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Three-dimensional wake forcing is applied to a profiled blunt trailing edge body from
synthetic jet arrays distributed symmetrically on both sides of the body. The effect on
the wake is experimentally studied at Reynolds numbers based on body thickness, d, of
2500 � Red = u∞d/ν � 5000 in the turbulent wake regime. The exits of the synthetic jets
are rectangular slots and are oriented spanwise to the cross-flow with a uniform spacing
of 2.4d. The forcing causes spanwise variations in the separated shear layers, leading
to the von Kármán vortices tilting and forming coherent streamwise vortex loops. This
reorientation of the wake vorticity is associated with the attenuation of the vortex street and
drag reduction, consistent with previous studies of spanwise perturbations to wakes. The
effect of forcing amplitude on the drag and wake structure is examined. It is found that the
mean shedding frequency is constant across the span in all cases, indicating that the forced
wake has a periodic organised structure. The greatest drag reduction of approximately
25 % is achieved when the vortical structures emitted by the jets penetrate up the edges
of the boundary layers of the body, which occurs at velocity ratios (defined from the
mean jet exit velocity during expulsion) of about 3 when Red = 2500 and about 2 when
Red = 5000. This study presents evidence that the forcing effectiveness is maximised
when the vortex street is most tilted into the streamwise direction.
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1. Introduction
Three-dimensional, or spanwise-varying, perturbations to separated shear layers are one
type of control strategy that can break up and weaken the regular vortex street of a bluff
body. Early research into this strategy focused on geometric spanwise variations. Tanner
(1972) investigated segmented cutouts in the trailing edge of a blunt trailing edge (BTE)
airfoil of thickness, d, at Red = u∞d/ν ≈ 50 000, and measured increasing base pressure
levels as the depth of the cutouts increased, up to a maximum base pressure recovery
of 64 %. Gai & Sharma (1981) investigated a range of different cutout geometries to
try and optimise their shape and found that an ‘M’ shape was most effective for drag
reduction. With a schlieren technique, Rodriguez (1991) drew attention to the presence of
streamwise vortices in the wake of BTE-profiled bodies with different trailing-edge cutouts
and hypothesised that their relative effectiveness was related to these induced streamwise
vortices.

Wavy surfaces are another way to apply spanwise perturbations to the wake. Ahmed &
Bays-Muchmore (1992) and later Ahmed, Khan & Bays-Muchmore (1993) investigated
the effect of cylinder waviness in the range of 0.8d � λz � 2.4d, where λz is the spanwise
wavelength. Ahmed et al. (1993) examined the separation lines on wavy cylinders and
associated the spanwise variations in the width of the wake to the local points of
separation. In particular, they found that the wake width and velocity deficit were greater
downstream of the cylinder saddles (minimum d) than the nodes (maximum d). Lam et al.
(2004) examined the velocity power spectra at different positions along the span for wavy
cylinders in the range of 1.5d � λz � 2.3d and found that spanwise waviness significantly
reduced intensity of the vortex shedding. Notably, the mean frequency of the shedding did
not change along the span and, in fact, was almost the same as that for a plain cylinder. The
flow structures in the wake of a wavy cylinder with λz = 2d at Red = 3000 were measured
for the first time using particle image velocimetry (PIV) by Zhang & Lee (2005). They
identified well-organised streamwise vortices that they related to the suppression of vortex
shedding as well as the spanwise wake width variations that were originally characterised
by Ahmed et al. (1993). Using large-eddy simulations, Lam & Lin (2008) identified that in
the range 1.1d < λz < 3.3d at Red = 3000, the optimal wavelength for drag reduction was
λz = 1.9d, in line with the experiments of Lee & Nguyen (2007). Lam & Lin (2008) also
emphasised that there was only a single mean shedding frequency along the span for all
the λz that they investigated. Lam & Lin (2009) performed direct numerical simulations
focused at Red = 100 in order to investigate the optimal λz for a wavy cylinder over a
wider range of 1d � λz � 10d. They identified a local minimum in the drag at λz ≈ 2d,
but also found different flow regimes for λz > 5d wherein the wake width shrunk at the
saddles (minimum d) relative to the nodes (maximum d) and the drag was lower than that
at λz ≈ 2d.

