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Abstract
Thanks to its real-time computation efficiency, deep reinforcement learning (DRL) has been widely applied in
motion planning for mobile robots. In DRL-based methods, a DRL model computes an action for a robot based
on the states of its surrounding obstacles, including other robots that may communicate with it. These methods
always assume that the environment is attack-free and the obtained obstacles’ states are reliable. However, in the
real world, a robot may suffer from obstacle localization attacks (OLAs), such as sensor attacks, communication
attacks, and remote-control attacks, which cause the robot to retrieve inaccurate positions of the surrounding obsta-
cles. In this paper, we propose a robust motion planning method ObsGAN-DRL, integrating a generative adversarial
network (GAN) into DRL models to mitigate OLAs in the environment. First, ObsGAN-DRL learns a generator
based on the GAN model to compute the approximation of obstacles’ accurate positions in benign and attack sce-
narios. Therefore, no detectors are required for ObsGAN-DRL. Second, by using the approximation positions of
the surrounding obstacles, ObsGAN-DRL can leverage the state-of-the-art DRL methods to compute collision-free
motion commands (e.g., velocity) efficiently. Comprehensive experiments show that ObsGAN-DRL can mitigate
OLAs effectively and guarantee safety. We also demonstrate the generalization of ObsGAN-DRL.

1. Introduction
Motion planning is one of the essential tasks for mobile robots. It aims to generate a collision-free
trajectory for each robot moving around in an environment with obstacles. Various motion planning
methods, classified into traditional methods and heuristic approaches [1], have been proposed in the
literature, such as state lattice [2], cell decomposition [3], roadmap [4], sampling [5], potential fields
[6], velocity obstacles [7], mathematical programing [8, 9], fuzzy logic [10], and evolutionary algorithm
[11]. Due to the crowded, dynamic, and unpredictable obstacles in the open environments, real-time and
robust motion planning is necessary but challenging.

With the rapid development of deep learning technologies, deep reinforcement learning (DRL) has
become a promising method for motion planning since it leverages offline training to improve online
computation efficiency. Several agent-based DRL methods have been proposed, which take the states of
the robot and the obstacles, either raw data (e.g., image) or post-processing data, as inputs and compute
the corresponding motion commands [12–19]. For example, the authors in ref. [14] proposed a model
combining Long Short-Term Memory (LSTM) and DRL to deal with a varying number of obstacles,
where the obstacles are sorted according to their distances to the robot. Later, the work in ref. [16]
improves this method by sorting the obstacles based on their collision criticality to the robot, as the
relative distance cannot reflect the importance of an obstacle to the robot’s collision avoidance.
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Current DRL methods usually assume that the robot can retrieve accurate positions of its surrounding
obstacles, including other robots. However, the robot is vulnerable to various physical and cyberattacks
in the real world, resulting in receiving wrong information about the obstacles [20–24]. Obstacle local-
ization attacks (OLAs) are one of the widely existing attacks in robotic systems, where an attacker can
tamper with the positions of environmental obstacles and send malicious data to the robot [25–27]. For
example, an attacker may obtain access to other robots unauthorizedly and send wrong-position mes-
sages to a robot [26]. An attacker may also perform cyberattacks against the communication network
among robots to modify the transmitted position signals [27]. Consequently, the robot will make wrong
decisions and cause severe accidents, for example, collisions, after receiving the wrong information.
Although attacks may be relatively rare in the real world, they still occur frequently and lead to seri-
ous consequences. Therefore, it is crucial to develop effective and advanced mitigation methods before
mobile robots are widely deployed.

The existing attack mitigation approaches predominantly focus on strategies that rely on attack
detectors to identify attacks or compromised data [28–31]. For example, a cumulative sum detector is
proposed in ref. [28] to detect attacks before a mitigation operation; a Bayesian inference-based detector
is designed to activate the mitigation module [29]; in ref. [30], the mitigation module is triggered when
a time-window-based detector detects an attack; an observer-based anomaly detection method is pro-
posed in ref. [31] as a prerequisite for conducting the mitigation operation. However, they encounter two
primary challenges: First, the design of attack detectors necessitates tailoring to distinct attack types,
imposing a considerable burden in terms of development and maintenance. Second, the accuracy of
attack detectors is paramount, as inaccuracies can trigger unnecessary mitigation actions and erroneous
identification of normal data as compromised.

In response to these two challenges in the existing attack mitigation methods, we introduce a pio-
neering method that circumvents the dependence on attack detectors, a significant advancement not
adequately addressed in the literature. Nevertheless, mitigation without detectors must overcome a crit-
ical challenge: devising a unified method capable of addressing normal and attack scenarios. Intuitively,
some robust position estimation methods for a single robot could be repurposed to predict the obstacles’
positions, such as multi-sensor fusion techniques [32–35] and complex filters [36–39]. For example, in
ref. [32], the measurements from global positioning system (GPS), light detection and ranging (LiDAR),
and inertial measurement unit (IMU) are fused to provide more reliable state estimation; the informa-
tion from GPS, inertial navigation system (INS), and odometer sensors is fused to improve the accuracy
of localization [33]. In addition, Kalman filter (KF) [36, 37] and particle filter (PF) [38, 39] are widely
applied filters to generate robust state estimation. However, their performance will degrade significantly
when they are applied to mitigate OLAs (Experimental results will be given in Section 4.3). Hence, it is
of great necessity and significance to design detector-agnostic and unified mitigation strategies that can
generate approximately correct data for both normal and attacked data.

