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Abstract 

This paper builds a patent-based knowledge graph, patent-KG, to represent the knowledge facts in patents 

for engineering design. The arising patent-KG approach proposes a new unsupervised mechanism to extract 

knowledge facts in a patent, by searching the attention graph in language models. The extracted entities are 

compared with other benchmarks in the criteria of recall rate. The result reaches the highest 0.8 recall rate in 

the standard list of mechanical engineering related technical terms, which means the highest coverage of 

engineering words. 

Keywords: knowledge representations, artificial intelligence (AI), data-driven design 

1. Introduction 
In 2019, more than 3 million patents and 1.5 million scientific papers (World Intellectual Property 

Organization, 2019) were published worldwide. This can be contrasted with a person’s reading 

capacity of 264 papers per year (Van Noorden, 2014) on average. The ever-growing quantity of data 

provides both considerable challenges and opportunities for designers. On one hand, it is hardly 

possible for an individual to fully search and comprehend a specific domain, as the published data 

grow every day. On the other hand, (Swanson, 1986) hypothesized that a scientific discovery can be 

established by systematically studying existing knowledge. The vast amount of data are of high 

diversity, and can be reused as incentives and stimuli for new knowledge. Reusing existing knowledge 

to speed up the idea generation has already been used in the domain of design(Shi et al., 2017, Sarica 

et al., 2020, McCaffrey and Spector, 2018, Fu et al., 2013). 

A new concept - knowledge graph - is introduced to represent the knowledge in data in a new format. 

A knowledge graph is defined (Wang et al., 2017) as “a multi-relational graph composed of entities 

and relations which are regarded as nodes and different types of edges, respectively” to represent the 

knowledge. A knowledge graph expresses knowledge in the format of a triple, which includes a head, 

a relationship and a tail. This single piece of information can be regarded as a quantum of knowledge 

and knowledge graph is the accumulation of a great number of knowledge facts. For example, 

consider Figure 1 illustrating the knowledge fact: Albert Einstein was born in German Empire. The 

knowledge triple is representing it as: (Albert Einstein, BornIn, German Empire) and it is transformed 

into the images with two nodes as the head and tail, one edge as the relationship. Many acknowledged 

facts can be composed together in a knowledge graph. To build the knowledge graph, it is 

fundamental to identify and extract the knowledge in the text. However, existing rule-based and 

supervised machine learning based methods are both subject to human based rules and annotations, 

which is less likely to generalize to a larger size data. 
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822  DESIGN INFORMATION AND KNOWLEDGE 

To address the challenge highlighted, this paper aims to propose an unsupervised method to extract 

knowledge facts in patents and facilitate knowledge reuse for engineering design, with potential 

applications to other domains. 

 
Figure 1. An example of a knowledge graph 

2. Related work 

2.1. Network for engineering design 

When considering knowledge reuse, common knowledge sources include encyclopedias, patent 

documents, scientific literature, and reports. The growing need for engineering design tools and 

insights has driven researchers to construct large databases based on these sources. Shi (2018) 

proposed a pipeline to crawl design knowledge from design posts and Elsevier published scientific 

literature, and constructed a structured ontology network to provide a semantic level understanding of 

the design knowledge. This semantic level representation of understanding was applied for design 

information retrieval and insight for idea generation process. Sarica et al. (2020) trained a semantic 

engineering knowledge graph from patent data, to overcome the limited coverage of traditional 

keyword retrieval. A case study demonstrated that the proposed method improves the efficiency to 

assist the early stage of design work. Chen et al. (2013) proposed an information system in Wikipedia 

to extract core information inside the selected articles. These pieces of extracted information were 

analysed in pairs and frequency to gain insight into relationships, and thus to support the conceptual 

design stage. Siddharth et al. (2021) used syntactic rules to extract knowledge triple (head, 

relationship, tail) from patent data to build an Engineering knowledge graph. Listing these rules is 

laborious and these rules cannot be listed comprehensively, which will cause incomplete extraction. 

