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Abstract

Introduction: Pilot projects (“pilots”) are important for testing hypotheses in advance of inves-
ting more funds for full research studies. For some programs, such as Clinical and Translational
Science Awards (CTSAs) supported by the National Center for Translational Sciences, pilots
also make up a significant proportion of the research projects conducted with direct CTSA
support. Unfortunately, administrative data on pilots are not typically captured in accessible
databases. Though data on pilots are included in Research Performance Progress Reports, it
is often difficult to extract, especially for large programs like the CTSAs where more than
600 pilots may be reported across all awardees annually. Data extraction challenges preclude
analyses that could provide valuable information about pilots to researchers and administrators.
Methods: To address those challenges, we describe a script that partially automates extraction of
pilot data from CTSA research progress reports. After extraction of the pilot data, we use an
established machine learning (ML) model to determine the scientific content of pilots for sub-
sequent analysis. Analysis of ML-assigned scientific categories reveals the scientific diversity of
the CTSA pilot portfolio and relationships among individual pilots and institutions. Results:
The CTSA pilots are widely distributed across a number of scientific areas. Content analysis
identifies similar projects and the degree of overlap for scientific interests among hubs.
Conclusion: Our results demonstrate that pilot data remain challenging to extract but can
provide useful information for communicating with stakeholders, administering pilot portfo-
lios, and facilitating collaboration among researchers and hubs.

Introduction

The use of administrative data, such as information submitted in funded grant applications, has
provided many opportunities to benefit the research enterprise, such as identifying scientific
gaps [1], optimizing investments and impact [2], and monitoring progress toward achieving
institutional and programmatic goals [3]. Data on all funded grants from the National
Institutes of Health (NIH) are publicly available for analysis and have been used to conduct
assessments as diverse as the impact of NIH funding on biomedical innovation [4], evaluation
of NIH investments in small businesses [5], and funding differences by gender [6]. Although
most grant data are publicly available, data associated with NIH-funded pilot projects (“pilots”),
which test novel ideas on a smaller scale than a traditional grant or clinical trial, are not. The
purpose of this paper is twofold: 1) to address the dearth of administrative data on pilots by
creating a consolidated database of administrative data for pilots from a large NIH program
and 2) to demonstrate the utility of the administrative data to administrators and other
stakeholders.

Currently, there is no central database for pilots supported through large infrastructure
grants, such as the Clinical and Translational Science Awards (CTSAs) funded by the
National Center for Advancing Translational Science (NCATS). CTSA awardees (or “hubs”)
use a portion of their funding to support pilots proposed by hub investigators, effectively creat-
ing an independently managed pilot program for each hub. Hubs are given wide latitude in pilot
funding decisions, thoughNCATS does provide general guidelines and requires that hubs report
pilots in RPPRs [7]. RPPRs are an NIH-wide requirement that contain information on activities
and outcomes associated with NIH awards and are not made publicly available. Unfortunately,
much of this information is disclosed in narratives (e.g., free text) with guidance on content but
not structure [8]. However, hubs generally report pilots in their RPPRs using a semi-structured
format that makes them amenable to analysis.
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To better manage and share data on pilot programs, CTSA hubs
and those managing funding programs could benefit from an
expeditious approach to extracting data information on pilot pro-
jects. Some hubs have demonstrated the value of analyzing their
own pilots’ financial (award amounts and distribution), demo-
graphic (occupation, gender), and productivity data (publications,
patents) [9–11]. Though not every hub initiates such analyses, all
hubs provide information on pilots in their RPPRs that could be
mined for useful insights. Information from the RPPRs is compre-
hensive (e.g., every pilot that is supported by CTSA funding is rep-
resented) and researchers have noted that the pilot section of
RPPRs contains numerous useful data fields, making them ideal
candidates for automated extraction due to NCATS formatting
recommendations [12]. Thus, RPPRs may represent the best
source of information on pilots for grant programs like the CTSA.

