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Abstract. We calculatd-adic nearby cycles in thetale cohomology for families with log smooth
reduction using logtale cohomology. In particular, nearby cycles for log smooth families coincide
with tame nearby cycles, as L. lllusie expected, and nearby cycles for semistable families depend
only on the first infinitesimal neighborhood of the special fiber.
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0. Introduction

In this paper we calculatieadic nearby cycles for log smooth families using log
étale cohomology.

The point is that, though our concerned families may not be smooth, they start
to behave as if they were smooth once equipped with natural log structures. Then
our calculation is as easy and transparent as that for usual smooth families.

Our main result (3.4.1) specializes to ((3.4.2))

THEOREM (0.1)LetX — S = Spec¢A) be a morphism of schemes wittbeing
a henselian discrete valuation ring. Lebe the closed point &f andn = SpecK

the generic one. Let > 1 be an integer invertible o8. For anyq € Z, we have
the nearby cycle

R?¥,Z/nZ on the producttoposX x, S (SGA7 XIll 2.1.1).

Suppose thaK has log smooth reduction in the sense explained below. Then
the action orR?¥,,Z /nZ of the wild inertia groupP of K is trivial.

COROLLARY (0.1.1).In the situation 0f0.1), we assume further thaf — S'is
proper. Then the action d? onH?(X7,Z /nZ) is trivial, where7 is the spectrum
of a separable closure df .

We explain what is log smooth reduction. For example, a generalized semistable
family Spe¢A[z,...,zq]/(z]™* -z — 7)) with (m1,...,mq,p) = 1 and
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m; > 0 for eachy has log smooth reduction, whesés the residual characteristic
exponent ofA. Further this notion has the advantage of being stable under fiber
products and base changes, unlike semistability. Precisely this mear&tateat
locally on X, X is étale over Spdci[P]/(m — x)). HereP is a finitely generated,
saturated (commutative) monoid,is a prime element ofl, andz is an element

of P such that

(i) the order of the torsion part @9/ (z) is invertible onX; and
(i) foranya € P, thereis ann > 1 andb € P such thatb = 2™ in P.?!

Here we review some background of this theorem. Let notation and assumptions
be the same asin (0.1) except tkadloes not necessarily have log smooth reduction.
We only assume thaX is of finite type overS. Even in this general situation,
the nearby cycles are known to be an important object, which conneétdte
cohomology of the geometric generic fiber with that of the special fiber.

The conclusion of (0.1) has been proved by M. Rapoport and Th. Zink in the
following cases (1) and (2) in [RZ] Sections 2, 3:

(1) X has generalized semistable reduction whose multiplicitieare all invert-
ible onS.
(2) X is étale locally a product of semistable curves.

In [I], L. Hlusie pointed out this is valid also if
(3) X is the product of two semistable families;

and he stated one could expect that the conclusion is always valid whendaes
log smooth reduction ([1] 4.10). Note that has log smooth reduction if it satisfies
one of the above three conditions.

Thus (0.1) gives an affirmative answer to his expectation.

In fact (0.1) and (0.1.1) are easily deduced from the formula (3.2)(i)
R®'%9Z /nZ =0

on the log vanishing cycle for a log smooth morphism. This formula is the exact
analogue of the classical result (cf. SGA7 | 2.4) on the usual vanishing cycle
for a smooth morphism. This formula also shows that, under this assumption,
Rv,Z/nZ, as a complex of sheaves with Galois action, depends only on the special
fiber endowed with its natural log structure. In the case of semistable reduction,
it implies that RV,,Z /nZ depends only o ®4 A/m?, wherem is the maximal
ideal of A (see (3.3)).

As in the classical case, the above formula is reduced to a case of purity in the
log context as follows: Lef, A, n be as in (0.1). Put the canonical log structure
Mg defined by the closed point an(cf. [K1](1.5)(1)).

1 The condition (ii) is rather a technical one. See (3.4.2) and the paragraph following (0.2).
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THEOREM (0.2).Let (X, Mx) — (S, Ms) be alog smooth morphism of fs log
schemes.
Then the natural homomorphism

Z/nZ — R"5,Z/nZ

on X'éc;g is a quasi-isomorphism, wheyds the open immersion from the maximal
open subschem&y;, of X on which the log structure is trivialR™ means the
derived functor fronD™).

(See [K1] and [N] for the terminology on log schemes and ondtade coho-
mology.)

To prove this (0.2), we appeal to an unpublished result of K. Fujiwara and
K. Kato, the invariance of-adic log étale cohomology under log blowing-ups
([FK] (2.4)). Admitting this, we reduce (0.2) to the case of generalized semistable
reductionX = Afzy, ..., zq]/(z]" - -z — ). Inthis case an induction on, +
---+mg works via an argument by T. Saito ([S] Prof).&henmy+- - -+mg = 1,
the family is smooth, and we use the smooth base change theorem in thétatial
cohomology. (When am,; = 0, X may no longer have log smooth reduction in
the sense explained above. Actually our proof yields the statement (3.4.1) more
general than (0.1) because (0.2) tre&tsvith Xy # X ®g n, thatis, X that may
contain horizontal log as well. Cf. [N](7.3).)

In Section 1, we treat the case; + --- + my = 1, and in Section 2, we
prove (0.2). In Section 3, we prove main results including (0.1), and discuss other
corollaries of (0.2), including a formula of SGA7 | 3.3-type. This section could be
titled ‘applications of (0.2) to the usuatale cohomology theory’. The last Section
4 could be called ‘applications of (0.2) to Iégale cohomology theory’. We prove
a relative log Poinca&rduality for log smooth families.

Finally we give some comments on two unpublished results that we use in this
paper. As was stated above, one of them is [FK] (2.4) which is used in (2.0.3),
(2.3)(iii), (2.4) Step 2 and (A.1.1). The otheris usedin (2.0.2) and (3.6). See (2.0.2)
for the detail.

CONVENTIONS. In this paper, aring (resp. a monoid) means a commutative ring
(resp. monoid) having a unit element. A homomorphism of monoids (resp. rings)
is required to preserve the unit elements. The log structure defined by the closed
point on SpegA) with A being a discrete valuation ring is called the canonical log
structure (cf. [K1] (1.5) (1)).

Terminology and notation in this paper are completely compatible with those in [N]
except that we take the abbreviation ‘log’ instead of ‘log.”. Definitions not given
here are referred to [K1] and [N]. In particular log structures are always considered
on theétale sites of schemes. Here we include a list of Notation for convenience.
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Notation
—>
X, f

XCI, fCI
e(X),e

(fs log sch)
zpP

pl/n

I-A-MOd(/X)
Mape,i(J, M)

X triv

CHIKARA NAKAYAMA

(bold-headed arrow) strict morphism (cf. [N] (1.4)).

the underlying scheme of a log scheddeand the underly-
ing morphism of schemes of that of log schenfe&f. [N]
(1.1.2)).

x¢ = (X, trivial log structurg. — © is a functor from (fs
log sch) to the category of (fs) log schemes with trivial log
structure (cf. [N] (1.1.2)).

the forgetting log morphisnX — X ¢ for an fs log scheme
X (cf.[N] (1.1.2)).

the category of fslog schemes which belong to a fixed universe
:= Z[P], semigroup algebra of a monaitioverZ. We regard

Z —as a functor.

an fs monoid with a homomorphism frof such thatP —
PY™ is isomorphic toP &% P where P is an fs monoid
having no invertible elements (except the unit element) (cf.
[N] (2.7)).

X ®zpZPY"for X —» SpeZ P) in (fs log sch) withP* =

1 andn > 1 aninteger invertible oX (cf. [N] (2.7)).

the log structure of a log schemé (cf. [N] (1.1.1)).

= Mx /O% for alog scheme X (cf. [N] (1.1.1)).

log étale site of an fs log schenié (cf. [N] (2.2)).

the category of sheaves dfmodules onx 29 for a ring A
and an fs log schem¥ (cf. [N] (2.3)).

the derived category S¢) for x = +, —, b or empty (cf.
[N] (2.3)).

the category of all quasi-compact and quasi-separated fs
log schemes over an fs log schefand allS-compactifiable
morphisms (cf. [N] (5.4)).

the category ofi-Modules on the usu&itale site of a scheme
X, on which a commutative profinite groupacts continu-
ously. HereA is a ring (cf. [N] (4.5)).

the sheaves of continuodsmaps from.J to M for a homo-
morphism of commutative profinite groups— J andl-A-
Module M (cf. [N] (4.7)(i)).

the maximal open subscheme of an fs log sch&nhoa which
the log structure is trivial.

