 4.1

Given an ω-sharing group B, a set of variables V , and multiset of ω-sharing groups X ,
the following properties hold:

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari14

1. ��B��= ��α2(B)��
2. α2(B|V) = α2(B)|V
3. α2(

⊎X) =⊎
α2(X)

4. α2(B �B) = α2(B)2

where α2(X) is just the elementwise extension of α2 to a multiset of ω-sharing groups.

Proof

Given the ω-sharing group B, we have ��α2(B)��= {x∈ V | α2(B) �= 0}= {x∈ V |B(x) �=
0}= ��B��, which proves Property 1. For Property 2, given V ⊆V, we want to prove that

α2(B|V)(v) = (α2(B)|V)(v) for each v ∈ V. The property is easily proved considering the

three cases v /∈ V , v ∈ V \ ��B��, and v ∈ V ∩ ��B��. Property 3 has been proved in Amato

and Scozzari (2010). Property 4 is a trivial consequence of Property 3.

Since we do not want to represent definite nonlinearity, we introduce an order relation

over sharing groups as follows:

o≤ o′ ⇐⇒ ��o��= ��o′�� ∧ ∀x∈ ��o��. o(x)≤ o′(x) ,

and we restrict our attention to downward closed sets of sharing groups. The domain we

are interested in is the following:

ShLin2 = {[T]U | T ∈P↓(Sg2(U)), U ∈Pf (V), T �= ∅⇒ ∅ ∈ T} ,

where P↓(Sg2(U)) is the powerset of downward closed subsets of Sg2(U) according to

≤ and [T1]U1
≤2 [T2]U2

iff U1 =U2 and T1 ⊆ T2. For instance, the set {xy∞z} is not

downward closed, while {xyz, xy∞z} is downward closed. There is a Galois insertion of

ShLin2 into ShLinω given by the pair of adjoint maps γ2 : ShLin
2→ ShLinω and α2 :

ShLinω→ ShLin2:

γ2([T]U) =
[
α−1
2 (T)

]
U

α2([S]U) = [↓α2(S)]U ,

where ↓T = {o | o′ ∈ T, o≤ o′} is the downward closure of T . With an abuse of notation,

we also apply γ2 and α2 to subsets of ω-sharing groups and 2-sharing groups, respec-

tively, by ignoring the set of variables of interest. For instance, γ2([∅, xyz, xy∞z]x,y,z) =

[{{}}, xyz, xy2z, xy3z, xy4z, xy5z, . . .]x,y,z. Moreover, we write ↓[S]U as an alternative form

for [↓S]U .
Example 4.2.

Consider the substitution [θ]U = [{x/s(y, u, y), z/s(u, u), v/u}]w,x,y,z in Example 3.2. Its

abstraction in ShLin2 is given by

α2(αω([θ]U)) = [{xy, x∞y, xz, xz∞, w}]U = [↓{x∞y, xz∞, w}]U .

Analogously, substitutions [θ1]U1
= [{x/r(w1, w2, w2, w3, w3), y/a, z/r(w1)}]x,y,z and

[θ2]U2
= [{x/r(w4, w5, w6, w8, w8), u/r(w4, w7), v/r(w7, w8)}]u,v,x from Example 3.3 are

abstracted into [T1]U1
= ↓[x∞, xz]U1

and [T2]U2
= ↓[uv, ux, vx∞, x]U2

, respectively.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 15

4.2 Matching operator

By composition, α2 ◦ αω is an abstraction from ISubst∼ to ShLin2. Properties of the

Galois connection 〈α2, γ2〉 may be lifted to properties of α2 ◦ αω. In our case, we need

to define an abstract matching match2 over ShLin2, which is an optimal w.r.t. match.

However, optimality of match2 w.r.t. match is immediately derived by optimality w.r.t.

matchω. Since the correspondence between ShLinω and ShLin2 is straightforward, the

same happens for matchω and match2.

Definition 4.3 (Matching over ShLin2).

Given [T1]U1
, [T2]U2

∈ ShLin2, we define

match2([T1]U1
, [T2]U2

) = [T ′
2 ∪ ↓{o∈ Sg2(V) | o|U1

∈ T1 ∧ o|U2
∈ (T ′′

2)
∗}]U1∪U2

where T ′
2 = {B ∈ T2 |B|U1

= ∅}, T ′′
2 = T2 \ T ′

2 and T ∗ = {⊎X |X ⊆ T ∪ T 2}.
Example 4.4.

Under the hypothesis of Examples 3.5 and 4.2, and according to the definition of match2,

we have that T ′
2 = {uv}, T ′′

2 = {ux, vx, vx∞, x} and
match2([T1]U1

, [T2]U2
) = ↓[uv, u∞v∞x∞, uxz, u∞x∞, v∞x∞, vxz, x∞, xz]u,v,x,y,z .

Note that

α2(matchω([S1]U1
, [S2]U2

)) = ↓[uv, u∞x∞, uxz, vx∞, x∞,xz]u,v,x,y,z

≤match2([T1]U1
, [T2]U2

) .

This is consistent with the fact that match2 is correct w.r.t. matchω. The 2-sharing groups

u∞v∞x∞, v∞x∞ and vxz do not appear in α2(matchω([S1]U1
, [S2]U2

)) since match2 is

not complete w.r.t. matchω

As anticipated before, we prove the optimality of match2 w.r.t. matchω, which

automatically entails optimality w.r.t. match.

Theorem 4.5 (Correctness and optimality of match2).

The operator match2 is correct and optimal w.r.t. matchω.

Proof

We need to prove that, for each [T1]U1
, [T2]U2

∈ ShLin2,
match2([T1]U1

, [T2]U2
) = α2(matchω(γ2([T1]U1

), γ2([T2]U2
))) . (13)

To ease notation, we denote γ2([T1]U1
) and γ2([T2]U2

) by [S1]U1
and [S2]U2

, respectively.

Moreover, we denote with S′
2, S

′′
2 , T

′
2, and T ′′

2 the subsets of S2 and T2 given accordingly

to Definitions 3.4 and 4.3. Since ��B��= ��α2(B)��, given B ∈ S2, we have that B ∈ S′
2 iff

α2(B)∈ T ′
2.

