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Abstract. Given β ∈ (1, 2], let Tβ be the β-transformation on the unit circle [0, 1) such
that Tβ(x) = βx(mod 1). For each t ∈ [0, 1), let Kβ(t) be the survivor set consisting
of all x ∈ [0, 1) whose orbit {T n

β (x) : n ≥ 0} never hits the open interval (0, t). Kalle
et al [Ergod. Th. & Dynam. Sys. 40(9) (2020) 2482–2514] proved that the Hausdorff
dimension function t �→ dimH Kβ(t) is a non-increasing Devil’s staircase. So there exists
a critical value τ(β) such that dimH Kβ(t) > 0 if and only if t < τ(β). In this paper,
we determine the critical value τ(β) for all β ∈ (1, 2], answering a question of Kalle
et al (2020). For example, we find that for the Komornik–Loreti constant β ≈ 1.78723,
we have τ(β) = (2 − β)/(β − 1). Furthermore, we show that (i) the function τ : β �→
τ(β) is left continuous on (1, 2] with right-hand limits everywhere, but has countably
infinitely many discontinuities; (ii) τ has no downward jumps, with τ(1+) = 0 and
τ(2) = 1/2; and (iii) there exists an open set O ⊂ (1, 2], whose complement (1, 2] \ O

has zero Hausdorff dimension, such that τ is real-analytic, convex, and strictly decreasing
on each connected component of O. Consequently, the dimension dimH Kβ(t) is not
jointly continuous in β and t. Our strategy to find the critical value τ(β) depends
on certain substitutions of Farey words and a renormalization scheme from dynamical
systems.
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1. Introduction
The mathematical study of dynamical systems with holes, called open dynamical systems,
was first proposed by Pianigiani and Yorke [27] in 1979. In recent years, open dynamical
systems have received considerable attention from both theoretical and applied perspec-
tives (cf. [13–15]). In the general setting, one considers a discrete dynamical system
(X, T ), where X is a compact metric space and T : X → X is a continuous map having
positive topological entropy. Let H ⊂ X be an open connected set, called the hole. It is
interesting to study the set of points x ∈ X whose orbit {T n(x) : n ≥ 0} never hits the hole
H. In other words, we are interested in the survivor set

K(H) = {x ∈ X : T n(x) /∈ H for all n ≥ 0} = X \
∞⋃

n=0

T −n(H).

It is known that the size of K(H) depends not only on the size but also on the position of
the hole H (cf. [7]). In [29, 30], Urbański considered C2-expanding, orientation-preserving
circle maps with a hole of the form (0, t). In particular, he proved that for the doubling map
T2 on the circle R/Z ∼ [0, 1), that is, T2 : [0, 1) → [0, 1); x �→ 2x(mod 1), the Hausdorff
dimension of the survivor set K2(t) := {x ∈ [0, 1) : T n

2 (x) /∈ (0, t) for all n ≥ 0} depends
continuously on the parameter t ∈ [0, 1). Furthermore, he showed that the dimension
function η2 : t �→ dimH K2(t) is a devil’s staircase, and studied its bifurcation set.
Carminati and Tiozzo [9] showed that the function η2 has an interesting analytic property:
the local Hölder exponent of η2 at any bifurcation point t is equal to η2(t). For the doubling
map T2 with an arbitrary hole (a, b) ⊂ [0, 1), Glendinning and Sidorov [18] studied (i)
when the survivor set K2(a, b) = {x ∈ [0, 1) : T n

2 (x) /∈ (a, b) for all n ≥ 0} is non-empty;
(ii) when K2(a, b) is infinite; and (iii) when K2(a, b) has positive Hausdorff dimension.
They proved that when the size of the hole (a, b) is strictly smaller than 0.175092, the
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survivor set K2(a, b) has positive Hausdorff dimension. The work of Glendinning and
Sidorov was partially extended by Clark [10] to the β-dynamical system ([0, 1), Tβ) with
a hole (a, b), where β ∈ (1, 2] and Tβ(x) := βx(mod 1).

Motivated by the above works, Kalle et al [20] considered the survivor set in the
β-dynamical system ([0, 1), Tβ) with a hole at zero. More precisely, for t ∈ [0, 1), they
determined the Hausdorff dimension of the survivor set

Kβ(t) = {x ∈ [0, 1) : T n
β (x) /∈ (0, t) for all n ≥ 0},

and showed that the dimension function ηβ : t �→ dimH Kβ(t) is a non-increasing Devil’s
staircase. So there exists a critical value τ(β) ∈ [0, 1) such that dimH Kβ(t) > 0 if and
only if t < τ(β). Kalle et al [20] gave general lower and upper bounds for τ(β). In
particular, they showed that τ(β) ≤ 1 − 1/β for all β ∈ (1, 2], and the equality τ(β) =
1 − 1/β holds for infinitely many β ∈ (1, 2]. They left open the interesting question to
determine τ(β) for all β ∈ (1, 2]. In this paper, we give a complete description of the
critical value

τ(β) = sup{t : dimH Kβ(t) > 0} = inf{t : dimH Kβ(t) = 0} (1.1)

for each β ∈ (1, 2]. Qualitatively, our main result is the following.

THEOREM 1.
(i) The function τ : β �→ τ(β) is left continuous on (1, 2] with right-hand limits

everywhere (càdlàg), and, as a result, has only countably many discontinuities.
(ii) τ has no downward jumps.

(iii) There is an open set O ⊂ (1, 2], whose complement (1, 2] \ O has zero Hausdorff
dimension, such that τ is real-analytic, convex, and strictly decreasing on each
connected component of O.

Quantitatively, the main results are Theorem 2 and Propositions 6.2 and 6.3. Together
with Proposition 1.12, they specify the value of τ(β) for all β ∈ (1, 2]. In Proposition 1.9
below, we give an explicit description of the discontinuities of the map τ , which shows
that the dimension dimH Kβ(t) is not jointly continuous in β and t. The closures of the
connected components of the set O in Theorem 1(iii) form a pairwise disjoint collection
{Iα} of closed intervals which we call basic intervals (see Definition 1.5). In the remainder
of this introduction, we describe these basic intervals by using certain substitutions on
Farey words. We then give a formula for τ(β) on each basic interval (see Theorem 2)
and decompose the complement (1, 2]\ ⋃

α Iα into countably many disjoint subsets (see
Theorem 3), which are of two essentially different types. We then calculate τ(β) on each
subset.

To describe the critical value τ(β), we first introduce the Farey words, also called stan-
dard words (see [24, Ch. 2.2]). Following a recent paper of Carminati, Isola, and Tiozzo
[8], we define recursively a sequence of ordered sets (Fn)

∞
n=0. Let F0 = (0, 1), and for

n ≥ 0, the ordered set Fn+1 = (v1, . . . , v2n+1+1) is obtained from Fn = (w1, . . . , w2n+1)

by inserting for each 1 ≤ j ≤ 2n the new word wjwj+1 between the two neighboring
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words wj and wj+1. So,

F1 = (0, 01, 1), F2 = (0, 001, 01, 011, 1),

F3 = (0, 0001, 001, 00101, 01, 01011, 011, 0111, 1), (1.2)

and so on (see §2 for more details on Farey words). Set �∗
F := ⋃∞

n=1 Fn \ F0. Then each
word in �∗

F is called a non-degenerate Farey word. Note that any word in �∗
F has length

at least two, and begins with digit 0 and ends with digit 1. We will use the Farey words as
basic bricks to construct infinitely many pairwise disjoint closed intervals so that we can
explicitly determine τ(β) for β in each of these intervals. Furthermore, we will show that
these closed intervals cover (1, 2] up to a set of zero Hausdorff dimension.

The construction of these basic intervals depends on certain substitutions of Farey
words. For this reason, we need to introduce a larger class of words, called Lyndon words;
see [20, Lemma 3.2].

Definition 1.1. A word s = s1 . . . sm ∈ {0, 1}∗ is Lyndon if

si+1 . . . sm � s1 . . . sm−i for all 0 < i < m.

Here and throughout the paper, we use lexicographical order � between sequences and
words; see §2. The words 0 and 1 are (vacuously) Lyndon. Let �∗

L denote the set of all
Lyndon words of length at least two. Then by Definition 1.1, each s ∈ �∗

L has a prefix 0
and a suffix 1. It is well known that each Farey word is Lyndon (cf. [8, Proposition 2.8]).
Thus �∗

F ⊂ �∗
L.

Now we define a substitution operator • in �∗
L. This requires the following notation. By

a word we mean a finite string of zeros and ones. For any two words, u = u1 . . . um, v =
v1 . . . vn, we denote by uv = u1 . . . umv1 . . . vn their concatenation. Furthermore, we
write u∞ for the periodic sequence with periodic block u. For a word w = w1 . . . wn ∈
{0, 1}n, we denote w− := w1 . . . wn−10 if wn = 1, and w+ := w1 . . . wn−11 if wn = 0.
Furthermore, we denote by L(w) the lexicographically largest cyclic permutation of w.
Now for two words s = s1 . . . sm ∈ �∗

L and r = r1 . . . r� ∈ {0, 1}�, we define

s • r := c1 . . . c�m, (1.3)

where

c1 . . . cm =
{

s− if r1 = 0,

L(s)+ if r1 = 1,

and for 1 ≤ j < �,

cjm+1 . . . c(j+1)m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L(s) if rj rj+1 = 00,

L(s)+ if rj rj+1 = 01,

s− if rj rj+1 = 10,

s if rj rj+1 = 11.

For an equivalent definition of the substitution operator •, see §3.
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Example 1.2. Let r = 01, s = 001, and t = 011 be three words in �∗
F . Then L(r) = 10

and L(s) = 100. So, by equation (1.3), it follows that

r • s = r • 001 = r−L(r)L(r)+ = 001011 ∈ �∗
L,

s • t = s • 011 = s−L(s)+s = 000 101 001 ∈ �∗
L.

Then L(r • s) = 110010, and thus

(r • s) • t = (r • s) • 011 = (r • s)−L(r • s)+(r • s) = 001010 110011 001011,

and

r • (s • t) = r • 000101001

= r−L(r)L(r)L(r)+r−L(r)+r−L(r)L(r)+ = 00 10 10 11 00 11 00 10 11.

Hence, (r • s) • t = r • (s • t), suggesting that the operator • is associative. However,
observe that r • s = 00 10 11 = 000 101 = s • r. So • is not commutative.

From Example 1.2, we see that �∗
F is not closed under the substitution operator •, since

r • s = 001011 ∈ �∗
F . Hence we need the larger collection �∗

L. It turns out that �∗
L is a

non-Abelian semi-group under the substitution operator •.

PROPOSITION 1.3. (�∗
L, •) forms a non-Abelian semi-group.

Remark 1.4. The substitution operator • defined in equation (1.3) is similar to that
introduced by Allaart [1], who used it to study the entropy plateaus in unique
q-expansions.

Let

� := {S = s1 • s2 • · · · • sk : si ∈ �∗
F for any 1 ≤ i ≤ k; k ∈ N} (1.4)

be the set of all substitutions of Farey words from �∗
F . Then by Proposition 1.3 it

follows that �∗
F ⊂ � ⊂ �∗

L. Moreover, both inclusions are strict. For instance, 001011 =
01 • 001 ∈ �\�∗

F by Example 1.2 and Proposition 2.4 below, and 0010111 ∈ �∗
L\�.

Given β ∈ (1, 2], for a sequence (ci) ∈ {0, 1}N, we write

((ci))β :=
∞∑
i=1

ci

βi
.

Now we define the basic intervals.

Definition 1.5. A closed interval I = [β�, β∗] ⊂ (1, 2] is called a basic interval if there
exists a word S ∈ � such that

(L(S)∞)β�
= 1 and (L(S)+S−L(S)∞)β∗ = 1.

The interval I = IS is also called a basic interval generated by S.
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FIGURE 1. Graph of the critical value function τ(β) for β ∈ (1, 2]. We see that τ(β) ≤ 1 − 1/β for all β ∈ (1, 2],
and the function τ is strictly decreasing in each basic interval IS. For example, the basic interval generated
by the Farey word 01 is given by I 01 = [β�, β∗] ≈ [1.61803, 1.73867] with ((10)∞)β�

= (1100(10)∞)β∗ = 1.
Furthermore, for any β ∈ I 01, we have τ(β) = (00(10)∞)β = 1/β(β2 − 1); see Example 1.7 for more

details.

The subscripts for the endpoints β� and β∗ of a basic interval will be clarified when
we define the Lyndon intervals (see Definition 1.8 below). Our second main result gives a
formula for τ(β) when β lies in a basic interval IS.

THEOREM 2.
(i) The basic intervals IS, S ∈ � are pairwise disjoint.

(ii) If IS is a basic interval generated by S ∈ �, then

τ(β) = (S−L(S)∞)β for every β ∈ IS. (1.5)

(iii) The function τ is strictly decreasing on IS, and is real-analytic and strictly convex
in the interior of IS.

Remark 1.6. Note that (iii) follows immediately from (ii). For the special case when S ∈
�∗

F , the formula (1.5) was stated without proof by Kalle et al [20].

Example 1.7.
(i) Let s = 01 ∈ �∗

F . Then by Definition 1.5, the basic interval I 01 = [β�, β∗]
satisfies

(L(01)∞)β�
= ((10)∞)β�

= 1 and (L(01)+(01)−L(01)∞)β∗ = (1100(10)∞)β∗ = 1.
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By numerical calculation, we get I 01 ≈ [1.61803, 1.73867] (see Figure 1). In fact,
β� = (1 + √

5)/2. Theorem 2 yields that

τ(β) = (00(10)∞)β = 1
β(β2 − 1)

for all β ∈ I 01.

(ii) Let s1 = s2 = 01 ∈ �∗
F . Then S = s1 • s2 = 01 • 01 = 0011. By Definition 1.5, the

basic interval I s1•s2 = I 0011 = [β�, β∗] is given implicitly by

(L(0011)∞)β�
= ((1100)∞)β�

= 1,

(L(0011)+(0011)−L(0011)∞)β∗ = (11010010(1100)∞)β∗ = 1.

Numerical calculation gives I 0011 ≈ [1.75488, 1.78431] (see Figure 1), and
Theorem 2 implies

τ(β) = (S−L(S)∞)β = (0010(1100)∞)β = 1
β3 + 1 + β

β2(β4 − 1)
for all β ∈ I 0011.

Next, we introduce the Lyndon intervals.

Definition 1.8. For each Lyndon word S ∈ �∗
L, the interval J S = [βS

� , βS
r ] ⊂ (1, 2] is

called a Lyndon interval generated by S if

(L(S)∞)βS
�

= 1 and (L(S)+S∞)βS
r

= 1.

If in particular S ∈ �∗
F , we call J S a Farey interval.

We remark that the Farey intervals defined in [20, Definition 4.5] are half-open intervals,
which is slightly different from our definition. It turns out that the discontinuity points of
τ are precisely the right endpoints of the Lyndon intervals J S with S ∈ �.

PROPOSITION 1.9. The function τ is continuous on (1, 2]\{βS
r : S ∈ �}. However, for

each S ∈ �, we have

lim
β↘βS

r

τ (β) = (S∞)βS
r

> (S0∞)βS
r

= τ(βS
r ). (1.6)

Remark 1.10. Proposition 1.9 implies that although the dimension dimH Kβ(t) is contin-
uous in t for fixed β, it is not jointly continuous in β and t. In particular, when t = τ(βS

r )

for S ∈ �, the function β �→ dimH Kβ(t) has a jump at βS
r .

