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GENERALISED MONOTONE LINE SEARCH ALGORITHM FOR
DEGENERATE NONLINEAR MINIMAX PROBLEMS

JIN-BAO JIAN, RAN QUAN AND XUE-LU ZHANG

In this paper, nonlinear minimax problems are discussed. Using Sequential Quadratic
Programming and the generalised monotone line search technique, we propose a new
algorithm for solving degenerate minimax problems. At each iteration of the proposed
algorithm, a search direction is obtained by solving a new Quadratic Programming
problem which always has a solution. Global convergence can be obtained without
the regularity condition of linear independence. Finally, some numerical experiments
are reported.

1. INTRODUCTION

In this paper we discuss the minimax problem as follows

(P) min{F(x) | x £ Rn},

where F(x) = max{ fj(x),j € / } with / = {1,2,... ,m}.
The objective function F(x) is continuous but nondifferentiable even when the

fj(x)(j = l | - . . ,m) are all differentiable, thus the methods for smooth optimisation
problems can not be used directly to solve this kind of nonlinear minimax problem.

Since the Sequential Quadratic Programming method has fast convergence, it has
been studied by many authors (see [4, 2]). Several authors have used the idea of the
Sequential Quadratic Programming method to solve the minimax problems (see [9, 7]j.
In [9], to overcome the Maratos effect [3], a correction direction is obtained by solving
a Quadratic Programming problem and the nonmonotone line search technique is used,
that is, it does not require decreasing of the merit function at every iteration but merely
every M iterations. In 1992, combining with trust-region method, Varid [6] uses some
slack variables to solve the equivalent problem to the minimax problem (P) as follows

(1 1) m i n

subject to fj(x) - s < 0, j e I,

Received 10th October, 2005
Project supported by the National Natural Science Foundation (No. 10261001) and Guangxi Science
Foundation (No.0236001) of China.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 SA2.00+0.00.

117

https://doi.org/10.1017/S0004972700038673 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038673


118 J-B. Jian, R. Quan and X-L. Zhang [2]

and the algorithm has global convergence. Xue and Yang [8] propose another globally
convergent method for solving the minimax problem (P), in which the search direction is
obtained by explicit formulas with generalised projection technique. But the condition
of linear independence is used in all the papers [9, 7, 6, 8].

Obviously, the Karush-Kuhn-Tucker conditions of (1.1) can be stated as follows

and these relationships are equivalent to

(1.2) £ AjV/^x) = 0, ] T A, = 1; A,-(/,(*) - F(x)) = 0, A, £ 0, j 6 /,
jei jei

where xul.y indicates orthogonality of any vectors w and y. So, a point x 6 K* is said to
be a stationary point of (P) ([1]) if there exists a vector A = (A,, j 6 / ) such that (1.2)
holds, where A is said to be multiplier vector.

Based on the equivalent relationship between the Karush-Kuhn-Tucker point of (1.1)
and the stationary point of (P), many algorithms focus on finding the stationary point
of (P), namely solving (1.2). Thus, deriving from the idea of nonmonotone line search in
[9], we propose a new generalised monotone line search algorithm for (P) without linear
independence. To get a search direction and reduce the computational cost, basing on
an e—active constraint subset, we construct a new Quadratic Programming subproblem
with parameters 70,7^0 6 / ) , which always has a feasible solution and possesses small
size, and the parameters are used to speed up the convergence. By solving the Quadratic
Programming subproblem, we get a direction of descent. Then we present our "gener-
alised monotone" line search algorithm, that is, the merit function is forced to decrease
at every r +1 iterations, where r ( ^ 0) is a integer. If r = 0, then our algorithm is a usual
monotone algorithm, else, it is an r monotone algorithm. Under mild conditions without
linear independence, the global convergence can be obtained. At last, some numerical
experiments are reported.

2. ALGORITHM

For convenience of presentation, we use the following notations throughout the re-
mainder of this paper

and assume that the following assumption holds in this paper.