RPPRs could be used to derive the scientific content of pilots,
which investigators at institutions could use to communicate with
stakeholders, facilitate administration of awards, and identify
potential collaborations within or between institutions. Pilot titles
and abstracts contain sufficient information to leverage machine
learning (ML) methods to categorize the scientific and disease
focus of research being conducted. The NIH has used an ML
system called Research, Condition, and Disease Categories
(RCDC) to assign keywords based on the subject matter of grants
since 2009 [13]. Several studies have leveraged the RCDC system to
identify subsets of grants by disease focus [14] or population [15].
ML methods have frequently been used to categorize publications
[16,17], but using pilot data directly from the RPPR would ensure
that all pilots are captured, rather than only those pilots reported in
publications or follow-on grants.

Although there are many advantages to using data from RPPRs,
there are also significant barriers to extracting and analyzing pilot
project data from a high volume of RPPRs associated with multiple
grants. The most problematic issue is the variations in data and
report formatting between RPPRs and, less often, within the same
RPPR. Inconsistent formatting greatly complicates automation.
NCATS staff have manually curated more than 600 pilots every
year, a process that takes more than 240 hours copying and pasting
information from PDFs into spreadsheets. Other NIH institutes
have reported similar issues [18]. Thus, an automated process
would not only ensure the reduction of clerical errors due to
manual curation but would also enable the redirection of resources
into analyses of these data. Developing an automated process
might also facilitate the sharing of data among grantees or within
institutions receiving funding from other NIH awards that also
have a pilot or developmental research program – such as the
Specialized Programs of Research Excellence (P50) funded by
the National Cancer Institute and the Diabetes Research Centers
funded by the National Institute of Diabetes and Digestive and
Kidney Diseases (P30).

This paper describes an approach that was developed to auto-
mate the extraction of pilot project data from RPPRs into struc-
tured data and describes approaches for analyzing pilot project
data as a portfolio using the CTSA RPPRs as an example. Our goal
was to characterize the scientific content of the CTSA pilot port-
folio using ML and to examine potential opportunities for hubs to
collaborate based on the scientific content of their pilots. We stress
that our analyses are not exhaustive but provide some examples of
how administrative data from pilots can generate scientific and
operational value. First, we detail our approach for automating
extraction using a custom R script and the challenges encountered.
We then describe the automated assignment of scientific content

within the hubs. Finally, the scientific content is analyzed to iden-
tify major research themes within the pilot dataset and identify
similarities at the level of the individual pilot and the hub. As part
of the analysis, comparisons are made to other NIH Institutes/
Centers (ICs) to better understand and assess the unique compo-
sition of the CTSA pilot portfolio. We find that the CTSA pilot
portfolio contains valuable information useful for administrators
at the hubs and reflects the NCATS mission.

Materials and Methods

Data extraction

The complete dataset (including the institution, fiscal year, title,
and abstract) of the most recent pilots for each CTSA hub was gen-
erated through a combination of automated and manual extrac-
tion. Automated extraction was achieved using a custom script
(available on GitHub) written in R with functions from the tabul-
izer, pdftools, and tidyr packages [19–22]. Data from a range of
years were used to build the dataset on CTSA pilots to capture
the most hubs possible as the number of hubs submitting
RPPRs varies from year to year and hubs may not have any pilots
to report in some years. Data from fiscal years 2018 to 2020 were
manually extracted, while data from 2020 to 2021 were automati-
cally extracted. Data from 2020 were collected both manually and
automatically to measure the accuracy of the automated process.
Fidelity was determined by comparing the automatically extracted
titles and abstracts for each pilot to their manually extracted equiv-
alents. For each hub, only the pilot projects reported in the most
recent RPPR were included in the dataset. We include pilots
funded from any source (including matched funds) to build a com-
prehensive view of the CTSA pilot program.