It was shown in [20, §4] that the Farey intervals J s, s ∈ �∗
F are pairwise disjoint, and

the exceptional set

E := (1, 2] \
⋃

s∈�∗
F

J s

has zero Hausdorff dimension. We strengthen this result slightly and show in Proposition
5.6(i) that E is uncountable and has zero packing dimension.

From Definitions 1.5 and 1.8, it follows that IS ⊂ J S for any S ∈ �, and the two
intervals IS and J S have the same left endpoint (see Proposition 5.1.) In Proposition 5.6(ii),
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we show that for any S ∈ �, the Lyndon intervals J S•r, r ∈ �∗
F are pairwise disjoint

subsets of J S \ IS, and the relative exceptional set

ES := (J S \ IS) \
⋃

r∈�∗
F

J S•r

is also uncountable and has zero box-counting dimension. In Proposition 5.1, we show that
the Lyndon intervals J S, S ∈ � have a tree structure. This gives rise to the set

E∞ :=
∞⋂

k=1

⋃
S∈�(k)

J S, (1.7)

where �(k) := {S = s1 • · · · • sk : si ∈ �∗
F for all 1 ≤ i ≤ k}. We call E∞ the infinitely

Farey set, because its elements arise from substitutions of an infinite sequence of Farey
words. It follows at once that E∞ is uncountable; we show in Proposition 5.8 that it has
zero Hausdorff dimension.

Combining the above results, we obtain our last main theorem.

THEOREM 3. The interval (1, 2] can be partitioned as

(1, 2] = E ∪ E∞ ∪
⋃
S∈�

ES ∪
⋃
S∈�

IS,

and the basic intervals {IS : S ∈ �} cover (1, 2] up to a set of zero Hausdorff dimension.

Remark 1.11. It is worth mentioning that the Lyndon intervals J S and the relative
exceptional sets ES constructed in our paper have similar geometrical structure as the
relative entropy plateaus and relative bifurcation sets studied in [2], where they were used
to describe the local dimension of the set of univoque bases.

The following result was established in the proof of [20, Theorem D].

PROPOSITION 1.12. For any β ∈ (1, 2], we have τ(β) ≤ 1 − 1/β. Furthermore,

τ(β) = 1 − 1
β

for any β ∈ E.

Thus, in view of Theorem 3, it remains to determine τ(β) for β ∈ ES with S ∈ �

and for β ∈ E∞. In Proposition 6.2, we compute τ(β) for β ∈ ES by relating the relative
exceptional set ES to the exceptional set E via a renormalization map 	S. Proposition 6.3
gives an expression for τ(β) when β ∈ E∞. As an illustration of the latter, in Proposition
6.4, we construct in each Farey interval J s a transcendental base βs∞ ∈ E∞ and give
an explicit formula for τ(βs∞). Here we point out an interesting connection with unique
β-expansions: Let β ≈ 1.78723 be the Komornik–Loreti constant (cf. [21]); that is, β is
the smallest base in which 1 has a unique expansion. Then it follows from Proposition 6.4
that β = β01∞ ∈ E∞, and τ(β) = (2 − β)/(β − 1) ≈ 0.270274.

The rest of the paper is organized as follows. In §2, we recall some properties of Farey
words and Farey intervals, as well as greedy and quasi-greedy β-expansions. In §3, we
give an equivalent definition of the substitution operator •, and prove Proposition 1.3. The
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proof of Theorem 2 is given in §4. At the heart of the argument is Proposition 4.1, which
clarifies the role of the special Lyndon words S ∈ � and is used in several settings to
derive the upper bound for τ(β). The relative exceptional sets ES, S ∈ � and the infinitely
Farey set E∞ are studied in detail in §5, where we show that all of these sets have zero
Hausdorff dimension, proving Theorem 3. In §6, we determine the critical value τ(β) for
β in the relative exceptional sets ES and the infinitely Farey set E∞. Finally, in §7, we
show that the function β �→ τ(β) is càdlàg, and prove Proposition 1.9 and Theorem 1.

2. Farey words and Farey intervals
In this section, we recall some properties of Farey words, which are vital in determining
the critical value τ(β). We also recall from [20] the Farey intervals, and review basic
properties of greedy and quasi-greedy β-expansions.

First we introduce some terminology from symbolic dynamics (cf. [23]). Let {0, 1}N be
the set of all infinite sequences of zeros and ones. Denote by σ the left shift map. Then
({0, 1}N, σ) is a full shift. By a word we mean a finite string of zeros and ones. Let {0, 1}∗
be the set of all words over the alphabet {0, 1} together with the empty word ε. For a word
c ∈ {0, 1}∗, we denote its length by |c|, and for a digit a ∈ {0, 1}, we denote by |c|a the
number of occurrences of a in the word c. For two words c = c1 . . . cm and d = d1 . . . dn

in {0, 1}∗, we write cd = c1 . . . cmd1 . . . dn for their concatenation. For n ∈ N, we denote
by cn the n-fold concatenation of c with itself, and by c∞ the periodic sequence with period
block c.

Throughout the paper, we will use the lexicographical order ‘≺, �, �’ or ‘�’ between
sequences and words. For example, for two sequences (ci), (di) ∈ {0, 1}N, we say (ci) ≺
(di) if c1 < d1, or there exists n ∈ N such that c1 . . . cn = d1 . . . dn and cn+1 < dn+1.
For two words c, d, we say c ≺ d if c0∞ ≺ d0∞. We also recall from §1 that if c =
c1 . . . cm with cm = 0, then c+ = c1 . . . cm−11; and if c = c1 . . . cm with cm = 1, then
c− = c1 . . . cm−10. Finally, for a word c = c1c2 . . . cn, we denote its reflection by c :=
(1 − c1)(1 − c2) . . . (1 − cn).

2.1. Farey words. Farey words have attracted much attention in the literature due to
their intimate connection with rational rotations on the circle (see [24, Ch. 2]) and their
one-to-one correspondence with the rational numbers in [0, 1] (see equation (2.1) below).
In the following, we adopt the definition from a recent paper of Carminati, Isola, and
Tiozzo [8].

First we recursively define a sequence of ordered sets Fn, n = 0, 1, 2, . . .. Let F0 =
(0, 1); and for n ≥ 0, the ordered set Fn+1 = (v1, . . . , v2n+1+1) is obtained from Fn =
(w1, . . . , w2n+1) by {

v2i−1 = wi for 1 ≤ i ≤ 2n + 1,

v2i = wiwi+1 for 1 ≤ i ≤ 2n.

In other words, Fn+1 is obtained from Fn by inserting for each 1 ≤ j ≤ 2n the new
word wjwj+1 between the two neighboring words wj and wj+1. See equation (1.2) for
examples. Note that for each n ≥ 0, the ordered set Fn consists of 2n + 1 words which are
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listed from the left to the right in lexicographically increasing order. We call w ∈ {0, 1}∗
a Farey word if w ∈ Fn for some n ≥ 0, and we denote by �F := ⋃∞

n=1 Fn the set of all
Farey words. As shown in [8, Proposition 2.3], the set �F can be bijectively mapped to
Q ∩ [0, 1] via the map

ξ : �F → Q ∩ [0, 1]; s �→ |s|1
|s| . (2.1)

So, ξ(s) is the frequency of the digit 1 in s.
For each n ≥ 1, set

F ∗
n := Fn \ {0, 1},

and

F 0
n := {w ∈ F ∗

n : |w|0 > |w|1}, F 1
n := {w ∈ F ∗

n : |w|1 > |w|0}.
For example, F ∗

1 = (01), F ∗
2 = (001, 01, 011), and F 0

2 = (001), F 1
2 = (011). The follow-

ing decomposition can be deduced from [8, Proposition 2.3].

LEMMA 2.1. For any n ≥ 2, we have F ∗
n = F 0

n ∪ F ∗
1 ∪ F 1

n .

The ordered sets F ∗
n , n ≥ 1 can also be obtained via substitutions. We define the two

substitution operators by

U0 :

{
0 �→ 0,

1 �→ 01,
and U1 :

{
0 �→ 01,

1 �→ 1.
(2.2)

Then U0 and U1 naturally induce a map on {0, 1}∗ or {0, 1}N. For example,

U0 : {0, 1}∗ → {0, 1}∗; c1 . . . cn �→ U0(c1) . . . U0(cn).

The following result was proven in [8, Proposition 2.9].

LEMMA 2.2. For each a ∈ {0, 1}, the map Ua : F ∗
n → Fa

n+1 is bijective.

By Lemmas 2.1 and 2.2, it follows that the ordered sets F ∗
n can be obtained by the

substitution operators U0 and U1 on the set F ∗
1 = (01). We will clarify this in the next

proposition. Let �∗
F be the set of all non-degenerate Farey words, that is,

�∗
F =

∞⋃
n=1

F ∗
n .

For a word c = c1 . . . cm ∈ {0, 1}∗, let S(c) and L(c) be the lexicographically smallest
and largest cyclic permutations of c, respectively. In other words, S(c) is the lexicographi-
cally smallest word among

c1c2 . . . cm, c2 . . . cmc1, c3 . . . cmc1c2, . . . , cmc1 . . . cm−1;

and L(c) is the lexicographically largest word in the above list. The following properties
of Farey words are well known (see, e.g., [8, Proposition 2.5]).

LEMMA 2.3. Let s = s1 . . . sm ∈ �∗
F . Then the following hold.
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(i) S(s) = s and L(s) = smsm−1 . . . s1.
(ii) s− is a palindrome; that is, s1 . . . sm−1(sm − 1) = (sm − 1)sm−1sm−2 . . . s1.

(iii) The word s has a conjugate s̃ ∈ �∗
F , given by

s̃ := L(s) = 0 s2 . . . sm−1 1. (2.3)

The last equality in equation (2.3) follows from statements (i) and (ii). In terms of the
correspondence equation (2.1), if ξ(s) = r ∈ Q ∩ [0, 1], then ξ(s̃) = 1 − r . Note also that
the conjugate of s̃ is simply s itself.

The following explicit description of �∗
F will be useful in §4 to prove the upper bound

for τ(β).

PROPOSITION 2.4. �∗
F consists of all words in one of the following forms:

(i) 01p or 0p1 for some p ∈ N;
(ii) 01p01p+t1 . . . 01p+tN 01p+1 for some p ∈ N and Farey word 0t1 . . . tN 1 ∈ �∗

F ;
(iii) 0p+110p+t11 . . . 0p+tN 10p1 for some p ∈ N and Farey word 0t1 . . . tN 1 ∈ �∗

F .

Proof. Note that 01 = U1(0) = U0(1) ∈ F ∗
1 ⊂ �∗

F . Furthermore, for p ∈ N and
0t1 . . . tN 1 ∈ �∗

F , we have

01p = U1(01p−1) = U
p−1
1 (U0(1)),

0p1 = U0(0p−11) = U
p−1
0 (U1(0)),

01p01p+t1 . . . 01p+tN 01p+1 = U
p

1 (U0(0t1 . . . tN 1)),

0p+110p+t11 . . . 0p+tN 10p1 = U
p

0 (U1(0 t1 . . . tN 1)).

By Lemma 2.3(iii), if 0t1 . . . tN 1 ∈ �∗
F , then 0 t1 . . . tN 1 ∈ �∗

F as well. Hence by
Lemma 2.2, all the above words lie in �∗

F .
To prove the converse, it suffices to show that each word in �∗

F is of the form
U

p

0 (U1(t)) or U
p

1 (U0(t)) for some p ≥ 0 and Farey word t ∈ �F . This is clearly true
for 01 = U0

0 (U1(0)), where U0
0 denotes the identity map. Let n ≥ 1 and suppose the

statement is true for all Farey words in F ∗
n . Take s ∈ F ∗

n+1 with s = 01. By Lemmas 2.1
and 2.2, s = U0(t) or s = U1(t) for some Farey word t ∈ F ∗

n . We assume the former, as the
argument for the second case is similar. By the induction hypothesis, either t = U

p

0 (U1(u))

for some u ∈ �F and p ≥ 0, in which case s = U
p+1
0 (U1(u)); or t = U

p

1 (U0(u)) for some
u ∈ �F and p ≥ 1, in which case s = U0(U1(v)), where v = U

p−1
1 (U0(u)) ∈ �F . In both

cases, s is of the required form.

Observe that the two types of words in Proposition 2.4(i) are each others conjugates, and
the conjugate of a Farey word of type (ii) is a Farey word of type (iii), and vice versa. For
more properties of Farey words, we refer to the book of Lothaire [24] and the references
therein.

2.2. Quasi-greedy expansions, Farey intervals, and Lyndon intervals. Given β ∈ (1, 2],
let δ(β) = δ1(β)δ2(β) . . . ∈ {0, 1}N be the quasi-greedy β-expansion of 1 (cf. [11]),
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that is, δ(β) is the lexicographically largest sequence not ending with 0∞ such that
(δi(β))β = 1. The following property of δ(β) is well known (cf. [6]).

LEMMA 2.5.
(i) The map β �→ δ(β) is an increasing bijection from β ∈ (1, 2] to the set of sequences

(ai) ∈ {0, 1}N not ending with 0∞ and satisfying

σn((ai)) � (ai) for all n ≥ 0.

(ii) The map β �→ δ(β) is left continuous everywhere on (1, 2] with respect to the
order topology, and it is right continuous at β0 ∈ (1, 2) if and only if δ(β0) is
not periodic. Furthermore, if δ(β0) = (a1 . . . am)∞ with minimal period m, then
δ(β) ↘ a1 . . . a+

m0∞ as β ↘ β0.

Recall from Definition 1.1 that for a word s = s1 . . . sm ∈ �∗
L, we have si+1 . . . sm �

s1 . . . sm−i for all 1 ≤ i < m. The following basic fact can be found in [5, Theorem 1.5.3].

LEMMA 2.6. Let c = c1 . . . cm ∈ {0, 1}∗, and suppose two cyclic permutations of c
are equal (that is, ci+1 . . . cmc1 . . . ci = cj+1 . . . cmc1 . . . cj , where i = j ). Then c is
periodic; in other words, c = bk for some word b and k ≥ 2.

In fact, the length of b in Lemma 2.6 can be taken to equal gcd(|i − j |, m).

LEMMA 2.7. Let s ∈ �∗
L and a = L(s) = a1 . . . am. Then

ai+1 . . . am ≺ a1 . . . am−i for all 1 ≤ i < m. (2.4)

Furthermore,

σn(a+s−a∞) � a+s−a∞ for all n ≥ 0. (2.5)

Proof. First we prove equation (2.4). Since s is Lyndon, it is not periodic. Hence a = L(s)
is not periodic, because any cyclic permutation of a periodic word is periodic. Since a =
L(s), we have

ai+1 . . . am � a1 . . . am−i for all 1 ≤ i < m.

Suppose equality holds for some i. Then

ai+1 . . . ama1 . . . ai = a1 . . . am−ia1 . . . ai � a1 . . . am−iam−i+1 . . . am = a,

so ai+1 . . . ama1 . . . ai = L(s) = a by definition of L(s). By Lemma 2.6, this cannot
happen, since a is not periodic.