Our goal is to extract the head, tail and relationship without these rules and achieve better results. 

Patents were chosen as the data source as this form of documents records the content of inventions and 

contains a large quantity of scientific and technological information (Aristodemou and Tietze, 2018). 

2.2. Information Extraction 

Information extraction is a task to identify and recognize words or phrases in text. This task is a 

fundamental activity in knowledge graph construction and various methods have been proposed. 

Normal methods include rule-based information extraction, supervised information extraction and 

unsupervised information extraction (Li et al., 2020). 

2.2.1. Rule-based information extraction 

Rule-based information extraction (Li et al., 2020) extracts entities based on predefined rules. After 

analyzing the characteristics of entities, artificial rules of the intended information, such as syntactic 

rules or POS tagging, need to be constructed to match and identify the entity in the text. For example, 

to extract disease name such as type 1 diabetes, type 2 diabetes and type 3 diabetes, the rule is ‘type + 

number + diabetes’. The limitation is evident: the rule can never be listed and formulated 

comprehensively by human resources. 
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2.2.2. Supervised and unsupervised information extraction 

Supervised machine learning with labelled data is expensive in terms of human labour, thus making it 

difficult to apply for large-scale information extraction. So, weak supervised learning or unsupervised 

learning is proposed. For example, distant supervised learning (Mintz et al., 2009) will apply similar 

labelled data text to the target text, thus avoiding the tagging task. TextRunner (Etzioni et al., 2008), 

Reverb (Fader et al., 2011), and Ollie (Schmitz et al., 2012) are examples of three unsupervised 

learning mechanisms. These three methods transform knowledge facts in plain text into triples without 

predefined classification, which is also called open information extraction. However, the quality of 

unsupervised approaches normally cannot compare with supervised learning because noise will be 

introduced as there is no label data as a filter. In Natural language processing, language models(LM) 

such as BERT and GPT-2 (Radford et al., 2019) have demonstrated significant capability in some 

related tasks, such as: sentence classification (Wang et al., 2018). In the structure of LMs, multi-head 

attentions are used that mimics cognitive attention, which will enhance the importance of the aiming 

part from the input data and fade others. Wang et al. (2020) further applies the attention mechanism in 

language models for information extraction inside a sentence. 

The aim in this study is to propose an unsupervised method to build a patent-based knowledge graph. 

Inspired by the attention mechanism in language models, we aim to apply the attention mechanism to 

extract the relationships between technical terms, thus  

3. Construction of patent-KG 

3.1. Data source 

Patent data, for this study was gathered from 2016 to 2021, with Cooperative Patent Classification 

(CPC) codes start in ‘F’(European Patent Office, 2021) – referring to “Mechanical engineering; 

lighting; heating; engines or pumps”. In total, 457,815 patents were retrieved after filtering. 

3.2. Data pre-processing 

The purpose of this step is to process and prepare each sentence of the abstract into a list of tokens 

which are applied as heads and tails. 

First the abstract will be split into sentences with spaCy (Honnibal Matthew, 2017). Note that in 

spaCy, the default sentence segmentation will only split a sentence on punctuation such as ‘.’, ‘!’ or 

‘?’ applying a general language rule. In patent text, a period tends to be used in case of an abbreviation 

or to signify the end of one sentence or claim. Normally the sentence in a patent can be very long, the 

semicolon ‘;’ is used frequently allowing incorporation of multiple discrete parts for a sentence.  

Therefore the ‘;’ token is added as a sentence boundary and overwritten in spaCy. In this way, the 

splitting can avoid long sentences and can be more accurate. 

Second, the sentence will be split into tokens, and then noun phrases will be recognized and combined.  

Patents contain a large number of technical terms, some of which are brand new technical terms 

formed in the patent. There are three ways of technical terms formation in patents normally 

(Andersson et al., 2016): 

(1) orthographical unit, e.g. bookcase, airplane, curveball. These words can be recognized by spaCy 

normally via its POS tagging. 