Tombazis & Bearman (1997) studied wavy trailing edges on BTE-profiled bodies and
found that increasing the wave steepness led to progressively higher base pressure levels
up to a maximum recovery of 34 % at Red = 40 000. For 3.5d � λz � 5.6d, they noted
two shedding frequencies in the wake, with the higher frequency being most evident at
the valley positions along the span where the shear layer velocity increased. Tombazis &
Bearman (1997) concluded that the mechanism of control was related to the attenuation
of the vortex shedding due to the generation of regular vortex dislocations at the positions
along the span aligned with the peaks of the wavy trailing edge.

Darekar & Sherwin (2001) performed direct numerical simulations on wavy square
prisms to study the effect of the perturbation wavelength on the flow structures and
aerodynamic forces. They focused on Red = 100 and observed the tilting of spanwise
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vorticity into streamwise components and associated this with the weakening of the vortex
shedding. The flow field was categorised by Darekar & Sherwin (2001) into different
regimes depending on the amplitude and wavelength of the waviness in a fashion similar
to that of Lam & Lin (2009) for a wavy cylinder. A critical λz = 5.6d was pinpointed by
Darekar & Sherwin (2001), below which there was a single shedding frequency, and above
which there were two. Cai, Chng & Tsai (2008) employed direct numerical simulations at
Red = 2500 to investigate the effect of λz on the flow structures and drag of a BTE-profiled
body. For these types of bodies, Cai et al. (2008) found that the streamwise velocity at the
trailing edge was greater at the valleys compared with the peaks, causing spanwise flow
towards the valley regions and retarding the vortex street at the peak regions. Consistent
with the results of Darekar & Sherwin (2001), the λz < 5d cases of Cai et al. (2008)
exhibited only a single shedding frequency, which they termed the spanwise-regular mode.
In contrast, the λz > 5d cases were termed spanwise-irregular because they had multiple
shedding frequencies. They identified that the boundary between these two regimes at
λz = 5d provided the best drag reduction of 30 % compared with a plain trailing edge.

Park et al. (2006) attempted to simplify the spanwise perturbations using small
spanwise-separated tabs along the trailing edge of a BTE-profiled body. Similar to the
various studies investigating wavy trailing edges, Park et al. (2006) observed that the tabs
caused spanwise variations in the mean wake velocity field and broke up the vortex street.
Additionally, they found that the optimal spacing of the tabs for drag reduction ranged
from about 1.5d to 2.5d. For the optimal tab height of about 0.1d at Red = 40 000, Park
et al. (2006) reported a base pressure recovery of over 30 %.

The success of the various passive three-dimensional wake control methods motivates
the application of active control in order to open up more possible methodologies than
are available from geometric changes. Kim et al. (2004) were some of the first to
formally investigate active three-dimensional wake control, termed distributed forcing.
They applied a steady blowing and suction with a spanwise sinusoidally varying velocity
profile to both sides of a BTE-profiled body near its trailing edges at λz = 4d and realised
36 % and 18 % base pressure recoveries at Red = 20 000 and 40 000, respectively. Kim &
Choi (2005) pursued this strategy using numerical means to examine the effect of the
forcing wavelength. When the wake was turbulent at Red = 3900, the mean shedding
frequency was constant along the span and forcing caused phase differences in the vortex
shedding along the span when λz < 5d. In contrast, the shedding frequency varied over
the span when λz > 5d and vortex dislocations developed as a result (Kim & Choi 2005).