Next we prove equation (2.5). Since s = s1 . . . sm is a Lyndon word, any word of length
k ∈ {1, . . . , m − 1} occurring in a = L(s) is lexicographically larger than or equal to
s1 . . . sk . By equation (2.4), it follows that

ak+1 . . . a+
ms1 . . . sk � a1 . . . am−kam−k+1 . . . am ≺ a1 . . . a+

m (2.6)

for all 0 < k < m. Hence, by equations (2.6) and (2.4), we conclude that σn(a+s−a∞) ≺
a+s−a∞ for all n ≥ 1. This completes the proof.
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LEMMA 2.8. Let β ∈ (1, 2). Then δ(β) is periodic if and only if δ(β) = L(s)∞ for some
Lyndon word s of length at least two.

Proof. Suppose δ(β) = (a1 . . . am)∞ with minimal period block a = a1 . . . am. Then
m ≥ 2 since β < 2. Take s := S(a). Then a = L(s), and

si+1 . . . sm � s1 . . . sm−i for all 1 ≤ i < m. (2.7)

If equality holds for some i, then we deduce just as in the proof of Lemma 2.7 that s is
periodic. However, then a is also periodic, contradicting that m is the minimal period of
δ(β). Hence, strict inequality holds in equation (2.7), and s is Lyndon. The converse is
trivial.

Recall the Farey intervals and Lyndon intervals from Definition 1.8. The following
properties of Lyndon intervals and Farey intervals were established in the proof of [20,
Theorem C].

LEMMA 2.9.
(i) The Farey intervals J s, s ∈ �∗

F are pairwise disjoint, and their union is dense in
(1, 2].

(ii) Any two Lyndon intervals are either disjoint or one is contained in the other.
(iii) For any Lyndon interval J S, S ∈ �∗

L, there exists a unique Farey interval J r such
that J S ⊂ J r.

Note that (iii) follows immediately from (i) and (ii).

2.3. Greedy expansions and the symbolic survivor set. Given β ∈ (1, 2] and t ∈ [0, 1),
we call the sequence (di) ∈ {0, 1}N a β-expansion of t if ((di))β = t . Note that a
point t ∈ [0, 1) may have multiple β-expansions. We denote by b(t , β) = (bi(t , β)) ∈
{0, 1}N the greedy β-expansion of t, which is the lexicographically largest expansion
of t in base β. Since Tβ(t) = βt(mod 1), it follows that b(T n

β (t), β) = σn(b(t , β)) =
bn+1(t , β)bn+2(t , β) . . .. The following result was established by Parry [26] and de Vries
and Komornik [12, Lemma 2.5 and Proposition 2.6].

LEMMA 2.10. Let β ∈ (1, 2]. The map t �→ b(t , β) is an increasing bijection from [0, 1)

to

{(di) ∈ {0, 1}N : σn((di)) ≺ δ(β) for all n ≥ 0}.
Furthermore:

(i) the map t �→ b(t , β) is right-continuous everywhere in [0, 1) with respect to the
order topology in {0, 1}N;

(ii) if b(t0, β) does not end with 0∞, then the map t �→ b(t , β) is continuous at t0;
(iii) if b(t0, β) = b1 . . . bm0∞ with bm = 1, then b(t , β) ↗ b1 . . . b−

mδ(β) as t ↗ t0.

Recall that the survivor set Kβ(t) consists of all x ∈ [0, 1) whose orbit {T n
β (x) : n ≥ 0}

avoids the hole (0, t). To describe the dimension of Kβ(t), we introduce the topological
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entropy of a symbolic set. For a subset X ⊂ {0, 1}N, its topological entropy htop(X) is
defined by

htop(X) := lim inf
n→∞

log #Bn(X)

n
,

where #Bn(X) denotes the number of all length n words occurring in sequences of X. The
following result for the Hausdorff dimension of Kβ(t) can be essentially deduced from
Raith [28] (see also [20]).

LEMMA 2.11. Given β ∈ (1, 2] and t ∈ [0, 1), the Hausdorff dimension of Kβ(t) is
given by

dimH Kβ(t) = htop(Kβ(t))

log β
,

where

Kβ(t) = {(di) ∈ {0, 1}N : b(t , β) � σn((di)) ≺ δ(β) for all n ≥ 0}.

To determine the critical value τ(β) for β inside any Farey interval J s, we first need to
develop some properties of the substitution operator • from equation (1.3). We do this in
the next section.

3. Substitution of Lyndon words
In this section, we give an equivalent definition of the substitution operator in �∗

L

introduced in equation (1.3), and prove that �∗
L forms a semi-group under this substitution

operator. This will play a crucial role in the rest of the paper.

3.1. An equivalent definition of the substitution. Given a Lyndon word s ∈ �∗
L with a =

L(s), we construct a directed graph G = (V , E) as in Figure 2. The directed graph G
has two starting vertices ‘Start-0’ and ‘Start-1’. The directed edges in the graph G take
labels from {0, 1}, and the vertices in G take labels from {s−, s, a, a+}. Denote by LE the
edge labeling and by LV the vertex labeling. Then for each directed edge e ∈ E(G), we
have LE(e) ∈ {0, 1}, and for each vertex v ∈ V (G), we have LV (v) ∈ {s−, s, a, a+}. The
labeling maps LE and LV naturally induce the maps on the infinite edge paths and infinite
vertex paths in G, respectively. For example, for an infinite edge path e1e2 . . ., we have

LE(e1e2 . . .) = LE(e1)LE(e2) . . . ∈ {0, 1}N.

Here we call e1e2 . . . an infinite edge path in G if the initial vertex of e1 is one of the
starting vertices and for any i ≥ 1, the terminal vertex t (ei) equals the initial vertex i(ei+1).
Similarly, for an infinite vertex path v = v1v2 . . ., we have

LV (v1v2 . . .) = LV (v1)LV (v2) . . . ∈ {s−, s, a, a+}N,

where we call v1v2 . . . an infinite vertex path in G if v1 is one of the starting vertices and
for any i ≥ 1, there exists a directed edge e ∈ E(G) such that i(e) = vi and t (e) = vi+1.
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s s−

a+Start-1 a
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1
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0
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1
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0

FIGURE 2. The directed graph G = (V , E) with the edge labels from {0, 1} and vertex labels from {s−, s, a, a+},
where s ∈ �∗

L and a = L(s).

Let XE = XE(G) be the edge shift consisting of all labelings of infinite edge paths in
G, that is,

XE := {LE(e1e2 . . .) : e1e2 . . . is an infinite edge path in G}.
One can verify easily that XE = {0, 1}N. Also, let XV = XV (G) be the vertex shift which
consists of all labelings of infinite vertex paths in G, that is,

XV := {LV (v1v2 . . .) : v1v2 . . . is an infinite vertex path in G}.
Then any sequence in XV is an infinite concatenation of words from {s−, s, a, a+}. Observe
that the edge shift XE is right-resolving, which means that out-going edges from the same
vertex have different labels (cf. [23]). Moreover, different vertices have different labels. So
for each (di) ∈ XE , there is a unique infinite edge path e1e2 . . . in G such that d1d2 . . . =
LE(e1e2 . . .).

Definition 3.1. The substitution map �s from XE to XV is defined by

�s : XE → XV ; LE(e1e2 . . .) �→ LV (t (e1)t (e2) . . .),

where t (ei) denotes the terminal vertex of the directed edge ei .

We can extend the substitution map �s to a map from B∗(XE) to B∗(XV ) by

�s : B∗(XE) → B∗(XV ); LE(e1 . . . en) �→ LV (t (e1) . . . t (en)), (3.1)

where B∗(XE) consists of all labelings of finite edge paths in G and B∗(XV ) consists of
all labelings of finite vertex paths in G. So, by equations (1.3) and (3.1), it follows that for
any two words s ∈ �∗

L and r ∈ {0, 1}∗, we have

s • r = �s(r). (3.2)

Example 3.2. Let s = 01 and r = 001011. Then s ∈ �∗
F and r ∈ �∗

L \ �∗
F . Furthermore,

s− = 00, a = L(s) = 10, a+ = 11. So by the definition of �s, it follows that

�s(r) = �s(001011) = s−aa+s−a+s = 001011001101,
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�s(r−) = �s(001010) = s−aa+s−a+s− = 001011001100.

Observe that �s(r−) = �s(r)−. By Definition 1.1, one can check that �s(r) ∈ �∗
L.

Furthermore,

�s(L(r)) = �s(110010) = a+ss−aa+s− = 110100101100 = L(�s(r)),

and

�s(r∞) = �s((001011)∞) = (s−aa+s−a+s)∞ = (001011001101)∞ = �s(r)∞.

3.2. Properties of the substitution. Motivated by Examples 1.2 and 3.2, we study the
properties of the substitution �s. We will show that �∗

L forms a semi-group under the
substitution operator defined in Definition 3.1. First we prove the monotonicity of �s.

LEMMA 3.3. Let s ∈ �∗
L. Then the map �s is strictly increasing in XE = {0, 1}N.

Proof. Let (di) and (d ′
i ) be two sequences in XE , and let (ei), (e′

i ) be their corresponding
edge paths; thus, (di) = LE((ei)) and (d ′

i ) = LE((e′
i )). Suppose (di) ≺ (d ′

i ). Then there
exists k ∈ N such that d1 . . . dk−1 = d ′

1 . . . d ′
k−1 and dk < d ′

k . If k = 1, then d1 = 0
and d ′

1 = 1. So, LV (t (e1)) = s− and LV (t (e′
1)) = a+. By Definition 3.1, it follows that

�s((di)) ≺ �s((d
′
i )).

If k > 1, then e1 . . . ek−1 = e′
1 . . . e′

k−1, which implies that the initial vertices of ek

and e′
k coincide. Since dk < d ′

k , by the definition of LV , it follows that (see Figure 2)

LV (t (ek)) ≺ LV (t (e′
k)).

By Definition 3.1, we also have �s((di)) ≺ �s((d
′
i )). This completes the proof.

LEMMA 3.4. Let s ∈ �∗
L. Then for any word d = d1 . . . dk ∈ B∗(XE) with k ≥ 2, we have{

�s(d−) = �s(d)− if dk = 1,

�s(d+) = �s(d)+ if dk = 0.

Proof. Since d = d1 . . . dk ∈ B∗(XE), there exists a unique finite edge path e1 . . . ek

such that LE(e1 . . . ek) = d. If dk = 1, then d− = d1 . . . dk−10 can be represented by
a unique finite edge path e′

1 . . . e′
k with e′

1 . . . e′
k−1 = e1 . . . ek−1. By the definition of

LV , it follows that LV (t (e′
k)) = LV (t (ek))

−. Therefore, by Definition 3.1, it follows that

�s(d−) = �s(LE(e′
1 . . . e′

k)) = �s(LE(e1 . . . ek−1e
′
k))

= LV (t (e1) . . . t (ek−1)t (e
′
k))

= LV (t (e1) . . . t (ek))
− = �s(d)−.

This proves the first equality of the lemma. The second equality follows analogously.

Recall the operator • from equation (3.2). In the following, we prove Proposition 1.3 by
showing that �∗

L is closed under • and that • is associative. The proof will be split into a
sequence of lemmas. First we prove that �∗

L is closed under •.
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LEMMA 3.5. For any s, r ∈ �∗
L, we have s • r ∈ �∗

L.

Proof. Let s = s1 . . . sm ∈ �∗
L and a = L(s). Then there exists j ∈ {1, . . . , m − 1} such

that

a = sj+1 . . . sms1 . . . sj . (3.3)

Let r = r1 . . . r� ∈ �∗
L. Then we can write s • r = �s(r) = b1 . . . bm�. Furthermore,

there exists a finite edge path e1 . . . e� representing r such that

�s(r) = LV (t (e1) . . . t (e�)) =: b1 . . . b�,

where each block bi ∈ {s−, s, a, a+}. Note that b1 = s− since the block r begins with
r1 = 0. By Definition 1.1, it suffices to prove

bi+1 . . . bm� � b1 . . . bm�−i for any 0 < i < m�. (3.4)

We split the proof of equation (3.4) into two cases.

Case I. i = km for some k ∈ {1, 2, . . . , � − 1}. Then bi+1 . . . bm� = bk+1 . . . b�. Since
r is a Lyndon word, we have rk+1 . . . r� � r1 . . . r�−k . So, equation (3.4) follows directly
by Lemma 3.3.

Case II. i = km + p for some k ∈ {0, 1, . . . , � − 1} and p ∈ {1, . . . , m − 1}. Then
bi+1 . . . bm� = bi+1 . . . bi+m−pbk+2 . . . b�. In the following, we prove equation (3.4) by
considering the four possible choices of bk+1 ∈ {s−, s, a, a+}. If bk+1 = s, then by using
that s ∈ �∗

L, we conclude that

bi+1 . . . bi+m−p = sp+1 . . . sm � s1 . . . sm−p = b1 . . . bm−p,

proving equation (3.4). Similarly, if bk+1 = a+, then by equation (3.3), one can also prove
that bi+1 . . . bi+m−p � b1 . . . bm−p. Now we assume bk+1 = s−. Then by using s ∈ �∗

L,
it follows that

bi+1 . . . bi+m−p = sp+1 . . . s−
m � s1 . . . sm−p = b1 . . . bm−p. (3.5)

Observe that the word s− can only be followed by a or a+ in G (see Figure 2). So bk+2 ∈
{a, a+}. Since a = L(s), we obtain that

bi+m−p+1 . . . bi+m = a1 . . . ap � sm−p+1 . . . sm � sm−p+1 . . . s−
m = bm−p+1 . . . bm.

(3.6)

Thus, by equations (3.5) and (3.6), we conclude that bi+1 . . . bi+m � b1 . . . bm, proving
equation (3.4). Finally, suppose bk+1 = a. Note that the word a can only be followed by a
or a+ in G. Then by equation (3.3) and using s ∈ �∗

L, we have

bi+1 . . . bi+m � s1 . . . sm � b1 . . . bm.

This completes the proof.

Say a finite or infinite sequence of words b1, . . . , bn or b1, b2, . . . is connectible if
for each i, the last digit of bi differs from the first digit of bi+1. Thus, for instance, the
sequence 1101, 00111 is connectible whereas the sequence 11010, 0111 is not.
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LEMMA 3.6.
(i) Let b1, b2, . . . be a (finite or infinite) connectible sequence of words. Then for any

s ∈ �∗
L,

�s(b1b2 . . .) = �s(b1)�s(b2) . . . .

(ii) Let s, r ∈ �∗
L. Then �s(r∞) = �s(r)∞ and �s(L(r)∞) = �s(L(r))∞.

Proof. To prove (i), it suffices to show that if b1, b2 is a connectible sequence, then
�s(b1b2) = �s(b1)�s(b2); the statement then extends to arbitrary connectible sequences
by induction.

Without loss of generality, by the symmetry of the edge-labels in Figure 2, we may
assume that b1 ends in the digit 0 and b2 begins with the digit 1. However, note that
in the directed graph in Figure 2, if we travel along an edge labeled 0 followed by an
edge labeled 1, we always end up at the vertex labeled a+, which is also the first vertex
visited after traveling along an edge labeled 1 from the ‘Start-1’ vertex. Thus, �s(b1b2) =
�s(b1)�s(b2).