(2) multi-word unit (MWU), e.g. airplane wings, knowledge graph, natural language processing. 

These words can be recognized by spaCy normally via its POS tagging. 

(3) combined with hyphenation (e.g.  H-theorem, mother-in-law).  The default tokenizer in spaCy will 

split on hyphens.  To avoid this, the existing infix definition is overwritten and a regular expression 

that treats a hyphen between letters as an infix is added. 

Third, the sentence will be split into tokens, and then phrasal verbs will be recognized and combined.  

A phrasal verb is the combination of a verb and a particle, such as an adverb or a preposition, e.g. 

relate to, positioned through, engageable with. The verb contains the action information while the 

particle contains the additional information. Both can be part of the relationship, so it is also 

recognized and combined after tokenization. 
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3.3. Patent-KG construction 

3.3.1. Dependency patterns 

After the data pre-processing stage, the technical terms as nouns are recognized as heads and tails, the 

next step is to find and extract the relationships between them. Different from SAO structure (Cascini 

et al., 2004) which only extract verbs to represent the relationships between technical terms, the patent 

texts are analyzed and the four interested dependency patterns (Marie-Catherine de Marneffe, 2016) 

are listed and corresponding examples are as follows: 

(1) dobj: direct object  

The direct object of a verb phrase is the noun phrase which is the (accusative) object of the verb. 

“The sensor sends a signal”      dobj(sends, signal) 

“The electricity light the bulb”      dobj (light, bulb) 
(2) nsubj: nominal subject   

A nominal subject is a noun phrase which is the syntactic subject of a clause.  There are two scenarios, 

the governor of this relation is a verb or a copular verb. When the relation is a copular word, the root 

of the clause is the complement of the copular verb, which can be an adjective.  However, the scenario 

of an adjective is not considered in patent patterns because it cannot form a knowledge fact. 

“The baby is cute”      nsubj (cute, baby)  * not considered as knowledge facts*  

“She left him a note”      nsubj(left, she) 
(3) cop: coupla 

A coupla is the relation of a function word used to link a subject to a nonverbal predicate, including 

the expression of identity predication. 

“HTR is the fourth generation nuclear power station”      cop (station, is)  

“Bill is a good person”       cop (person, is) 
(4) pobj: object of a preposition 

The object of a preposition is the head of a noun phrase following the preposition. 

“The colls in the axial magnetic bearings”      pobj (in, axial magnetic bearing) 

“Place the card inside the slot”       pobj (inside, slot) 

3.3.2. Match 

After defining the relationships between , the next step is to find the relationships (mostly verbs) 

between them. The technical terms are grouped in two as a head and tail pair (h, t), then the match 

stage will find the best relationship between the (h, t) pair to generate a knowledge triple (h, r, t) by 

searching the attention matrix. The attention matrix is formed within transformer-based language 

model BERT(Bidirectional Encoder Representations from Transformers). 

BERT (Devlin et al., 2018) is a large and pre-trained Transformer network, with 12 layers where each 

layer consists of 12 attention heads. Fig 2 illustrates how the attention score is computed by selecting 

only one attention head in the first layer. 

Firstly, the input tokens (x1,x2,x3,x4) are transformed into a sequence of vectors [a1,a2,a3,a4]. Then 

each vector is transformed into a query and a key vector by the linear transformation matrix Wq and 

Wk.  Starting with a query vector, e.g. q1, the query vector will have a dot product with the key vector 

of all the other, e.g. k1, k2, k3, k4 (including the other key vectors and itself). Then softmax is applied 

over all the scores, a1,1, a1,2, a1,3, a1,4 to normalize them to be positive and sum to one. 

The attention mechanism will generate normalized weights 𝑎̂1,1,  𝑎̂1,2, 𝑎̂1,3, 𝑎̂1,4 which decide how 

“important” for each other the token is when calculating the next representation on the current token. 