Motivated by generative adversarial network (GAN) models, which can generate synthetic realistic
data by learning the underlying data distribution, we introduce the application of GANs to design our
detector-agnostic mitigation strategy. Benefiting from the adversarial training mechanism of GANs, one
can train a generator to generate realistic positions for robots using the guidance provided by an auxiliary
discriminator model. Consequently, a well-trained generator can effectively preserve normal positions
while correcting compromised positions within a unified framework. Therefore, our method simplifies
traditional attack mitigation methods’ detection and mitigation steps into a single step.

In detail, focusing on the mitigation of OLAs against a robot, we propose a detector-agnostic motion
planning method ObsGAN-DRL in this paper. ObsGAN-DRL consists of two modules: the security module
and the functionality module. The security module leverages a generator model from a well-trained
GAN to learn the distribution of the real data and approximate the accurate value of faked positions.
Therefore, the security module can maintain benign positions while correcting attacked ones without
any attack detector. The functionality module takes the robot’s state and the mitigated states of obstacles
as input and computes collision-free motion commands. Therefore, any motion planning algorithm can
be used as long as it is appropriate for the robot’s operating environment. For example, a dynamic
environment requires the motion planning method to handle dynamic obstacles. In this paper, we apply
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the DRL model proposed in ref. [16] to deal with a varying number of obstacles in the environment and
guarantee real-time computation efficiency. In detail, the states, including the corrected positions, of the
obstacles and the robot are fed to the DRL model, which will infer a motion command to maximize the
cumulative rewards.

We conduct comprehensive experiments to evaluate the effectiveness and efficiency of ObsGAN-DRL
on two kinds of OLAs: disturbance attacks, which add random values to the original data, and replace-
ment attacks, which use random values to replace the original positions. The results show that (1) the
GAN-based mitigation strategy does not reduce the performance of benign scenarios significantly; (2)
ObsGAN-DRL can effectively mitigate different OLAs, improving the success rates from 68.3% to 95.5%
under disturbance attacks and from 52.2% to 96.3% under replacement attacks; (3) ObsGAN-DRL out-
performs the KF and PF methods (95.5% vs 64.5% for disturbance attacks and 96.3% vs 64.65% for
replacement attacks); and (4) the GAN-based mitigation strategy is compatible with other motion plan-
ning methods. Therefore, our method exhibits the following advantages: (1) it is detector-agnostic and
planner-agnostic, meaning it can integrate into different motion planners without requiring any attack
detectors; (2) our method can handle varying numbers of obstacles in different environments; and (3)
our method can mitigate various attacks against obstacle locations.

The main contributions of this paper are threefold:

• We propose the first GAN-based strategy to mitigate OLAs against a robot without any attack
detector. Moreover, it is planner-agnostic and generalizes to different attacks.

• We propose a two-module robust motion planning framework, ObsGAN-DRL, for a robot moving
around in adversarial environments with a varying number of robots.

• We conduct extensive experiments to demonstrate the effectiveness and efficiency of
ObsGAN-DRL.

The rest of this paper is organized as follows. Section 2 states the theoretical basis and the problem
statement. Section 3 provides the detailed design and algorithm of ObsGAN-DRL. The experimental
results are described in Section 4. Conclusion and future work are finally provided in Section 5.

2. Background and problem statement
2.1. Robot motion planning
For environment perception, a robot is equipped with different sensors, such as GPS and LiDAR, to
identify its surrounding obstacles’ states, that is, positions and velocities. The motion task for the robot
is to move from the initial position pI = (x0, y0) to the goal position pG = (xg, yg) with a prefer speed
vf . Suppose the robot’s safe radius is ρ, and the time is discretized into a set of time instants with
an equal time step �t. At any time instant t, t ∈ {0, 1, 2, . . .}, the state of the robot is described as
st = (pt, vt−1, pg, vf , ρ) ∈R

8, where pt = (xt, yt) is the robot’s position at t, and vt−1 = (vxt−1, vyt−1) is the
velocity in the time duration [(t − 1)�t, t�t). The motion command at t is vt, that is, the velocity in the
duration [t�t, (t + 1)�t). Note that for unicycle kinematics, vt can be represented by (v, θ ), that is, the
speed and the orientation, resulting in vxt = v cos θ and vyt = v sin θ . The set of detected obstacles at
t is denoted as Ot = {o1, . . . , omt}, and the state of each obstacle oi is denoted as si

t = (pi
t, vi

t, ρi), where
pi

t = (xi
t, yi

t), vi
t = (vxi

t, vyi
t), and ρi are the position, velocity, and safe radius of oi at t, respectively. The

state sequence of the obstacles at t is denoted as s(Ot). Hence, the motion problem for the robot can be
described as:

arg min
v0,v1,...,vT−1

T (1)

s.t. pt+1 = pt + vt�t, ∀t ∈ {0, 1, . . . , T − 1}; (2)

‖pt − pi
t‖ ≥ ρ + ρi, ∀oi ∈Ot, t ∈ {0, 1, . . . , T}; (3)

p0 = pI , pT = pG. (4)
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Figure 1. The adversary performs obstacle localization attacks in a robot system via different attack
ways.