Statement (ii) follows from (i) since r begins with digit 0 and ends with digit 1, so r is
connectible to itself; and similarly, L(r) begins with digit 1 and ends with digit 0, so L(r)
is connectible to itself.

To prove that • is associative, we need the following result, which says that the two
operators • and L commute.

LEMMA 3.7. For any s, r ∈ �∗
L, we have L(s • r) = s • L(r).

Proof. The proof is similar to that of Lemma 3.5. Let r = r1 . . . r� ∈ �∗
L. First we show

that s • L(r) is a cyclic permutation of s • r. Note that L(r) = rj+1 . . . r�r1 . . . rj for
some 1 < j < �. Then rj = 0 and rj+1 = 1, so Lemma 3.6(i) implies that

s • r = �s(r1 . . . r�) = �s(r1 . . . rj )�s(rj+1 . . . r�). (3.7)

However, since r ∈ �∗
L, we have r� = 1 and r1 = 0, so by Lemma 3.6(i), we obtain that

s • L(r) = �s(rj+1 . . . r�r1 . . . rj ) = �s(rj+1 . . . r�)�s(r1 . . . rj ).

This, together with equation (3.7), proves that s • L(r) is indeed a cyclic permutation of
s • r. It remains to prove that s • L(r) is the lexicographically largest cyclic permutation of
itself.

Write s = s1 . . . sm ∈ �∗
L with a = L(s) = a1 . . . am, and write L(r) = c1 . . . c�.

Then by Lemma 2.7, it follows that

ai+1 . . . am ≺ a1 . . . am−i for all 0 < i < m;

ci+1 . . . c� ≺ c1 . . . c�−i for all 0 < i < �. (3.8)
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Write s • L(r) = b1 . . . b� = b1 . . . bm�, where each bi ∈ {s−, s, a, a+}. Then it suffices
to prove that

bi+1 . . . bm� ≺ b1 . . . bm�−i for all 0 < i < m�. (3.9)

Since L(r) has a prefix c1 = 1, we see that b1 . . . bm = b1 = a+. So, by using
equation (3.8) and the same argument as in the proof of Lemma 3.5, we can prove
equation (3.9).

The next lemma will be used in the proof of Lemma 5.3 and Proposition 6.2.

LEMMA 3.8. Let s ∈ �∗
L, and take two sequences (ci), (di) ∈ {0, 1}N.

(i) If d1 = 1, then

σn((ci)) ≺ (di) for all n ≥ 0 �⇒ σn(�s((ci))) ≺ �s((di)) for all n ≥ 0.

(ii) If d1 = 0, then

σn((ci)) � (di) for all n ≥ 0 �⇒ σn(�s((ci))) � �s((di)) for all n ≥ 0.

Proof. (i) Suppose d1 = 1 and σn((ci)) ≺ (di) for all n ≥ 0. Then �s((di)) begins with
L(s)+. If n ≡ 0(mod |s|), then by Lemma 3.3, it follows that σn(�s((ci))) ≺ �s((di)).
If n = 0(mod |s|), then by using �s(d1) = L(s)+ and the same argument as in the
proof of Lemma 3.7, one can verify that σn(�s((ci))) ≺ �s((di)). The proof of (ii) is
similar.

Finally, we show that • is associative.

LEMMA 3.9. For any three words r, s, t ∈ �∗
L, we have (r • s) • t = r • (s • t).

Proof. Let r = r1 . . . rm, s = s1 . . . sn, and t = t1 . . . t�. Then we can write(r • s) • t as

(r • s) • t = B1B2 . . . B�, (3.10)

where each Bi ∈ {(r • s)−, r • s, L(r • s), L(r • s)+}. Since t1 = 0, we have B1 = (r • s)−.
Furthermore, by the definition of �r•s it follows that for 1 < i ≤ �,

Bi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L(r • s) if ti−1ti = 00,

L(r • s)+ if ti−1ti = 01,

(r • s)− if ti−1ti = 10,

r • s if ti−1ti = 11.

(3.11)

Similarly, we can write

s • t = b1b2 . . . b�,
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where each bi ∈ {s−, s, L(s), L(s)+}, and it follows from the definition of �s that

bi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L(s) if ti−1ti = 00,

L(s)+ if ti−1ti = 01,

s− if ti−1ti = 10,

s if ti−1ti = 11,

(3.12)

for 1 < i ≤ �. Comparing equations (3.11) and (3.12) and using Lemmas 3.4 and 3.7, it
follows that

�r(bi ) = Bi for all i ≥ 1.

Moreover, the sequence b1, b2, . . . , b� is connectible because b1b2 . . . b� = �s(t) arises
from a walk along the directed graph in Figure 2. Hence, Lemma 3.6 and equation (3.10)
yield

r • (s • t) = �r(b1b2 . . . b�) = �r(b1)�r(b2) . . . �r(b�) = B1B2 . . . B� = (r • s) • t,

as desired.

Proof of Proposition 1.3. The proposition follows by Lemmas 3.5 and 3.9 and Example
1.2, which shows that • is not commutative.

4. Critical values in a basic interval
In this section, we will prove Theorem 2. Recall from equation (1.4) that � consists of all
words S of the form

S = s1 • s2 • · · · • sk , k ∈ N,

where each si ∈ �∗
F . By Proposition 1.3, it follows that � ⊂ �∗

L, and each S ∈ � can be
uniquely represented in the above form. Take S ∈ �. As in Definition 1.5, we let IS :=
[βS

� , βS∗ ] be the basic interval generated by S. Then by Lemmas 2.5 and 2.7, it follows that

δ(βS
� ) = L(S)∞ and δ(βS∗ ) = L(S)+S−L(S)∞. (4.1)

To prove Theorem 2, we first prove the following proposition, which provides one of the
key tools in this paper and will be used again in §6.

PROPOSITION 4.1. For any S ∈ �, the set

�(S) := {(xi) : S∞ � σn((xi)) � L(S)∞ for all n ≥ 0} (4.2)

is countable.

We point out that the specific form of S is essential in this proposition: it is not enough
to merely assume that S is a Lyndon word. For instance, take S = 0010111 ∈ �∗

L. Then
L(S) = 1110010, and it is easy to see that �(S) ⊃ {10, 110}N.

For S = s ∈ �∗
F , Proposition 4.1 follows from the following stronger result, proved in

[20, Proposition 4.4].
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LEMMA 4.2. For any s = s1 . . . sm ∈ �∗
F , the set

�(s) := {(xi) : s∞ � σn((xi)) � L(s)∞ for all n ≥ 0}
consists of exactly m different elements.

To reduce the technicalities in the proof of Proposition 4.1, we extend the definition
from Lemma 2.3(iii) and define the conjugate of any word S ∈ � by

ϕ(S) := L(S).

LEMMA 4.3. The function ϕ : � → {0, 1}∗; S �→ ϕ(S) is a semigroup automorphism on
(�, •). That is, ϕ maps � bijectively onto itself, and

ϕ(s1 • · · · • sk) = ϕ(s1) • · · · • ϕ(sk) for all s1, . . . , sk ∈ �∗
F . (4.3)

Furthermore, ϕ is its own inverse:

ϕ(ϕ(S)) = S for all S ∈ �. (4.4)

Proof. We prove equations (4.3) and (4.4) simultaneously by induction on the degree k
of S = s1 • · · · • sk . For k = 1, equation (4.3) is trivial and equation (4.4) follows from
Lemma 2.3(iii). Now suppose equations (4.3) and (4.4) both hold for any word S = s1 •
· · · • sk of degree k, and consider S • r with r ∈ �∗

F . Set S̃ := ϕ(S). We claim first that for
any word t ∈ {0, 1}∗,

�S(t) = �S̃(t). (4.5)

The expression on the right is well defined since, by equation (4.3), S̃ = ϕ(s1) • · · · •
ϕ(sk) ∈ �∗

L.
Write A := L(S) and Ã := L(̃S). By equation (4.4), ϕ(̃S) = S, so we have

A = S̃ and Ã = S. (4.6)

Now note the rotational skew-symmetry in the edge labels of the directed graph in Figure 2.
The edge path corresponding to the word t is just the 180◦ rotation about the center of the
figure of the edge path corresponding to t. However, replacing the vertex labels S, S−, A,
and A+ by S̃ = A, S̃− = A+, Ã = S, and Ã+ = S−, respectively, and rotating the whole
graph by 180◦, we get the original graph back except that all the vertex labels and edge
labels are reflected. This implies equation (4.5).

Now we can apply equation (4.5) to t = L(r) and obtain:

ϕ(S) • ϕ(r) = S̃ • ϕ(r) = �S̃(L(r)) = �S(L(r)) = S • L(r) = L(S • r) = ϕ(S • r).
(4.7)

Since r ∈ �∗
F was arbitrary, the induction hypothesis of equations (4.3) and (4.7) give

ϕ(s1 • · · · • sk • sk+1) = ϕ(s1) • · · · • ϕ(sk) • ϕ(sk+1) for all s1, . . . , sk+1 ∈ �∗
F .
(4.8)
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Thus, equation (4.3) holds for k + 1 in place of k. Next, by Lemma 2.3(iii), ϕ(si ) ∈ �∗
F

and ϕ(ϕ(si )) = si for each i, so applying equation (4.8) with ϕ(si ) in place of si for each i,
we conclude that ϕ(ϕ(S′)) = S′ for every S′ ∈ � of degree k + 1 also.

Thus, we have proved equations (4.3) and (4.4) by induction. Now the remaining
statements of the lemma follow immediately: by equation (4.3), Lemma 2.3(iii), and
Proposition 1.3, it follows that ϕ(S) ∈ � for every S ∈ �, whereas equation (4.4) implies
that ϕ : � → � is bijective. Therefore, ϕ is an automorphism of (�, •).

Define

�(S) := {(xi) : (xi) ∈ �(S)}, S ∈ �.

It is clear that �(S) has the same cardinality as �(S). Observe also by equation (4.6) that

�(S) = {(yi) : S∞ � σn((yi)) � L(S)∞ for all n ≥ 0}
= {(yi) : S∞ � σn((yi)) � L(S)

∞
for all n ≥ 0}

= {(yi) : L(ϕ(S))∞ � σn((yi)) � ϕ(S)∞ for all n ≥ 0}
= �(ϕ(S)). (4.9)

Proof of Proposition 4.1. For S = s ∈ �∗
F , the proposition follows from Lemma 4.2. So it

suffices to prove that if �(S) is countable for an S ∈ �, then �(S • r) is also countable for
any r ∈ �∗

F .
Fix S ∈ � with �(S) countable; fix r ∈ �∗

F , and note that r begins with 0 and L(r)
begins with 1. Therefore, S • r begins with S− and L(S • r) = S • L(r) begins with
L(S)+. So

(S • r)∞ ≺ S∞ and L(S • r)∞ � L(S)∞. (4.10)

By equations (4.2) and (4.10), it follows that

�(S) ⊆ {(xi) : (S • r)∞ � σn((xi)) � L(S • r)∞ for all n ≥ 0} = �(S • r).

Since �(S) is countable, it suffices to prove that the difference set �(S • r) \ �(S) is
countable. By Proposition 2.4, the word r must be of one of the following four types:

(I) r = 01p for some p ∈ N;
(II) r = 0p1 for some p ∈ N;

(III) r = 01p01p+t1 . . . 01p+tN 01p+1 for some p ∈ N and 0t1 . . . tN1 ∈ �∗
F ;

(IV) r = 0p+110p+t11 . . . 0p+tN 10p1 for some p ∈ N and 0t1 . . . tN 1 ∈ �∗
F ;

Since the words in (II) and (IV) are the conjugates of the words in (I) and (III), respectively,
it suffices by Lemma 4.3 and the relationship of equation (4.9) to consider cases (I) and
(III). Let A := L(S).

Case I. r = 01p for some p ∈ N. Note that S • r = �S(01p) = S−A+Sp−1 and L(S • r) =
S • L(r) = �S(1p0) = A+Sp−1S−. Then �(S • r) consists of all sequences (xi) ∈ {0, 1}N
satisfying

(S−A+Sp−1)∞ � σn((xi)) � (A+Sp−1S−)∞ for all n ≥ 0. (4.11)
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Take a sequence (xi) ∈ �(S • r) \ �(S). Then by equations (4.2) and (4.11), it follows that
xk+1 . . . xk+m = S− or A+ for some k ≥ 0. If xk+1 . . . xk+m = S−, then by taking n = k

in equation (4.11), we obtain

xk+m+1xk+m+2 . . . � (A+Sp−1S−)∞.

However, by taking n = k + m in equation (4.11), we see that the above inequality is indeed
an equality. So, xk+1xk+2 . . . = (S−A+Sp−1)∞.

If xk+1 . . . xk+m = A+, then by taking n = k in equation (4.11), we have

xk+m+1xk+m+2 . . . � (Sp−1S−A+)∞. (4.12)

Note by equation (4.11) that xi+1 . . . xi+m � S− for all i ≥ 0. So by equation (4.12), there
must exist a j ∈ {k + m, k + 2m, . . . , k + pm} such that xj+1 . . . xj+m = S−. Then
by the same argument as above, we conclude that xj+1xj+2 . . . = (S−A+Sp−1)∞. So,
�(S • r) \ �(S) is at most countable.

Case III. r = 01p01p+t1 . . . 01p+tN 01p+1, where p ∈ N and r̂ := 0t1 . . . tN 1 ∈ �∗
F .

Consider the substitution

ηp := U
p

1 ◦ U0 : 0 �→ 01p; 1 �→ 01p+1.

Then r = ηp(r̂), as shown in the proof of Proposition 2.4. Note by Lemma 2.3 that L(r) =
1p+101p+t101p+t2 . . . 01p+tN 01p0 and L(r̂) = 1t1 . . . tN 0. Then

L(r)∞ = σ((01p+101p+t1 . . .01p+tN 01p)∞) = σ(ηp((1t1 . . . tN 0)∞)) = σ(ηp(L(r̂)∞)).
(4.13)

Claim. If (xi) ∈ �(S • r) begins with x1 . . . xm = S−, then there exists a unique sequence
(zi) ∈ {0, 1}N such that (xi) = �S(ηp(z1z2 . . .)).

Note that r begins with 01p0 and L(r) begins with 1p+10. Then S • r begins with
�S(01p0) = S−A+Sp−1S− and L(S • r) = S • L(r) begins with �S(1p+10) = A+SpS−.
Let (xi) ∈ �(S • r) with x1 . . . xm = S−. Then

S−A+Sp−1S− � xn+1 . . . xn+m(p+2) � A+SpS− for all n ≥ 0. (4.14)

By taking n = 0 in equation (4.14), it follows that

xm+1 . . . xm(p+2) � A+Sp−1S−. (4.15)

However, by taking n = m in equation (4.14), we have

xm+1 . . . xm(p+3) � A+SpS−. (4.16)

By equations (4.14)–(4.16), it follows that

either xm+1 . . . xm(p+2) = A+Sp−1S− or xm+1 . . . xm(p+3) = A+SpS−.