Let o∈match2([T1]U1
, [T2]U2

). If o∈ T ′
2, consider any B ∈ α−1

2 (o)⊆ S2. Then, B ∈
S′
2 ⊆matchω([S1]U1

, [S2]U2
). Therefore, o= α2(B) is in the right-hand side of (13). If

o /∈ T ′
2, then o≤ o′ where o′|U1

∈ T1 and o′|U2
∈ (T ′′

2)
∗; that is, there is X ⊆ T ′′

2 ∪ (T ′′
2)

2

such that o′|U2
=
⊎

X. For each o′′ ∈X ∩ T2, let Bo′′ ∈ α−1
2 (o′′). For each o′′ ∈X \ T2,

we have o′′ = (o′′′)2 for some o′′′ ∈ T2, and let Bo′′ ∈ α−1
2 (o′′′). Let X be a multiset

containing a single copy of each B′′
o for o∈X ∩ T2 and two copies of B′′

o for each

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari16

o∈X \ T2, for example, X = {{Bo′′ | o′′ ∈X ∩ T2}} �
⊎{{{{Bo′′ , Bo′′}} | o′′ ∈X \ T2}}). Note

that α2(
⊎X) =⊎

α2(X) = o′|U2
by (3) of Proposition 4.1. Then, consider the ω-sharing

group C such that

C(v) =

⎧⎪⎪⎨
⎪⎪⎩
(
⊎X)(v) for v ∈U2,

o′(v) if v ∈U1 \U2 and o(v)≤ 1,

2 otherwise.

It is clear that α2(C|U1
) = o′|U1

, hence C|U1
∈ S1. Moreover, C|U2

=
⊎

X with X ∈
Pm(S′′

2). Therefore, we have C ∈matchω([T1]U1
, [T2]U2

) and α2(C) = o′ is in the right-

hand side of (13). The same holds for o by downward closure of α2.

Conversely, let o∈ α2(matchω([S1]U1
, [S2]U2

)). As a consequence, there exists B ∈
matchω([S1]U1

, [S2]U2
) such that o≤ o′ and o′ = α2(B). It is enough to prove that o′ ∈

match2([T1]U1
, [T2]U2

). If B ∈ S′
2 then o′ ∈ T ′

2, hence o
′ ∈match2([T1]U1

, [T2]U2
). If B /∈ S′

2,

then B|U1
∈ S1 and B|U2

=
⊎X , where X ∈Pm(S′′

2). By B|U1
∈ S1, we have o′|U1

=

α2(B|U1
)∈ T1. For each C ∈X with X (C) = 1, we define oC = α2(C)∈ T ′′

2 , while for

each C with X (C)> 1, we define oC = α2(C)2 ∈ (T ′′
2)

2. We have that o′′|U2
= α2(B)|U2

=

α2(B|U2
) = α2(

⊎X) =⊎
X where X = {oC |C ∈X} is an element of P(T ′′

2 ∪ (T ′′
2)

2).

This means that o′ ∈match2([T1]U1
, [T2]U2

).

Although match2 is not complete w.r.t. either matchω or match, we claim it enjoys a

property analogous to the one in Lemma 3.9.

4.3 Optimization

In a real implementation, we would like to encode an element of ShLin2 with the set

of its maximal elements. This works well only if we may compute match2 starting from

its maximal elements, without implicitly computing the downward closure. We would

also like match2 to compute as few non-maximal elements as possible. We provide a new

algorithm for match2 following this approach.

Definition 4.6.

Given T1, T2 sets of 2-sharing groups and U1, U2 ⊆V, we define

match′2(T1, U1, T2, U2) = T ′
2 ∪

⋃
o∈T1

match′2(o) ,

where

match′2(o) =
{(

o∧
⊎

X
)
�
⊎

(X ∩ T) |X ⊆ T ′′
2 ,

(⊎
��X��

)
|U1

≤ o|U2

}
,

with T ′
2 and T ′′

2 as in Definition 4.3, T = {o′ ∈ T ′′
2 | ∀v ∈ o′ ∩U1, o(v) =∞} and

o∧ o′ = λv.

⎧⎪⎨
⎪⎩
o(v) if v ∈U1 \U2,

min(o(v), o′(v)) if v ∈U1 ∩U2,

o′(v) otherwise.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 17

The operator match′2 aims at computing the set of maximal 2-sharing groups in

match2([↓T1]U1
, [↓T2]U2

). It works by considering one sharing group o∈ T1 at a time and

calling an auxiliary operator that computes the maximal 2-sharing groups compatible

with o. A 2-sharing group o′ is compatible with o if ��o′�� ∩U1 = ��o�� ∩U1.

When computing the auxiliary operator match′2(o) we choose a subset X of T ′′
2 . Given

o′ ∈X, note that ��o′�� may be viewed as a 2-sharing group which is the linearized version

of o′: it has the same support as o′, but all variables are linear. If o′ ∈ T ′′
2 , its linearization

is in ↓T2. The choice of X is valid if the multiset sum of all its linearizations is smaller

than o for all the variables in U1 ∩U2. Once established that X is a valid choice, we do

not take directly
⊎��X�� as the resulting 2-sharing group, but we try to find an o′′ ≥⊎

X.

To this purpose, we observe that, given o′ ∈X, if o(v) =∞ for each v ∈ ��o′�� ∩U1, then

we may take o′ twice. We denote with T the set of all the sharing groups in T ′′
2 , which is

such a property, and we unconditionally add to the result the sharing groups in X ∩ T so

that all these sharing groups are taken twice. Therefore, the biggest element compatible

with o is (o∧⊎X)�⊎(X ∩ T).
Example 4.7.