Z /nZ with n an integer (cf. (3.1.5)).
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1. Log base change by standard affine maps

(1.1). In this section we prove the lemma below. This is the part of log smooth
base change theorem that is directly deduced from the usual smooth base change
theorem. In general, log smooth base change theorem fails in its naive form ((B.1)),
and it seems to be difficult to settle out a suitably restricted statement.

LEMMA. Let
UN] —=— X[N]
s f
U X

be a cartesian diagram ifs log schwhereX [N] = X xgpe¢z) Spe¢Z[N]) and f

is the first projection. Her&pe¢Z[N]) is endowed with log structure given by
Let F € S% be a logétale sheaf of Abelian groups @hthat is the inverse image

of a sheaf of Abelian groups dii® and that is killed by an integer invertible on
X. Assume that is quasi-finite and quasi-separated. Then the functorial homo-
morphism (base change morphisfiR™ =, F — R*«, f"* F is an isomorphism in
D*(X[N],2).

Proof. We shall reduce to the case (1.2), where the log stX a$ trivial, by
localization onX as follows.

First we may assume that there is a cléart» SpeZ P) with P fs (=finitely
generated, saturated cf. [N] (1.2)) and having no invertible elements (except the
unit element). Here» means thak’ — Spe¢Z P) is strict, that is, the morphism
induces an isomorphism of log structures. This reduction is in order to use (1.1.1)
later. Take any poiny of X[N] and putz = f(y). Fix a log geometric point
(IN] (2.5)) y(og) — X|[N], and regardy(log) — X[N] — X as a log geometric
point of X: z(og) — X. It is enough to show that the natural homomorphism
@ (RITLF) 3(10g) = (RITLF" F)y10) IS @n isomorphism for any.

On the one hand

Iog)

(RI%L ) = i (RO o X)) (Lo

log) ALLN

= lim

XI
where the limit runs over the category &f-morphismsz(log) — X' with X’
€ ObX[9, ¢ = £(X') denotes the forgetting morphism (cf. Notation) f&,
U' = U x xX', andz’ is the geometric point ok’® induced byz(log) — X.
Further for eachX’, considering the cartesian diagram
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' [N] 1 XICI [N]

n It

U/ X/cl

eo(mrxx X')
we have a natural homomorphism

pxat (RI(eomx)(Flu))z = (f{RU(e o mx:)«(Flur))y (10g)
- (Rq’]rl*ff(F|U'))y’(log)

wherery: = 7 x x X' andy/(log) = y(log) — X' xx X[N] — X'°[N] defined by
y(log) = x(log) — X' and by the fixed(log) — X [N]. (The first = is induced by [N]
(2.8)1.) On the other hand we have

(RIS F)yiog) = lim (R7(e0 (r" >y Y ) (F" F)lr s 7))y
Yl
where the limit runs over the category 8{N]-morphismsy(og) — Y’ with Y’ €

Ob(X[N])®8, andy’ is the geometric point oF’¢' induced byy(iog) — Y.

et s
Thusy can be viewed as the composition of

(RQW*F)x( 4 (Rqﬂl*ff(F|U’))y’(log)

log) —
XI
and
i fim) R (2o (w1 xraqpg ¥ ")) (F* ey v )
XI YN

2 0im RY(eo(n” xxny Y'))s (F* Flursy)
YI

v

wherey is induced by y/a’s, Y runs over the category of’®[N]-morphisms
y(og) — Y with Y € Ob(X'*[N])S¢, andy” is the geometric point of "¢
induced byy(log) — Y.

We will prove that botty; andy, are isomorphisms. First we treas. We write
C1 (resp.Cy) for the index category on which the limit of left-hand side (resp. right-
hand side) ofp, runs. TherC; andC, are essentially the same index categories by
the next lemma (1.1.1). Further, since the underlying morphisixi’ofs Y in
(1.1.1) is always an isomorphism, the arguments of limits in both sides are also the
same. Thus we see thaj is an isomorphism. To prove thaj is an isomorphism,
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it is enough to show that eaghy. .« is an isomorphism. But sinder x x X')° is

also quasi-finite and quasi-separated by [N] (1.10), this is implied by the case of

the original statement of (1.1) for the map= o (7 x x X’). Thus we reduce (1.1)
to the case wher& has the trivial log structure, which will be treated in (1.2).

LEMMA (1.1.1). Let X —» SpedZ[P]) be a morphism in(fs log schwith P
being an fs monoid having no invertible elements. q@b) — X[N] be a log
geometric point[N](2.5)). Consider the following two categories:

C; := the category of diagrams

y(log) - Y’ -Y"

X/

XI[N] . XICI[N]

Y

X X[N]

in (fs log sch) with each square cartesian such thaandv are log étale and of
Kummer type, and thatiog) — X [N] coincides with the given one, and
C, := the category ofX [N]-morphismgy(og) — Y’ with Y’ € Ob(X[N])'éotg.

Then the forgetful functadk: C1 — C, satisfies the following properties

(i) ForanyB € Ob(Cy, there is anA € Ob(C; such thatHome, (B, h(A)) # ¢.
(i) For any A1, A, € ObC; and anyps: h(A1) — h(Az) in Cy, there exists a
diagramA; =% Az <*% A, such that

h(A1) —— h(Ay)
h(a1) h(az)
h(As)

commutes if,.

Proof. (i) Take a chart ofX[N] — SpedZ[P & N]). Let y(log) — Y’ be in
C»>. Then we may assume that there is an integ@wertible onY’ such thaty”’
has a chart’’ —» SpeqZ[PY"™ @ N¥"]). Since X|[N] — X is an open map,
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Y’ — X|[N] factors throughX’[N] — X[N] for a certainX’ — X that has a chart

PY" « p.PuttingY” = (l?’, (NY™)3) completes the construction of an object of
C1.

(i) Let Ay, A» € ObC;. We may assume that; and A, have the common
u, Y andY” (but may have different’s), and that the top square df; factors
through

YI YII

Vg

(1=1,2). Sincef is an isomorphism, we have the desired construction. O

CLAIM (1.2). Lemma(1.1) is valid if the log structure o is trivial.

Proof. This case is reduced to the usual smooth base change theorem as follows.
FirstfactortU — X intoU — U% — X and apply proper base change theorem [N]
(5.1) toU — U (cf. [N] (5.1.1)), then we see that we may assume that the log
structure ofU is also trivial.

Take any poiny of X[N]. It suffices to prove that the homomorphismis bijective
for each degreg aty. To prove this, we may suppose by [N] (4.2) thats strictly
local (i.e. the spectrum of a strictly henselian local ring) and fiigj =: z is its
closed point. Let denote the coordinate of [N] on which the log structure lives.

On X|t,t1], the desired bijectivity comes from the usual smooth base change
theorem SGA4 XVI 1.2. So we assume thM/O*)X[N},y = N in the following.
We write

U{N} ——+ X{N}

U{t} X{t}
for the diagram obtained from
UIN] X[N]
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by base change with respectiy 5 — X[t]. It suffices to showthat HU, F') =
(RqW*F)x(log) - (wai%*F,)y(log) = “ﬂln invertible onX{t}Hq(U{Nl/n}ag*Fl) is

bijective, whereF’ = (U{t} — U)*F and U{NY"} := U{N} ®zy ZN¥/"
(cf. Notation). But this map factors as

HY(U, F) % lim HU(U {1/}, ) 5 lim HY(U{NY"}, e ),

where, is the projectionU {t/"} = U{t} @z Z[t¥"] — U{t}. The bijec-
tivity of 5 comes from the next Lemma (1.2.1). Thus the problem reduces to a
statement in terms of the usu&thle conomology theory, namely that(#, F') —
HY(U{tY"}, = F') is bijective for eachn. But the local acyclicity for the smooth
morphismX [t/"] — X (SGA4 XV 2.1) implies thatX {t}/"} — X is acyclic,

so that the above homomorphism is bijective for af$sGA4 XV 1.6 (iii)). This
completes the proof of (1.1). O

LEMMA (1.2.1). Let m: U — X be a strict morphism of fs log schemes with
X strictly local whose closed point is denoted byLet X —» Spe¢Z P) be a
chart with P being an fs monoid such thd — (M/O*)xz is bijective. Let
F € 8§ be the inverse image of afy € SZ, such thatFy is killed by an integer
invertible onX. Then the natural map

lim H(Uer, (U — UY)* Fo) = (RVm F)y

n

log) »

wheren runs over the set of integers invertible & is an isomorphism for aj.
(See Notation fo§Z, U,, and (—)¢.)