Observe that in both cases, we obtain a block ending with S−. Then we can repeat the
above argument indefinitely, and conclude that

(xi) ∈ {S−A+Sp−1, S−A+Sp}N = {�S(ηp(0)), �S(ηp(1))}N. (4.17)
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Since ηp(0) = 01p and ηp(1) = 01p+1, it follows from equation (4.17) and Lemma 3.6
that

(xi) = �S(ηp(z1))�S(ηp(z2)) . . . = �S(ηp(z1)ηp(z2) . . .) = �S(ηp(z1z2 . . .))

(4.18)

for some sequence (zi) ∈ {0, 1}N. The uniqueness of (zi) follows by the definition of the
substitutions ηp and �S. This proves the claim.

Now take a sequence (xi) ∈ �(S • r) \ �(S). Then by equations (4.2) and (4.14), we can
find an n0 ≥ 0 such that xn0+1 . . . xn0+m = S− or A+. If xn0+1 . . . xn0+m = A+, then by
equation (4.14), there must exist n1 > n0 such that xn1+1 . . . xn1+m = S−. So, without
loss of generality, we may assume xn0+1 . . . xn0+m = S−. Then by the claim there is a
unique sequence (zi) ∈ {0, 1}N that xn0+1xn0+2 . . . = �S(ηp(z1z2 . . .)) ∈ �(S • r). By
the definition of �(S • r), it follows that

(S • r)∞ � σn(�S(ηp(z1z2 . . .))) � L(S • r)∞ for all n ≥ 0. (4.19)

Note by r = ηp(r̂) and Lemma 3.6(ii) that (S • r)∞ = �S(r∞) = �S(ηp(r̂∞)). Similarly,
by Lemmas 3.6(ii), 3.7, and equation (4.13), it follows that L(S • r)∞ = �S(L(r)∞) =
�S(σ (ηp(L(r̂)∞))). Thus, equation (4.19) can be rewritten as

�S(ηp(r̂∞)) � σn(�S(ηp(z1z2 . . .))) � �S(σ (ηp(L(r̂)∞))) for all n ≥ 0.

By Lemma 3.3, this implies that

ηp(r̂∞) � σn(ηp(z1z2 . . .)) � σ(ηp(L(r̂)∞)
)

for all n ≥ 0. (4.20)

Note (ci) ≺ (di) is equivalent to ηp((ci)) ≺ ηp((di)). So, by equation (4.20) and the
definition of ηp, it follows that

r̂∞ � σn(z1z2 . . .) � L(r̂)∞ for all n ≥ 0,

and hence (zi) ∈ �(r̂). Since r̂ ∈ �∗
F , we know that �(r̂) is finite by Lemma 4.2. Hence

there are only countably many choices for the sequence (zi), and thus by the claim, there
are only countably many choices for the tail sequence of (xi). Therefore, �(S • r) \ �(S)

is at most countable.

Recall from Lemma 2.11 the symbolic survivor set Kβ(t). To prove Theorem 2, we also
recall the following result from [20, Lemma 3.7].

LEMMA 4.4. Let β ∈ (1, 2] and t ∈ [0, 1). If σm(δ(β)) � b(t , β), then

Kβ(t) = {(di) : b(t , β) � σn((di)) � (δ1(β) . . . δm(β)−)∞ for all n ≥ 0}.
Proof of Theorem 2. That the basic intervals IS, S ∈ � are pairwise disjoint will be shown
in Proposition 5.1 below. In what follows, we fix a basic interval IS = [βS

� , βS∗ ]. Take
β ∈ IS, and let t∗ = (�S(0∞))β = (S−A∞)β , where A = L(S) = A1 . . . Am. Then by
equation (4.1) and Lemma 2.5, it follows that

A∞ = δ(βS
� ) � δ(β) � δ(βS∗ ) = A+S−A∞. (4.21)
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Since S = s1 • · · · • sk with each si ∈ �∗
F , by Proposition 1.3, we have S ∈ �∗

L. If β ∈
(βS

� , βS∗ ], then by Lemma 2.7, we have

σn(S−A∞) � A∞ ≺ δ(β) for all n ≥ 0;

and by Lemma 2.10, it follows that S−A∞ is the greedy β-expansion of t∗, that is,
b(t∗, β) = S−A∞. If β = βS

� , then σn(S−A∞) � A∞ = δ(β) for all n ≥ 0; and in this
case, one can verify that the greedy β-expansion of t∗ is given by b(t∗, β) = S0∞.

First we prove τ(β) ≥ t∗. Note that A = A1 . . . Am. Let tN := ((S−ANA1 . . . Aj )
∞)β ,

where the index j ∈ {1, . . . , m} satisfies S = S(A) = Aj+1 . . . AmA1 . . . Aj . Note by
Lemma 2.7 that Ai+1 . . . Am ≺ A1 . . . Am−i for any 0 < i < m. Then by equation (4.21),
one can verify that

σn((S−ANA1 . . . Aj )
∞) = σn(S−AN+1(A1 . . . A−

j AN+1)∞)

≺ A∞ � δ(β) for all n ≥ 0.

So, b(tN , β) = (S−ANA1 . . . Aj )
∞. This implies that any sequence (xi) constructed by

arbitrarily concatenating blocks of the form

S−AkA1 . . . Aj , k > N

satisfies (S−ANA1 . . . Aj )
∞ � σn((xi)) ≺ δ(β) for all n ≥ 0. So,

{S−AN+1A1 . . . Aj , S−AN+2A1 . . . Aj }N ⊂ Kβ(tN ).

By Lemma 2.11, this implies that dimH Kβ(tN) > 0 for all N ≥ 1. Thus, τ(β) ≥ tN for
all N ≥ 1. Note that tN ↗ t∗ as N → ∞. We then conclude that τ(β) ≥ t∗.

Next we prove τ(β) ≤ t∗. By equation (4.21) and Lemma 4.4, it follows that

Kβ(t∗) ⊂ {(xi) : S−A∞ � σn((xi)) ≺ A+S−A∞ for all n ≥ 0}
= {(xi) : S−A∞ � σn((xi)) � A∞ for all n ≥ 0} =: �. (4.22)

Note by Proposition 4.1 that �(S) = {(xi) : S∞ � σn((xi)) � A∞ for all n ≥ 0} is a
countable subset of �. Furthermore, any sequence in the difference set � \ �(S) must
end with S−A∞. As a result, � is also countable. By equation (4.22), this implies that
dimH Kβ(t∗) = 0, and thus τ(β) ≤ t∗. This completes the proof.

5. Geometrical structure of the basic intervals and exceptional sets
In this section, we will prove Theorem 3. The proof will be split into two subsections. In
§5.1, we demonstrate the tree structure of the Lyndon intervals J S, S ∈ �, and the relative
exceptional sets ES, S ∈ �, from which it follows that the basic intervals IS = [βS

� , βS∗ ],
S ∈ � are pairwise disjoint. We show that each relative exceptional set ES has zero
box-counting dimension, and the exceptional set E has zero packing dimension. In §5.2,
we prove that the infinitely Farey set E∞ has zero Hausdorff dimension.

5.1. Tree structure of the Lyndon intervals and relative exceptional sets. Given S ∈ �,
recall from Definitions 1.5 and 1.8 the basic interval IS = [βS

� , βS∗ ] and the Lyndon interval
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J S = [βS
� , βS

r ] generated by S, respectively. Then by Lemmas 2.5 and 2.7, it follows that

δ(βS
� ) = L(S)∞, δ(βS∗ ) = L(S)+S−L(S)∞ and δ(βS

r ) = L(S)+S∞. (5.1)

First we show that the Lyndon intervals J S, S ∈ � have a tree structure.

PROPOSITION 5.1. Let S ∈ �. Then IS ⊂ J S. Furthermore,
(i) for any r ∈ �∗

F , we have J S•r ⊂ J S \ IS;
(ii) for any two different words r, r′ ∈ �∗

F , we have J S•r ∩ J S•r′ = ∅.

Proof. Let IS = [βS
� , βS∗ ] and J S = [βS

� , βS
r ]. Then by equation (5.1), it follows that

δ(βS∗ ) = L(S)+S−L(S)∞ ≺ L(S)+S∞ = δ(βS
r ),

which implies βS∗ < βS
r by Lemma 2.5. So IS ⊂ J S.

For (i), let r ∈ �∗
F . Then r begins with digit 0 and ends with digit 1. By Lemmas 3.6(ii)

and 3.7, this implies that

δ(βS•r
� ) = L(S • r)∞ = (S • L(r))∞ = �S(L(r)∞)

� �S(10∞) = L(S)+S−L(S)∞ = δ(βS∗ ).

So, βS•r
� > βS∗ . Furthermore, by Lemmas 3.4, 3.6(ii), and 3.7, it follows that

δ(βS•r
r ) = L(S • r)+(S • r)∞

= �S(L(r)+)�S(r∞) = �S(L(r)+r∞)

≺ �S(1∞) = L(S)+S∞ = δ(βS
r ).

This proves βS•r
r < βS

r . Hence, J S•r = [βS•r
� , βS•r

r ] ⊂ (βS∗ , βS
r ] = J S \ IS.

Next we prove (ii). Let r, r′ be two different Farey words in �∗
F . By Lemma 2.9(i), it

follows that J r ∩ J r′ = ∅. Write J r = [βr
� , βr

r ] and J r′ = [βr′
� , βr′

r ]. Since J r and J r′
are

disjoint, we may assume βr
r < βr′

� . By equation (5.1) and Lemma 2.5, it follows that

L(r)+r∞ = δ(βr
r ) ≺ δ(βr′

� ) = L(r′)∞. (5.2)

Then by equations (5.1), (5.2), and Lemma 3.3, we obtain that

δ(βS•r
r ) = L(S • r)+(S • r)∞ = �S(L(r)+r∞)

≺ �S(L(r′)∞) = L(S • r′)∞ = δ(βS•r′
� ).

It follows that βS•r
r < βS•r′

� , and hence J S•r ∩ J S•r′ = ∅.

Remark 5.2. Proposition 5.1 implies that the Lyndon intervals J S, S ∈ � have a tree
structure. More precisely, we say J R is an offspring of J S if there exists a word T ∈ �

such that R = S • T. Then any offspring of J S is a subset of J S. Furthermore, if J S′
is

not an offspring of J S and J S is not an offspring of J S′
, then Proposition 5.1 implies that

J S′ ∩ J S = ∅. Consequently, the basic intervals IS, S ∈ � are pairwise disjoint.
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Recall from §1 the exceptional set E = (1, 2] \ ⋃
r∈�∗

F
J r and the relative exceptional

sets ES = (J S \ IS) \ ⋃
r∈�∗

F
J S•r with S ∈ �. Next we will show that E is bijectively

mapped to ES via the map

	S : (1, 2] → J S \ IS = (βS∗ , βS
r ]; β �→ δ−1 ◦ �S ◦ δ(β), (5.3)

where δ(β) is the quasi-greedy β-expansion of 1.
We mention that 	S is not surjective, which somewhat complicates the proof of

Proposition 5.4 below. For example, let S = 011. Then δ(βS∗ ) = 111010(110)∞ and
δ(βS

r ) = 111(011)∞. Take β ∈ (βS∗ , βS
r ] such that δ(β) = 1110110∞. One can verify

that β /∈ 	S((1, 2]), since δ(β) cannot be written as a concatenation of words from
{S, S−, L(S), L(S)+}.
LEMMA 5.3. For any S ∈ �, the map 	S is well defined and strictly increasing.

Proof. Let S ∈ � with A = L(S). First we show that the map 	S : (1, 2] → J S \ IS =
(βS∗ , βS

r ] is well defined. Note that

δ(βS∗ ) = A+S−A∞ = �S(10∞) and δ(βS
r ) = A+S∞ = �S(1∞). (5.4)

Take β ∈ (1, 2]. Then 10∞ ≺ δ(β) � 1∞. By Lemma 3.3 and equation (5.4), it follows
that

δ(βS∗ ) ≺ �S(δ(β)) � δ(βS
r ).

Thus, by Lemma 2.5, it suffices to prove that

σn(�S(δ(β))) � �S(δ(β)) for all n ≥ 0. (5.5)

Note by Lemma 2.5 that σn(δ(β)) � δ(β) for all n ≥ 0, and δ(β) begins with digit 1.
Thus, equation (5.5) follows by Lemma 3.8(i), and we conclude that the map 	S is well
defined.

The monotonicity of 	S = δ−1 ◦ �S ◦ δ follows since both maps δ and �S are strictly
increasing by Lemmas 2.5 and 3.3, respectively. This completes the proof.

PROPOSITION 5.4. For any S ∈ �, we have 	S(E) = ES.

Proof. We first prove that

	S(βr
�) = βS•r

� and 	S(βr
r ) = βS•r

r for all r ∈ �∗
L. (5.6)

Observe that δ(βr
�) = L(r)∞. Then by Lemmas 3.6(ii) and 3.7, it follows that

�S(δ(βr
�)) = �S(L(r)∞) = (S • L(r))∞ = L(S • r)∞ = δ(βS•r

� ),

so 	S(βr
�) = βS•r

� . Similarly, since δ(βr
r ) = L(r)+r∞, Lemmas 3.4, 3.6(ii), and 3.7 imply

that

�S(δ(βr
r )) = �S(L(r)+r∞) = �S(L(r)+)�S(r∞)

= (S • L(r))+�S(r)∞ = L(S • r)+(S • r)∞ = δ(βS•r
r ).

We conclude that 	S(βr
r ) = βS•r

r . This proves equation (5.6).
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Note by Lemma 2.5(ii) that the map β �→ δ(β) is left continuous in (1, 2], and is right
continuous at a point β0 if and only if δ(β0) is not periodic. Hence by Lemma 2.8, it follows
that the map β �→ δ(β) is continuous at β0 if and only if δ(β0) is not of the form L(r)∞
for a Lyndon word r. Since �S is clearly continuous with respect to the order topology and
the map δ−1 is continuous, it follows that 	S is continuous at β0 if and only if δ(β0) is not
of the form L(r)∞ for a Lyndon word r. Moreover, 	S is left continuous everywhere.

Note that if δ(β0) = L(r)∞, then by Lemma 2.5(ii), it follows that as β decreases to
β0, the sequence δ(β) converges to L(r)+0∞ with respect to the order topology, that is,
limβ↘β0 δ(β) = L(r)+0∞. Since 	S is increasing, it follows that

	S((1, 2]) = (J S\IS)\
⋃

r∈�∗
L

(pr, qr],

where δ(pr) = �S(L(r)∞) and δ(qr) = �S(L(r)+0∞). Note that (pr, qr] ⊂ J S•r. By
Lemma 2.9(iii), there is a (unique) Farey word r̂ such that J r ⊂ J r̂ . Applying equation
(5.6) to both r and r̂, and using Lemma 5.3, we conclude that J S•r ⊂ J S•r̂. Hence,
(pr, qr] ⊂ J S•r̂. Therefore, if β ∈ ES = (J S\IS)\ ⋃

r∈�∗
F

J S•r, then β lies in the range
of 	S. This implies that

ES ⊂ 	S((1, 2]). (5.7)

Now assume first that β ∈ 	S(E). Then β = 	S(β̂), where β̂ ∈ J r for any r ∈ �∗
F .

Hence, β ∈ J S•r for any r ∈ �∗
F by equation (5.6) and since 	S is increasing. Therefore,

β ∈ ES.
Conversely, suppose β ∈ ES. By equation (5.7), β = 	S(β̂) for some β̂ ∈ (1, 2]. If β̂ ∈

J r for some r ∈ �∗
F , then β ∈ 	S(J r) ⊂ J S•r by equation (5.6), contradicting that β ∈

ES. Hence, β̂ ∈ E and then β ∈ 	S(E). This completes the proof.