Assigning scientific content

Manually assigning scientific content (e.g., condensing the infor-
mation in a pilot title and abstract to a few discrete terms like
cancer, prevention, or lung) of each pilot was impractical given
the scale of the dataset, but automated content assignment options
were available. The ideal system needed to be 1) easy to implement,
2) provide accurate content assignment using only the title and
abstract from pilot projects, and 3) be applicable to other NIH
grants for comparison to the pilots. Given these objectives, the
semi-supervised ML-based vocabulary from the Research,
Condition, and Disease Category (RCDC) system was determined
to be the best choice for our analysis [23]. RCDC is used by NIH to
track investments by scientific categories in response to a congres-
sional mandate in 2006 [24]. The system was developed and is cur-
rently maintained by the Division of Scientific Categorization and
Analysis (DSCA) in NIH Office of Extramural Research (OER).
The vocabulary is a hierarchical ontology composed of 407 total
categories that is reviewed annually to update existing categories,
add new ones, and manage the relationships between them [25].
The category review process is led by subject matter experts in
the ICs to ensure the results produced by the RCDC system are
accurate. Therefore, the RCDC system aligned with all three objec-
tives: 1) bulk automated assignments could be made by personnel
without extensive technical training, 2) assignments could bemade
using only title and abstract text, and 3) comparisons were readily
available as all NIH grants are automatically assigned. One draw-
back of the RCDC system is that it is only available to NIH staff.
However, many other automated assignment systems exist [26]
and hubs could leverage any of these in place of the RCDC system.
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The CTSA pilot data were organized in a spreadsheet where
each pilot was associated with an assigned unique identifier, a title,
and an abstract. The spreadsheet was provided to DSCA and was
returned with automated assignments of categories associated with
each pilot. Manual review of test assignments identified that some
of the more specific categories were incorrectly assigned, so a
restricted vocabulary of 116 root categories (“roots”) from the base
of the hierarchy was used for assignments. Fifteen projects were not
assigned any roots, and these pilots were removed from the analy-
sis as they did not cause any hubs to drop out of the dataset.
The resulting final number of projects was reduced from 941 to
926, and those projects contained 75 of the 116 unique RCDC
roots. Because the RCDC system was developed to work with grant
data, which has additional information to inform root assign-
ments, the accuracy of root assignments using only the title and
abstract was evaluated using interrater reliability scores. Details
of this analysis are included in the Supplementary Materials.

Pilot portfolio analysis

The most common subject matter at the level of individual pilots
was identified by the frequency of roots in the pilot data. Root
frequencies were determined by creating a matrix (i.e., document
termmatrix) where columns were roots, rows were pilots, and cells
could take the value of 1 (root assigned) or 0 (root not assigned).
For any root, the observed frequency was the sum of its column,
which reflected its prevalence in the dataset. We chose to use
entropy to measure the distribution of root frequencies, with a col-
umn’s entropy defined as

Entropyx ¼
XN

n¼1

px;n ln px;n (1)

where x was the RCDC column, N was the total number of hubs
(rows) in the dataset (N= 62), and px,n was the probability of
observing a pilot assigned root x from hub n. Entropy has the desir-
able quality of distinguishing when pilots with a given root were
more equally distributed among hubs (e.g., Entropyx increases
as px,n approaches 1

N for all n hubs) and when more hubs had pro-
jects related to that root (e.g., Entropyx increases asymptotically as
n increases).

The document term matrix also provided the conditional prob-
ability of a root Y given the assignment of a root X, defined as

p Y jXð Þ ¼ NYX

NX
(2)

where Nx was the number of projects assigned root X and NYX

was the number of projects assigned both root Y and root X.
Conditional probabilities were computed for every pairwise com-
bination of roots.

Similarity between pilots derived from the document term
matrix was also used to cluster pilots. As roots could only be
assigned to a pilot once, there was no need to account for root
frequency so wemeasured the cosine similarity between every pair-
wise combination of pilots and converted these values into distan-
ces (1- cosine similarity). Analysis of the distance matrix using
both divisive (DIANA) and agglomerative (AGNES) hierarchical
clustering revealed that the agglomerative approach using
Ward’s distance produced the best results as measured by the
agglomeration coefficient (0.97). To highlight the broadest trends

in the pilot data, the dendrogram generated from hierarchical clus-
tering was cut into the smallest number of distinct clusters based
on the five most common roots in each cluster.