According to [12, 14], such a problem can be resolved efficiently with the DRL framework by
maximizing the value function:

v∗
t = arg max

v∈A
R(st, s(Ot), v) + γ �tvf V∗(st+1,v, s(Ot+1)),

V∗(st, s(Ot)) =
T−1∑

t
′=t

γ (t
′−t)�tvf R((st

′ , s(Ot
′)), v∗

t
′ ).

whereA is the set of predefined actions, γ ∈ [0, 1] is a discount factor, R(st, s(Ot), vt) is one-step reward
at st by taking vt, and st+1,v is the robot’s next state under the action v. Following [14], the reward function
is defined as follows:

R(st, s(Ot), vt) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, pt+1 = pg

−0.25, dmin ≤ 0

−0.1 + 0.5dmin, 0 < dmin ≤ 0.2

0, otherwise

where dmin is the minimal distance between the robot and the obstacles in Ot during the time duration
[t�t, (t + 1)�t].

2.2. Obstacle localization attacks (OLAs)
2.2.1. Threat model
In this paper, we consider OLAs against a robot. Particularly, as shown in Fig. 1, a robot has two ways to
retrieve the surrounding obstacles’ positions. The first one is to retrieve the obstacles’ positions via the
equipped sensors, such as cameras and LiDARs. The second one is via communication: When a robot
can communicate with the surrounding obstacles, such as other robots in a multi-robot system, it can
also retrieve the obstacles’ positions via communication. We assume that the retrieved positions may be
malicious and can be modified by the adversary. Several reasons make this assumption realistic. (1) The
equipped sensors may suffer from attacks, such as jamming attacks and spoofing attacks, such that they
cannot be used to localize the positions of obstacles. (2) The communication network among robots is
vulnerable to communication attacks [40, 41], and the attacker can modify data-in-transit or even cut off
communication among robots [42]. (3) Some robots may be intruded into via the system vulnerabilities
of the robot and send malicious messages to others [26].
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Figure 2. Effects of position errors on the motion planning of a robot. The circles represent the real
positions of the two obstacle robots. The arrows indicate their motion velocities. The red dashed circle
represents r’s received position of o2.

We assume that a robot can be under attack at some time instant while attack-free at another time
instant. Hence, as shown in Fig. 1, we assume that during the motion of robots, the attacker has one of the
following three capabilities: (1) interfering with the related sensors (e.g., LiDAR) such that they cannot
localize the surrounding obstacles accurately, (2) modifying the positions transmitted in the communi-
cation network, and (3) manipulating a robot to send a fake position to the communication network. We
also assume the attacker cannot access the control software and hence cannot bypass ObsGAN-DRL. This
assumption can be guaranteed via different technologies, such as partitioning operating systems [43]. In
addition, all robots are assumed to be able to locate their own positions accurately. Several technologies
can guarantee this assumption, such as multiple sensor fusion [44].

2.2.2. Example of OLAs
Under OLAs, a robot may receive fake positions of the obstacles. As shown in Fig. 2, o1 and o2 are two
robots that can communicate with the robot r. At the current time t, the real position of o2 is p2

t = (x2
t , y2

t ).
However, due to OLAs, the received position by r is p̃2

t = (x̃2
t , ỹ2

t ).

2.3. Motivation and problem statement
In the case of OLAs, there are errors between the real positions and the retrieved positions of the sur-
rounding obstacles. Such errors may lead the robot to make a wrong decision and cause collisions. For
example, as shown in Fig. 2, the robot and the two obstacles are at pt, p1

t , and p2
t , respectively. Therefore,

the robot is expected to plan the blue path to move to the target pG. However, due to OLAs, the robot r
received a wrong position of o2, that is, p̃2

t . According to the wrong position, r will move directly to the
target. Consequently, the robot r collides with o2 at the position p2

c .
Therefore, to generate a collision-free trajectory in an adversarial environment with OLAs, the robot

needs to mitigate the detrimental effects of OLAs. Hence, the problem studied in this paper can be
described as follows:

Problem 1: Given a robot navigating through an adversarial environment with OLAs and varying obsta-
cles, design a robust motion planning method such that the robot can move toward its target safely and
efficiently without any attack detector.

Remark 1. Note that following other research [1, 13, 14, 15, 18], we focus on the design of a motion
planner for a robot and assume that the functionalities of other modules can always work well. It means
that given an input, the corresponding module can output the right output with respect to the input.
However, these inputs may be attacked, resulting in fake outputs from the modules. Specifically, in this
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Figure 3. The general architecture of our robust motion planning method.

Figure 4. The architecture and training process of generative adversarial network model for obstacle
localization attacks mitigation.

paper, we focus on the attacks against the input of the perception module and the communication network
that can result in fake positions of the surrounding objects, e.g., other robots.

3. ObsGAN-DRL: robust approach against OLAs with GAN
In this section, we will introduce our robust motion planning algorithm. The main idea is to approximate
the real positions of the obstacles before they are used to compute a collision-free method. Fig. 3 shows
the general architecture. It contains two modules: the security module, which is used to mitigate the
attacked data and generate the approximation of the benign data, and the functionality module, which is
used to generate the motion command.

3.1. GAN-based attack mitigation module
In this section, we detail the GAN-based attack mitigation strategy. Besides the primary objective of
GAN models, which is generating synthetic data by learning the underlying data distribution, our method
should also ensure that the generated positions accord with the kinematic constraints. Hence, we need
to modify the general loss function in GAN. To correct the robot’s attacked positions, we train a GAN
model to generate the potential positions of the robot under OLAs. The main training purpose is to
guide the generator in learning the real data distribution and the latent features of the real positions, so
the generator can approximate the real data based on historical records. Fig. 4 shows the training process
of our GAN model. Since the position of an obstacle relies on the position and velocity at the previous
time instant, the training data should contain the previous state to learn the latent features of the real
positions. Hence, the training data can be described as Z = {(pt−1, vt−1, pt)}. At each episode, we sample
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a subset Z1 to generate a set of synthetic data Ẑ1 for the training of the generator and a subset Z2 for the
training of the discriminator.