Kalle et al proved in [20, Theorem C] that the Farey intervals J r, r ∈ �∗
F cover the

whole interval (1, 2] up to a set of zero Hausdorff dimension. Here we strengthen this
result and show that the exceptional set E is uncountable and has zero packing dimension.
Furthermore, we show that each relative exceptional set ES is uncountable and has zero
box-counting dimension. The proof uses the following simple lemma.

LEMMA 5.5. Let J S = [βS
� , βS

r ] =: [p, q] be any Lyndon interval. Then the length of J S

satisfies

|J S| ≤ q

q − 1
q−|S|.

Proof. Since δ(p) = L(S)∞ and δ(q) = L(S)+S∞, we have

(L(S)+0∞)p = 1 = (L(S)+S∞)q =: ((ci))q .

It follows that

|J S| = q − p =
|S|∑
i=1

ci

qi−1 +
∞∑

i=|S|+1

ci

qi−1 −
|S|∑
i=1

ci

pi−1 ≤
∞∑

i=|S|+1

1
qi−1 = q

q − 1
q−|S|,

as required.
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PROPOSITION 5.6.
(i) The exceptional set

E = (1, 2] \
⋃

r∈�∗
F

J r

is uncountable and has zero packing dimension.
(ii) For any S ∈ �, the relative exceptional set

ES = (J S \ IS) \
⋃

r∈�∗
F

J S•r

is uncountable and has zero box-counting dimension.

Proof. (i) First we prove dimP E = 0. Let ρN ∈ (1, 2] such that δ(ρN) = (10N−1)∞.
Then by Lemma 2.5, it follows that ρN ↘ 1 as N → ∞. Thus E = ⋃∞

N=1(E ∩ [ρN , 2]).
By the countable stability of packing dimension (cf. [16]), it suffices to prove that

dimB(E ∩ [ρN , 2]) = 0 for all N ∈ N. (5.8)

Let N ∈ N. Take a Farey interval J s := [p, q] ⊂ [ρN , 2] with s = s1 . . . sm ∈ �∗
F such

that

m > N + 2 − 3 log2(ρN − 1). (5.9)

Write L(s) = a1 . . . am. Then δ(p) = (a1 . . . am)∞. Since p ≥ ρN , by Lemma 2.5,
we have (a1 . . . am)∞ = δ(p) � δ(ρN) = (10N−1)∞, which implies that a1 . . . aN+1 �
10N−11. Then by Proposition 2.4, we conclude that

s1 . . . sN+1 � 0N1. (5.10)

Note that

(L(s)+0∞)p = 1 = (L(s)+s∞)q =: ((ci))q .

So, by equation (5.10), it follows that
m∑

i=1

ci

pi
= 1 =

m∑
i=1

ci

qi
+

∞∑
i=m+1

ci

qi
>

m∑
i=1

ci

qi
+ 1

qm+N+1 ,

which implies

1
qm+N+1 <

∞∑
i=1

(
1
pi

− 1
qi

)
= q − p

(p − 1)(q − 1)
.

Whence,

|J s| = q − p >
(p − 1)(q − 1)

qN+1 q−m ≥ (ρN − 1)2

2N+1 q−m. (5.11)

However, by Lemma 5.5, it follows that

|J s| ≤ q

q − 1
q−m ≤ 2

ρN − 1
q−m≤ 2

ρN − 1
ρ−m

N . (5.12)
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Now we list all of the Farey intervals in [ρN , 2] in a decreasing order according to their
length, say J s1 , J s2 , . . .. In other words, |J si | ≥ |J sj | for any i < j . For a Farey interval
J s, if J s = J sk , we then define its order index as o(J s) = k.

Set CN := 2 log 2/ log ρN . Let J s′ be a Farey interval with |s′| > CNm. Then by
equations (5.9), (5.11), and (5.12), it follows that

|J s′ | ≤ 2
ρN − 1

ρ
−CNm
N = 2

ρN − 1
2−2m <

(ρN − 1)2

2N+1 2−m ≤ |J s|.

This implies that

o(J s) ≤
�CNm�∑
k=1

#{s′ ∈ �∗
F : |s′| = k} ≤

�CNm�∑
k=1

(k − 1) < C2
Nm2, (5.13)

where the second inequality follows by equation (2.1) since the number of non-degenerate
Farey words of length k is at most k − 1 (see [8, Proposition 2.3]). Together with equation
(5.12), equation (5.13) implies that

lim inf
i→∞

− log |J si |
o(J si )

= +∞.

Note that [ρN , 2] ∩ E = [ρN , 2] \ ⋃
s∈�∗

F
J s. So, by [17, Proposition 3.6], we conclude

equation (5.8). This proves dimP E = 0.
Next we prove that E is uncountable. For s ∈ �∗

F , let Ĵ s = (βs
�, βs

r ) be the interior of
the Farey interval J s = [βs

�, βs
r ]. By Lemma 2.9(i), it follows that the compact set

Ê := [1, 2] \
⋃

s∈�∗
F

Ĵ s

is non-empty and has no isolated points. Hence, Ê is a perfect set and is therefore
uncountable. Since Ê\E is countable, it follows that E is uncountable as well.

(ii) In a similar way, we prove dimB ES = 0. Note that ES = (βS∗ , βS
r ] \ ⋃

r∈�∗
F

J S•r.

Fix a Farey word r = r1 . . . rm. Then the Lyndon interval J S•r = [βS•r
� , βS•r

r ] =: [pr, qr]
satisfies

(L(S • r)+0∞)pr = 1 = (L(S • r)+ (S • r)∞)qr =: ((di))qr .

So,

m|S|∑
i=1

di

pi
r

= 1 =
m|S|∑
i=1

di

qi
r

+
∞∑

i=m|S|+1

di

qi
r

>

m|S|∑
i=1

di

qi
r

+ 1

q
(m+1)|S|+1
r

,

where the inequality follows by observing that S ∈ �∗
L and thus S • r∞ � 0|S|10∞.

Therefore,

1

q
(m+1)|S|+1
r

≤
∞∑
i=1

(
1
pi

r
− 1

qi
r

)
= qr − pr

(pr − 1)(qr − 1)
,
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which implies

|J S•r| = qr − pr ≥ (pr − 1)(qr − 1)

q
|S|+1
r

q
−|S•r|
r >

(βS∗ − 1)2

2|S|+1 q
−|S•r|
r .

However, by Lemma 5.5, it follows that

|J S•r| ≤ qr

qr − 1
q

−m|S|
r ≤ 2

βS∗ − 1
q

−|S•r|
r .

Now let (J S•ri ) be an enumeration of the intervals J S•r, r ∈ �∗
F , arranged in order by

decreasing length. Then by a similar argument as in (i) above, we obtain

lim inf
i→∞

− log |J S•ri |
log o(J S•ri )

= +∞.

Thus, dimB ES = 0.
Finally, since we showed in (i) that E is uncountable, we conclude by Lemma 5.3 and

Proposition 5.4 that ES = 	S(E) is also uncountable. This completes the proof.

5.2. The infinitely Farey set. Recall from equation (1.7) that

E∞ =
∞⋂

n=1

⋃
S∈�(n)

J S,

where

�(n) = {s1 • s2 • · · · • sn : si ∈ �∗
F for all 1 ≤ i ≤ n}.

In particular, �(1) = �∗
F and � = ⋃∞

n=1 �(n). Note that (1, 2] = E ∪ ⋃
s∈�∗

F
J s. Fur-

thermore, for each word S ∈ �, we have

J S \ IS = ES ∪
⋃

r∈�∗
F

J S•r.

By iteration of the above equation, we obtain the following partition of the interval (1, 2].

LEMMA 5.7. The interval (1, 2] can be partitioned as

(1, 2] = E ∪ E∞ ∪
⋃
S∈�

ES ∪
⋃
S∈�

IS.

To complete the proof of Theorem 3, we still need the following dimension result
for E∞.

PROPOSITION 5.8. We have dimH E∞ = 0.

Proof. Note by equation (1.7) that

E∞ =
∞⋂

n=1

⋃
S∈�(n)

J S ⊂
∞⋂

n=1

⋃
S∈�:|S|≥n

J S. (5.14)
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This suggests covering E∞ by the intervals J S for S ∈ � with |S| ≥ n for a sufficiently
large n. To this end, we first estimate the diameter of J S. Take S ∈ � with |S| = m,
and write J S = [p, q]. Then δ(p) = L(S)∞ and δ(q) = L(S)+S∞, and it follows from
Lemma 5.5 that

|J S| ≤ q

q − 1
· q−m. (5.15)

Let (βn) be an arbitrary sequence in (1, 2) decreasing to 1. We will use equation (5.15)
to show that dimH (E∞ ∩ (βn, 2]) = 0 for all n ∈ N, so the result will follow from the
countable stability of Hausdorff dimension (cf. [16]). Fix n ∈ N. Observe that if J S =
[p, q] intersects (βn, 2], then q > βn and so by equation (5.15),

|J S| ≤ 2
βn − 1

β−m
n =: Cnβ

−m
n . (5.16)

Next, we count how many words S ∈ � there are with |S| = m. Call this number Nm.
Observe that if S = s1 • s2 • · · · • sk and |si | = li for i = 1, . . . , k, then |S| = l1l2 . . . lk .
Note by [8, Proposition 2.3] that #{r ∈ �∗

F : |r| = l} ≤ l − 1 for any l ≥ 2. Thus, for any
given tuple (l1, . . . , lk), the number of possible choices for the words s1, . . . , sk is at most
l1l2 . . . lk = |S| = m. It remains to estimate how many ordered factorizations of m there
are, that is, to estimate the number

fm := #{(l1, . . . , lk) : k ∈ N, li ∈ N≥2 for all i and l1l2 . . . lk = m}.

By considering the possible values of l1, it is easy to see that fm satisfies the recursion

fm =
∑

d|m,d>1

fm/d ,

where we set f1 := 1. (See [19].) We claim that fm ≤ m2. This is trivial for m = 1, so let
m ≥ 2 and assume fn ≤ n2 for all n < m; then

fm =
∑

d|m,d>1

fm/d ≤
∑

d|m,d>1

(
m

d

)2

≤ m2
∞∑

d=2

1
d2 = m2

(
π2

6
− 1

)
< m2.

This proves the claim, and we thus conclude that Nm ≤ m3. Now, given ε > 0 and δ > 0,
choose N large enough so that Cn(βn)

−N < δ. Using equations (5.14) and (5.16), we
obtain

Hε
δ(E∞∩(βn,2]) ≤

∑
S∈�:|S|≥N , J S∩(βn,2]=∅

|J S|ε ≤
∞∑

m=N

m3Cε
nβ

−mε
n → 0

as N → ∞. This shows that dimH (E∞ ∩ (βn, 2]) = 0, as desired.

Proof of Theorem 3. The theorem follows by Proposition 5.6, Lemma 5.7, and
Proposition 5.8.
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6. Critical values in the exceptional sets
By Proposition 1.12, Theorem 2, and Theorem 3, it suffices to determine the critical value
τ(β) for

β ∈
⋃
S∈�

ES ∪ E∞.

First we compute τ(β) for β ∈ ⋃
S∈� ES. Recall from Lemma 5.3 and Proposition

5.4 that for each S ∈ �, the map 	S bijectively maps the exceptional set E = (1, 2] \⋃
s∈�∗

F
J s to the relative exceptional set ES = (J S \ IS) \ ⋃

r∈�∗
F

J S•r.

LEMMA 6.1. Let β̂ ∈ E\{2} with δ(β̂) = δ1δ2 . . . . Also let S ∈ �, and set β := 	S(β̂).
Then
(i) b(τ(β̂), β̂) = 0δ2δ3 . . . ; and

(ii) the map t̂ �→ (�S(b(t̂ , β̂)))β is continuous at τ(β̂).

Proof. First we prove (i). Note by Proposition 1.12 that τ(β̂) = 1 − 1/β̂ = (0δ2δ3 . . .)
β̂

.
So by Lemma 2.10, it suffices to verify that

σn(0δ2δ3 . . .) ≺ δ1δ2 . . . for all n ≥ 0. (6.1)

By Lemma 2.5, it is immediate that σn(0δ2δ3 . . .) � (δi) for all n ≥ 0. If equality holds
for some n, then δ(β̂)= (δi) is periodic with period m ≥ 2 (since β̂ = 2), so by Lemma
2.8, δ(β̂) = L(r)∞ for some Lyndon word r. This implies β̂ = βr

� ∈ J r. However, then
by Lemma 2.9, β̂ ∈ J s for some Farey word s, and so β̂ ∈ E, a contradiction. This proves
equation (6.1), and then yields statement (i).

For (ii), note by Lemma 2.10(ii) that the map t̂ �→ b(t̂ , β̂) is continuous at all points t̂ for
which b(t̂ , β̂) does not end with 0∞. Furthermore, the map �S is continuous with respect
to the order topology. So, by statement (i), it follows that the map t̂ �→ (�S(b(t̂ , β̂)))β is
continuous at τ(β̂), completing the proof.

PROPOSITION 6.2. Let S ∈ �. Then for any β ∈ ES, we have

τ(β) = (�S(0δ2δ3 . . .))β ,

where 1δ2δ3 . . . is the quasi-greedy expansion of 1 in base β̂ := 	−1
S (β).

Proof. Let β ∈ ES. Then by Lemma 5.3 and Proposition 5.4, there exists a unique β̂ ∈ E

such that β̂ = 	−1
S (β) ∈ E, in other words, δ(β) = �S(δ(β̂)). Write δ(β̂) = δ1δ2 . . . and

set t∗ := (�S(0δ2δ3 . . .))β . We will show that τ(β) = t∗, by proving that htop(Kβ(t)) > 0
for t < t∗, and Kβ(t) is countable for t > t∗. We consider separately the two cases: (i)
β̂ < 2 and (ii) β̂ = 2.

Case I. β̂ < 2. First, for notational convenience, we define the map

�S,β̂ : (0, 1) → (0, 1); t̂ �→ (�S(b(t̂ , β̂)))β .

Since by Lemma 6.1 the map �S,β̂ is continuous at τ(β̂) and t∗ = �S,β̂ (τ (β̂)) =
(�S(0δ2δ3 . . .))β , it is, by the monotonicity of the set-valued map t �→ Kβ(t), sufficient
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to prove the following two things:

t̂ < τ(β̂) �⇒ htop(Kβ(�S,β̂ (t̂ ))) > 0, (6.2)

and

t̂ > τ(β̂) �⇒ Kβ(�S,β̂ (t̂ )) is countable. (6.3)

First, take t̂ < τ(β̂) and set t := �S,β̂ (t̂ ) = (�S(b(t̂ , β̂)))β . Since σn(b(t̂ , β̂)) ≺ δ(β̂)

for all n ≥ 0, Lemma 3.8 implies that

σn(�S(b(t̂ , β̂))) ≺ �S(δ(β̂)) = δ(β) for all n ≥ 0.