Proof. Since (R F) ;g = lim HI((U,)$8, (U, — U)*F), it is enough to
show that the map from the usiéhle cohomologﬂrmq(U;‘;', (UY — U%)* Fy)
to the logétale cohomologﬂmq(Un, (U, — U)*F) is bijective. Letk,, denote
the projection/,, — U. We consider the Leray spectral sequence

Ey = H/(US, Rie,e* (k)" Fo) = HM (U, ki F)
and its limit
By’ = H(US,Iim (U — US) Riewe” (k)" Fo) = lim H™¥ (U, 7 F),

whereU¢ = lim U¢. It suffices to show that the sheaf 6i§ is zero forj > 0.

(Asforj = 0,e,.e* = id.) We investigate transition homomorphisms stalk by stalk
as follows.

SUBLEMMA. LetU — Spe¢Z P) be a strict morphism of fs log schemes with
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being an fs monoid having no invertible elements.shdbe an integer invertible
onU, and letk,, denote the projectiol,, — U. LetF € Sé/mz be the inverse
image of anfp € Slz,émz. Then(k% )*Rie, F — Rie,k F is zero for anyj > 0.
Once this was proved, applying it witt/, P, Fy) = (U,,, PY™, (k%)* Fp) for all n,

we get the desired result. The rest is to prove this sublemma. Siaqgeoper, [N]
(5.1) reduces this to the case whéfés the spectrum of a separably closed field,

replacingU by @ for eachu € U. Then(Up,)rq IS @ disjoint union of/, and [N]
(4.7) and (4.7.1) reduce the problem to the one in terms of Galois cohomology:
the restriction H(I, Fo) % H/(mI, Fp) is zero wherd = Hom((M/O*)¥, Z'(1))
andthe action of on Fyis trivial. Butwhen we identifyn I with I by the multiplica-

. . J
tion bym, thisa is identified with the multiplication byn/, becausél’ =A\ H'.O
Remark(1.3). We could slightly generalize (1.1), with the aid of [FK] (2.4). See
Appendix (A.1).
2. Purity for log smooth families

(2.0). In this section we prove (0.2). See Introduction for the outline.
Though (0.2) is written in terms of logtale cohomology, it can be reformulated
in terms of usuaétale cohomology ((2.0.2)).

(2.0.1). We start from a general

CONJECTURE (log purity conjecturd)et X be an fs log scheme Witk locally
noetherian. Assume that is log regular ([T], cf. [K2]) and let; be the open

immersionXyy, — X. Letn be an integer invertible oX'. Then for any locally

constant sheaf & /nZ-modulesF on X 29, the adjoint homomorphism

F = R"j,j*F
is an isomorphism.

PROPOSITION (2.0.2)n the same notation and assumptions a&if.1), assume
that X satisfies the conclusion ¢2.0.1). Then, for any;, we have

° q
RY J. Z/nZ =]\ (M/O)¥ ©7 Z/nZ(-1),

wherej is the open immersioA i, %)O(.
Proof. This comes from a basic result [KN] (2.4) of K. Kato, which we include
in Appendix (A.3). O
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(2.0.3).In fact the Conjecture (2.0.1), suggested by [FK], is equivalent to the
classical purity conjecture of Grothendieck. The outline of the proof of this fact
in [FK] (3.6) is as follows: LetD be a divisor with simple normal crossings on
a regular locally noetherian schenfe Then the case of (2.0.2) fqZ, Mp) is
nothing but the classical conjecture b, whereMp, is the log structure defined
by D ([K1] (1.5) (1)). Conversely (2.0.1) is reduced to the case where the log
structure ofX is defined by free monoids” for somer’s by using a log blowing

up ([K2] (10.4)) and [FK] (2.4). Then we reduce it to the classical conjecture by
(A.3). See (2.4) Step 2 in this paper for the similar method.

Remark(2.0.4). Thus the relative purity SGA4 XVI 3.7 implies thafifis log
smooth over the spectrum of a field with the trivial log structure, (2.0.1) holds on
X. See[N](7.7.1).

Remark2.0.5). O. Gabber announced a proof of the classical purity conjecture
of Grothendieck in 1994. It implies the validity of (2.0.1) because of (2.0.3). In the
following, we prove the case (0.2) of (2.0.1) by a different method.

(2.1.1).While (0.2) is stated for log smooth morphisms, we want to work under
slightly weaker conditions on account of induction. So we introduce the weaker
condition (W) before starting the proof.

DEFINITION (W). Let A be a discrete valuation ring, and kebe an fs log scheme
SpecA) with the canonical log structure (cf. Conventions). We say a morphism
f: X — Sin (fslog sch is (W) if there exist arétale covering X; — X) and

a chart (in the sense of [K1] .92y, — My,,Ng -2 Mg,N 2% P)) of

X; — X — Swith P; fs ([N] (1.2)) for each satisfying the following conditions

(i) and (ii).

(i) The homomorphismy; is injective and P, )t is trivial.
(i) The induced (strict) morphisnX; — S xzin Z[F;] is etale.

By (A.2), if a morphism of fs log schemégs X — S is log smooth, therf is
(W).

EXAMPLE (2.1.2). LetA and S be as in (2.1.1). Leff: X — S be a gen-
eralized semistable family Spet{z1,...,zq|/(z]" - -z — 7)) — Spe¢A)

that is the base change of Spgh?) Speazh) Spe¢ZN) with respect to a chart

S 4 SpedzN), whereh: N — N% 1 (myq,...,mg) Withmg 4+ --- +mg > 1,
andr is the prime elemenp(1) € A. Thenf is always (W), and is log smooth if
and only if (mq, ..., my) is invertible onX.
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Remark(2.1.3). The condition (W) implies tha is log regular.
(2.2). Now we state a slight generalization of (0.2).

THEOREM.Let A be a discrete valuation ring, &t be the fs log schen&pe¢A)
with the canonical log structurécf. Conventions Let X be an fs log scheme.
Assume that there exists a morphism of fs log schenié — S that is (W). (See
(2.1.1) above for the definition diw).) Then(2.0.1) holds onX.

See Introduction for the outline of the proof of (2.2).
First we treat the case of generalized semistable families:

CLAIM (2.3) (m1,...,ma)(a,x)- L€t M1,...,mq be nonnegative integers with
mi+---+mg > 1. Then(2.2) isvalid if X = Spe¢A[z1,...,zq]/(x]™ -z —
7)) with log structure defined bM¢ — Ox ; e; — z; (1 < i < d) wherer is a
prime element oft and (¢;); is the canonical base ®i?. (Note that in this case,
there exists arf such thatf : X — S is a generalized semistable family and is
(W) as was stated i12.1.2).)

Proof. We write(my, . .., mq) (4, for this statement, andl (ma, . . . , m4) (4,
for X in this statement. We will proveny, ..., mg) 4, by induction onm; +
.-+ + mg via an argument in [S] Proposition.G-irst note that the validity of the
statement is independent of the ordemnaof, . .., m4. So it is enough to show the
following facts for any(A, ).

(0) (1,0,...,0)(a,r) is valid by the preliminary Lemma (1.1) as below.
() If m is an integer invertible oM, then there is a logtale covering

X(mlm, mo,..., md)(AJr) — X(m]_, e ,md)(AJr), SO (m]_, e ,md)(Am) =
(mam,ma, ..., mq)(A,r)-

(i) If p>1isthe residual characteristicdfthenX (my, ... ,md)(A[Wl/p]y,rl/p):
X(mlp, e ,mdp)(Aﬂr), SO (ml, ce ,md)(A[ﬂl/pLﬂl/p)?(mlp, ce ,mdp)(Aﬂr).