HI Functions fj(x) {j 6 /) are all first order continuously differentiable.
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[3] Monotone line search algorithm 119

For a given iteration point xk G R? and a symmetric positive definite matrix
Hk = H(xk), we introduce a new Quadratic Programming subproblem as follows:

(2.1) QP(xk,Hk) \
subject to /,(x*) + 9j{xk)Td - F(xk) ^ 7 iz, j G 7* ,

where Ik
k = {j € / : F(xk)-fj(xk) ^ ek} andek,Jo,7j(j € Ik

k) are all positive constants.
To describe the main characters of (2.1), we give two lemmas as follows.

LEMMA 2 . 1 . Suppose that the matrix Hk is symmetric positive definite. Then

(i) (2.1) has a unique optimal solution;
(ii) (zk,d

k) is an optima] solution of (2.1) if and oniy if it is a Karush-Kuhn-
Tucker point of (2.1).

PROOF: (i) obviously, (z,3)=(0,0)e fl"+1 is a feasible solution of (2.1) since
F(xk) = max{fj(xk), j € / } , so the feasible set of (2.1) is not empty. On the other hand,
for each feasible solution (z, d) of (2.1), we know that the objective function value of (2.1)
satisfies the following inequality:

7 o 2 +
 l-<fHkd > ^{fjtf) + 9j(x

kfd - F(xk)) + l-dTHkd, j e Ik
k * 4>.

Therefore, the objective function value of (2.1) is bounded from below because of the
positive definite property of Hk. Furthermore, it is not difficult to show that (2.1) always
has an optimal solution. In addition, problem (2.1) is equal to the following unconstrained
optimisation

jmaxPtoOc*) +9j(x
kfd - F(xk)),j e /*,} + \dTHkd).

Obviously, the first term of the objective function is convex and the second term is
strictly convex. Thus the objective function of the problem above is strictly convex and
its optimal solution is unique. Therefore the optimal solution of (2.1) is unique.

(ii) If (zk, d
k) is a Karush-Kuhn-Tucker point of (2.1), then it is an optimal solution

of (2.1) since (2.1) is a convex programming. Conversely, if (zk, d
k) is an optimal solution

of (2.1), note that the Abadie Constraint Qualification holds since the constraints of
(2.1) are all linear, then (zk,d

k) is a Karush-Kuhri-Tucker point of (2.1). The proof is
completed. D

LEMMA 2 . 2 . Suppose that HI holds, the matrix Hk is positive definite and
(zk,d

k) is an optimal solution of (2.1). Tiea

(0 lozk + ((dk)T/2)Hkd
k^Q, zk^0; dk = 0&zk = 0;

(ii) ifdk — 0, then xk is a stationary point of (P);

(iii) ifdk 7̂  0, then zk < 0, moreover, dk is a descent direction of F(x) at point

xk.
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PROOF: (i) From the fact that (0,0) is a feasible solution of (2.1) and
definite, one has

-Tozk + \{dk)THkd
k < 0, zk$ -±-(dk)THkd

k < 0.

If dk = 0, then from the constraints of (2.1) we have

is positive

Therefore, in view of <j> ^ I(xk) C 7*t, one has zk ^ 0. Since zk < 0, we know zk = 0.
Conversely, if zk = 0, then

((dkf/2)Hkd
k = 0.

Taking into account the positive definite property of Hk, one has dk = 0.
(ii) In view of Lemma 2.1 (ii), we know that the optimal solution (zk,d

k) of (2.1) is
a Karush-Kuhn-Tucker point of (2.1), then there exists a corresponding Karush-Kuhn-
Tucker multiplier vector

such that

(2.2) + 9j{xk)Tdk - F{xk) - ljZk ^ 0, j € Ik
k,

(/;(**) + 9j(xk)Tdk - F(xk) - ljZk) X) = 0, j e /* ,
\)>o,jeik

k\ \k = o, jei\ik
k.