Hence, b(t , β) = �S(b(t̂ , β̂)). Now

�S(K
β̂
(t̂ )) = {�S((xi)) : b(t̂ , β̂) � σn((xi)) ≺ δ(β̂) for all n ≥ 0}

⊂ {�S((xi)) : �S(b(t̂ , β̂)) � σn(�S((xi))) ≺ �S(δ(β̂)) for all n ≥ 0}
= {�S((xi)) : b(t , β) � σn(�S((xi))) ≺ δ(β) for all n ≥ 0}
⊂ {(yi) : b(t , β) � σn((yi)) ≺ δ(β) for all n ≥ 0} = Kβ(t),

where the first inclusion again follows by Lemma 3.8. We deduce that

htop(Kβ(t)) ≥ htop(�S(K
β̂
(t̂ ))) = |S|−1htop(Kβ̂

(t̂ )) > 0,

where the last inequality follows since t̂ < τ(β̂). This gives equation (6.2).
Next, let t̂ > τ(β̂) and set t := �S,β̂ (t̂ ). Then, by the same argument as above, we

have b(t , β) = �S(b(t̂ , β̂)). Since β̂ ∈ E, there exists a sequence of Farey intervals
J rk = [βrk

� , β
rk
r ] with rk ∈ �∗

F such that q̂k := β
rk

� ↘ β̂ as k → ∞.
We claim that b(t̂ , β̂) � (rk)

∞ for all sufficiently large k. This can be seen as follows.
As explained in the proof of Lemma 6.1, δ(β̂) is not periodic, and therefore by Lemma
2.5(ii), the map β ′ �→ δ(β ′) is continuous at β̂ (where we use β ′ to denote a generic base).
This implies δ(q̂k) ↘ δ(β̂) = 1δ2δ3 . . . as k → ∞. However, δ(q̂k) = δ(β

rk

� ) = L(rk)
∞,

and by Lemma 2.3, L(rk) is the word obtained from rk by flipping the first and last
digits. Thus, (rk)

∞ converges to 0δ2δ3 . . . in the order topology. Since t̂ > τ(β̂) implies
b(t̂ , β̂) � b(τ(β̂), β̂) = 0δ2δ3 . . ., the claim follows.

We can now deduce that for all sufficiently large k,

Kβ(t) = {(yi) : b(t , β) � σn((yi)) ≺ δ(β) for all n ≥ 0}
= {(yi) : �S(b(t̂ , β̂)) � σn((yi)) ≺ �S(δ(β̂)) for all n ≥ 0}
⊂ {(yi) : �S((rk)

∞) � σn((yi)) ≺ �S(L(rk)
∞) for all n ≥ 0}

= {(yi) : (S • rk)
∞ � σn((yi)) ≺ L(S • rk)

∞ for all n ≥ 0},
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where the inclusion follows using the claim and δ(β̂) ≺ δ(q̂k) = L(rk)
∞. Hence, Kβ(t) is

countable by Proposition 4.1. This establishes equation (6.3).

Case II. β̂ = 2. In this case, δ(β̂) = 1∞, so δ(β) = �S(δ(β̂)) = L(S)+S∞ and t∗ =
(�S(01∞))β = (S−L(S)+S∞)β = (S0∞)β . Recall that β = βS

r is the right endpoint of
the Lyndon interval J S.

If t < t∗, then b(t , β) ≺ b(t∗, β) = S0∞, so by Lemma 2.10(iii), there exists k ∈ N

such that b(t , β) � S−L(S)+Sk0∞. It follows that

Kβ(t) = {(xi) : b(t , β) � σn((xi)) ≺ δ(β) for all n ≥ 0}
⊃ {L(S)+SkS−, L(S)+Sk+1S−}N,

and hence htop(Kβ(t)) > 0.
Now suppose t > t∗. Then b(t , β) � b(t∗, β) = S0∞, so by Lemma 4.4,

Kβ(t) = {(xi) : b(t , β) � σn((xi)) ≺ L(S)+S∞ for all n ≥ 0}
⊂ {(xi) : S0∞ � σn((xi))≺L(S)+S∞ for all n ≥ 0}
= {(xi) : S∞ � σn((xi)) � L(S)+S∞ for all n ≥ 0}
= {(xi) : S∞ � σn((xi)) � L(S)∞ for all n ≥ 0},

where the second equality follows by using S ∈ �∗
L, so σn((xi)) � S0∞ for all n ≥ 0 if

and only if σn((xi)) � S∞ for all n ≥ 0. Therefore, Kβ(t) is countable by Proposition 4.1.
This completes the proof.

Next we will determine the critical value τ(β) for β ∈ E∞. Recall from equation (1.7)
that

E∞ =
∞⋂

n=1

⋃
S∈�(n)

J S,

where for each n ∈ N, the Lyndon intervals J S, S ∈ �(n) are pairwise disjoint. Thus, for
any β ∈ E∞, there exists a unique sequence of words (sk) with each sk ∈ �∗

F such that

{β} =
∞⋂

n=1

J s1•···•sn .

We call (sk) the coding of β.

PROPOSITION 6.3. For any β ∈ E∞ with its coding (sk), we have

τ(β) = lim
n→∞(s1 • · · · • sn0∞)β .

Proof. Take β ∈ E∞. For k ≥ 1, let Sk := s1 • · · · • sk and write tk := (Sk0∞)β . Note
that β ∈ J Sk = [βSk

� , β
Sk
r ] for all k ≥ 1. Hence,

δ(β) � δ(β
Sk

� ) = L(Sk)
∞, (6.4)
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which implies that b(tk , β) = Sk0∞ for all k ≥ 1. Observe that Sk+1 = Sk • sk+1 begins
with S−

k . Therefore,

tk+1 = (Sk+10∞)β < (Sk0∞)β = tk ,

so the sequence (tk) is decreasing. Since tk ≥ 0 for all k ≥ 1, the limit t∗ := limk→∞ tk

exists. We will now show that τ(β) = t∗.
First we prove τ(β) ≤ t∗. Since tk decreases to t∗ as k → ∞, it suffices to prove that

τ(β) ≤ tk for all k ≥ 1. Let qk := β
Sk
r for all k ≥ 1. Then qk > β since β ∈ J Sk , and

qk ↘ β as k → ∞. Set t ′k := (Sk0∞)qk
. Since qk > β, one can verify that b(t ′k , qk) =

Sk0∞ = b(tk , β). So,

Kβ(tk) = {(xi) : b(tk , β) � σn((xi)) ≺ δ(β) for all n ≥ 0}
⊂ {(xi) : Sk0∞ � σn((xi)) ≺ δ(qk) for all n ≥ 0} = Kqk

(t ′k). (6.5)

Note by Proposition 6.2 and Case II of its proof that τ(qk) = (Sk0∞)qk
= t ′k . This implies

that dimH Kqk
(t ′k) = 0, and thus by equation (6.5), we have dimH Kβ(tk) = 0. Hence,

τ(β) ≤ tk for any k ≥ 1. Letting k → ∞, we obtain that τ(β) ≤ t∗.
Next we prove τ(β) ≥ t∗. Note that β = 	Sk

(βk), where βk ∈ E∞ has coding
(sk+1, sk+2, . . .). Let a(t̂ , βk) denote the quasi-greedy expansion of t̂ in base βk (cf. [12,
Lemma 2.3]). Observe that the map t̂ �→ a(t̂ , βk) is strictly increasing and left continuous
everywhere in (0, 1), and thus the map t̂ �→ (�Sk

(a(t̂ , βk)))β is also left continuous in
(0, 1). So, by the same argument as in the proof of equation (6.2), it follows that

τ(β) ≥ (�Sk
(a(τ (βk), βk)))β ≥ (�Sk

(0∞))β > (S−
k 0∞)β

for every k ∈ N, and letting k → ∞ gives τ(β) ≥ t∗.

To illustrate Proposition 6.3, we construct in each Farey interval J s a transcendental
base β ∈ E∞ and give an explicit formula for the critical value τ(β). Recall from [4]
that the classical Thue–Morse sequence (θi)

∞
i=0 = 01101001 . . . is defined recursively as

follows. Let θ0 = 0; and if θ0 . . . θ2n−1 is defined for some n ≥ 0, then

θ2n . . . θ2n+1−1 = θ0 . . . θ2n−1. (6.6)

By the definition of (θi), it follows that

θ2k+1 = 1 − θk , θ2k = θk for any k ≥ 0. (6.7)

Komornik and Loreti [21] showed that

θi+1θi+2 . . . ≺ θ1θ2 . . . for all i ≥ 1. (6.8)

PROPOSITION 6.4. Given s = s1 . . . sm = 0c1 ∈ �∗
F , let β := βs∞ ∈ (1, 2] such that

(θ1cθ2 θ3cθ4 . . . θ2k+1cθ2k+2 . . .)β = 1.

Then β ∈ E∞ ∩ J s is transcendental, and

τ(β) = 2
∑m

j=2 sjβ
m−j + βm−1 − βm

βm − 1
.
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We point out that in the above proposition, c may be the empty word. To prove the
transcendence of β, we recall the following result due to Mahler [25].

LEMMA 6.5. (Mahler, 1976) If z is an algebraic number in the open unit disc, then the
number Z := ∑∞

i=1 θiz
i is transcendental.

Proof of Proposition 6.4. Let s = s1 . . . sm = 0c1 ∈ �∗
F . First we prove that

δ(β) = θ1cθ2 θ3cθ4 . . . θ2k+1cθ2k+2 . . . =: (δi). (6.9)

By Lemma 2.5, it suffices to prove that σn((δi)) � (δi) for all n ≥ 1. Note by Lemma
2.3 that δ1 . . . δm = 1c1 = L(s)+ =: a1 . . . a+

m . Take n ∈ N, and write n = mk + j with
k ∈ N ∪ {0} and j ∈ {1, 2, . . . , m}. We will prove σn((δi)) ≺ (δi) in the following three
cases.

Case I. j ∈ {1, 2, . . . , m − 2}. Note by equation (6.7) that θ2k = 1 − θ2k+1. This implies
that σn((δi)) begins with either aj+1 . . . am or aj+1 . . . a+

ms1 . . . sm−1. By Lemma 2.7,
it follows that σn((δi)) ≺ (δi).

Case II. j = m − 1. Then σn((δi)) begins with θ2kθ2k+1c for some k ∈ N. If θ2k = 0,
then it is clear that σn((δi)) ≺ (δi) since δ1 = 1. Otherwise, equation (6.7) implies that
θ2kθ2k+1c = 10c = 1s1 . . . sm−1. Hence,

σn((δi)) = 1s1 . . . sm−1 δn+m+1δn+m+2 . . . ≺ 1a2 . . . a+
mδm+1δm+2 = (δi),

where the strict inequality follows since s1 . . . sm−1 � a2 . . . am.

Case III. j = m. Then

σn((δi)) = θ2k+1cθ2k+2 θ2k+3cθ2k+4 . . . ≺ θ1cθ2 θ3cθ4 . . . = (δi),

where the strict inequality is a consequence of equation (6.8).
Therefore, by Cases I–III, we establish equation (6.9). Next we show that β ∈ E∞. For

k ∈ N, let Sk := s1 • s2 • · · · • sk with s1 = s and si = 01 for all 2 ≤ i ≤ k. Then Sk ∈ �

for all k ∈ N. So it suffices to show that β ∈ J Sk for all k ≥ 1. First we claim that

Sk = θ1cθ2 θ3cθ4 . . . θ2k−1cθ2k
+, L(Sk) = θ1cθ2 θ3cθ4 . . . θ2k−1cθ−

2k (6.10)

for all k ≥ 1.
Since S1 = s = 0c1 = θ1cθ2

+ and L(S1) = 1c0 = θ1cθ−
2 , equation (6.10) holds for

k = 1. Now suppose equation (6.10) holds for a given k ∈ N. Then

Sk+1 = Sk • (01) = S−
k L(Sk)

+ = θ1cθ2 . . . θ2k−1cθ2k θ1cθ2 . . . θ2k−1cθ2k

= θ1cθ2 . . . θ2k+1−1cθ2k+1
+,

where the last equality follows since, by the definition of (θi) in equation (6.6),
θ2k+1 . . . θ2k+1 = θ1 . . . θ2k

+. Similarly, by the induction hypothesis and Lemma 3.7,

https://doi.org/10.1017/etds.2022.24 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.24


1822 P. Allaart and D. Kong

we obtain

L(Sk+1) = L(Sk • (01)) = Sk • L(01) = Sk • (10) = L(Sk)
+S−

k

= θ1cθ2 . . . θ2k−1cθ2k θ1cθ2 . . . θ2k−1cθ2k

= θ1cθ2 . . . θ2k+1−1cθ−
2k+1 .

Hence, by induction, equation (6.10) holds for all k ≥ 1.
Next, recall that the Lyndon interval J Sk = [βSk

� , β
Sk
r ] satisfies

δ(β
Sk

� ) = L(Sk)
∞ and δ(βSk

r ) = L(Sk)
+S∞

k . (6.11)

By equations (6.9) and (6.10), it follows that δ(β) begins with L(Sk)
+, so by equation

(6.11), δ(β) � L(Sk)
∞ = δ(β

Sk

� ). Thus, β > β
Sk

� for all k ≥ 1. However, by equations
(6.9), (6.10), and Lemmas 3.7 and 3.9, we see that δ(β) also begins with

L(Sk+2)
+ = L(Sk • (01 • 01))+ = L(Sk • (0011))+

= (Sk • L(0011))+ = (Sk • (1100))+ = L(Sk)
+SkS−

k L(Sk)
+,

which is strictly smaller than a prefix of δ(β
Sk
r )+ = L(Sk)

+S∞
k . This implies that β <

β
Sk
r for all k ≥ 1. Hence, β ∈ J Sk for all k ≥ 1, and thus β ∈ E∞ ∩ J s. Furthermore, by

equations (6.9), (6.10), and Proposition 6.3, it follows that

τ(β) = lim
k→∞(Sk0∞)β = (θ1cθ2 θ3cθ4 . . .)β

=
∞∑

k=0

(
1

βmk+1 + 2
m−1∑
j=2

sj

βmk+j
+ 1

βmk+m

)
− (θ1cθ2θ3cθ4 . . .)β

= βm−1 + 2
∑m−1

j=2 sjβ
m−j + 1

βm − 1
− 1

= 2
∑m

j=2 sjβ
m−j + βm−1 − βm

βm − 1
,

where we recall that c = s2 . . . sm−1, and the last equality uses that sm = 1.
Finally, the transcendence of β follows by using equation (6.9), Lemma 6.5, and a

similar argument as in the proof of [22, Proposition 5.2].

Remark 6.6.
(i) When s = 01, the base β01∞ ≈ 1.78723 given in Proposition 6.4 is the Komornik–Loreti

constant (cf. [21]), whose transcendence was first proved by Allouche and Cosnard
[3]. In this case, we obtain τ(β01∞) = (2 − β01∞)/(β01∞ − 1) ≈ 0.270274.

(ii) When s = 001, the base β001∞ ≈ 1.55356 is a critical value for the fat Sierpinski
gaskets studied by Li and the second author in [22]. In this case, we have τ(β001∞ ) ≈
0.241471.
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TABLE 1. The triples (s, βs∞, τ(βs∞)) with s ∈ F ∗
3 ⊂ �∗

F .

s = 0001 001 00101 01 01011 011 0111

βs∞ ≈ 1.43577 1.55356 1.59998 1.78723 1.83502 1.91988 1.96452
— τ(βs∞) ≈ 0.218562 0.241471 0.336114 0.270274 0.432175 0.40305 0.455933

By Proposition 6.4 and numerical calculation, we give in Table 1 the triples
(s, βs∞, τ(βs∞)) for all s ∈ F ∗

3 ⊂ �∗
F . Based on Proposition 6.4, we conjecture that each

base β ∈ E∞ is transcendental.