(iii) (key step)(ml, . ,md)(Aﬂr) and(m1+m2, m3,. .. ,md)(A[X}(W),XfmlW) =
(ma,ma +ma,m3, ..., Mq)a,r), Wheremg > 1.

To prove (0), we consider a diagram

Xtriv L X ®s N - X = X(la Oa tee ao)(A,ﬂ')

f

77 jO S
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in (fs log sch), wheren is the generic point of. By [N] (7.6.5), we have /nZ
R*j1.Z/nZ. By the preliminary Lemma (1.1), we havg*R"j0.Z/nZ
R*j2.Z/nZ.Soitis enough to prove tha{nZ 5 R*jo.Z/nZ,thatis,(1,0) 4 ).

To prove this, we may assume thais strictly henselian. Letbe aninteger, and
x the closed point ofX'. We have(R;0.Z /nZ) (o) = lim H(K (x'/™),Z /nZ)

e LR

Iog)

wherem runs over the set of integers invertible Anand?( is the fraction field of
A. This is equal to M(J K (7¥™),Z /nZ), which isZ /nZ for ¢ = 0 and is zero

for ¢ > O respectively.

The rest s to prove (jii). To prove (iii), we blow Ul = X (ma1, ..., ma)(a,x)
with center(z1, z2), where(z;); is the natural coordinates akip on which the
log structure is endowed. There is a natural log structure on the blowing‘up
([FK] (2.2)) such thatX" is covered byX; = X (my,m1 + m2,m3, ..., ma)Ax)
and Xp = X(mg + mg,m2,m3,...,mq) s, and that the projectiok’ =
X1 U X» =% X is a blowing-up along log structure with centeg, ex) C N%in
the sense of [FK] (2.2), wherg;); is the canonical base ®f¢. Hence we have
Rro.(Z/nZ % R*j,Z/nZ on X') is isomorphic taZ /nZ — R*j,Z /nZ on X
by [FK] (2.4) and the fact thak{;, — (Xo)wiv iS an isomorphism. (In the course
of the proof of (2.2), we use [FK] (2.4) only here and in (2.4) Step 2.) The latter
Z/nZ — R*j.Z/nZ is a quasi-isomorphism kyny, . .., ma) (4 x)-

On the other hand, we consider the morphism

— h

X1 = X(m1+ma,ms3,... ,md)(A[X}(ﬂ),X_mlw) — X1
induced by
X1 ®umy) Alrtl(my = Alzalmlz2, .. za] /({25 202 2 — )
= Alzil(m[z2, -+, zal /(a5 "2wg % - a — 3y )

Since h is the inverse limit of open immersiongmi + ma, ms,...,
md)(A[X}(W),X_mlw) implies u: Z/nZ — R*j,.Z/nZ on X' is an isomorphism
on the image of by [N] (4.2).

Now we stand at a point to prove thats a quasi-isomorphism. We study each
fiber of mg.

LetT —g> Xo be any strict morphism from the spectrdirof an algebraically
closed fieldko. It is enough to show that the inverse ima§eonT” = T xx, X'
of the mapping cone qi is acyclic. Consider the cartesian diagrams
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0

X1 —> X' — Xo

in (fs log sch. The fiberT" is ]Pko or Specko). We have already shown: (d°
is acyclic oni~z’(il~“1) and (b) Rr_. K" is acyclic. When the fiber iE’lo, (a) implies
K" is acyclic at the generic point dilflko. Thus K" lives on only closed points on
T', that is, for eachy, H1(K") = ? vy« ), wherey runs over the set of closed

points of T, Ly is the strict closed immersiop = Spegko) —» 1" with the
image{y}, andF] = +;H?(K"). On the other hand we have a spectral sequence
ED? = RPr,H7(K") = 0 by (b). Since Rr/, preservesp, the problem is reduced
to the next
CLAIM. In the situation abovegy S T). is faithful and exact, s&”(n’ o
ty)« = 0forp > 0and(r’ o 1), F} is zero implies thaf/ is zero.

Proof. Thanks to [N] (4.6) and (4.7), this can be interpreted into the problem on
modules with actions of the profinite groups that are determined by the log struc-
tures. Since(M/O*)g — (M]O*)$ 7 Is surjective { being the unique point of

T), the homomorphlsmT — Jis |nject|ve wherel = Hom((M/O*)% y,Z )

andJ = Hom((M/(’)*)Tt,Z (1)). Then the functofz’ o ¢, )., which is isomor-

phic to the functor/\/tapc,l( —):I-Z /nZ-Mod — J-Z /nZ-Mod (cf. Notation), is
faithful and exactas is explained in[N] (4.7.1). This completes the proof of (2.3).

(2.4). Proof of (2.2). We go through several reduction steps finally to (2.3).

Step0. We may and will assume thdtis strictly henselian by [N] (4.2) in the
following.

Stepl. The statement is local o, so that we may assume by the def-
inition of (W) that X is strict étale over the fiber product” of a diagram

oty Spe¢ZN) ———— Jpeazh) Spe¢ZP), wherer is a prime element ofd, h
is an injective homomorphism of fs monoids, aRgl is trivial.
Step2. We will show that we can assume that for ang X, (M/0*)xz =

N"(®) for somer(z) > 0. First we may assume that has a chart by Step 1. Now
we appeal to [FK] (2.4). By [K2] (10.4), we construct a morphigmX’ — X in
(fs log sch) such that:
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(1) Foreach' € X', (M/0*), — is a free monoid.
(2) g is log étale (and proper), anlif;,, — Xyiy is an isomorphism.
(3) Rg.g* «— id on D(X, Z/nZ). ([FK] (2.4).)

This construction appears in [FK] (3.6). By the fact tBgt, — Xy IS an
isomorphism and the fact (3),yJRZ/nZ — R*j,Z/nZ on X') is isomorphic to
Z/nZ — R*j,Z/nZ on X. FurtherX’ — S'is also (W). So (2.2) foX reducesto
that for X’. Thus we may and will assume that for ang X, (M/O*)x 7 = N"(®)
for somer(z) > 0 in the following.

Step3. We will show that in the situation of Step 1, we can assume further that
P is free. (Recall that we have already assumed that each stglk aD*) x is free
in Step 2.) Take any point of X. PutS := agl(Oﬁm), a submonoid oP. Then
the open subset ®zp Z[Ps] of X contains: wherePs is the submonoid P of
P9, So we can replacE with Ps. But Ps = (Ps)* @ Ps/(Ps)*, and(Ps)* is a
free Abelian group becausgyistrivial. FurtherPs /(Pg)* & P/S = (M/O)xz
is a free monoid. Henc®s = N” & Z*' for somer > 0 andr’ > 0. Since any

homomorphisnN — N’ @ Z"' factors adN — N” @ N”' %2 N" ¢ 2" for some
injection 3, P can be replaced by a free mondid™" .

Step 4. Finally in the situation of Step 1, we may assume thkatitself

IS I@(S K Spe¢ZN) MSpecﬁZNd)) for somed > 1, wherer is a

prime element ofd and A is an injection. ThusX is a generalized semistable
reduction. This completes the proof of (2.2).

Remark(2.5). K. Kato proved a general log smooth base change theorem for a
modified logétale site (not yet published). The same statement as (2.0.1) for the
modified sites implies (2.0.1). So another way to prove (0.2) is to reduce by this
base change theorem to the caseXo& S.

3. Nearby cycles

(3.0). In this section, we calculate nearby cycles for log smooth families using
(2.2) and an easy limit argument. First we establish the formulation of log nearby
cycles and their relationships with classical nearby cycles. Then we deduce results
on classical nearby cycles including (0.1) and (0.1.1). The point is that the log
smoothness is stable under base changes, unlike semistability; so we can apply
(2.2) to each family got by base change.

SITUATION (3.1.1). LetA be a henselian discrete valuation ring. Dét— S =
Spe¢A) be a morphism of fs log schemes, whérbas the canonical log structure

(cf. Conventions). Let be the closed point of andn the generic one. We fix
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a separable closur&s¢P of the fraction fieldK of A, and denote by, I and
P the absolute Galois group, the inertia group and the wild inertia groug of
respectively.