If dk — 0, then we get zk = 0 from Lemma 2.2 (i), and from the first equality of (2.2)
m

we have ak = fT, Ak > 0 and

(2.3)

Hence x* is a stationary point of (P) from (1.2).
(iii) Using /yozk + ((dk)T/2)Hkd

k ^ 0, dk ^ 0 and the positive definite property of
the matrix Hk, we know that zk < 0 holds. Furthermore, in view of the constraints of
(2.1), one gets

9j(x
k)Tdk $ ljzk + F(xk) - /,(**) = ljZk < 0, j € /(**).
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On the other hand, it is easy to know that the directional derivative F'(x; d) of F(x) at
point i along direction d can be expressed as

(2.4) F'(x; d) = AUm F{x + ^ ~ F{x) = m*x{gj(x)Td, j e J (x )} .

Thus there exists an index j ^ € I{xk) such that

(2.5) F'(xk; dk) = gjko (xk)Tdk < lik<jzk < 0,

and dk is a descent direction of F(x) at point xk. The whole proof is completed. D
Now we give our algorithm as follows.

ALGORITHM A. Parameters: integer r ^ 0, e0 > 0, r e (2,3), a € (0,0.5),
p € (0,1), & > 0, & SJ 0, 70 > 0, T,- >0,j 6 /, where 706 + a ^ < 7 = min{7j : j e / } .

Data: x~r = x~r+1 = ••• = i° € IV1, a symmetric positive definite matrix
tfoeiT1*".
STEP 0. Initialisation: Let A; := 0.

STEP 1. Solve (Quadratic Programming.) Solve (2.1) to get a (unique) solution (zk, dk).
If dk = 0, stop; otherwise, enter Step 2.

STEP 2. Perform generalised monotone line search: Compute the step size tk, the first
number t of the sequence {1, /?, P2,...} satisfying

(2.6)

where Fk = max{F(x*"') : I = 0,1,2,..., r}.

STEP 3. Update: Compute ek+\ and a new symmetric positive definite matrix Hk+i, set
xk+\ _ xk + tkdk a n d fc : = A; + 1, go back to Step 1.

The following lemma shows that the algorithm is well defined.

LEMMA 2 . 3 . Tie line search at Step 2 can be carried out if dk ^ 0, that is,
inequality (2.6) holds for t > 0 sufficient small.

PROOF: By contradiction, we assume that (2.6) does not hold for A = 0>,j
= 1,2,... . Then from (2.5), (2.4), a € (0,0.5), P € (0,1) and Lemma 2.2 (i), we
have

1 ,«, * _*x 1 ,- F{xk + P'dk) ~ F(xk)zk > F'(xk;dk) = lim -* ^-rf ^

> - — lim

> ^(fk b* k
7 7 7 7

which is a contradiction. The proof is finished.

Zk,
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REMARK 2.1. The inequality (2.6) is equivalent to

/,(x* + tdk) ^Fk- at(^(dk)THkd
k - t,2zk), V? € / .

3. GLOBAL CONVERGENCE ANALYSIS

In this section, we shall discuss the global convergence of the proposed algorithm.
If the solution dk generated at Step 1 equals zero, then Algorithm A stops at xk, and
from Lemma 2.2 (ii) we know that xk is a stationary point of the problem (P). Thus we
assume that an infinite sequence {xk} of points is generated by Algorithm A, and the
consequent task is to show that every accumulation point x' of {x*} is a stationary point
of problem (P). First, the following three assumptions are necessary in the rest of this
paper.

H2 The sequence {Hk} of matrices is uniformly positive definite, that is, there
exist two positive constants a and b such that

a||d||2 ^ <FHkd < b\\d\\2, Vd e Rn, V*.

H3 For any x° € i f , the level set fi = {x € Rn : F{x) ^ F{x0)} is compact.

H4 inf{£/t} = e > 0.

REMARK 3.1. From (2.6), we know that the sequence {xk} C fi, so H3 implies that the

sequence {xk} of points generated by Algorithm A is bounded.

REMARK 3.2. If one chooses ek by one of the two following cases, then H4 holds auto-

matically.