(1) Generator. The generator G is a multi-layer perceptron (MLP). The input of G is a faked data set
Ẑ1 from the sampled real data set Z1, where

Ẑ1 = {ẑi
t = (pi

k−1, vi
t−1, p̂i

t)|∀zi
t = (pi

t−1, vi
t−1, pi

t) ∈ Z1}
where p̂i

t = (x̂i
t, ŷi

t) is a random value simulating the results of OLAs; pi
t−1 = (xt−1, yt−1) and vi

t−1 =
(vxt−1, vyt−1) are the recorded position and velocity at the previous time step. Note that during the infer-
ence stage, the position at t − 1 is the position generated by the generator at t − 1, rather than the retrieved
one. The output of G is the potential position of an obstacle: p̃i

t = (x̃t, ỹt). Hence, we have

p̃i
t = G(zt; θG) (5)

where θG are the parameters of G that need to be learned. According to the generated positions, we can
obtain a set of generated samples: Z̃1 = {z̃i

t = (pi
t−1, vi

t−1, p̃i
t)|p̃i

t = G(ẑt; θG)}.
(2) Discriminator. The discriminator D is another MLP. It takes a real dataset Z2 = {zi

t = (pi
t−1, vi

t−1, pi
t)}

and the generated dataset Z̃1 = {z̃i
t = (pi

t−1, vi
t−1, p̃i

t)} as inputs and generates the classification result li
t =

D(z; θD) for each z ∈ Z̃1

⋃
Z2, where θD are the parameters of D to be learnt.

(3) Loss Functions. As the general GAN models, the loss function for the discriminator can be
written as:

LossD =Ez∈Z2 [ log D(z; θD)] +Ez̃∈Z̃1
[ log (1 − D(z̃, θD)]

The loss function for the generator is written as:

LossG =Ez̃∈Z̃1
[ log (1 − D(z̃; θD)] +

∑
zi
t∈Z1

‖zi
t − z̃i

t‖
|Z1|

Note that z̃ is function of θG.
Hence, the training process is to maximize LossD while minimizing LossG, which is shown in

Algorithm 1. It is performed by optimizing the following two optimization problems in sequence via
gradient descent.

min
θD

−LossD (6)

min
θG

LossG (7)

3.2. Robust motion planning
Following the GAN-based mitigation strategy, we propose our robust motion planning method
ObsGAN-DRL. The architecture of ObsGAN-DRL is shown in Fig. 5, and the detailed motion planning
process with ObsGAN-DRL is given in Algorithm 2. At any time instant, suppose the detected obstacles’
states are St = {si

t = (pi
t, vi

t, ρ
i)|oi ∈Ot}. Under ObsGAN-DRL, St is processed by the well-trained gener-

ator (Lines 5–10); then, the resulting states S̃t = {s̃i
t = (p̃i

t, vi
t, ρ

i)|oi ∈Ot}, where p̃i
t is generated by the

generator, are sent to the DRL model to generate the corresponding command (Lines 11–17). Note that
the training of the DRL model can be referred to ref. [16]. In the DRL model, the obstacles are sorted in
ascending order with respect to their collision criticality based on the states S̃t; then, the corresponding
LSTM model takes the sorted obstacles’ states as input and generates a unified hidden state; finally, the
MLP model in the DRL model takes the robot’s state and the hidden state as input, computes the cor-
responding values for all action candidates, and returns the one with the maximal value. The motion is
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Algorithm 1: Training of GAN model.

Input: Training episodes gan for GAN.
Output: The trained Generator model.

1 Collect a training dataset via conventional motion planning algorithms, such as ORCA [45];
2 Initialize the generator model and the discriminator model ;
3 for = 1 : do
4 Slice up the training data into mini-batches;
5 for each mini-batch 2 do

/* Train */
6 Randomly select a data set from with the same number of samples in 2 , denoted as 1 ;
7 For each sample in 1 , replace its current position with a random value, and the new set is

denoted as ;
8 Update by solving Equation 6 using gradient descent based on ˆ1 and 2 ;

/* Train */
9 Randomly select a data set from with the same number of samples in 2 , denoted as 3 ;

10 Replace the current positions in 3 by the output of the Generator and denote the new set as ;
11 Update by solving Equation 7 using gradient descent based on ˜3 and 3 ;

12 return

Z
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Z Z

Z

Z Z

ZZ

Z

Z
Z
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G

D

G
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DG
gan

ˆ1Z
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h
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Figure 5. The framework of ObsGAN-DRL.

completed if the robot reaches its destination within a given error tolerance ε or a collision is detected
during the movement from pt to pt+1 (Line 21).

4. Experimental evaluation
In this section, we conduct simulations to validate the performance of attack mitigation of ObsGAN-DRL
in different scenarios. Specifically, we first evaluate the performance of ObsGAN-DRL with a varying
number of obstacles under two OLAs (Section 4.2). Then, we compare our GAN-based mitigation strat-
egy with the KF and PF, which are the state-of-the-art mitigation methods for OLAs (Section 4.3).
Thirdly, we evaluate the compatibility of the GAN-based with the socially attentive reinforcement learn-
ing (SARL) method [15], another DRL method for motion planning, and optimal reciprocal collision
avoidance (ORCA), a conventional motion planning method (Section 4.4). Finally, in Section 4.5, we
evaluate our method via realistic simulation experiments on the well-established simulator Gazebo with
Robot Operating System (ROS). Three AscTec Firefly drones are simulated in Gazebo, where one is
controlled by our method and the other two are obstacles.
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Algorithm 2: Motion planning with ObsGAN-DRL.