Roots were also used to measure similarity at the hub level.
The similarity between the roots of hub X and Y was calculated
using Jaccard similarity:

JX;Y ¼ X10 \ Y10

X10 [ Y10
(3)

whereX10 and Y10were the tenmost frequent roots (permitting ties)
from hubs X and Y, respectively. Limiting the similarity calculations
to the ten most frequent roots had two desirable properties: it
ensured high similarity derived from matches between high-fre-
quency roots rather than many low-frequency ones. It also counter-
acted the strong positive relationship between the number of pilots
and the number of unique roots a hub had, which introduced a
dependence between a hub’s number of pilots and its similarity val-
ues. Although this procedure reduced the variance in the number of
roots representing a hub, it did not eliminate it: some hubs are rep-
resented by more than ten roots (due to permitting ties) and some
hubs are represented by fewer than ten roots (because there are less
than ten unique roots among their pilots). Similarity was calculated
for all pairwise combinations of the 62 hubs1 to evaluate the relation-
ship between the number of roots used for similarity calculation and
the resulting similarity values. The correlation between a hub’s num-
ber of unique roots and its median similarity to all other hubs was
high (Pearson correlation coefficient= 0.47) due to eight hubs that
had fewer than ten unique roots. Excluding hubs with fewer than ten
unique roots greatly attenuated the correlation (Pearson’s correla-
tion coefficient= 0.13) and was consistent with the proposition that
similarity is independent of the number of unique roots. Therefore,
only the 54 hubs with at least ten roots are included in the hub-level
similarity analysis.

To put the similarity values among the 54 remaining hubs in
context, we compared them to the similarity values of those hubs’
R01 and R21 grants from three of the largest disease-focused ICs:
the NCI; the National Institute of Allergy and Infectious Diseases
(NIAID); and the National Heart, Blood, and Lung Institute
(NHLBI). The R21mechanismwas selected as the best comparison
to the CTSA pilots despite differences in award size because of the
number of R21 awards (sufficient data points), their purpose (gen-
erally exploratory research to develop new/novel ideas), and the
availability of root assignments. R01s for the ICs were included
as a control as they are the most common NIH funding mecha-
nism. Pairwise similarity was calculated from equation 3 using
the 54 hub portfolios of R01 and R21 grants from each IC resulting
in seven distinct similarity distributions: CTSA pilots, NCI R01
and R21, NIAID R01 and R21, and NHLBI R01 and R21.
Wilcox signed rank tests were then used to determine whether dis-
tributions differed significantly from one another.

Results

For fiscal year 2020 data, the R script that was developed was able
to extract 444 of 679 pilots (65%) from 37 of 43 RPPRs (86%).
Comparison of the 444 automatically extracted pilots to their man-
ually extracted counterparts showed that text from titles always

1At the time data were collected, there were 60 active hubs. Of the 62 hubs in the
pilot dataset, 59 were active and 3 were inactive (total = 62). An RPPRwas available for
the missing active hub but it did not disclose any pilots.
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matched and text from abstracts wasmismatched for 18 pilots (4%)
with eight of the mismatches resulting from truncation of the last
sentence in the abstract. As fiscal year 2021 RPPRs were still being
submitted at the time of this analysis, no manually extracted data-
set existed to compare the script’s performance against manual
curation. However, the automated script was able to extract at least
one project from 18 of 20 RPPRs (90%) for a total of 328 pilots.
Hub data spans 2018 to 2021: three hubs are from 2018 (5%),
13 from 2019 (21%), 28 from 2020 (45%), and 18 (29%) from
2021 (N= 62). Despite attempts to include every extant hub, pilot
data for several hubs are missing because no pilots were reported in
any of their RPPRs from 2018 to 2021. The resulting dataset
encompasses 62 hubs and 941 pilots. Automated root assignments
were found to be comparable to those of NIH program staff and
were used for subsequent content analysis (Supplementary
Materials).

Fig. 1 shows the root frequencies of pilots, which focus on a
broad range of scientific fields ranging from behavioral and social
science to the immune system. The most frequent categories
assigned to grants funded by the disease-focused ICs align with
their missions (e.g., cancer for NCI, cardiovascular for NHLBI,
infectious diseases/immune system for NIAID), while there is
no significant outlier that similarly distinguishes the CTSA pilots.
Clinical research and translational research are not among the ten
most frequent roots in the CTSA pilots because they are assigned to
studies conducting clinical research or translational research rather
than studies of the process of conducting clinical research or trans-
lational research (i.e., translational science), the latter of which is
the focus of the CTSA program [27]. Furthermore, several of the
highest frequency roots among CTSA pilots relate to social and
behavioral aspects of health (e.g., mental health, social determi-
nants of health, behavioral and social sciences) that are not
observed among the most frequent roots of disease-focused ICs.