Under the hypothesis of Examples 3.5 and 4.2, let us define T1 = {x∞, xz} and

T2 = {uv, ux, vx∞, x}. We have T ′
2 = {uv} and T ′′

2 = {ux, vx∞, x}.
Let us compute match′2(x

∞). We have T = T ′′
2 . If we take X = {ux, xv∞}, we

have (
⊎��X��)|U1

= x∞, hence the choice is valid. The corresponding result is

(x∞ ∧⊎X)�⊎X = uv∞x∞ � uv∞x∞ = u∞v∞x∞. Overall, we have match′2(x
∞) =

{u∞x∞, v∞x∞, x∞, u∞x∞v∞}. Note that some results are computed by different choices

of X. For example, both {ux, x} and {ux} generates u∞x∞.

Let us compute match′2(xz) and take X = {vx∞}. We have that (
⊎��X��)|U1

= x=

xz|U2
. In this case, T ′′

2 = ∅. Therefore, the result is x∧ vx∞ = vx. Note that if we take

X = {xz, x}, then (
⊎��X��)|U1

= x� x= x∞, and the choice is not valid. This shows that,

due to the downward closure, choosing in X a sharing group with a nonlinear variable is

very different from choosing the same variable twice. At the end, we have match′2(xz) =
{uxz, vxz, xz}. Finally,

match2(T1, U1, T2, U2) = {uv, u∞x∞, v∞x∞, x∞, u∞x∞v∞, uxz, vxz, xz} .

This is exactly the set of maximal elements in match2([↓T1]U1
, [↓T2]U2

).

We can show that the correspondence between match2 and match′2 in the previous

example was not by chance, proving the following:

Theorem 4.8.

Given T1, T2 sets of 2-sharing groups such that ↓[T1]U1
, ↓[T2]U2

∈ ShLin2, we have

match2(↓[T1]U1
, ↓[T2]U2

) = ↓[match′2(T1, U1, T2, U2)]U1∪U2
.

Proof

We start by proving that if o is an element in match2(↓[T1]U1
, ↓[T2]U2

), then o∈
↓match′2(T1, U1, T2, U2). If o∈ ↓T ′

2, this is trivial since T ′
2 ⊆match′2(T1, U1, T2, U2).

Otherwise, o|U1
∈ ↓T1 and o|U2

∈ (↓T ′′
2)

∗, according to Definition 4.3. Let o1 ∈ T1 such

that o1 ≥ o|U1
, we want to prove that there exists ō∈match′2(o1) such that o≤ ō.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari18

Since o|U2
∈ (↓T ′′

2)
∗, there are Xa ⊆ ↓T ′′

2 and Xb ⊆ (↓T ′′
2)

2 such that o|U2
=
⊎

Xa �⊎
Xb. For each oa ∈Xa, consider o

′
a ∈ T ′′

2 such that o′a ≥ oa ∈ T ′′
2 . Let Ya be the set of all

those o′a. For each ob ∈Xb, consider an o′b ∈ T ′′
2 such that (o′b)

2 = ob. Let Yb be the set of all

those o′b. By construction
⊎

Ya ≥
⊎

Xa ≥
⊎��Ya�� and

⊎
Yb �

⊎
Yb =

⊎��Yb�� �
⊎��Yb��=⊎

Xb.

Let Y = Ya ∪ Yb. Obviously Y ⊆ T ′′
2 and (

⊎��Y ��)|U1
=
⊎��Ya�� �

⊎��Yb�� ≤ (
⊎

Xa �⊎
Xb)|U1

= (o|U2
)|U1

= (o|U1
)|U2
≤ (o1)|U2

. Therefore, ō= (o1 ∧
⊎

Y)�⊎(Y ∩ T)∈
match′2(o1). We now prove that o≤ ō.

Given any ob ∈Xb, we have that o1(v) = ob(v) =∞ for each v ∈ ob ∩U1. This implies

that Yb ⊆ T . Therefore, ō≥ (o1 ∧
⊎

Ya �
⊎

Yb)�
⊎

Yb = (o1 ∧
⊎

Ya)�
⊎

Yb �
⊎

Yb ≥ (o1 ∧⊎
Xa)�

⊎
Xb = o1 ∧ (

⊎
Xa �

⊎
Xb) = o1 ∧ o|U2

. Now, if v ∈U1 \U2, we have ō(v) =

o1(v)≥ o(v). If v ∈U2 \U1, we have ō(v)≥ o|U2
(v) = o(v). Finally, if v ∈U1 ∩U2, then

o1(v)≥ o|U1
(v) = o|U2

(v) = o(v), hence ō(v)≥ o(v). This concludes one side of the proof.

For the other side of the equality, assume o∈match′2(T1, U1, T2, U2) and prove o∈
match2(↓[T1]U1

, ↓[T2]U2
). If o∈ T ′

2, this is trivial since match2(↓[T1]U1
, ↓[T2]U2

)⊇ ↓T ′
2.

Otherwise, o= (o1 ∧
⊎

X)�⊎(X ∩ T) for some o1 ∈ T1 and X ⊆ T ′′
2 satisfying the prop-

erties of Definition 4.6. Consider Y = (X \ T)∪ (X ∩ T)2, which is an element of T ′′
2 ∪

(T ′′
2)

2 such that
⊎

Y =
⊎

X �⊎(X ∩ T)∈ (T ′′
2)

∗. It is enough to prove that o|U1
= o1 and

o|U2
=
⊎

Y . If v ∈U1 \U2, we have o(v) = o1(v). Note that if ō∈X ∩ T and v ∈ ō∩U1,

then o1(v) =∞. Therefore, for each v ∈U1 ∩U2, we have o(v) = o1(v). Finally, if v ∈U2,

we have o(v) =
⊎

X �⊎(X ∩ T) =⊎
Y .

5 Abstract matching over Sharing× Lin

The reduced product ShLin= Sharing× Lin has been used for a long time in the anal-

ysis of aliasing properties since it was recognized quite early that the precision of these

analyses could be greatly improved by keeping track of the linear variables. In the fol-

lowing, we briefly recall the definition of the abstract domain following the presentation

in Amato and Scozzari (2010).