Input: The well-trained Generator model and the Value-based DRL model , action space A, the
reference speed , the probability for greedy selection , the initial and target positions p0 and p ,
maximal motion steps and discrete time step Δ .

Output: The trajectory

done False

P.

1 = ; = 0; = (p0 , 0, p );
2 P = P { };
3 while not done do
4 Retrieve the observable states of the surrounding obstacles St ;
5 ˜ = ∅;
6 for = (p , v ) ∈ do
7 Retrieve the previous state sorted in the robot;
8 Compute the approximate position p̃ using ;
9 = ∪ {( , v )};

10 Update the previously stored state to ( , v );

11 Predict the next states of the obstacles based on ;
12 Sort based on their collision criticality;
13 Generate a random value between [0, 1];
14 if then
15 Select v randomly from A;
16 else
17 v = arg max R

v∈A
( , ˜ , v) + Δ ( +1,v );

18 Move to the next position p +1 with v ;
19 +1 = (p +1 , v , p );
20 P = P { };
21 if − p ≤ or (p , p +1 ) or ≤ then
22 =
23 = + 1;
24 return P.
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4.1. Simulation setup
For the training of the GAN model, we collect 1,055,791 samples via ORCA [45]. The network archi-
tectures of the generator and the discriminator are (6, 128, 64, 2) and (6, 128, 64, 1), respectively. We
train the generator and the discriminator iteratively for 50 epochs, with a batch size of 64. Their initial
learning rates are 0.001. In the training phase of the generator, to simulate OLAs, the attacked position
p̂t in each zt is generated from the Gaussian distribution N(0, 1).

For training of the DRL model, the preferred speed vf = 1, the safe radius ρ = 0.3, and the
action space A= {(vi cos θj, vi sin θj)|vi = (ei/5 − 1)/(e − 1), θj = j/8, i = 0, 1, · · · , 5, j = 0, · · · , 7}. In
each replay, each obstacle is randomly located and needs to move to the opposite location with respect
to the origin of the coordinates. In addition, ηgan = 10, 000, μ = 1, ω = 50, Tm = 100, �t = 0.25, and
γ = 0.9. The exploration rate of ε-greedy policy decreases linearly from 0.5 to 0.1 in the first 4,000
episodes and stays at 0.1 for the remaining episodes. The dimension of the LSTM’s hidden state is 50,
and it is initialized with a zero vector. The architecture of the value network is (150, 100, 100, 1). The
LSTM model and value network are trained simultaneously with 10 obstacles. The number of obstacles
during the testing varies from 1 to 14. During the training phase, the learning rate is 0.001. All models
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Table I. Overall performance analysis of our generative adversarial network (GAN)-
based mitigation.

Success Collision Timeout Motion Cumulative
Rate Rate Rate Time Reward

Normal 0.954 0.045 6.67E-05 7.78 0.342
Normal+GAN 0.897 0.103 6.67E-05 7.81 0.313

Disturbance 0.619 0.381 0 7.86 0.155
Replacement 0.453 0.547 0 8.04 0.057
Disturbance+GAN 0.898 0.102 6.67E-05 7.81 0.313
Replacement+GAN 0.906 0.094 6.67E-05 7.80 0.317
Note: The sum of success, collision, and timeout rates may not equal 1 due to rounding.

are implemented in PyTorch. Please refer to ref. [16] for the performance of the DRL-based planner
under a different number of obstacles.

To show the mitigation capacity of ObsGAN-DRL, we investigate two kinds of attacks. The first one
is disturbance attacks, where the position of each obstacle is modified by adding a random value. The
second kind is replacement attacks, where the positions of other robots are replaced by random values.
All the random values are generated from the standard normal distribution. Moreover, the attacks are
launched at the 5th time step.

For testing scenarios, we randomly generate 10 test sets, each of which contains five groups based
on the number of obstacles in the test cases: {1, 2, 3, 4}, {5}, {6, 7, 8, 9}, {10}, and {11, 12, 13, 14}.
Each group in each set contains 300 test cases, resulting in each test set containing 1,500 test cases. We
perform six experiments on the 10 test sets:

• normal: It is the baseline where the test cases are tested without any attacks or mitigations;
• disturbance: It is an attacked situation where the test cases are executed under disturbance

attacks;
• replacement: It is another attacked situation where the test cases are executed under replacement

attacks;
• normal+GAN: It is the situation in which each test case is pre-processed by the generator;
• disturbance+GAN: It is the application of ObsGAN-DRL under disturbance attacks;
• replacement+GAN: It is the application of ObsGAN-DRL under replacement attacks.

4.2. Overall performance of ObsGAN-DRL
In this section, we present the experimental results of ObsGAN-DRL. Table I illustrates the overall per-
formance across the six experiments on the ten test sets. Notably, the last two columns provide specific
insights into the quality of the generated paths. From the table, we can find that the attacks not only sig-
nificantly diminish the success rate (0.954 vs. 0.619 for the disturbance attack and 0.954 vs. 0.453 for the
replacement attack) but also degrade the path quality, manifested in increased motion time and reduced
cumulative rewards. Therefore, an attack mitigation method is necessary for adversarial environments
with OLAs.