Fig. 2 demonstrates that entropy reflects the similarities in how
pilots within a root are distributed among hubs better than the
number of pilots assigned that root. Within a root, entropy pro-
vides a quantitative description of whether pilots are concentrated
in a handful of institutions or distributed evenly among many. For
example, entropy indicates that pilots are distributed among fewer
hubs within the “coronaviruses” root than the “patient safety” root
despite these roots being assigned to an equal number of pilots. The
entropy distribution of the 75 unique roots indicates most roots are
composed of pilots from many different hubs, generally with no
hub taking a majority share of pilots (e.g., have distributions like
that of the “patient safety” root; Fig. 2).

The conditional probabilities shown in Fig. 3 identify roots that
frequently occur together, providing more information than indi-
vidual root frequencies. Using combinations of roots to identify sub-
sets of pilots can partially compensate for the use of roots instead of
the full RCDC vocabulary (see Methods for details). For instance, a
significant proportion of the rare diseases research conducted in
pilots also involves cancer, implying that rare cancers are the subject
of many rare disease pilots. Conditional probabilities also reveal the
relationships between roots. For example, the “neurodegenerations”
root is almost always assigned with “neuroscience” while “neurosci-
ence” is assigned with “neurodegeneration” much less frequently
(e.g., p(neuroscience|neurodegeneration) » p(neurodegeneration|
neuroscience)). The asymmetry in the conditional probabilities iden-
tifies roots thatmay representmore specific subsets of broader,more
frequently assigned roots. Alternatively, large, symmetric condi-
tional probabilities (e.g., p(Y|X)≈ p(X|Y)) suggest that two roots
are usually co-assigned, such as with cancer and rare diseases.

Additional information on the relationship between pilots and
hubs can be derived from clustering based on pairwise cosine sim-
ilarity (Fig. 4). Clustering complements other approaches, like con-
ditional probability, by looking at relationships across all roots
assigned to a project. For example, “cancer” and “biotechnology”
are two of the most frequent roots observed in cluster 1. However,
conditional probability would not suggest a strong relationship
between these roots (Fig. 3). By looking at all roots assigned to a
project, hierarchical clustering may identify indirect relationships,
such as those between “cancer” and “biotechnology.”

Fig. 1. Ten most frequent root categories assigned to pilots supported by NCATS (TR
Pilots) and grants supported by disease-focused ICs. Roots assigned to exploratory
research grants (R01, R21) supported by National Institute of Allergy and Infectious
Disease (AI), National Cancer Institute (CA), and National Heart, Lung, and Blood
Institute (HL) are compared against those assigned to National Center for
Advancing Translational Science pilots (TR Pilots). Bars represent the percentage of
grants in each IC’s selected portfolio that were assigned to each root. Only the ten
most frequent (without ties) roots are shown for each panel, all other roots are left
blank. Bars do not sum to 100 because pilots can be assigned multiple roots.
Abbreviations: National Center for Accelerating Translational Science (NCATS),
National Institutes of Health Institutes and Centers (ICs).

Fig. 2. Comparison of entropy and number of projects to describe distribution of
hubs’ shares of pilots within a root. (A) A scatter plot of the number of projects
assigned to each root versus the root’s entropy (N= 75). Filled and empty circles
represent roots, with the filled circles identifying those roots highlighted for additional
analysis in (B), below. (B) Bar charts showing the distribution of hubs’ shares in the four
roots in (A). Each bar represents a single hub’s share (as a percentage) of pilots
assigned that root. Only the twenty largest shareholders (hubs) are shown for each
root and are not the same across plots (e.g., the bottom bar for 1 may not be the same
hub as the bottom bar for 2,3, or 4). Both Caregiving Research and Coronaviruses have
fewer bars because fewer than twenty hubs had at least one project assigned to those
roots. Plots are arranged in order of increasing numbers of projects assigned to a root.
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Large scale collaborations can also be identified by computing
pairwise similarity scores at the hub level, rather than the pilot
level. Jaccard similarities were calculated for all pairwise combina-
tions of hubs revealing values ranging from 0 (no overlapping
roots) to 0.71 and a median value of 0.26 (Fig. 5A). Fig. 5B shows
the pairwise Jaccard similarities for a subset of hubs. Jaccard sim-
ilarity provides a method for filtering potential partners for pilot
research using a variety of strategies including finding hubs with
similar scientific interests (hubs 2 and 7) or finding hubs with com-
plementary interests (hubs 3 and 5). For either strategy, potential
matches can be screened by comparing the root frequencies
(Fig. 5C and D) or conditional probabilities to provide additional
information on what partners may bring to a collaboration.