CASES A. ek = e for all k, where e is a positive sufficiently small constant.

CASES B. ek = max{F(x*) - fj(xk) :j€l}+e. Note that in this case, Ik
k = I.

LEMMA 3 . 1 . Suppose that H1-H3 hold. Then the entire sequence {F(xk)} is

convergent, and the entire sequence {tkd
k} converges to zero.

PROOF: First, we define index l(k) as follows

F(x'w) = max{F(x') : / = Jfc - r,k - r + 1 , . . . , * } .

This together with (2.6) shows that

F(x'<*+1)) < max{F(x*+1-') : / = 0,1, 2 , . . . , r, r + l } = max{F(x'<*>), F(xk+1)} = F(x'(fc)),

which shows that {F(x1^)} is a monotonely non-increasing sequence. Thus

is convergent, denote

(3.1) lim F(a?W) = F..
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On the other hand, from (2.6) and Lemma 2.2 (i), we have

(3.2) F(s'<*>) ^ F^'W"1)) - «*,<*)_! ( 6 + JL) ( d ^ M ) ^ , . ^ " 1 .

This relationship along with (3.1) and H2 gives

(3.3) t i r o - i d ^ " 1 -> 0, ||z'<*> - z'W-11| —». 0. fc-xx>.

Now, we set /(fc) = l(k + r + 2) and show, by induction, that for Vj ^ 1

(3.4) lim «7(A)_Jd
r(*)""J = 0, lim F{xT{k)-j) = lim F(x'(fc>) = F. .

First, from H3, (3.1), (3.3) and (l(k)} C {l(k)}, one has,

*> l ^ \ * 0, fc -^ oo,

this along with (3.3) shows that (3.4) holds for j = 1. Suppose that (3.4) holds for j = J.
Then similar to the proof of (3.3), one has

i l * ) ? / \W \\ ^ 0 , jb -> oo.

Thus from H3, we obtain

lim Ffx't* '-^1) = lim F(x1(k)-~>) = lim F(s*w) = F..
ib-+oo fc—>oo k—>oo

So, (3.4) holds for j = 7 + 1.

Now we turn to complete the rest of the proof. First, for Vfc, one has

T{k)-k-i
T = x k + l +

From the two relationships above, (3.4) and H3, we get

Secondly, from Step 2 of the proposed algorithm, one has

F(xk+1) < F(x'<*)) - atltk(d
k)THkd

k + atk(,2zk.

Similar to the proof of (3.3), we obtain tkd
k -¥ 0, k -t oo.

LEMMA 3 . 2 . Suppose that H1-H4 hold. Then

(i) t i e entire sequences {zk} and {dk} are both bounded;
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(ii) the entire multiplier sequence {Xk
k }is bounded;

(iii) lim dk = 0 and lim zk = 0.
k—*oo k-*oo

PROOF: (i) In view of Lemma 2.2 (i), the constraints of Quadratic Programming
{xk,Hk), HI, H2 and Remark 3.1, there exist two constants c,c> 0 such that

0 £ To** + \{dk)THkd
k > ̂ (f^ + g^Fd" - F(xk)) + \{dk)THkd

k

>-c-\\dk\\-c+l-a\\dk\\\ V j G / ^ 0 , V*.

These inequalities imply that {zk} and {dk} are both bounded.

(ii) From (2.2), one gets 0 ̂  Xk
k , J3 "fjtf = 7o> s o {-̂** } is bounded.

j€/fffc

(iii) We prove lim dk = 0 first. By contradiction, we assume that lim dk ̂  0, then
k-*oo k—»oo

there exist an infinite index subset Kx and a constant a > 0 such that ||d*|| ^ a,k G K\.
In view of the approximately active set Ik

k being the subset of the fixed and finite set / ,
we can also assume without loss of generality that K\ satisfies

(3.5) **->* ' , 1^=7, Hk^H., *€f f i .