There are 12 heads in each layer, so more than one head enables BERT to learn more about the structure 

of the text. BERT also stacks multiple layers of attention, each of which computes based on the output of 

the previous layer. Through this repeated structure, the attention heads from deeper layers are able to 

form richer representation after previous computation.  In total BERT’s architecture comprises 12 layers 

with 12 heads, resulting in a total of 12×12 = 144 different attention heads. Clark et al. (2019) analysed 

and visualized all these attention heads, revealing that the attention heads include patterns such as 
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finding direct objects of verbs, determiners of nouns, objects of prepositions, and objects of possessive 

pronouns. 

With respect to finding interesting patterns in patents mentioned in 3.3.1, an experiment was 

conducted and head 8-10 are shown and chosen to have the best results. Figure 3 shows two attention 

map examples on different interested attention patterns in patents, all these examples are computed on 

head 8-10.  The line from one to another indicate the “importance” between each other, the deeper the 

colour is, the more important it is. The aiming words in a sentence are coloured red to highlight it from 

the others. For example, in the pattern of “dobj”, the object word “signal” is coloured red to see if the 

verb is allocated with higher weight. The line between “signal” and right verb “send” has the deepest 

colour which means the attention head is recognizing the “dobj” pattern. 

 
Figure 2. Computing process inside one head of attention 

The attention mechanism in BERT calculates the attention from token to token. However, the words in 

our sentence are split into tokens and then re-combined if noun phrases and phrasal verbs are 

recognized. Therefore, the attention is converted from a token-to-token map to word(phrase)-to-

word(phrase) map. For attention from a phrase, the mean of the attention weights is calculated over 

the tokens. For attention to a phrase, the sum of attention weights is calculated over the tokens. These 

transformations preserve the property that the attention from one to other sums to be one. 

 
Figure 3. Attention examples on language patterns 

After the calculation, the attention graph(matrix) will be obtained such as shown in Fig 4 (on the 

right). To interpret this, the rows mean the key (from), the columns mean the query (to). In the 

attention graph, the beam search is used to find the best matched relationship (mostly verbs) 
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candidate fact. For every head and tail pair (h, t) in a sentence, the beam search will search 

backwards: t→r→h, computing through the k words with k-highest attention scores between the 

head and tail. Taking the sentence “the magnetic force provided levitates the shaft” as an example, 

the head-tail pair is (the magnetic force, the shaft), the beam size equals 2, the search computing 

processes are as the following: 

(1) First, instead of searching forward, the searching algorithm is searching backward. The reason for 

searching backward is that the later words have stored the knowledge from previous words, while the 

previous words may not have read about later words. We need to add the tail “the shaft” to the beam, 

mark the head “the magnetic force” as the ending position and initialize the total attention degree as 0. 

(2) Find the token with the largest attention score with the tail “the shaft”, add that to the candidate 

(the shaft, levitates) and update the attention score 0.7761. Mark the token “levitates” as added to 

prevent search again. Then find the attention score between relationship “levitates” and “the magnetic 

force” which is 0.2496. The total attention score is 0.7761+0.2496= 1.0257 

(3) Find the token with the second largest attention score with the tail “the shaft”, add that as a 

candidate, (the shaft, provided) and update the attention score 0.0154. Mark the token “provided” as 

added to prevent search again. Then find the attention score between relationship “provided” and “the 

magnetic force” which is 0.5684. The total attention score is 0.0154+0.5684=0.5838 

(4) The search will be stopped because the number of candidates reached the limit of beam size 2, and 

also reached the marked ending position “the shaft”. The two candidate facts now both have attention 

scores from tail to relationship and relationship to head. The candidate with the highest attention 

scores, (the magnetic force, levitates, the shaft) will be kept and returned. 

4. Evaluation 
As shown in Table 1, patent-KG extracts the knowledge facts from 457,815 patents in Section F from 

2016-2021. In total there are 4,157,377 entities and 10,991,896 edges. In this section, the outcome of 

two further evaluation experiments conducted with Patent-KG to demonstrate its feasibility and 

usefulness are reported. The evaluations are designed and conducted from in parts in terms of 

knowledge graph, the coverage of entities and the coverage of relationships. 