To identify a baseline for determining whether pairwise Jaccard
similarities for hubs’ pilot portfolios were high or low, the distri-
bution of similarities among hubs’ CTSA pilot portfolios was
compared to the distribution of similarities among hubs’ dis-
ease-focused (funded by NCI, NHLBI, NIAID) R01 and R21
portfolios (Fig. 6). The CTSA pilot portfolio had significantly lower
similarity (largest p-value= 7.1 × 10-162) than any other disease-
focused grant portfolio except R21s from NHLBI. Lower similarity
suggests that the hubs’CTSA pilot portfolios are more scientifically
distinct than most of their disease-focused research grant
portfolios.

Discussion

RPPRs are a rich source of information for any grant program but
the usability of the pilot data in RPPRs has been hindered by
several barriers including the magnitude of pilot reports (>600
annually) and variation of reporting formats among hubs and over
time [12]. Despite these challenges, a significant proportion of the
pilots (65%) were successfully extracted using the custom R script.
For hubs looking to extract data from a single RPPR, which is the
more probable case given the proprietary nature of RPPRs, the
process is likely to be even more efficient as formatting inconsis-
tencies should be less pronounced within a single institution. Our
automated extractionmethod is relatively simple and relies on free,
open-source software, which has the advantage of being easier to
use. However, more sophisticated approaches like natural language
processing could improve the extraction efficiency and unlock

additional information in the less structured portions of the
RPPR. Regardless of themethod used, automated extraction lowers
the barriers to using RPPR data.

To take full advantage of automating data extraction requires
thoughtful structuring of information in the RPPR, ideally with
automation as a goal. The CTSA data are a case in point: hubs that
followed the NCATS guidelines were extracted efficiently while
those that diverged from it required manual extraction of some
or, in several cases, all of the pilots reported. However, guidelines
alone do not guarantee the success of automation. For example,
breaking a table or table cell over multiple pages can cause extrac-
tion to fail, even if hubs use the template provided by NCATS to
report pilot data [28]. Therefore, it is also important to have auto-
mation in mind when developing guidelines to avoid issues
uniquely challenging for machines such as page formatting, miss-
ing table values, or inconsistent category names. Applying these
lessons would involve all program stakeholders, so cooperation
is important for any program seeking to maximize RPPR data
accessibility.

Another important consideration when using RPPRs is their
proprietary nature. Institutions are not obligated to share their
RPPR and may have incentives not to given the sensitive informa-
tion disclosed. However, our analysis can be performed with data
from a single institution. Root frequencies, conditional probabil-
ities, and clustering rely on pilot-level information present in a sin-
gle RPPR. Multiple RPPRs are required for portfolio comparisons
(entropy, Jaccard similarity); however, a single institution could
compare RPPRs submitted previously or for another program.
Therefore, institutions can still derive useful information using
only their own RPPRs.

Our analysis suggests three major uses for pilot data from
RPPRs: communication, administration, and facilitating collabo-
ration. In terms of communication, the RCDC vocabulary makes
the content of a portfolio more accessible by simplifying interpre-
tation of the scientific content of pilots. Though abstracting a
project to a limited number of broad categories necessarily involves
data loss, it simplifies interpretation for those lacking the requisite
training, time, or access to pilot data. In fact, the RCDC vocabulary
was established to help NIH communicate with stakeholders like
Congress and the public [29]. Hubs using a similar approach to
communicate their high-level scientific priorities may improve
both the quantity and quality of public engagement.