5.1 The domain ShLin

The domain ShLin couples an object of Sharing with the set of variables known to be

linear. Each element of ShLin is therefore a triple: the first component is an object of

Sharing; the second component is an object of Lin, that is, the set of variables that are

linear in all the sharing groups of the first component; and the third component is the

set of variables of interest. It is immediate that ShLin is an abstraction of ShLin2 (and

thus of ShLinω).

ShLin= {[S, L, U] | S ⊆P(U), (S �= ∅⇒ ∅ ∈ S), L⊇U \ vars(S), U ∈Pf (V)} ,

with the approximation relation ≤sl defined as [S, L, U]≤sl [S
′, L′, U ′] iff U =U ′, S ⊆ S′,

L⊇L′. There is a Galois insertion of ShLin into ShLin2 given by the pair of maps:

αsl([T]U) = [{��o�� | o∈ T}, {x∈U | ∀o∈ T. o(x)≤ 1}, U] ,

γsl([S, L, U]) = [↓{BL |B ∈ S}]U ,

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 19

where BL is the 2-sharing group that has the same support of B, with linear variables

dictated by the set L:

BL = λv ∈ V.

⎧⎪⎨
⎪⎩
∞ if v ∈B \L,
1 if v ∈B ∩L,
0 otherwise.

The functional composition of αω, α2, and αsl gives the standard abstraction map

from substitutions to ShLin. We still use the polynomial notation to represent sharing

groups, but now all the exponents are fixed to one. Note that the last component U in

[S, L, U] is redundant since it can be retrieved as L∪ vars(S). This is because the set L

contains all the ground variables.

Example 5.1.

Consider the substitution [θ]U = [{x/s(y, u, y), z/s(u, u), v/u}]w,x,y,z in Example 3.2. Its

abstraction in ShLin is given by

αsl(α2(αω([θ]U))) = [{xy, xz, w}, {y, w}, U] .

Analogously, substitutions [θ1]U1
= [{x/r(w1, w2, w2, w3, w3), y/a, z/r(w1)}]x,y,z and

[θ2]U2
= [{x/r(w4, w5, w6, w8, w8), u/r(w4, w7), v/r(w7, w8)}]u,v,x from Example 3.3 are

abstracted into [S1, L1, U1] = [{x, xz}, {y, z}, U1] and [S2, L2, U2] = [{uv, ux, vx, x},
{u, v}, U2], respectively.

5.2 Matching operator

We want to provide an optimal abstract matching operator for ShLin. We may effectively

compute matchsl by composing γsl , match2, and αsl . However, we provide a more direct

characterization of matchsl , which may potentially improve performance.

First, we define the auxiliary function nl :P(P(V))→P(V) which takes a set X of

sharing groups and returns the set of variables that appear in X more than once. In

formulas:

nl(X) = {v ∈ V | ∃B1, B2 ∈X,B1 �=B2, v ∈B1 ∩B2} (14)

The name nl stands for nonlinear since it is used to recover those variables that, after

joining sharing groups in X, are definitively not linear.

Definition 5.2 (Matching over ShLin).

Given [S1, L1, U1] and [S2, L2, U2]∈ ShLin, we define

matchsl([S1, L1, U1], [S2, L2, U2]) = [s(S′
0 ∪ S′′

0), l(S
′
0 ∪ S′′

0), U] ,

where U =U1 ∪U2, S
′
2 = {B ∈ S2 |B ∩U1 = ∅}, S′′

2 = S2 \ S′
2, S = {B ∈ S′′

2 |B ∩L1 = ∅}
and

S′
0 = {〈B, L2〉 |B ∈ S′

2},
S′′
0 = {

〈
B ∪

⋃
X, L2 \ nl(X) \

⋃
(X ∩ S)

〉
|B ∈ S1,

X ⊆ S′′
2 , B ∩U2 =

(⋃
X
)
∩U1, L1 ∩ nl(X) = ∅},

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari20

s(H) = {B | 〈B, L〉 ∈H} ,
l(H) =

⋂
{L1 ∪L∪ (U \B) | 〈B, L〉 ∈H} .

This operator is more complex than previous ones because linearity information is not

connected to sharing groups and needs to be handled separately. In view of this and a

similar situation that happens for unification (Amato and Scozzari, 2010), it seems that

the idea of embedding linearity within sharing groups from King (1994) was particularly

insightful.

We give an intuitive explanation of matchsl . It essentially works by simulating

the optimized version of match2 starting from [T1]U1
= γ2([S1, L1, U1]) and [T2]U2

=

γ2([S2, L2, U2]). The sets S′
2 and S′′

2 are defined as for the other matching operators.

Each element of H, S′
0, or S′′

0 is a pair 〈B, L〉 that corresponds to the 2-sharing group

BL∪L1
in match2([T1]U1

, [T2]U2
). The component B is the support of the 2-sharing group,

while L is the set of linear variables. We only record a subset of the linear variables, since

those in L1 are always linear.

The set S′
0 encodes all the maximal 2-sharing groups derived from S′

2. The set S′′
0

encodes 2-sharing groups which may be generated by gluing the sharing groups in S′′
2 in

a way which is compatible with S1. A given choice of X ⊆ T ′′
2 is compatible with a sharing

group B ∈ S1 only if
⋃

X and B have the same support on the common variables U1 ∩U2

and if X does not conflict with the linearity of variables given by L1. This means that

we cannot use a variable in L1 more than once; therefore, L1 ∩ nl(X) = ∅. Note that we

may use a variable v ∈L1 \L2 since v /∈L2 means that v is possibly, but not definitively,

nonlinear. On the contrary, if v ∈ nl(X), then v is definitively nonlinear in the resultant

sharing group. Once established that X is compatible with B, the set S plays the same

role of T in Definition 4.6: we may join another copy of the sharing groups in X ∩ S,
making all their variables nonlinear.

Finally, the maps s and l extract from S′
0 and S′′

0 , the set of all the sharing groups and

the set of variables that are linear in all the sharing groups.

Example 5.3.