The quality of entities and edges are evaluated as follows. 

 
Figure 4. The searching process inside the attention graph 

Table 1. The size of patent-KG 

Number Value 

Number of Patents（F section） 457,815 

Number of Entities 4,157,377 

Number of edges 10,991,896 

Number of phrasal verbs 317,789 
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4.1. Entities 

In order to demonstrate the feasibility and usefulness of Patent-KG, a standard list of mechanical 

engineering related technical terms are built as golden concepts to compare with other benchmarks. 

In the standard list, 3 categories (engines or pumps, engineering in general, lighting and heating) 

belonging to mechanical engineering are chosen and 13 subcategories, and totally 180 corresponding 

terms are chosen. Note that the meaning in the terms has some overlap between each other, the terms 

in one subcategory can also be classified into another. This list just choses the one of the appropriate 

subcategories. Table 2 lists the categories, the subcategories and part of the terms. 

Table 2. Standard list of mechanical engineering related technical terms 

Categories lists 

Engines or Pumps  

COMBUSTION ENGINES; HOT-GAS OR 

COMBUSTION-PRODUCT ENGINE PLANTS 

heat engine, combustion chamber, working fluid, 

pistons, turbine blades, rotor, nozzle., internal 

combustion engine, four-stroke engine, compression-

ignition engine, turbomachinery…  

 

MACHINES OR ENGINES FOR LIQUIDS; WIND, 

SPRING, OR WEIGHT MOTORS; PRODUCING 

MECHANICAL POWER OR A REACTIVE 

PROPULSIVE THRUST 

pelton wheels, wear-protection couplings, water 

current turbine, water wheels, Francis turbines, 

propeller turbines, Kaplan turbines, flywheel, fluid 

accumulator… 

Engineering in general   

FLUID-PRESSURE ACTUATORS; HYDRAULICS 

OR PNEUMATICS IN GENERAL 

pressure intensifier, isobaric pressure exchange, 

pneumatically operated actuator, hydraulic 

attachment, hydraulic circuit, positioner, 

electropneumatic transducer, nozzle-flapper system, 

pyrotechnic micro-actuator… 

ENGINEERING ELEMENTS AND UNITS; 

GENERAL MEASURES FOR PRODUCING AND 

MAINTAINING EFFECTIVE FUNCTIONING OF 

MACHINES OR INSTALLATIONS; THERMAL 

INSULATION IN GENERAL 

nails, staples, fastener, rod, anchor, toggle, dowels, 

bolts, hooks, gear, belts, chains, couplings, cranks, 

magnetic bearing… 

STORING OR DISTRIBUTING GASES OR 

LIQUIDS 

gas filling compartment, gasometers, gas container, 

gas reservoir , pressure vessels, gas cylinder, gas 

tank, replaceable cartridge…  

 

Lighting, Heating  

LIGHTING 

candle, flash light, illumination, headlight, LED, 

lamp, Incandescent mantles, pressure vessel… 

 

STEAM GENERATION 

evaporator, boiler, Inhalator, vaporizer, atomizer, 

Rankine cycle, working fluid, surface condenser, 

cooling tower… 

COMBUSTION APPARATUS; COMBUSTION 

PROCESSES 
Otto cycle, stove, chamber, burner, superheater, reheater… 

REFRIGERATION OR COOLING; COMBINED 

HEATING AND REFRIGERATION SYSTEMS; 

HEAT PUMP SYSTEMS; MANUFACTURE OR 

STORAGE OF ICE; LIQUEFACTION 

SOLIDIFICATION OF GASES 

freezer, refrigerator, compressor, rectifiers, cryogen, 

vapor-compression, Stirling cycle, defrost… 

DRYING 

dryer, convection, supercritical drying, dehydration, 

thermodynamics, moisture, filtration, centrifugation, 

temperature… 
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With the standard list of mechanical engineering related technical terms, we then evaluate how many 

terms are contained in patent-KG and other benchmarks. There are 4 publicly accessible and related 

engineering datasets can be applied as benchmarks, which are WordNet, ConceptNet, B-link and 