7. Càdlàg property of the critical value function
In this section, we prove Proposition 1.9 and Theorem 1. Recall by Lemma 5.7 that the
interval (1, 2] can be partitioned as

(1, 2] = E ∪
⋃

s∈�∗
F

J s = E ∪ E∞ ∪
⋃
S∈�

ES ∪
⋃
S∈�

IS. (7.1)

Here we emphasize that the exceptional set E, the relative exceptional sets ES and the
infinitely Farey set E∞ featuring in equation (7.1) all have Lebesgue measure zero in view
of Propositions 5.6 and 5.8. Hence the basic intervals IS, S ∈ �, and then certainly the
Lyndon intervals J S, S ∈ �, are dense in (1, 2]. This allows for approximation of points in
E, ES, and E∞ by left and/or right endpoints of such Lyndon intervals. We also recall from
Theorem 2 that for any basic interval IS = [βS

� , βS∗ ] with δ(βS
� ) = L(S)∞ and δ(βS∗ ) =

L(S)+S−L(S)∞, the critical value is given by

τ(β) = (�S(0∞))β = (S−L(S)∞)β for any β ∈ IS. (7.2)

Moreover, by Proposition 6.2, it follows that for each β ∈ ES, we have

τ(β) = (�S(0δ2δ3 . . .))β , (7.3)

where 1δ2δ3 . . . = δ(β̂) with β̂ = 	S
−1(β) ∈ E. In particular, when β ∈ E, we have

τ(β) = 1 − 1/β (see Proposition 1.12). When β ∈ E∞, it follows by Proposition 6.3 that

τ(β) = lim
n→∞(s1 • s2 • · · · • sn0∞)β , (7.4)

where (sk) is the unique coding of β (that is, β ∈ J s1•···•sk for all k ∈ N).
From equation (7.2), it is clear that the critical value function τ is continuous inside

each basic interval IS = [βS
� , βS∗ ]. So, in view of equation (7.1), we still need to consider

the continuity of τ for β ∈ E ∪ E∞ ∪ ⋃
S∈�(ES \ {βS

r }), the left continuity of τ at β = βS
�

and β = βS
r , and the right continuity of τ at β = βS∗ . We need the following lemma.

LEMMA 7.1. If β ∈ (1, 2) and δ(β) is periodic, then β ∈ ⋃
S∈� IS.

Proof. Assume δ(β) is periodic. In view of equation (7.1), it suffices to prove

β /∈ E ∪ E∞ ∪
⋃
S∈�

ES.
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First we prove β /∈ E. By Lemma 2.8, δ(β) = L(S′)∞ for some Lyndon word S′. This
means β is the left endpoint of a Lyndon interval, so by Lemma 2.9, β ∈ J s for some
Farey word s. Hence, β ∈ E.

Next, suppose β ∈ ES for some S ∈ �. Clearly, β = βS
r since δ(βS

r ) = L(S)+S∞
is not periodic. Thus β ∈ (βS∗ , βS

r ) \ ⋃
r∈�∗

F
J S•r. So, by Proposition 5.6, there is a

sequence (rk) of Farey words such that β
S•rk

� ↘ β. Write δ(β) = (a1 . . . an)
∞ with

minimal period n. Then by Lemma 2.5, it follows that δ(β
S•rk

� ) ↘ a1 . . . a+
n 0∞, so for

all sufficiently large k, δ(β
S•rk

� ) contains a block of more than 2m zeros, where m := |S|.
However, this is impossible, since δ(β

S•rk

� ) = L(S • rk)
∞ is a concatenation of blocks

from S, S−, L(S), and L(S)+. These blocks all have length m, and only S− could possibly
consist of all zeros, while S− can only be followed by L(S) or L(S)+. Thus, δ(β

S•rk

� )

cannot contain a block of 2m zeros. This contradiction shows that β ∈ ES.
Finally, suppose β ∈ E∞. Then there is a sequence (Sk) of words in � such that β

lies in the interior of J Sk for each k. Note that β = βS′
� is the left endpoint of J S′

. Thus,
J S′ ∩ J Sk = ∅, and therefore by Lemma 2.9, it must be the case that J S′ ⊂ J Sk for all k.
However this is impossible, since |J Sk | → 0. Hence, β ∈ E∞.

Proof of Proposition 1.9. First fix β0 ∈ (1, 2] \ {βS
r : S ∈ �}. It is sufficient to prove that

(*) for each N ∈ N, there exists r > 0 such that if β ∈ (1, 2] satisfies |β − β0| < r , then
there is a word s1 . . . sN such that τ(β) has a β-expansion beginning with s1 . . . sN ,
and τ(β0) has a β0-expansion beginning with s1 . . . sN .

For, if τ(β) = (s1 . . . sNc1c2 . . .)β and τ(β0) = (s1 . . . sNd1d2 . . .)β0 , then

|τ(β) − τ(β0)| ≤ |(s1 . . . sNc1c2 . . .)β − (s1 . . . sNc1c2 . . .)β0 |
+ |(s1 . . . sNc1c2 . . .)β0 − (s1 . . . sNd1d2 . . .)β0 |

≤
∞∑
i=1

∣∣∣∣ 1
βi

− 1
βi

0

∣∣∣∣ +
∞∑

i=N+1

1
βi

0

= |β − β0|
(β − 1)(β0 − 1)

+ 1
(β0 − 1)βN

0

<
r

(β − 1)(β0 − 1)
+ 1

(β0 − 1)βN
0

,

and this can be made as small as desired by choosing N sufficiently large and r sufficiently
small. In view of equation (7.1), we prove (∗) by considering several cases.

Case I. β0 ∈ (βS
� , βS∗ ) for some basic interval IS = [βS

� , βS∗ ] with S ∈ �. It is clear from
Theorem 2 that (∗) holds in this case.

Case II. β0 ∈ E. Then by Proposition 5.6, there exists a sequence of Farey intervals J sk =
[βsk

� , β
sk
r ] such that βsk

� → β0 as k → ∞. Furthermore, |J sk | → 0 as k → ∞. This implies
that the length |sk| of the Farey word sk goes to infinity as k → ∞. Let N ∈ N be given. We
can choose r > 0 small enough so that if a Farey interval J s intersects (β0 − r , β0 + r),
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then |s| > N and

δ1(β) . . . δN(β) = δ1(β0) . . . δN(β0). (7.5)

We can guarantee equation (7.5) because for β0 ∈ E \ {2}, the expansion δ(β0) is not
periodic by Lemma 7.1, so by Lemma 2.5, the map β �→ δ(β) is continuous at β0.
Furthermore, for β0 = 2, the map β �→ δ(β) is left continuous at β0.

Let β ∈ (β0 − r , β0 + r). By equation (7.1), we have either β ∈ E or β ∈ J s for
some s ∈ �∗

F . If β ∈ E, then by Proposition 1.12, it follows that τ(β) = 1 − 1/β =
(0δ2(β)δ3(β) . . .)β and

τ(β0) = 1 − 1
β0

= (0δ2(β0)δ3(β0) . . .)β0 , (7.6)

so (∗) holds by equation (7.5).
Next we assume β ∈ J s with s = s1 . . . sm ∈ �∗

F . By our choice of r, it follows
that m = |s| > N , and equation (7.5) holds. Since β ∈ J s = [βs

�, βs
r ], we have L(s)∞ �

δ(β) � L(s)+s∞. Write L(s) = a1 . . . am; then by equation (7.5), it follows that

δ1(β0) . . . δN (β0) = δ1(β) . . . δN(β) = a1 . . . aN . (7.7)

Observe by equations (7.1)–(7.4) and Lemma 2.3 that τ(β) has a β expansion beginning
with s− = 0a2 . . . am. Hence, by equation (7.7), τ(β) has a β-expansion with prefix

s1 . . . sN = 0a2 . . . aN = 0δ2(β0) . . . δN(β0). (7.8)

This, together with equation (7.6), gives (∗).

Case III. β0 ∈ ES\{βS
r } for some S ∈ �. The proof is similar to that of Case II, but there

are some extra details involving the substitution operator. By Proposition 5.6, it follows
that

β0 ∈ (βS∗ , βS
r ) \

⋃
r∈�∗

F

J S•r, (7.9)

and there exists a sequence (rk) of Farey words such that β
S•rk

� → β0 as k → ∞. This
implies that |rk| → ∞ as k → ∞.

Let N ∈ N be given; without loss of generality, we may assume that N = N ′|S| for
some integer N ′. By Lemma 7.1, we can choose r > 0 sufficiently small so that if a Lyndon
interval J S•r intersects (β0 − r , β0 + r), then |r| > N ′ and

δ1(β) . . . δN ′|S|(β) = δ1(β0) . . . δN ′|S|(β0) = S • (δ1(β̂0) . . . δN ′(β̂0)) (7.10)

for any β ∈ (β0 − r , β0 + r), where β̂0 = 	−1
S (β0) ∈ E.

Now take β ∈ (β0 − r , β0 + r). By equation (7.9), it follows that either β ∈ ES or β ∈
J S•r for some r ∈ �∗

F . If β ∈ ES, we let β̂ = 	−1
S (β). Then equation (7.10) yields

S • (δ1(β̂) . . . δN ′(β̂)) = δ1(β) . . . δN ′|S|(β) = S • (δ1(β̂0) . . . δN ′(β̂0)),
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which implies δ1(β̂) . . . δN ′(β̂) = δ1(β̂0) . . . δN ′(β̂0). So, by equation (7.3), it follows that
τ(β) has a β-expansion with a prefix

S • (0δ2(β̂) . . . δN ′((β̂)) = S • (0δ2(β̂0) . . . δN ′(β̂0)),

which coincides with a prefix of a β0-expansion of τ(β0). This gives (∗).
If β ∈ J S•r for some r = r1 . . . rm ∈ �∗

F , then by our assumption on r, we have m >

N ′. Furthermore,

(S • L(r))∞ = L(S • r)∞ � δ(β) � L(S • r)+(S • r)∞ = (S • L(r))+(S • r)∞.

Therefore, writing L(r) = b1 . . . bm, it follows from equation (7.10) that

S • (b1 . . . bN ′) = δ1(β) . . . δN ′|S|(β) = S • (δ1(β̂0) . . . δN ′(β̂0)). (7.11)

This shows that b1 . . . bN ′ = δ1(β̂0) . . . δN ′(β̂0). Now observe by equations (7.1)–(7.4)
and Lemma 2.3 that τ(β) has a β-expansion beginning with (S • r)− = S • (0b2 . . . bm).
So, by equations (7.3) and (7.11), it follows that τ(β) has a β-expansion with a prefix

S • (0b2 . . . bN ′) = S • (0δ2(β̂0) . . . δN ′(β̂0))

of length N, which is also a prefix of a β0-expansion of τ(β0). This again gives (∗).

Case IV. β0 = βS
� for some S ∈ �. Here the right continuity of τ at β0 follows from

Theorem 2. The left continuity can be seen as follows. If S ∈ �∗
F , then τ(β0) has a

β0-expansion 0δ2(β
S
� )δ3(β

S
� ) . . ., and the left continuity follows by the argument in Case

II, using the left continuity of the map β �→ δ(β) at β0. Otherwise, S = S′ • r for some
S′ ∈ � and r ∈ �∗

F , and τ(β0) has a β0-expansion �S′(0δ2(β
r
�)δ3(β

r
�) . . .). In this case

the left continuity follows from the argument in Case III.

Case V. β0 = βS∗ for some S ∈ �. Here the left continuity at β0 follows from Theorem 2.
The right continuity can be seen as follows. First note that

δ(βS∗ ) = L(S)+S−L(S)∞ and τ(βS∗ ) = (S−L(S)∞)βS∗ .

Observe also that βS∗ = lim
β̂↘1 	S(β̂), so by Lemma 2.5, �S(δ(β̂)) ↘ δ(βS∗ ) as β̂ ↘ 1.

Now let N ∈ N be given. As in Case III, we may assume that N = N ′|S| for some
integer N ′. We choose r > 0 small enough so that if r ∈ �∗

F and J S•r intersects
(β0, β0 + r), then |r| > N ′. Now take β ∈ (β0, β0 + r). If β ∈ ES, then β = 	S(β̂) for
some β̂ ∈ E, and δ(β) = �S(δ(β̂)). Note that if β ↘ β0, then β̂ ↘ 1 and so δ(β̂) ↘ 10∞.
Thus, we may also assume r is small enough so that δ(β̂) begins with 10N ′−1. Then τ(β)

has a β-expansion beginning with �S(0N ′
) = S−L(S)N

′−1, which is also a prefix of length
N of a β0-expansion of τ(β0).
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Similarly, if β ∈ J S•r, then we may assume r is small enough so that r begins with
0N ′−1. Then τ(β) has a β-expansion beginning with (S • r)−, and therefore beginning
with S−L(S)N

′−1, and we conclude as above.

Case VI. β0 ∈ E∞. Then there exists a sequence (sk) of Farey words such that

{β} =
∞⋂

k=1

J Sk ,

where Sk := s1 • s2 • · · · • sk . Note that J Sk ⊃ J Sk+1 for all k ≥ 1, and |Sk| → ∞ as k →
∞.

Let N ∈ N be given, and choose k so large that |Sk| > N . Choose r > 0 sufficiently
small so that (β0 − r , β0 + r) ⊂ J Sk . Take β ∈ (β0 − r , β0 + r). Then β ∈ J Sk , so by
equations (7.1)–(7.4), it follows that τ(β) has a β-expansion beginning with S−

k , which is
also a prefix (of length at least N) of a β0-expansion of τ(β0). Hence, we obtain (∗).

Finally, we consider β0 = βS
r for S ∈ �. The left continuity at β0 (that is, the analog of

(∗) for β ∈ (β0 − r , β0)) follows just as in Case III. The jump at β0 (that is, equation (1.6))
can be seen as follows. Since τ(β0) = (S0∞)β0 < (S∞)β0 by Proposition 6.2 (or rather,
Case II of its proof), it suffices to show that

lim
β↘β0

τ(β) = (S∞)β0 . (7.12)

First assume S ∈ �∗
F . Then δ(β0) = L(S)+S∞, and by Lemma 2.3, it follows that S∞ =

0δ2(β0)δ3(β0) . . .. So, by the same argument as in Case II, we obtain equation (7.12).
Next suppose S = S′ • r for some S′ ∈ � and r ∈ �∗

F . Then

δ(β0) = L(S)+S∞ = (S′ • L(r))+(S′ • r)∞ = �S′(L(r)+r∞) = �S′(δ(β̂0)),

where β̂0 = 	−1
S′ (β0) ∈ E. This implies that

�S′(0δ2(β̂0)δ3(β̂0) . . .) = �S′(r∞) = (S′ • r)∞ = S∞.

The same argument as in Case III then yields equation (7.12).

Proof of Theorem 1. The theorem follows by Proposition 1.9, and Theorems 2 and 3.
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