Consider the substitutions in Example 5.1. According to the definition of

matchsl , we have S′
2 = {uv}, S′′

2 = S = {ux, vx, x}, S′
0 = {〈uv, {u, v}〉}, and S′′

0 =

{〈ux, ∅〉, 〈vx, ∅〉, 〈x, ∅〉, 〈uvx, ∅〉, 〈uxz, ∅〉, 〈vxz, ∅〉, 〈xz, ∅〉, 〈uvxz, ∅〉}. The final result is
matchsl([S1, L1, U1], [S2, L2, U2]) = [{uv, uvx, ux, vx, x,

uvxz, uxz, xz, vxz} , {y, z}, U1 ∪U2] . (15)

Considering the results for match2 in Example 4.4, we have

αsl(match2([T1]U1
, [T2]U2

))

= αsl(↓[uv, u∞v∞x∞, uxz, u∞x∞, v∞x∞, vxz, x∞, xz]u,v,x,y,z)

= [{uv, uvx, uxz, ux, vx, vxz, x, xz}, {y, z}, {u, v, x, y, z}]
and matchsl([S1, L1, U1], [S2, L2, U2])>αsl(match2([T1]U1

, [T2]U2
)). In particular, the

sharing group uvxz does not appear in αsl(match2([T1]U1
, [T2]U2

)) which proves that

matchsl is not a complete abstraction of match2. However, the next theorem shows that

matchsl is optimal w.r.t. match2 and by composition also w.r.t. matchω and match.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 21

Theorem 5.4 (Optimality of matchsl).

The operator matchsl is correct and optimal w.r.t. match2.

Proof

We prove that, given [S1, L1, U1] and [S2, L2, U2]∈ ShLin, we have

matchsl([S1, L1, U1], [S2, L2, U2]) = αsl(↓[match′2(T1, U1, T2, U2)]U)

where Ti = {BLi
|B ∈ Si} is the set of maximal elements of γsl([Si, Li, Ui]) and

U =U1 ∪U2.

Let us define the function γ0 which maps a pair 〈B, L〉 with B, L∈P(V) to the

2-sharing group BL∪L1
. We show that, given H ⊆P(V)×P(V), we have

αsl([↓γ0(H)]U) = [s(H), l(H), U]. Assume αsl([↓γ0(S)]U]) = [R, V, U]. We have R=

{��o�� | o∈ ↓γ0(S)}= {��o�� | o∈ γ0(S)}= {��γo(〈B, L〉)�� | 〈B, L〉 ∈ S}= {B | 〈B, L〉 ∈ S}
= s(S) and V = {x∈U | ∀o∈ ↓γ0(S), o(x)≤ 1}= {x∈U | ∀o∈ γ0(S), o(x)≤ 1}= {x∈U |
∀〈B, L〉 ∈ S, BL∪L1

(x)≤ 1}}= {x∈U | ∀〈B, L〉 ∈ S, x∈L1 ∪L∪ (U \B)}=⋂{L1 ∪L∪
(U \B) | 〈B, L〉 ∈ S}= l(S).

Therefore, if we prove that γ0(S
′
0 ∪ S′′

0) =match′2(T1, U1, T2, U2), then we have

matchsl([S1, T1, U1], [S2, T2, U2]) = [s(S′
0 ∪ S′′

0), l(S
′
0 ∪ S′′

0), U] = αsl([↓γ0(S′
0 ∪ S′′

0)]U]) =

αsl(↓[match′2(T1, U1, T2, U2)]U)).

Let us take o∈ γ0(S′
0 ∪ S′′

0) and prove o∈match′2(T1, U1, T2, U2). If o=BL∪L1
for

some 〈B, L〉 ∈ S′
0, then B ∈ S′

2 and L=L2. Therefore, BL∪L1
=BL2∪L1

=BL2
∈ T2

since B ∩U1 = ∅. In particular, BL2
∈ T ′

2, hence BL2
∈match′2(T1, U1, T2, U2). Otherwise,

o= γ0(〈C, L〉) for 〈C, L〉 ∈ S′′
0 , where C =B ∪⋃X and L=L2 \ nl(X) \⋃(X ∩ S)

according to Definition 5.2. For each sharing group B′ ∈X, consider the 2-sharing

group B′
L2
∈ T ′′

2 , and let Y be the set of all those 2-sharing groups. We want to prove

that o is generated by BL1
∈ T1 and Y ⊆ T ′′

2 , according to Definition 4.6. First, note

that ��(⊎��Y ��)|U1
��= ��(⊎X)|U1

��= (
⋃

X)∩U1 =B ∩U2 = ��(BL1
)|U2
��. Now, assume

v ∈ ��(BL1
)|U2
��. If v is linear in (BL1

)|U2
, then v ∈L1, hence v /∈ nl(X) and v is lin-

ear in (
⊎

X)|U1
= (

⊎��Y ��)|U1
. Therefore, Y is a valid choice for match′2 and match′2(B)

generates o′ = (BL1
∧⊎ Y)�⊎(Y ∩ T). We prove o′ = o.

First, we prove that B′ ∈ S iff B′
L2
∈ T . We have B′

L2
∈ T iff B′

L2
∈ T ′′

2 and ∀v ∈
��B′

L2
�� ∩U1, B

′
L1
(v) =∞, iff B′ ∈ S′′

2 and ∀v ∈B′ ∩U1, v /∈L1 iff B′ ∩L1 = ∅ iff B′ ∈ S′′
2

and B′ ∩L1 = ∅ iff B ∈ S.
Now, it is immediate to check that, ��o��=B ∪⋃X = ��o′��. Then, consider v ∈ ��o′��.