Denote
wk(t) = F(xk + tdk) -Fk + ert(Zl(d

k)THkd
k - £2zk),

then we have

wk(t) = max{/,(xfc + tdk) -Fk + at(£1(d
k)THkd

k - hzk) : j e 1}

= maxifjix*) + t9j(x
k)Tdk + o(t) -Fk+ at(^(dk)THkd

k - Z2zk) : j G / } .

We also denote

oy(«) = />(**) + tgj(x
kfdk + o(t) -Fk + at(^(dk)T Hkd

k - &k),j € / .

So from the definition of Fk, one has

akj(t) ^ fi(xk) + t9j(x
k)Tdk + o(t) - F(xk) + at(Zl(d

k)THkd
k - t2zk),j € I.

Then from Quadratic Programming (xk,Hk), H2, a G (0,0.5) and 70£i + a£2 < 7, we

have for j G Ik
k= I

akj(t) < t{fj{xk) + 9j(x
k)Tdk - F(xk)) + at(Udk)THkd

k - £2zk) + o(t)

jZk + at^(dk)THkd
k - athzk + o(t)

+ o(t)
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For j 6 / \ / ' l , in view of H4, we get easily that akj(t) ^ 0 for t > 0 small enough. Thus
(2.6) holds for t > 0 small enough and all k 6 K\. Thus there exists a constant t > 0
such that the stepsize tk ^ t, k € KL and ||tjfcd*|| ^ t||d*|| ^ for, which contradicts Lemma
3.1. So lim dk = 0.

* - » o o
Finally, we prove lim zk = 0. From Lemma 2.2 (i) and the constraints of Quadratic

k-*oo

Programming (xk, Hk), one has

0 £ 7,2* > fj(xk) + 5i(x*)rd* - F(xk) = 9j(x
k)Tdk, j e /(i*) C Ik

k,

these along with lim dk = 0 show that lim z/t = 0. The whole proof is completed. D
fc—»oo * -+oo

THEOREM 3 . 1 . Suppose that H1-H4 hold, then the proposed Algorithm A either
stops at a stationary point of problem (P) in a finite number of iterations, or generates
an infinite sequence {xk} of points such that each accumulation x* of{xk} is a stationary
point of (P).

P R O O F : If Algorithm A stops at the fc-th iteration, then, from Step 1 of Algorithm
A and Lemma 2.2 (ii), we know that xk is a stationary point of (P). Now we suppose that
Algorithm A generates an infinite sequence {xk} with corresponding multiplier sequence
{Afc} and x' is an accumulation of {xk}. In view of Lemma 3.2, we can assume without
loss of generality that the infinite index set K\ in (3.5) satisfies dk -»• 0, zk -> 0. \k

-> A*, k e 'K\. Now, passing to the limit k € Kx and k -» oo in (2.2), we have

_(/ ,-(*•) - F ( X ' ) ) A ; = o, A ' j s o , j e i ,

m
therefore a. = Y\ AJ > 0 and

This shows that i* is a stationary point of (P). D

4. NUMERICAL EXPERIMENTS

In this section, we select the problems 1-5 in [6] to show the efficiency of Algorithm

A. The numerical experiments are implemented on MATLAB 6.5 and we use its optimi-

sation toolbox to solve the problem (2.1). The numerical results show that the proposed

algorithm is efficient.
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In the implementation the approximation Hessian matrix Hk is updated according to
the Powell's modification of Broyden-Fletcher-Goldfarb-Shanno formula ([5]) as follows

Hks
k(sk)THk , t(t)T ,L ^ ftX(4.1)

where

Hk+1 = Hk
 ~

= xk+l -xk,y" = r,ky
k + (1 - r,k)Hks

k, yk = VxL(xk+l, A*) - VIL(x*,A*,),

l,
0.8(sk)THks"

(sk)THks
k - (yk)Tsk

if (sk)Tyk>0.2(S
k)THks

k;

otherwise.

The numerical results of the proposed algorithm are given in the following tables 1 and
2.