TechNet. The retrieval rate 𝐶𝑅 is applied as the metric of concept retrieval which is an indication of 

coverage of the specific field. The retrieval rate is calculated as equation (1):  

𝐶𝑅 =
𝑛𝐶

𝑁𝐶
 (1) 

where n means the number of covered items in database, while N means the total items.  

Table 3 shows the total recall rate and the three individual recall rates of the patent-KG and other 

benchmarks. The WordNet (Miller, 1998) and ConceptNet (Speer et al., 2017) performs at a lower 

recall rate because the construction of both mainly involves single-word terms and focus from a 

general level. The results between Patent-KG and TechNet by Sarica are close because both focus on 

patents and have a similar method to extract the terms. However, it should be noted that patent-KG 

only chooses the patents from 2016 to 2021, with a focus in the ‘F’ section, while TechNet has a 

broader time range and broader cover of disciplines. It can be observed that the total recall rate of the 

patent-KG reaches 0.82 and outperforms the other 4 benchmarks, which means a more engineering 

specific coverage than other methods. Specifically, patent-KG covers more technical terms in the 

category of ‘Engines and pumps’, while more specific terms are chosen as examples in this category. 

Table 3. The comparison between Patent-KG and other baselines 

 WordNet ConceptNet 
Feng  

(2017) 

Sarica  

(2019) 
Patent-KG 

Total recall 

rate 
0.46 0.56 0.63 0.79 0.82 

Engines or 

Pumps 
0.30 0.37 0.54 0.67 0.77 

Engineering 

in general 
0.40 0.42 0.66 0.81 0.82 

Lighting, 

heating 
0.68 0.88 0.70 0.88 0.86 

4.2. Retrieved relationships 

A standard list as shown in Table 4 of mechanical engineering related technical relationships is built 

as a benchmark to test whether it is covered in patent-KG. There are 5 publicly related engineering 

datasets published before patent-KG. However, some of these do have semantic relationships (B-link, 

TechNet), or some (Wordnet) use a linguistic English dictionary which mostly provides the taxonomic 

semantic relationships, such as hypernymy and hyponymy. It is unfair to have a quantifying 

comparison with a database with different purpose on relationship, so only the result of patent-KG is 

computed. 

Table 4. Standard list of mechanical engineering related relationships 

Name Value 

relationships 

accelerate, add, assemble, block, compute, 

manufacture, select, prevent, have, made by(with), 

move, hold, connect to, connect through, include, 

followed with, reach, pull, lift... 

retrieval rate 0.67 
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5. Conclusions 
A patent can be characterized by its long sentence and complex syntactic structure. With limited 

labelled data in patents, information extraction tasks can only be done using a traditional rule-based 

method or an unsupervised processing method. In this paper, we propose an unsupervised method to 

use the attention mechanism in the language model-BERT, to extract knowledge facts in patents. The 

quality of the extracted entities and relationships are demonstrated by comparing with other 

benchmarks. The entities recall rate shows that patent-KG is more engineering specific even with a 

smaller time scope and disciplines coverage. The relation extraction result suggests that the attention 

mechanism in language model works for knowledge extraction in patents, without complex rules. 

The limitation is that the outcome does not perform well on passive sentences and very long sentences. 

To achieve better quality and broader coverage of knowledge graph for engineering design, the 

language models can be fine-tuned over patent text, and the attention mechanism can even be 

combined with syntactic rules. The knowledge graph is a fundamental step toward knowledge 

intelligence. In the developing direction of knowledge re-use, enhanced quality directs knowledge 

reuse from human and computer together as the collaborator, toward automatic knowledge generation 

with the computer as the creator. 
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