Distributed forcing of a BTE-profiled body with a discrete number of actuators along the
span was investigated by Naghib-Lahouti & Hangan (2010) with circular injection ports
upstream of the trailing edges and later by Naghib-Lahouti, Hangan & Lavoie (2015) with
plasma actuators. The injection ports of Naghib-Lahouti & Hangan (2010) were spaced
apart by 2.1d and the plasma actuators of Naghib-Lahouti et al. (2015) were spaced 2.4d
apart, which was chosen to approximately match the wavelength of a secondary instability
structure observed by Naghib-Lahouti, Lavoie & Hangan (2014), referred to as the mode
B′. They argued that by exciting the mode B′, the vortex street could be maximally
disorganized and this would help optimise the forcing effectiveness. Naghib-Lahouti &
Hangan (2010) found that forcing at Red = 400 was successful in attenuating the unsteady
aerodynamic forces, but the effectiveness diminished significantly at Red = 1000, which
they attributed to temporal variations in the mode B′ structure. However, Naghib-Lahouti
et al. (2015) reported that plasma-actuator-distributed forcing caused spanwise variations
in the shedding frequency and they achieved a 40 % recovery in the base pressure at Red =
3000. Bhattacharya & Gregory (2015) investigated the effect of the forcing amplitude for a

1008 A16-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.37


R. Cruikshank, S. Baba and P. Lavoie

spanwise array of plasma actuators distributed along on a cylinder at Red = 4700. Similar
to Naghib-Lahouti et al. (2015), the spacing of the actuators was selected by Bhattacharya
& Gregory (2015) to align with the wavelength of a natural secondary wake instability,
except they used the mode A and so set λz = 4d. Bhattacharya & Gregory (2015) found
that the spanwise coherence of the vortex street was reduced with low-power forcing. For
high-amplitude forcing, the vortex shedding was significantly attenuated because its supply
of circulation was largely cut off. The effect of forcing wavelength over 1d � λz � 6d
for a cylinder at Red = 4700 outfitted with distributed plasma actuators was investigated
by Bhattacharya & Gregory (2018). They found that the optimal wavelength range for
drag reduction was 3d � λz � 5d and related it to measurements of streamwise vortices
in the wake. Interestingly, phase-averaging of their vorticity plots to the vortex shedding
cycle revealed that the symmetry of their streamwise vortices did not match the mode A
secondary instability. They suggested that the optimal λz for their forcing strategy was
a function of the balance between having a large spanwise impact of the forcing, which
increases with shorter λz , and generating large vortex dislocations, which increases with
longer λz .

In summary, previous research involving different types of spanwise perturbations
has shown many common threads regarding the mechanism of control, namely the
development of streamwise vortices in the wake and the occurrence of vortex dislocations.
Some studies, such as Dobre, Hangan & Vickery (2006), Naghib-Lahouti et al. (2015) and
Bhattacharya & Gregory (2015), have proposed that the control mechanism is related to
matching the forcing to the dominant natural secondary instabilities of the wake. This
study builds upon the previous research of Naghib-Lahouti et al. (2015), so a similar
BTE-profiled body geometry is adopted and the spacing of the actuators is pre-selected
to match the λz = 2.4d of Naghib-Lahouti et al. (2015). The basic intent of this system
is to induce spanwise variations in the separated shear layers, such that the vortex street
in the turbulent wake regime forms three-dimensionally and is weakened. Synthetic jets
upstream of the trailing edge blowing normal to the body are used to force the wake,
instead of plasma actuators as in Naghib-Lahouti et al. (2015), in order to increase the
maximum amplitude of the disturbance. The synthetic jets are located upstream of the
trailing edge similar to Naghib-Lahouti et al. (2015), but the change in the perturbation
from a more streamwise-directed wall jet of a plasma actuator to a more wall-normal
type of disturbance from a synthetic jet is expected to affect the forcing effectiveness.
Therefore, the present investigation mostly focuses on Red = 2500 such that the forcing is
most comparable to that of Naghib-Lahouti et al. (2015).

A central question to this study is whether this three-dimensional forcing strategy
produces an organised or disorganised wake structure. In particular, does distributed
forcing generate coherent streamwise vorticity components in the wake, and if so, are
they connected to the primary von Kármán vortices, related to vortex dislocations and/or
associated with a secondary wake instability? Based on different types of trailing-edge
cutouts, Rodriguez (1991) hypothesised that the wake response was essentially associated
with how effective the cutouts were at generating streamwise vorticity. With synthetic jet
forcing, it is expected that the wake may respond somewhat differently than it does for the
various previously investigated means of applying spanwise perturbations. Nevertheless,
if the mechanism of distributed synthetic jet forcing is fundamentally related to the
development of streamwise vortices in the wake, an objective of this study is to test
the hypothesis of Rodriguez (1991) that the drag reduction is tied to the intensity of the
streamwise vortices. Active flow control is beneficial for this objective because it allows
the forcing amplitude to be easily controlled, unlike with geometrical perturbations.
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Figure 1. Schematic of a profiled BTE model and coordinate system.