NOTATION (3.1.2). In (3.1.1), lef, be a finite separable extension/f Let A”
be the integral closure of in L, and letS” be the fs log scheme Spet”) with the
canonical log structure (cf. Conventions). We define the diagram of fs log schemes

x! - X" X}

(1)"

oL . Sl 7

with each square cartesian obtained from

X, - X X,

(L~

s Y JP— n

by the base changg” — S. Note that we have the diagraftl)”)® of fs log
schemes with trivial log structures-(schemes) and the forgetting log morphism
(1)" = ((1)™)9. In the following we identify(1)” and((1)")® with the associated
diagrams of logctale topoi respectively. Now we denote by

i(log) < j(log) ~=
X35(log) 9, ¥ (log) 9 5 n(10g)

(1)

3(log) S(log) n
X;ame itame xtame jrame Xft}ame
resp (1)tame
gtame gtame tame
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the essentially commutative diagram of topoi obtained as the 2-limit (SGA4 VI
8.1.1)Ii<_m((1)L), whereL runs over the set of all separable (resp. tame) extensions

L
of K. These diagrams are uniquely determined up to natural equivalences. Further
we considefl)" = lim ((1)"), ((1)@m9e = lim ((2)")* and the diagram of
L: sep L: tame
diagrams

Y —~cl

On the other hand we defirié)' and((1)¢')®M€ as those obtained froif1) )
by the base chang8(og)® — S° and (S¥m)° — S respectively. Note that
horizontal arrows in

1) ——— ()¢

((1)tame)cl . ((1)cl)tame

are not necessarily equivalent. The grai@ndG /P ‘act’ on Xgoq) and xtame
respectively. Precisely speakingsog) (resp.X tame) js the unique fiber of a fibered
topos over the category with one object associated (eesp. G/P).

PROPOSITION (3.1.3)n (3.1.1), X5j0q) — X'amejs equivalent. So the action of
G on Xy(jog) factors throughG/ P.

Proof. Itis enough to show that /1 4 X2 induces an equivalence of topoi for
any finite extensio; D L, such thatl.; N LEMe= L,. By using exact proper base
change theorem for sets-valued sheaves (cf. [N] (5.1)), we may assurkethab

and (X [2) is the spectrum of a separably closed field. Th&f1)® — (X I2)

is an equivalence and the cokernel(8f/0*)%, = (M/O)P,, - is killed
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by a power of the characteristic exponenkof:1) wherez; is the unique point of
XLi (i = 1,2). Hencep induces an equivalence by an interpretation like [N] (4.6)
for this case. (Cf. the last part of the proof of Step 1 of [N] (5.6.5).) O

In the followings we identifyX o) and.xame

DEFINITION (3.1.4). In (3.1.1), we define the category of continu6ugresp.
G/ P)-sheaves 01X as follows. LetF be an object (or a sheaf of sets over)
Xs(log)- As in SGA4 XIIl 1.1.1, we consider an action 6f (resp.G/P) on F
that is compatible with the action ¢f (resp.G// P) on X5 ). We call the action

continuousif for any affineU € Ob (Xs)g)tg, G (resp.G/P) acts continuously

on F(U xx,X5(0g)) With the discrete topology. Thus we have defined the two

categorles WhICh are proven to be topoi by using Giraud’s criterion (SGA4 IV
= [G] Chapitre 0 2.6). Note that the latter topos of continuGy®-sheaves is

equwalenttc(X )'ogN (asin SGA7 XIll 1.1.3). Further there is a natural morphism

( EE 'g ) of essentially commutative diagrams of topoi from

{continuousG-sheaf overXsog) } T . n XSC' Xgo ) —— 1)

F(P7_) Sd"g to

N cl cl
X, s D G—_

whereT" = (taking the global section);(P,—) = (taking P-fixed par}, and

sp% = (taking P-fixed pary under the identification&; = {continuousG / P-

sheaf overXqoq) }, n = {continuousG-set, ands = {continuousG/P-set.

For the latter diagram, see SGA7 XIIl 1.2. Since the latter diagram is 2-cartesian

(see [G] Chapitre VIII 0.5 for the definition); is characterized as the essentially

e id
e

unigue morphism that make(s a morphism. In fact’ is induced by the

projection Xs(iog) — (X&) = lim X' x.a (s“)(L runs through the set of all
L:ur

finite unramified extensions &f) under the identificatioX &' x.« n = {continuous

G-sheaf ove( X &)U,

(3.1.5). In the foIIowings, we denote big(iog) (resp.¢@™9) the projectiong1) —
( )K (resp.(1)@me — (1)K). In (3.1.1), letn be an integer invertible of. Put

= Z/nZ. We denote by D(X5(og), G, A) (resp. D (X50q), G/ P, A)) the
derlved category oh-Modules on the topos of contlnqus(resp G/ P)-sheaves
over X5(og). Then we have natural functors

R D+(X A) — D+( 5(log)> G,A)
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(resp RU: D¥ (X, A) = D (X5(10g), G/ P, A))

such thatf o R¥ = 7(logf'R* 7 (log) B (log* (resp.f o Ry = @MeR+ jtame tamex
wherey is the forgetful functor to D (X5j0g), A) = DT (X 2™ A). They are called
log nearby cycle (resp. log tame nearby cycle). Note thit R RT['(P,RU—).
Further we define the log vanishing cycl®@®: Dt (X, A) — D*(X5(10g), G, A)
as the mapping cone @fiog)*p(log)* — RWj*.

(3.1.6). The above R, R¥; and Rp'°9 are closely related to the classical ones.
Indeed in (3.1.5) we have

RUCRYe, = RTe\RT: D (X, A) = DT (XY xgan, A)
= DT (X", G, A),

where RV¢ = R¥, in SGA7 XIlIl 2.1.1 and R, is the log forgetting functor:
DF(X,,A) — DH(XE, A). Similarly

RUSRYe, = RYe'RU: DT (X,),A) — D (XS, G/P,A),

where Ri{ is the classical tame nearby cycle functor aridR D+(X§(|og), G/P,

A) — DH((Xhr, G/ P, A) is induced by the above in (3.1.4) or by the pro-
jection Xy(og) — (XShUr, These formulas are proven by using exact proper base
change theorem [N] (5.1). Finally, fé¢ € D™ (X, A), we have a comparison map
RU, s — RIYRY ¢, K, where RV, := R, %(log)*. Note that the target of this
map is in D ((X¢)" G, A), whereas the source is inf)(X¢) G/P,A) in
virtue of (3.1.3).

THEOREM (3.2).In (3.1.5), assume thak" — S is log smooth. Then

(i) R®'99A = 0.
(i) A = RUA 5 RUA in DT (X50g), G, A).
(i) RUFL = RUCL wherel := Re, A € DT(XE, A).
(iv) RTe! A 5 RTYULin DT ((XH, G, A).
(v) The comparison magin (3.1.6)): RU,A — RTCL is an isomorphism.

In particular, the action of? on R7WC £ is trivial for any q. Note that if the log
structure ofX,, is trivial, thenL = A.

Proof. By SGA4 VI8.7.5 and (0.2) for eacki” (L is a finite separable extension
of K), we haveA = R*t7(og),A andA = RTj@MeA. Thus (i) and (ii). Actually
A = R¥A is deduced from\ = RWA by applying R'T'(P, —) to both sides.
Next, applying R ', to (i), we have (iii) and (iv) by (3.1.6). Actually (iv) contains
(iii). Finally (iv) and (v) are equivalent. O
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Remark(3.2.1). See (3.4) for a reformulation of (3.2) without log terms.

Remark(3.2.2). Even when we weaken the assumption of log smoothngss of
to that of (W) (see (2.1.1) for (W)), we still have = RT A and R, A = RUE L
because (2.2) implies that (2.0.1) still holds®nxg S” for a tame extensioh of
K.

COROLLARY (3.3).In (3.1.5), suppose that the log structure &f, is trivial.
ThenRTCA is determined only byX,, that is, RUCA is isomorphic toRTCA
for another suchX’ if there is an isomorphism of-log schemesX, =~ X!.
Further, whenX® and X'® have semistable reductiorRU®A’s are isomorphic
if X9@4 A/m? = X'Y @4 A/m? wherem is the maximal ideal oft.