We have that

o′(v) = 1⇔
(BL1

(v) = 1∨
(⊎

Y
)
(v) = 1)∧

(⊎
(Y ∩ T)

)
= 0⇔

(v ∈L1 ∨ (v ∈L2 \ nl(X)))∧ v /∈
⋃

(X ∩ S)⇔
v ∈L1 ∨ (v ∈L2 \ nl(X) \

⋃
(X ∩ S)⇔

v ∈L1 ∨ v ∈L⇔
BL∪L1

(v) = o(v) = 1

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari22

It remains to prove that given o∈match′2(T1, U1, T2, U2), we have o∈ γ0(S′
0 ∪ S′′

0). If

o∈ T ′
2, then o=BL2

with B ∈ S′
2. Therefore, 〈B, L2〉 ∈ S′

0 and o= γ0(〈B, L2〉). Otherwise,

o= (o′ ∧⊎ Y)�⊎(Y ∩ T). We know o′ =B′
L1

with B′ ∈ S1 and let X = {��o′′�� | o′′ ∈ Y }.
By Definition 4.6,

⋃
X ∩U1 = ���Y �� ∩U1 = ��o′�� ∩U2 =B′ ∩U2. Moreover, if v ∈L1,

then o′(v)≤ 1, and therefore, v cannot appear twice in Y , which means v /∈ nl(X); hence

L1 ∩ nl(X) = ∅. Therefore, B′ and X make a valid choice for matchsl and generate the

pair

〈B, L〉=
〈
B′ ∪

⋃
X, L2 \ nl(X) \

⋃
(X ∩ S)

〉
.

Using the first half of the proof, it is easy to check that BL∪L′ = o, which terminates the

proof.

6 Evaluation of matching in goal-dependent analysis

We now show two examples, in the context of goal-dependent analysis, where the newly

introduced matching operators improve the precision w.r.t. what is attainable using only

the mgu operators in Amato and Scozzari (2010).

6.1 Matching and backward unification

First, we show with a simple example how the matching operator strictly improves the

result of a standard goal-dependent analysis using forward and backward unification.

Consider the goal p(x, f(x, z), z) with the (abstract) call substitution [x, z]xz and the

trivial program with just one clause:

p(u, v, w).

In order to analyze the goal, we first need to perform the forward unification between

the call substitution [x, z]xz, the goal p(x, f(x, z), z), and the head of the clause p(u, v, w),

and then project the result on the variables of the clause. In order to keep the notation

simple, we do not perform renaming, unless necessary. This amounts to computing:

mguω([x, z]xz, {u/x, v/f(x, z), w/z}) = [uvx, vwz]uvwxz .

By projecting the result on the variables of the clause, we obtain the entry substitution

[uv, vw]uvw. Since the clause has no body, it is immediate to see that the exit substitution

coincides with the entry substitution.

We now need to compute the backward unification of the exit substitution [uv, vw]uvw,

the call substitution [x, z]xz and θ= {u/x, v/f(x, z), w/z}. If we implement this operator

with the aid of matching, we may first unify [x, z]xz with θ, obtaining [uvx, vwz]uvwxz as

above, and then apply the matching with the exit substitution [uv, vw]uvw obtaining

matchω([uv, vw]uvw, [uvx, vwz]uvwxz) = [uvx, vwz]uvwxz .

By projecting the result on the variables of the goal, we obtain the result [x, z]xz, which

proves that x and z do not share.

On the contrary, if we avoid matching, the backward-unification operator must unify

[x, z]xz with [uv, vw]uvw and θ in any order it deems fit. However, this means that the

operator must correctly approximate the mgu of any substitution θ1 in the concretization

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 23

of the call substitution [x, z]xz, with any substitution θ2 in the concretization of the

exit substitution [uv, vw]uvw and θ= {u/x, v/f(x, z), w/z}. If we choose θ1 = ε and

θ2 = {v/f(w, u)}, we obtain that the unification of θ1, θ2, and θ is

{u/x, v/f(x, x), w/x, z/x}
which is not in the concretization of [uvx, vwz]uvwxz since u, v, and w share a common

variable. Moreover, in this substitution, x and z share. This means that, after the pro-

jection on the variables of the goals x and z, the result will always include the ω-sharing

group xz. Note that this consideration holds for any correct abstract unification operator

that avoids matching.

It is worth noting that the above example, with minimal changes, also works for ShLin2

and ShLin: also in these cases, matching improves the precision of the analysis.

6.2 Example on a nontrivial program

Consider a program implementing the member predicate. Using the Prolog notation for

lists, we have

member(u, [u|v]).
member(u, [v|w])←member(u, w).

We want to analyze the goal member(x, [y]) in the domain ShLin2 using the call

substitution [xy, xz]xyz.

We start by considering the first clause of member . The concrete unification of the

goal member(x, [y]) and the head of the clause member(u, [u|v]) yields the most general

unifier θ= {x/u, y/u, v/[]}. Forward unification computes the entry substitution as the

abstract mgu between the call substitution [xy, xz]xyz and θ. Proceeding one binding at

a time, we have

• mgu2([xy, xz]xyz, {x/u}) = [uxy, uxz]uxyz;

• mgu2([uxy, uxz]uxyz, {y/u}) = ↓[u∞x∞y∞]uxyz;

• mgu2(↓[u∞x∞y∞]uxyz, {v/[]}) = ↓[u∞x∞y∞]uvxyz.

Projecting over the variables of the clause, we get the entry substitution ↓[u∞]uv. Since

this clause has no body, the entry substitution is equal to the exit substitution, and we

may proceed to compute the answer substitution through backward unification.

First, we consider the case when the backward unification is performed using the

standard mgu2 operator. We need to unify the call substitution [xy, xz]xyz, the exit

substitution ↓[u∞]uv, and the concrete substitution θ (the same as before). Unifying call

and exit substitution is immediate since they are relative to disjoint variables of interest:

the result is ↓[u∞, xy, xz]uvxyz, obtained by collecting all sharing groups together. This

should be unified with θ. Proceeding one binding at a time, and omitting the set of

variables of interest since it does not change, we have

• mgu2(↓[u∞, xy, xz], {x/u}) = ↓[u∞x∞y∞, u∞x∞y∞z∞, u∞x∞z∞];

• mgu2(↓[u∞x∞y∞, u∞x∞y∞z∞, u∞x∞z∞], {y/u}) = ↓[u∞x∞y∞, u∞x∞y∞z∞];

• mgu2(↓[u∞x∞y∞, u∞x∞y∞z∞], {v/[]}) = ↓[u∞x∞y∞, u∞x∞y∞z∞].