Administrators of funding or awardee institutions can use the
scientific content analysis to monitor their scientific research port-
folio. Root frequencies and entropy identify areas of high and low
activity, providing useful information to administrators consider-
ing whether or how to modify incentives for certain kinds of
research or across multiple portfolios. For example, coronavirus
research is an outlier in the entropy curve because a small number
of hubs conducted a majority of the pilots related to coronavirus
research, mostly in response to the COVID-19 public health emer-
gency that began in early 2020 [30]. These “first movers” could be
similarly identified in other, less obvious, circumstances by looking
for deviations from the entropy curve. Administrators could use
these analyses to evaluate how their portfolio meets program goals
and takes advantage of scientific opportunities to better manage
the high risk inherent in a scientific portfolio [31].

In addition to improvements in communication and administra-
tion, pilot data can be used to facilitate collaboration. Assembling
and managing a technically and demographically diverse team is
especially important in translational science, which is inherently
multi-disciplinary and multi-stakeholder [32]. When investigators

Fig. 3. Conditional probability matrix for select root categories. A heatmap using a
subset of ten roots was used to describe the NCATS pilot portfolio. Cells are shaded
by the conditional probability of observing y-axis roots given assignment of x-axis
roots in the pilot data (i.e., p(Y|X)) with the diagonal colored black. The matrix is asym-
metric as the conditional probability of a y-axis root given an x-axis one is not neces-
sarily equal to the reverse (p(Y|X) not necessarily equal to p(X|Y)).
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or institutions have specific scientific interests, RCDC root catego-
ries (or any categorization scheme) can be searched individually or
in combination (e.g., through conditional probabilities, clustering,
or Jaccard similarity) to identify other investigators or hubs with
similar interests. For example, an administrator may use Jaccard
similarities to identify a subset of institutions with similar or com-
plementary interests followed by analysis of root frequencies for the
subset to identify a small number of institutions with the most
aligned scientific interests. For additional specificity, administrators
could use conditional probabilities to search for combinations of

roots rather than individual ones. Investigators could make use of
the root frequencies and conditional probabilities to identify specific
pilots or learn what work has been conducted in areas circumscribed
by one or more roots. The pilot data can be used to democratize
access to collaborators by providing all investigators access to infor-
mation on colleagues’ research inside and outside their professional
circles.

Our analysis helps clarify the value of RPPR data so institutions
and programs can have more confidence that investments in data
structuring, reporting, and extraction will pay dividends. The

Fig. 4. Scientific composition of clusters generated from inter-pilot similarity values. The five most frequent roots in each of the 6 clusters identified by hierarchical clustering.
Bars represent the percent of pilots within the cluster assigned that root. Plot titles indicate the cluster number. Abbreviations: Networking and Information Technology R&D
(NITRD), Machine Learning and Artificial Intelligence (ML/AI).

Fig. 5. Pairwise Jaccard similarities (JX,Y) from hubs’ CTSA pilot portfolios. (A) Histogram of pairwise Jaccard similarity (JX,Y) values between all hubs with at least 10 unique roots
(N= 54). Only one JX,Y value per pair is included as JX,Y = JY,X. (B) Heatmap of JX,Y for a representative subset of eleven hubs. Hubs were selected to represent the full spectrum of
similarity values observed. As the similarity matrix is symmetric, only the top half of the heatmap is shown with the diagonal and bottom half set to zero. (C) Comparison of the ten
most frequent roots (excluding ties for concision) for the most similar hubs in (B), 2 and 7. The hub number is listed at the top of each panel with bars representing the percent of
projects from that hub for the root listed on the y-axis. When no bar appears, root frequency is zero. (D) Same as (C) but for a highly dissimilar pair of hubs (3 and 5) from (B). The
larger number of roots on the y-axis of (D) relative to (C) is due to hubs 3 and 5 sharing fewer roots than hubs 2 and 7. Abbreviations: Clinical and Translational Science Awards
(CTSA).
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analysis presented is not exhaustive so it is probable that additional
value could be gleaned from pilot data. Furthermore, there are
many additional data types within RPPRs that could provide valu-
able insights for institutions and program administrators [12]. The
most significant barrier to leveraging pilot data is the extraction
process, which is heavily dependent on data structure.
Therefore, efforts to extract data from RPPRs would benefit from
parallel efforts to standardize and simplify data formatting. Better
data will lead to better management of scientific investments and,
ultimately, improvements in the research enterprise.
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