Proof. In (3.2) (v), the left-hand side is determined only Ky. The last state-
ment comes from the fact that the log structureXohaving semistable reduction

(in the sense of [K1] (3.7) (2)) depends onlyﬁ’n&; A/m? (see Appendix (A.4)
for the detall). O

Remark(3.3.1). As an application, in a forthcoming paper, we prove that the
weight spectral sequence for a proper semistable family degeneraigsegard-
less of whether the residue field is finite or not.

(3.4). We reformulate (3.2) without log terms for convenience.

VARIANT (3.4.1) (lllusie’s expectation)Let U % X — S = SpedA) be a
diagram of schemes with being a henselian discrete valuation ring. Lsdbe the
closed point ofS andn the generic one. Let > 1 be an integer invertible oi§.
For anyq € Z, we have the nearby cycle

R?¥, £ on the product topoX’; x; S(SGA7 XIII 2.1.1),

wherel := R"j,Z /nZ. Assume thaktale locally onX, U 4, X is étale over
Spe¢A[P®]/(r — z)) — SpedA[P]/(r — z)),

where P is an fs monoid = finitely generated and saturated monoid)js an
element of?~ {1} such that the order of the torsion &% /(x) is invertible onX,
andr is a prime element od. Then the action oR?V,, £ of the wild inertia group
of the quotient field ofl is trivial.

Proof. Since the statement is local, we may assumetthat X is étale over
Spe¢A[P%] /(m — z)) — Spe¢A[P]/(m — z)) whereP, z, andr are as above.
We endow them with log structures Y. Then (3.4.1) reduces to (3.2) by tak-
ing it into account that Spéd[P%]/(n — z)) is the maximal open subscheme of
Spec¢A[P]/(r — x)) on which log structure is trivial. Note that = R, A by
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(2.0.1) forX,, ((2.0.4)). =

Remark(3.4.2). In (3.4.1), if furtheN — P;1 +— z is dominating ([N] (7.3)),
that s, the condition (ii) in Introduction is satisfied anywhéresoincides with the
generic fiberX;, of X. (Otherwisel/ may be strictly contained iX,,.) This case is
nothing but (0.1). Further, (0.1.1) is a direct corollary of (0.1), via SGA7 | (2.2.3),
(2.7.1)and (2.7.3).

(3.5). Next we prove an SGA7 | 3.3-type formula for the classical tame nearby
cycles RU{! for log smooth families. Again by using (2.2) as in the proof of (3.2),
this reduces to an easy problem on the special fiber.

THEOREM (SGA7 | 3.3-type formula for ®). In (3.1.5), assume thak % S
is log smooth. Put := R*z, A 2% R¥jeIA € D (XY, A). Let

(M/O*)?epl = cok(f*(M/O")PF % (M/O*)g(ps)/torsion on XsCI-

Then
(i) Foranyq > 0, there is a natural(z / P-isomorphism
RITEL = ROTEIL @7 A ((M/0)E 7 A-D)).
(i) The stalk oR°T{'L aty in (X&) is
(ROWE L)y = A[Ey),
where

E := cok(Hom(yy, Z'(1))); a finite Abelian group. Here the action 6fP =
2’(1)) on the right-hand side is the one through the canonical homomorphism
Z'(1) = Hom((M/0") ¥, Z'1)) — Ey.

Note that if the log structure of;, is trivial, then£ = A.

Remark(3.5.1). We can weaken the assumption of log smoothnegsmthat
of (W) (see (2.1.1) for (W)) without changing the conclusion of (3.5). We treat this
generalization in the proof below.

Remark(3.5.2). The problem of giving a global formula for the she&®R.
should be interesting, though we do not treat it.
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(3.6). Proof of (3.5). First note that RUF £ = R*¢’ A by (3.2.2). We consider
G/ P-equivariant homomorphisms

q
ngiA 5;A ®z /\ (((Pcl)ur* (M/O*)rel ®z A(-1))

P1 P2

q
el A®z Rle, A == el A®z \ (™)™ (M/O")E @z A(-1),

where (o) is the projection(XS)" — XY, the equalitys is the isomor-

phism in (A.3) andy; is induced from the cup product. Sing® is surjec-

tive, to prove (i), it is enough to show that there is an isomorphism of modules
q

(RIELA)y = (e A)g®@z N\ ((M/O*)5 ®z A(-1)) which commutes withy for
anyy € (XU, First R/ A = R, (XU — sU)*((s1Me — sU),A) by exact
proper base change theorem [N] (5.1) wh&1g etc. are defined in the same way
as in (3.1.2). Thanks to [N] (4.6) and (4.7), we interpret the problem oétate
sheavesinto that on modules with actions of the profinite groups that are determined
by the log structures. Then we see that the &ae sheafs@m® — s'"), A cor-
responds via [N] (4.6) to thé,-A-module A[I;] := Map,yi(Zs, A) on which
I, = Hom((M/0")¥ Z'1)) = Z'() acts like z - m(—) +— m(—z). Thus
(R7e,A)y = HI(I,, A[I5]) wherel, = Hom((M/(’)*)Xy,Z (1)) which acts on
A[Ig) via® = Hom(wy,z w): I, — Is.

On the other hand we have an exact sequence

0 — Hom((M/O*)% Z(1))—>I 5, — Fy — 0.

rel,y?

SoA[I,] is decomposed into Magr;, Map.,i(J, A)), whereJ = Imagg#). We
consider the Hochshild-Serre spectral sequence

B3 = HP (J, H(Ker(8), Mapeoni(J, A))) = HI (1, Mapeoni(J, A)).-
Since H(J, Map,qni(J, N)) = 0 forp > 0 andN for p = 0, we have
HY(1y, Maponi(/; A)) = HI(Ker(0), A)
— A (M/0")% 07 A-).

Thus we have the desired isomorphism, which commutesyitiihe above cal-
culation includegR%’, A); = Map(Ey, A) that is (ii). O
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Remark(3.6.1). There is another way to show (3.5) due to L. lllusie, K. Kato,
and T. Saito. Consider the different factorization of

R*el: D (XB™S G/P,A) S DH(XE™, G/ P, A)

T D (X)L G/P ).

Then Rjr’)]l* = M1x-
On the other hand, since
( lim % (M/0*)P ) ® A = (ni(M/O*")) @z A,

L: tame

wherepl® is the projection( xX@me)d — (x1)d,

RIna. A = /\ 1(M/O*)E) ®z A(-1))

for anyq > 0. Thus we have the desirgd/ P-equivariant isomorphism by the
projection formula.

COROLLARY (3.7) (Cf. SGA7 1 3.4)In (3.1.5) assume thaf is log smooth and
j9 is proper. Let/ be a prime number invertible id. Let N be the least integer

> 1 that kills the prime-top parts ofcok((M/0*)%. 7, (M/0*) L )or for all
y € X, wherep is the residual characteristic exponentAf Letq be an integer
> 0andletq’ beinf{qg+ 1, sup{rankz(M/(’)*)Xy |y € Xs}}. Thenforanyl’ € 1

(TN _ 1)‘1, =0 on Hq(Xtriv Xn ﬁvzl)'

In particular, the action ofI on HY(Xyy x,7,Z;) iS quasi-unipotent of
échelory'.

Remark(3.7.1). Similarly to (3.5.1), we can weaken the log smoothness condi-
tion to (W) when we replacg by n'@Me We treat this variant simultaneously below
in the proof (3.8).

Remark(3.7.2). Note thafyj, is not necessarily proper ovér.