Projecting over the set of variables in the goal, we get ↓[x∞y∞, x∞y∞z∞]xyz.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari24

On the contrary, if we perform backward unification using the matching operation, we

need to compute the matching of the exit substitution [u∞]uv with the entry substitution

before variable projection [u∞x∞y∞]uvxyz, namely:

match2(↓[u∞]uv, ↓[u∞x∞y∞]uvxyz) = ↓[u∞x∞y∞]uvxyz .

Projecting over the variables of the goal, we get ↓[x∞y∞]xyz: using matching we can

prove that z is ground in the answer substitution.

However, we still need to check what happens when we analyze the second clause of

the member predicate. In this case, the concrete unification between member(x, [y]) and

member(u, [v|w]) gives the substitution θ= {x/u, y/v, w/[]}. Then, forward unification

between the call substitution and θ gives

• mgu2([xy, xz]xyz, {x/u}) = [uxy, uxz]uxyz;

• mgu2([uxy, uxz]uxyz, {y/v}) = [uvxy, uxz]uvxyz;

• mgu2([uvxy, uxz]uvxyz, {w/[]}) = [uvxy, uxz]uvwxyz.

Projecting over the variables of the clause, we get the entry substitution [uv, v]uvw.

Now we should compute the answer substitution of the body member(u, w) under the

call substitution [uv, u]uvw. We could proceed by showing all the details, but we try

to be more concise. In the abstract substitution [uv, w]uvw, the variable w is known to

be ground. When member is called with its second argument ground, the first argu-

ment becomes ground too. This property is easily captured by Sharing and more precise

domains, independently of the fact that we use matching or not for the backward unifica-

tion. Therefore, we can conclude that the answer substitution for the goal member(u, w)

under the entry substitution [uv, u]uvw is [∅]uvw. Although we do not generally write the

empty 2-sharing group ∅ in an element of ShLin2, in this case, it is important to write it

in order to distinguish [∅]uvw, denoting those substitutions in which u, v, w are ground,

from []uvw, denoting a non-succeeding derivation.

Performing the backward unification of [∅]uvw, we get the answer substitution [∅]xyz,
independently of the use of matching.

Putting together the results we got for analyzing the goal member(x, [y]) according to

the two clauses of the program, we have shown that using matching, we get [x∞y∞]xyz,

while using standard unification, we get [x∞y∞, x∞y∞z∞]xyz, and we are not able to

prove that z is ground after the goal returns.

7 Conclusion

In this paper, we have extended the domain ShLinω (Amato and Scozzari, 2010) to

goal-dependent analysis, by introducing a matching operator, and proved its optimality.

From this operator, we have derived the optimal matching operators for the well-known

ShLin2 (King, 1994) and Sharing× Lin (Muthukumar and Hermenegildo, 1992) abstract

domains.

As far as we know, this is the first paper that shows matching optimality results

for domains combining sharing and linearity information. In particular, the matching

operators presented in Hans and Winkler (1992) and King (2000) for the domain SFL,

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 25

which combines set-sharing, linearity, and freeness information, are not optimal, as shown

by Amato and Scozzari (2009).

Recently logic programming has been used as an intermediate representation for the

analysis of imperative or object-oriented programs and services (see, e.g., Peralta et al.

(1998); Henriksen and Gallagher (2006); Benton and Fischer (2007); Méndez-Lojo et al.,

(2008); Spoto et al. (2010); Albert et al. (2012); Ivanović et al., (2013); Gange et al.

(2015); De Angelis et al. (2021)). Since many of these approaches use existing logic

program analysis on the transformed program, we believe that they can benefit from

more precise logic program analysis.

Acknowledgements

We acknowledge the support of the PNRR project FAIR - Future AI Research

(PE00000013), Spoke 9 - Green-aware AI, under the NRRP MUR program funded by

the NextGenerationEU.

Competing interests

The authors declare none.

References

Albert, E., Arenas, P., Genaim, S., Puebla, G. and Zanardini, D. 2012. Cost analysis of
object-oriented bytecode programs. Theoretical Computer Science 413, 1, 142–159, Special
Issue on Quantitative Aspects of Programming Languages (QAPL 2010).

Amato, G. and Scozzari, F. 2009. Optimality in goal-dependent analysis of sharing. Theory
and Practice of Logic Programming 9, 5, 617–689.

Amato, G. and Scozzari, F. 2010. On the interaction between sharing and linearity. Theory
and Practice of Logic Programming 10, 1, 49–112.

Amato, G. and Scozzari, F. 2011. Observational completeness on abstract interpretation.
Fundamenta Informaticae 106, 2-4, 149–173.

Amato, G. and Scozzari, F. 2014. Optimal multibinding unification for sharing and linearity
analysis. Theory and Practice of Logic Programming 14, 3, 379–400.

Armstrong, T., Marriott, K., Schachte, P. and Søndergaard, H. 1998. Two classes of
boolean functions for dependency analysis. Science of Computer Programming 31, 1, 3–45.

Bagnara, R., Zaffanella, E. and Hill, P. M. 2005. Enhanced sharing analysis techniques:
a comprehensive evaluation. Theory and Practice of Logic Programming 5, 1-2, 1–43.

Benton, W. C. and Fischer, C. N. 2007. Interactive, scalable, declarative program analy-
sis: From prototype to implementation. Leuschel, M. and Podelski, A., Eds. In PPDP ’07:
Proceedings of the 9th ACM SIGPLAN international conference on Principles and practice of
declarative programming , ACM, New York, NY, USA, 13–24.

Bruynooghe, M. 1991. A practical framework for the abstract interpretation of logic programs.
The Journal of Logic Programming 10, 1/2/3 & 4, 91–124.

Codish, M., Mulkers, A., Bruynooghe, M., de la Banda, M. G. and Hermenegildo,
M. 1995. Improving abstract interpretations by combining domains. ACM Transactions on
Programming Languages and Systems 17, 1, 28–44.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

G. Amato and F. Scozzari26

Cortesi, A., Filé, G. and Winsborough, W. W. 1996. Optimal groundness analysis using
propositional logic. The Journal of Logic Programming 27, 2, 137–167.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks. Aho,
A. V. and Zilles, S. N., Eds. In POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, ACM, New York, NY, USA, 269–282.