From Table I, we also note a marginal decrease in the success rates for the GAN-based scenarios. To
identify the reasons, we investigate the average success rates for each test group. Recall that the test cases
in each test set are grouped based on the number of obstacles present. The results are given in Fig. 6.
The figure shows that in the normal experiment, the average group success rate for the group with 11
to 14 obstacles is 0.821, significantly lower than the success rates for other groups (≥ 0.96). This, in
turn, causes the performance of the GAN-based method to degrade from an average of 0.955 in the first
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(a) (b)

Figure 6. Average success rates for different groups in different experiments.

four groups to 0.668 in the group with 11 to 14 obstacles. Moreover, in the GAN-based experiments, the
average group success rates after GAN mitigation in this group are 0.671 and 0.680 for disturbance and
replacement attacks, respectively, while the corresponding average success rates without mitigation are
0.362 and 0.178, resulting in 85.4% and 282% improvement in the average success rate. We can find that
our strategy can still mitigate attacks significantly in the group with 11–14 obstacles. The primary reason
for the lower success rate than other groups after mitigation is that the current normal DRL method may
not perform optimally in the scenarios with 11–14 obstacles. From the results, we can conclude that the
success rate of our method is dependent on the success rate of the original motion planning methods. The
results indicate that the effectiveness of a mitigation method depends on both the mitigation technique
itself and the original motion planning methods. Therefore, it is essential to focus not only on attack
mitigation strategies but also on the development of effective motion planning methods.

Therefore, in the subsequent analysis, we focus on the first four groups, that is, test cases where
the number of obstacles varies from 1 to 10. It is important to note that it does not compromise the
effectiveness of our method. Table II shows the overall performance of ObsGAN-DRL on the refined
test cases, that is, test cases with 1–10 obstacles, and Fig. 7 shows the corresponding average success
rate in each test set (10 test sets in total). Note that disturbance+GAN and normal+GAN show very
similar performance, so their success rates are almost overlapped in Fig. 7. From the results of normal
and normal+GAN, we can find that the GAN-based security module does not significantly reduce the
performance of the DRL-based functionality module (the average success rates are 0.988 and 0.956,
respectively, and the average motion time for a scenario is 7.77 s and 7.80 s). Compared with disturbance
and disturbance+GAN, ObsGAN-DRL improves the performance significantly under disturbance attacks,
increasing the success rate by 42.75% (0.955 vs. 0.669). Similarly, ObsGAN-DRL significantly improves
the performance of the DRL model under replacement attacks, from 0.573 to 0.963. Moreover, according
to the average motion time, the attacks increase the motion time of success scenarios and reduce the
reward significantly due to the high collision rate, while the motion time and reward are similar to the
normal case after GAN-based mitigation.

In the sequel, we show the results of an example with two obstacles. Fig. 8 shows the paths under
different situations, and Fig. 9 virtualizes the actual and attacked paths of the two obstacles. Fig. 8a shows
the paths of the obstacles and the robot in the normal situation, while Figs. 8b and 8c show the robot’s
paths under disturbance and replacement attacks, respectively. Due to the attacks, the robot collides with
the obstacles without any mitigation strategy. Figs. 8d, 8e, and 8f are the paths of the robot in normal and
under disturbance and replacement attacks, respectively. From the figures, we can find that the mitigated
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Table II. Overall performance analysis for test cases with 1–10 obstacles.

Success Collision Timeout Motion Cumulative
Rate Rate Rate Time Reward

Normal 0.988 0.012 8.33E-05 7.77 0.367
Disturbance 0.683 0.317 0 7.86 0.194
Replacement 0.522 0.478 0 8.02 0.097
Normal+GAN 0.955 0.045 8.33E-05 7.80 0.350
Disturbance+GAN 0.955 0.045 8.33E-05 7.80 0.350
Replacement+GAN 0.963 0.037 8.33E-05 7.79 0.354
Note: The sum of success, collision, and timeout rates may not equal 1 due to rounding.

Figure 7. Average success rates for the test cases with 1–10 obstacles in the 10 sets.

paths can achieve a similar performance to the normal one. Note that as shown in Fig. 9, the two attacks
are different.

To further validate the significant improvement of ObsGAN-DRL, the analysis of statistical significance
between the situations without and with GAN mitigation is conducted. In this paper, we perform t-test
for equal means. The results are shown in Table III. According to the t-test results, we can conclude that
the results are significant, which means that ObsGAN-DRL can mitigate attacks rather than by chance.

Finally, we show the mitigation performance of our strategy under different attacks. In detail, we
generate new attacked positions from a new Gaussian distribution N(0, 2) and a uniform distribution
Uniform(−4, 4), respectively, for the disturbance and replacement attacks. The comparison results are
given in Table IV. From the results, we can find that even though the original motion planning method
shows different performance under different attacks, our GAN-based mitigation strategy can guarantee
that the motion planning method achieves similar success rates to the normal one.

Therefore, we can conclude that ObsGAN-DRL is a general mitigation method that can effectively
mitigate different OLAs against the surrounding obstacles’ positions.
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(a) (b) (c)

(d) (e) (f)

Figure 8. An illustrative example to show the effectiveness of ObsGAN-DRL, where the circles are the
end positions of the robot and the obstacles.

(a) (b)

Figure 9. The attacks generated in Fig. 8.