(3.8). Proof of (3.7). Note that Re, A “2Y R+jeIA € D+(XZ, A). Letm be
an integer. We have spectral sequences

ER? = HP (X, RIDCEL) = HPH( Xy x, 77, Z /I™Z); T-equivariant
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Bt = H((XE) RIEEL)
= HPH( Xy x, 0" Z /I™Z); I/ P-equivariant

(cf. SGA7 12.2.3). By (3.2), (3.5) and (3.5.1), we see tiiat acts on RTCL or
RIWEL trivially since the prime-tg» part of coK (M/0*)3; 47, (M/O0*)X5) or
is isomorphic toFy; in (3.5). Thus we get the desired result. O

4. Propositions on logétale cohomology

(4.1). In this section, we prove three propositions based on (2.2). The first one
(4.2) says that for a variety over a henselian discrete valuation field with log smooth
reduction thé-adic representation is determined by its special fiber endowed with
log structure. This had been already pointed out by K. Fujiwara ([F]) for the case of
semistable reduction, who applied this fact to the hypersurface case of monodromy-
weight conjecture in [F]. The second proposition (4.3) in this section is a case of
‘proper log smooth base change theorem’: In uéiale cohomology theory for
schemes, the statement”’RZ /nZ is locally constant and constructible for any
smooth proper morphisni (n being an integer invertible on the base)’ is called
proper smooth base change theorem; in fact K. Kato recently proved it is valid
when regarded as a statement in &tgle cohomology. See (4.3.1). The last one
(4.4) is a relative version of log Poin@duality. Although we worked only on a
field in [N], for this time we work over a discrete valuation ring. All proofs of these
results are easy applications of (2.2). The second and the third ones are not the final
results.

PROPOSITION (4.2)n (3.1.5), assume thaf is log smooth anglois proper. Then
foranyq € Z,

HI(X®Bme 7 /nZ7) Hq(X;;' X T, L),

whereL := R*j,Z/nZ. Note that if the log structure aX,, is trivial, then £

12

Z/nZ.

Proof. By (3.2), we haveA = RVUA on X®@M Then RT(XBMe A) =
RIT(XS x,a 5, RYeLRTA) C2% RAD((XS) RUCIL) = RF (XY x, 7, £) with
G-action. O

Remark(4.2.1). The left-hand side is described as
lim  HY(X; ®n2ZNY"™,Z/nZ).

m: invertible in A

The right-hand side is isomorphic to X ,,(log), Z /nZ) or HY (X8, x, 7, Z/nZ).
Note thatXy;, is not necessarily proper ové.
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PROPOSITION (4.3) (a part of proper smooth base change thedteny). X —
S be a proper log smooth morphism (ifs log sch). Letn be an integer invertible
on S. Assume that

(i) f is exact.(We review the definition of exactngk4] (4.6) for convenience
below)

(ii) S is noetherian andV/y is trivial at each generic point.
ThenRYf.Z /nZ is locally constant and constructible for angy

(Review for [K1] (4.6). A homomorphism of integral monoikls@) — P is said
to beexactf Q = (h9)~1(P) in Q9%. A morphism of log schemes with integral log

structuresf: X — Y is said to beexactif the homomorphisnt(f)* My )z — Mz
is exact for anyr € X.)

Remark(4.3.1). By the similar proof we can replace the condition (ii) by

(i)’ Sis locally noetherian anflM/ /O*)s is constant sheaf

without changing the conclusion of (4.3). Further recently K. Kato proved the
following general result: In (4.3), we replace both (i) and (ii) by only

(i)” Sis locally noetherian.

Let F' be a locally constant and constructible sheaZghZ-modules onX'écig.
Then R f,. F'is locally constant and constructible for aqyThe proof is based on
the theory of modified lo@tale sites mentioned in (2.5) (not yet published). In the
following (4.3.3), we prove the case (4.3) by a different method.

Remark(4.3.2). We recall here the definition of constructibility. L§tbe an
fs log scheme andl a ring. ThenF' € Ob SQ is calledconstructibleif for any

open affiney C X, there exists a finite decompositioli;);c; of U consisting of
constructible reduced subschemes such that the inverse imagee &f; is locally
constant whose local values afemodules of finite presentation, where the log
structure ofU; is the restricted one fronX. (In (4.3),A is taken to b& /nZ.)

(4.3.3). Proof of (4.3). Since (i) impliegfo*(M/(’)*)g — (M/0O*)x is injective,
the finiteness theorem [N] (5.5.2) implied RZ /nZ is a constructibleZ /nZ-
Module for anygq. Then, by the Lemma (4.3.4) below, it suffices to show that the
cospecialization mapR?f. Z/nZ) g — (R?f+Z/nZ) 4 10q) is bijective for any
points’ € S and any specializationof it. To show this, taking (ii) into account, we
may assume that/s is trivial ats’. We may assume further thsitis the spectrum
of a noetherian local domaiA with s’ being the generic point andbeing the
closed one. The rest is an induction on dim

The case diml = O is trivial. The case diml = 1 will be treated later. Assume
that dimA > 2. Then we can find a chain of point§ ~ s; ~ s (~ means
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specialization) such that/s is trivial at s; ands’ # s; becaused is noetherian
and the set of the points at which the log structure is trivial is open and non empty,
hence (since dim > 1) cannot consist of alone. Thus the induction works.

The rest is the case where ditn= 1. Taking the normalization ofiS", we
may assume that is a strictly henselian discrete valuation ring. Take any chart
of S: P — Mg such thatP — (M/0*)s5 is bijective ([N] (1.6)). Letr be a

prime element ofd. Then the modified homomorphisi— A~ {0} M N A

is also a chart, wherdl — A is the homomorphism sending 1 40 Thus we
have constructed a morphisfBpec¢A), the canonical log structure— S (cf.
Convention). In virtue of exact proper base change theorem [N] (5.1) (cf. [N]
(5.1.1)), we thus reduce to the case whe&teas the canonical log structure.

But in this case, we can use (4.2) to get the desired bijection. Note that
H7 (XS %, 7, £) = HY(X (109), Z/nZ) = (R f.Z /1Z) 5/ (10g)- |
LEMMA (4.3.4). Let X be an fs log schemel a ring, F' a constructible sheaf of
A-modules orX ((4.3.2)), andz(log) — X alog geometric point ok ([N] (2.5)).
ThenF is locally constant on @log étale) neighborhood of; if and only if for any

pointz’ that is a generization of, the cospecialization mag), o) — Fi(i) IS
bijective.

Proof. This is a log version of SGA4 IX 2.11. The proof is parallel to that of it.
See [N] (2.8) 6 for cospecialization maps. O

PROPOSITION (4.4) (log Poincaduality).Let A be a discrete valuation ring, let
S be the fs log schen&peg A) with the canonical log structurgef. Conventions
let n be the generic point of, letn be an integer invertible o5, and let

fiYy—-X

be a vertical([N] (7.3)), log smooth,S-compactifiablg([N] (5.4)) morphism in
(fslog sch). Assume thak” andY are connected, antl # ¢. Assume further that
X is log smooth compactifiable ovér (Note thatf € FI(S) (see Notation or
[N] (5.4)), so that we have the funct®f': D*(X,Z/nZ) — D*(Y,Z/nZ) by
N1 (7.2).)

Then

Rf'Z/nZ = Z/nZ(d)[2d],

whered = dim(Y ®g n) — dim(X ®g 7).

Proof. This is a formal consequence of (2.2) and the log Poichrality
over a field (in [N]). In fact, writingjx and jy for the strict open immersions
X ®sn —» X andY ® n —» Y, we have
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Rf'Z/nZ 5 Rf'Rjx.Z/nZ ((2.2))
Rjyv«R(f ®sn)'Z/nZ (5* and Rf, can always interchange
= Rjy«Z/nZ(d)[2d] ([N] (7.5) (a), verticality assumption

& Z/nzZ(d)[2d] ((2.2)). O

Remark(4.4.1). In conjunction with the formal duality [N] (7.2), we have a
functorial isomorphism

R f.RHom (K,Z/nZ(d)[2d]) = RHom (RfiK,Z/nZ)
foranyK € Ob D (Y,Z/nZ) as well.

QUESTION (4.4.2). In the case th#tis not vertical, is §'Z /nZ isomorphic to
J1Z/nZ(d) [2d]? Herej is the strict open immersioHe, ; < Y. See [N] (7.3)
for notation.

QUESTION (4.4.3). What is a dualizing complex &nor onY ?

Appendix A

(A.1). As was stated in (1.3), here we generalize (1.1) slightly with the aid of a
theorem of K. Fujiwara and K. Kato [FK] (2.4).