Cousot, P. and Cousot, R. 1992a. Abstract interpretation and applications to logic programs.
The Journal of Logic Programming 13a, 2-3, 103–179.

Cousot, P. and Cousot, R. 1992b. Abstract interpretation frameworks. Journal of Logic and
Computation 2b, 4, 511–549.

De Angelis, E., Fioravanti, F., Gallagher, J. P., Hermenegildo, M. V., Pettorossi, A.
and Proietti, M. 2021. Analysis and transformation of constrained horn clauses for program
verification. Theory and Practice of Logic Programming 22, 6, 974–1042.

de la Banda, M. G. and Hermenegildo, M. 1993. A practical approach to the global analysis
of CLP programs. In Proceedings of the 1993 International Symposium on Logic Programming ,
The MIT Press, Cambridge, MA, USA, 437–455.

Gange, G., Navas, J. A., Schachte, P., Søndergaard, H. and Stuckey, P. J. 2015. Horn
clauses as an intermediate representation for program analysis and transformation. Theory
and Practice of Logic Programming 15, 4-5, 526–542.

Giacobazzi, R.,Ranzato, F. and Scozzari, F. 2000. Making abstract interpretations complete.
Journal of the ACM 47, 2, 361–416.

Hans, W. and Winkler, S. (1992). Aliasing and groundness analysis of logic pro-
grams through abstract interpretation and its safety. Technical University of Aachen
(RWTH Aachen), http://sunsite.informatik.rwth-aachen.de/Publications/AIB. Last

accessed Jan 10, 2024. Technical Report 92-27.

Henriksen, K. S. and Gallagher, J. P. (2006) Abstract interpretation of PIC programs
through logic programming, In 2006 Sixth IEEE International Workshop on Source Code
Analysis and Manipulation. Los Alamitos, CA, USA, IEEE Computer Society Press, 184–196.

Hermenegildo, M. V. and Rossi, F. 1995. Strict and nonstrict independent and-parallelism
in logic programs: Correctness, efficiency, and compile-time conditions. The Journal of Logic
Programming 22, 1, 1–45.

Ivanović, D., Carro, M. and Hermenegildo, M. V. 2013. A sharing-based approach to
supporting adaptation in service compositions. Computing 95, 6, 453–492.

Jacobs, D. and Langen, A. 1992. Static analysis of logic programs for independent AND
parallelism. The Journal of Logic Programming 13, 2-3, 291–314.

King, A. 2000. Pair-sharing over rational trees. The Journal of Logic Programming 46, 1-2,
139–155.

King, A. 1994. A synergistic analysis for sharing and groundness which traces linearity. Sannella,
D., Ed. In Programming Languages and Systems – ESOP ’94, 5th European Symposium on
Programming , April 11-13, Springer, Edinburg, U.K, Berlin Heidelberg, 788, 363–378, Lecture
Notes in Computer Science-Proceedings 1994 .

King, A. and Longley, M.1995. Abstract matching can improve on abstract uni-
fication. Canterbury, UK, University of Kent, Computing Laboratory. http://www.

cs.ukc.ac.uk/pubs/1995/64. Last accessed Oct 10, 2022 Technical Report 4-95∗.
Langen, A. 1990. Static analysis for independent and-parallelism in logic programs. PhD thesis,
University of Southern California. Los Angeles, California.

Le Charlier, B. and Van Hentenryck, P. 1994. Experimental evaluation of a generic abstract
interpretation algorithm for PROLOG. ACM Transactions on Programming Languages and
Systems 16, 1, 35–101.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

Optimal Matching for Sharing 27

Méndez-Lojo, M., Navas, J. and Hermenegildo, M. V. 2007. A flexible, (C)LP-based
approach to the analysis of object-oriented programs, In Logic Based Program Synthesis and
Transformation 17th International Workshop, LOPSTR. 2007, Kongens Lyngby, King, A.,
4915, Denmark, Berlin Heidelberg, Springer, 154–168. Lecture Notes in Computer Science.
Revised Selected Papers 2008.

Muthukumar, K. and Hermenegildo, M. V. 1992. Compile-time derivation of variable
dependency using abstract interpretation. The Journal of Logic Programming 13, 2-3, 315–347.

Muthukumar, K. and Hermenegildo, M. V. Combined determination of sharing and free-
ness of program variables through abstract interpretation. Furukawa, K., Ed. In Logic
Programming, Proceedings of the Eighth International Conference 1991, Logic Programming ,
The MIT Press, Cambridge, MA, USA, 49–63.

Peralta, J. C., Gallagher, J. P. and Sağlam, H. 1998. Analysis of imperative pro-
grams through analysis of constraint logic programs. Levi, G., Ed. In Static Analysis. 5th
International Symposium, SAS ’98, Proceedings 1998 , September 14-16, Springer, Pisa, Italy,
Berlin Heidelberg, 1503. 246–261. Lecture Notes in Computer Science.

Søndergaard, H. 1986, An application of abstract interpretation of logic programs: Occur
check reduction. Robinet, B. and Wilhelm, R., Eds. In ESOP 86, European Symposium on
Programming, Saarbrücken, Federal Republic of Germany, Proceedings 1986 , March 17-19,
Springer, Berlin Heidelberg, 213, 327–338, Lecture Notes in Computer Science.

Spoto, F., Mesnard, F. and Payet, E. 2010. A termination analyzer for Java bytecode based
on path-length. ACM Transactions on Programming Languages and Systems 32, 3, 8:1–8:70.

https://doi.org/10.1017/S1471068424000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000152

	Introduction
	Notations
	Multisets
	The domain of existential substitutions
	Unification
	Matching
	Other operations

	Abstract interpretation

	Abstract matching over
	The domain
	Matching operator

	Abstract matching over
	The domain
	Matching operator
	Optimization

	Abstract matching over
	The domain
	Matching operator

	Evaluation of matching in goal-dependent analysis
	Matching and backward unification
	Example on a nontrivial program

	Conclusion
	References