4.3. Performance comparison with other mitigation methods
Currently, there is little work on the mitigation of OLAs in terms of obstacles. Hence, in this section,
we show the performance comparison with the KF [37] method and the PF [39] method. In detail, KF
combines the sensor readings and the predicted positions to provide more accurate position estimations.
PF uses a set of weighted particles to increase localization robustness and accuracy. We use Matlab’s
System Identification Toolbox to generate the dynamics for the prediction stage of KF. For PF, we ini-
tialize 50 particles using the Monte Carlo method. Fig. 10 shows the comparison of the average success
rate for three mitigation methods in each test set. From the results, we can find that the proposed GAN

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001115
Downloaded from https://www.cambridge.org/core. IP address: 3.139.88.57, on 21 Nov 2024 at 22:15:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001115
https://www.cambridge.org/core


2794 Fenghua Wu et al.

Table III. Significance test for the deep reinforcement learning (DRL)
model and ObsGAN-DRL under different attacks.

Attack Method Mean Variance T-Test
Disturbance w/o GAN 0.683 5.46E-5 3.86E-24

w/ GAN 0.955 5.75E-5

Replacement w/o GAN 0.522 1.03E-4 1.82E-27
w/GAN 0.963 2.17E-5

Table IV. Average success rate for test cases with 1–10 obstacles under different attack strengths.

Method
Attack
Strength # Obstacles Disturbance Replacement Disturbance+GAN Replacement+GAN
N(0,1) 1-4 0.78 0.739 0.987 0.992

5 0.686 0.521 0.976 0.985
6-9 0.67 0.436 0.946 0.959
10 0.596 0.392 0.911 0.915

avg. 0.683 0.522 0.955 0.963

N(0,2) 1-4 0.91 0.75 0.987 0.991
5 0.83 0.631 0.974 0.983

6-9 0.761 0.55 0.947 0.959
10 0.625 0.482 0.912 0.916

avg. 0.782 0.603 0.955 0.962

Uniform(−4,4) 1-4 0.96 0.917 0.976 0.991
5 0.891 0.785 0.966 0.984

6-9 0.803 0.749 0.948 0.957
10 0.797 0.671 0.905 0.915

avg. 0.838 0.781 0.949 0.962

method outperforms the other two. Specifically, compared with KF, the average success rate of the GAN
method increases from 0.694 to 0.955 for disturbance, and increases from 0.693 to 0.963 for replace-
ment. Compared with PF, the GAN method also shows a significant performance improvement (0.596 vs
0.955 for disturbance and 0.600 vs 0.963 for replacement). Table V shows the performance of the three
mitigation methods in each group in terms of the average success rate. From the table, we can find that
under KF, the performance reduces significantly when the number of obstacles increases, from 0.796
to 0.625 under disturbance attacks and from 0.790 to 0.619 under replacement attacks, while our GAN
method can keep a relatively stable success rate. For PF, a similar diminishing trend can be observed,
decreasing from 0.663 to 0.561 under disturbance attacks and from 0.666 to 0.560 under replacement
attacks when the number of obstacles increases.

To investigate the reason for the outperformance of the GAN model, we further calculate the mitiga-
tion error of three mitigation methods. The results show that the GAN method significantly outperforms
the other two methods, achieving the lowest average mitigation errors of 0.032 and 0.022 for disturbance
attack and replacement attack, respectively. The reason is that by precisely correcting the attacked posi-
tions via the well-trained generator, the positions received by the DRL model are closer to the real ones.
Therefore, ObsGAN-DRL can generate better motion commands.
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Figure 10. Comparison of success rates of the generative adversarial network, Kalman filter, and
particle filter mitigation strategies in each test set.

Finally, to further validate the performance of ObsGAN-DRL, we perform t-test for equal mean
checking. The results are shown in Table VI, which indicates the results are significant. It means that
ObsGAN-DRL can achieve better performance than KF-based and PF-based methods.

4.4. Mitigation performance with other motion planning methods
Finally, we evaluate the compatibility of the GAN-based mitigation with other motion planning algo-
rithms. In this paper, we select ORCA [45] and SARL [15]. The former is a conventional motion planning
algorithm. In ORCA, each robot takes the responsibility of avoiding pairwise collisions evenly, and then
the optimal action for each agent is determined by solving a low-dimensional linear program. The latter
is a DRL-based method, which contains four MLPs: the first one is an embedding model, which transfers
the input state to an embedding vector; the second is an attention model, which takes the embedding
vector as input and computes the attention score for each obstacle; the third one is a feature module,
which generates a feature vector for each obstacle; and the last is the value network, which takes the
weighted feature and the robot’s state as input to compute the values. The architecture of each model
can be found in ref. [15]. The parameters for the training are the same as those given in Section 4.1.

Fig. 11 shows the success rates of either method in each test set. For ORCA, the GAN-based miti-
gation strategy improves the average success rate from 0.172 to 0.908 under the disturbance attack, and
from 0.15 to 0.91 under the replacement attack. For SARL, the GAN-based mitigation strategy improves
the average success rate from 0.66 to 0.95 under the disturbance attack, and from 0.446 to 0.956 under
the replacement attack. We can find that on one hand, learning-based methods are more robust against
OLAs than conventional methods; on the other hand, our proposed mitigation method can significantly
improve the success rates for both conventional and learning methods. Hence, our GAN-based mitigation
strategy can be compatible with other motion planning methods.

4.5. Experiments in Gazebo
We evaluate our algorithm on RotorS, a well-established and high-fidelity Gazebo simulator. Gazebo is
the mainstream open-source platform that can accurately reflect the physical characteristics of real-world
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Table V. Comparison of average success rates in each group under different mitigation
strategies.