PROPOSITION (A.1.1)Let

1% U Y
! f
U X

™

be a cartesian diagram iffs log sch. Let F € S% be a logétale sheaf of Abelian
groups onlJ that is the inverse image of a sheaf of Abelian group&&rand that
is killed by an integer invertible oX. Assume that is guasi-finite and quasi-
separated. Assume further thésatisfies one of the following two conditions

(i) f is isomorphic to the projectioX [P] — X for an fs monoidP whose
torsion part has an order invertible o, whereX[P] = X xz ZP.

(i) fis log smooth and( has the trivial log structure.

Then the functorial homomorphisfbase change morphigny*R* 7, F —
Rt f"* F is an isomorphism iD* (Y, Z).
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Proof. We reduce (i) to (ii) by localizingl in the same way as in (1.1). So it
is enough to prove (ii). As in the beginning of the proof of (1.2), we may assume
thatU also has the trivial log structure by proper base change theorem [N] (5.1).
On the other hand, we blow Up along the log structure and apply [FK] (2.4) as in
(2.4) Step 2, so that we may assume that forgry Y, (M/O*)y5 = N"®) for
somer(y) > 0. Next we take a chart by (A.2) so that we may assumeftfettors

asy —» X[P] — X whereu is a strictétale morphism ané is a torsionfree fs
monoid. Thus we may assume ttfais isomorphic taX[P] — X for a torsionfree
fs monoidP. We may assume thd = N" & Z" for somer > 0 andr’ > 0, and
further thatr’ = 0 as in (2.4) Step 3. Finally we apply (14}imes. O

(A.2). Here we include a proposition used in (2.1.1). This is a slight refinement of
[K1] (3.5). The novelty lies in the condition (iii).

PROPOSITIONLet f: X — Y be alog smooth morphism {fs log sch. Assume
that we are given a chart’ — Spe¢Z P) of Y with P being a torsionfree fs
monoid. Then there are a chart coverit «— X; — Spe¢ZQ;)); (IN] (1.5))

and achart(Q; — My,, P — My, P N Q;) of X; — Y suchthath;: P — Q;
is an injective homomorphism of fs monoids, satisfying the follogrgii):

(i) The order of(cok(hP))ir is invertible onX;.
(ii) The induced morphisti; —» Y xzp ZQ); is étale.
(i) @Q; is torsionfree.

Proof? By [K1] (3.5) and (3.6), we may assume th&tis strict étale over
Y xzp Z[Q ® R] whereQ (resp.R) is a torsionfree (resp. torsion) fs monoid and
SpedZ[Q @ R]) — SpedZ P) is induced by an injectioh: P — Q @ R such that
n := the order of(cok(h%P))or is invertible onX. PutA = Z,,)[R]. Then we have
two morphisms Spéel[Q]) — Spe¢Z P) of fs log schemes: one is induced by
viaZP — Z,)[Q ® R] = A[Q]; the other is induced by’ := pry o h: P — Q
viaZP — Z,,)[Q] — A[Q].

CLAIM. In the above there is a@tale surjective morphism Spd¢) — Spe¢A)
such thatinduced two morphisms of fs log schemes Gplgg]) — Spec¢A[Q]) —
Spe¢Z P) are isomorphic over the base.

Proof. The differencepg of two P — A[Q)] is contained inR C) (A™ )tor. Take
B to be the ring obtained from by adding {/r, » € R. Since(cok(h'%))o IS
killed by n, the differencepg: P — (A*)ior €xtends to a: Q@ — (B )wor. We
can make a desired automorphism of Sg&¢)]) using thisy via g — ¢(q)q,
q € Q. m|

2 Due to a discussion with T. Tsuji and T. Kajiwara.
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By the above claim, we see that x4 B is étale overinQY —» Spe¢ZP)

2P2N) Spe¢zQ) « SpedB[Q)])) which isétale ovel xzp ZQ. O

(A.3). Here we include the theorem of K. Kato which was used in (2.0.2) and
(3.6).

THEOREM.Let X be an fs log scheme arfd an Abelianétale sheaf ofX® (cf.
Notation for X®) such that

F = U Ker(n: F — F).

n: invertible on X

q
Then there exists a canonical isomorphBfa.c*F < F(-q) @z [\ (MS/0%)
for anyq (cf. Notation fore = ¢(X)). Here(—¢) means the Tate twist.

See [KN] (2.4) for the proof. The map is constructed by cup product from the con-
necting maps\y’/O% — RY.(Z/nZ)(1) of the logarithmic Kummer sequence
for variousn’s.

(A.4). Here we prove the proposition which we used in (3.3).

PROPOSITION (L. lllusie).Let (A,wA, k) be a discrete valuation ring and
S = Spe¢A) with the canonical log structurécf. Conventiongs For i = 1,2,
let X; — S be a morphism of fs log schemes having semistable reductions in
the sense ofK1] (3.7) (2). Suppose thak 1 @4 A/(n?) and X, @4 A/(n?) are
isomorphic asd/(w?)-schemes. Then the special fibéfs®4 k£ and X, @4 k are
isomorphic asS ®4 k-fs log schemes.

Proof. We reduce to the next local statement.

LEMMA (A.4.1). In (A.4), we identifyX; ®4 A/(r2) with X, ®4 A/(x2), and
write it asY'. Suppose that there is a strigtale S-morphismy” —» A/(w2)[N"i]/
(e1---er, —m) (1 < r; < ny,ey's are the canonical base o) for eachi = 1, 2.
Here the target is regarded as &ftlog scheme b > 7 — e1---e,,. Then

(i) Zariski locally onY, there is a uniqueM,-isomorphism:: Mx,|y, =
My, |y, (Y5 is the special fiber ot") satisfying the following three conditions.

(a) There is a bijections: I, := {jle; € N" is not invertible onY} 3
{jle; € N"2is not invertible ony"}, and for eacly € I, the subscheme
of Y determined bye;,) is irreducible.
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(b) For eachj € I, there is an elemerit; € T'(Y, O3) such that(e;) =
bjeg(j) in F(}/;,MX2|y;) andej = bjeg(j) in F(Y, Oy)
(c) Ifthere is another suctv’, b}), theno = ¢’ andb; = b; mod for each
j € I.
(i) If further there is an isomorphism: Mx, — My, onY, then the aboveis
the one restricted fromy.

Proof. We reduce to the next ring-theoretic statement.

LEMMA (A.4.2). Let(A, 7 A, k) be adiscrete valuation ringz = A/(7?)[z1, . ..,
Zn]/(z1 - 2, —m) (1 < r < n), andp a maximal ideal of3. ThenAnngen(z;) C
(r) for i = 1,...,n, wherijh is the strict localization ofB at p. Further
Annth(W) C (m).

Proof. By [M] p. 266 Theorem 83 and Remark 1, we may assumeiisalge-
braically closed. Then we may assume that (z1, ..., z,, ) and replace'B'j'h by
A/ (7)[[z1, ..., z,]]/(z1- -z, — 7). In this ring, Anr(z;) C Ann(r) C () for
i < rand Anr(z;) = Ofori > r respectively. This completes the proof of (A.g).

RemarkA.4.3). The above proofimplies that, in (A.4), itis not necessaryXhat
comes from the family oves$: For two S ®4 A/(n?)-fs log schemes; (i = 1,2)
which étale locally lift to semistable families ovérhaving the same underlying
scheme, the conclusion of (A.4) is satisfied.

Appendix B

(B.1). Here we give the counterexample that we alluded to in (1.1)kle¢ a
field. Leth: (z,y) — (z, z) be a homomorphism of fs monoit — N?; z — z,
y — zz. Then the morphisnf: Y := Spe¢k[N?]) — Spe¢k[N?]) =: X induced
by h is log étale. We consider the cartesian diagram

%4 —» Y

f f

Speck[z, z 1)) - X

in (fs log sch with = being a strict immersion. Theff is an isomorphism. Let
n be an integer invertible oX . We will seef*Rr.Z/nZ # Rx! f'*Z/nZ. First
Rr.Z/nZ = (Spec¢k[z]) — X).Z/nZby[N](7.6.5). Analogously, R.Z /nZ =
(Spec¢k|z]) — Y). Z/nZ whose stalk af0, z) with z # 0 is zero. Thus we have
got the desired statement.
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