Table 1. Numerical results of Problems 1-5 for fr = 0.4, fo = 0-6,7o = 7, = 0.7, Vj g I

p
1

2

3

4

5

IP
(l,-0.01)T

(0.01,0.01)T

(0.2,-1,2.3,-O.01)r

(3,1)T

(1.01,0.9 , l ) r

n
2

2

4

2

3

m
3

3

4

3

6

r
0
1
0
1
0
1
0
1
4
0
1

NI
11
52
7

33
38
188
10
64
7

20
74

approximate solution x*
(1.139037,0.899559)T

(1.139033, 0.899565)7"
(1.000000,1000000)T

(l.OOOOOO.l.OOOOOO)7"
(0.0,1.0,2.0,-1.0)T

(0.0,1.0,2.0,-1.0)r

(-0.453299, 0.906598)r

(-0.453296, 0.906592)7"
(0.000039, 0.000000)7"

(0.328259,0.0,0.131319)T

(0.328258,0.0,0.131319)7"

Fix')
1.952224
1.952224
2.000000
2.000000

-44.000000
-44.000000
0.616440
0.616432
1.000000
3.599719
3.599719

3.462285e - 7
6.927319e - 6
6.177491e - 10
4.020731e - 9
3.087092e - 6
3.325487e - 7
6.419295e - 6
1.529814e - 7
2.689503e - 7
7.227559e - 7
5.854201e - 6

T a b l e 2 . Numerical results of Problems 1-5 for fc = 0.4, ft = 0.6,70 = 0.7,7, = 0.9, Vj € /

P
1

2

3

4

5

IP
(l ,-0.01)T

(0.01,0.01)r

(0.2,-lI2.3,-0.01)T

(3,1)T

(1.01,0.9,l)7

n
2

2

4

2

3

m
3

3

4

3

6

r
0
1
0
1
0
1
0
1
4
0
1

NI
19
50
17
41
74
150
21
51
28
34
44

approximate solution x*
(1.139040,0.899558)7'
(1.139046, 0.899553)T

(1.000000,1.000000)T

(l.OOOOOO.l.OOOOOO)7"
(0.0,1.0,2.0,-1.0)T

(0.0,1.0,2.0,-1.0)r

(-0.453293, 0.906592)7"
(-0.453295, 0.906592)7"
(-0.453305, 0.906592)T

(0.328257,0.0,0.131319)T

(0.328258,0.0,0.131319)T

F(x')
1.952224
1.952224
2.000000
2.000000

-44.000000
-44.000000

0.616432
0.616432
0.616432
3.599719
3.599719

l|rf*ll
2.457516e - 6
8.382028e - 6
4.775926e - 9
2.857378e - 9
7.732998e - 6
9.266799e - 6
2.641059e - 6
2.903402e - 6
7.167424e-6
3.382266e - 6
2.844776e - 6

During the numerical experiments, we set parameters e0 = 0.02, e = 0.001,

a = 0.1, 0 = 0.5. In formula (4.1), we select Ho = E, where E € SRnxn is an identity
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matrix. Execution is terminated if ||d*|| < 10~5 or | | i * + 1 - 1 * | | < 10~6. Parameter ek is
adjusted by the following formula

{£*, if ek ^ e;

f/t/2, otherwise.

The columns of the two tables have the following meanings:

n: the dimension of x; m: the number of fj(x); IP: the initial point; NI: the
number of iterations.

From the iteration results on problems 1 to 5 above, the following observations can
be made. First, it can be seen that in Table 1 all problems except problem 4 and all
problems in Table 2 are solved faster for r = 0 than the cases for r ^ 1. Secondly, suitable
values of parameters 70, jj(j e / ) may speed up the convergence. In both Tables, we only
set the parameters jj,j € / with different values. And we can see that for jj = 0.9, j € /
in Table 2, problems 3—5 with r = 1 have faster convergence than the same cases for
~Yj = 0.7, j € / . And for 7,- = 0.7, j € / in Table 1, problem 2, problems 1,3,5 with
r = 0 and problem 4 with r — 0,4 have faster convergence than the same cases for
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