Average Average
Success Mitigation

Attack Method 1–4 5 6–9 10 Rate Error
Disturbance GAN 0.987 0.976 0.946 0.911 0.955 0.032

KF 0.796 0.700 0.657 0.625 0.694 0.419
PF 0.663 0.574 0.588 0.561 0.596 0.778

Replacement GAN 0.992 0.985 0.959 0.915 0.963 0.022
KF 0.790 0.702 0.659 0.619 0.693 0.661
PF 0.666 0.575 0.597 0.560 0.600 0.834

Table VI. Significance test for generative adversarial network (GAN), Kalman filter
(KF), and particle filter (PF) mitigation strategies under different attacks.

Attack Mitigation Mean Variance T-Test
Disturbance GAN/KF 0.955/0.694 5.75E-5/1.74E-4 1.101E-17

GAN/PF 0.955/0.596 5.75E-5/8.40E-5 3.286E-24

Replacement GAN/KF 0.963/0.693 2.17E-5/8.6E-5 3.101E-24
GAN/PF 0.963/0.600 2.17E-5/1.08E-04 3.286E-24

(a) (b)

Figure 11. The success rates of the generative adversarial network mitigation strategy with different
motion planning algorithms.

robots. Three AscTec Firefly drones are developed to simulate the robot and obstacles in an environment.
They can communicate via the topic subscription and publication in ROS. Each drone is simulated with a
ROS node deployed on Ubuntu 18.04 with ROS Melodic, to execute the motion planning algorithms and
generate motion commands. The safety radius of each drone is 0.3 m, and the robot drone is required to
move from (0, −4) to (0, 4). Note that since the rotation of rotors will cause changes in the surrounding
airflow, the safety radius is larger than the physical radius of the drones. All videos of simulations can
be found at https://obsgan-drl.github.io/.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001115
Downloaded from https://www.cambridge.org/core. IP address: 3.139.88.57, on 21 Nov 2024 at 22:15:39, subject to the Cambridge Core terms of use, available at

https://obsgan-drl.github.io/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001115
https://www.cambridge.org/core


Robotica 2797

(a) (b) (c)

Figure 12. RotorS experiments with two obstacles under the disturbance attack. The robot causes a
collision with the obstacle and falls completely.

(a) (b) (c)

Figure 13. RotorS experiments with two obstacles under the disturbance attack and mitigation. The
robot arrives at the target position successfully.

4.5.1. Experiments with disturbance attack
In this scenario, the two obstacle drones are required to move from (3.389, 1.731) to (−2.067, −0.997)
and from (−2.313, −3.121) to (1.939, 2.319), respectively. Fig. 12a shows the initial states of three
drones. As shown in Fig. 12b, due to the disturbance attack, the robot drone causes a collision with
obstacle 0 and falls to the ground. Fig. 12c shows the real trajectories of the three drones. As shown in
Figs. 13a–13c, with the proposed GAN-based mitigation strategy, the robot drone can correct attacked
positions of the surrounding obstacles and navigate itself to its target successfully.

4.5.2. Experiments with replacement attack
In this scenario, the two obstacle drones are required to move from (−3.471, −2.182) to (2.651, 1.628)
and from (−3.510, 2.054) to (2.171, −1.354), respectively. Figure 14a shows the initial states of three
drones. As shown in Fig 14b, due to the replacement attack, the robot drone affected the rotors of obstacle
drone 0 first, and then obstacle drone 0 affected the rotors of obstacle drone 1, losing the stability of the
three drones. Figure 14c shows the traveled trajectories of three drones. From Figs. 15a–15c, we can
find that the GAN-based mitigation strategy can deal with the attack successfully and navigate the robot
drone to its target.

4.6. Discussion
In this paper, we proposed a GAN-based strategy to deal with position attacks against the surrounding
obstacles. Our simulation experiments show that the proposed method can deal with such attacks effi-
ciently. However, it also suffers from some threats concerning the training of the GAN model. On one
hand, the available attack data might be limited in terms of the types and diversity of attacks in the real
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(a) (b) (c)

Figure 14. RotorS experiments with two obstacle robots under the replacement attack. The rotors of
the robot and the obstacle cause a collision.

(a) (b) (c)

Figure 15. RotorS experiments with two obstacle robots under the replacement attack and mitigation.
The robot arrives at its target successfully.

world, and it is challenging to collect comprehensive datasets that cover the entire spectrum of potential
attacks. They will affect the generalization of the trained GAN model. To mitigate this limitation, we
focus on the final influence of attacks, that is, the value of obstacle positions, which can reduce the influ-
ence of attack types and diversity; we also implement two ways to generate attacked locations. On the
other hand, our attack data are generated from a simulation environment, which introduces the sim-to-
real gap. Therefore, the GAN model trained in simulations may not perform as expected when deployed
in the real world. To mitigate this limitation, we generate diverse data in simulations to enhance the
model’s ability to handle real-world variations.

5. Conclusion
In this paper, we propose a detector-agnostic method ObsGAN-DRL based on GAN and DRL models
to mitigate OLAs in environments with a varying number of obstacles. The proposed method contains
a security module, which leverages the GAN model to generate approximate accurate positions of the
surrounding obstacles, and a functionality module, which leverages the LSTM-guided DRL method to
deal with a varying number of obstacles and generate collision-free commands. The results show that
the proposed can mitigate OLAs with good performance and compatibility.

In the future, we will integrate ObsGAN-DRL with more DRL methods and compare their performance
and scopes of application. We will also study more complex attack scenarios and design unified attack
mitigation methods to enhance the security and robustness of mobile robot systems. In addition, we will
focus on obtaining more effective and robust motion planning methods.
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