The paper is organised as follows. Section 2 provides the details of the measurement
techniques and experiments conducted. Section 3 presents the results and discusses how
they answer the research questions. In particular, the interaction of one of the synthetic jets
with the cross-flow boundary layer over a range of forcing amplitudes is explored in § 3.1.
Spanwise variations induced by forcing in the separated shear layers and the vortex street
are then analysed in § 3.2. The three-dimensional structure of the wake is reconstructed in
§ 3.3. The effect of forcing amplitude on the drag is discussed in § 3.4, and is related back
to the wake three-dimensional structure. The conclusions are presented in § 4.

2. Methodology

2.1. Wind tunnel facility and experimental model
Experimental measurements were made in an open-circuit suction-type wind tunnel at the
University of Toronto Institute for Aerospace Studies which has a square cross-section
with side lengths of 0.305 m and has a 2.4 m long test section. At free-stream speeds in
the range 1.5 m s−1 < u∞ < 6 m s−1, the turbulence intensity is 0.2 %. The BTE model
with an elliptical leading edge that is used for the experiments is shown schematically in
figure 1. The thickness, d, of the body is 25.4 mm and the semi-major leading-edge radius,
rL E , is 2.5d. The chord length of the body is 12.9d and it was installed 22d downstream
of the start of the test section, with the centre of the model 6.5d above the floor. The
model spans the full cross-sectional width of the wind tunnel (12d) instead of using
endplates. This study investigates Red = 2500 and 5000. At these speeds, the boundary
layer is laminar when it separates at the trailing edges of the body.

2.2. Synthetic jets
Forcing of the flow is provided from an array of synthetic jets, which are located
symmetrically on both sides of the BTE-profiled body to give a total of six actuators.
They are installed 1.675d upstream of the trailing edges of the body and spaced apart
along the span by 2.4d, matching the forcing wavelength investigated by Naghib-Lahouti
et al. (2015). The synthetic jets are driven by piezoelectric actuators which are clamped
inside of separate cylindrical cavities with volumes of approximately 4000 mm3. The
nozzle necks of the jets are 2 mm long, leading to rectangular slot exits that are flush
with the body surfaces. The slot widths, D, are 0.8 mm and the lengths, �, are 1.2d
(30.5 mm), giving aspect ratios of 38. The jets issue normal to the body surfaces in the
y direction. The actuators were designed such that the long axis of the slots could be
oriented parallel to either the cross-flow direction or the spanwise direction, but only the
spanwise configuration is presented in this study. A schematic of the jet arrangement is
presented in figure 2.
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Figure 2. Configuration of the spanwise-oriented synthetic jet array on the BTE-profiled body.

The resonance frequency of the various synthetic jet actuators was experimentally
measured as approximately 1500–1800 Hz, and for the forcing experiments, the jets were
operated slightly above resonance at a fixed frequency of f j = 2000 Hz. This frequency is
about 130 times greater than the vortex shedding frequency at Red = 2500 and about 65
times higher at Red = 5000 so the synthetic jet forcing frequency is decoupled from the
large-scale structures of the wake. The velocity magnitude of the synthetic jets is quantified
as the average velocity in the blowing stroke over the entire cycle (Glezer & Amitay 2002):

u j = 1
Tj

∫ Tj /2

0
u j (t)dt, (2.1)

where Tj = 1/ f j is the period. The forcing amplitude can be quantified as both the velocity
ratio, R, and the momentum coefficient, Cμ, defined in (2.2) and (2.3) as

R = u j

u∞
, (2.2)

Cμ = N jρu2
j�D

u2∞λzd
= 2R2 �D

λzd
, (2.3)

where ρ is the density (same for the jet and the cross-flow) and N j = 2 is the number of
jets per forcing wavelength (two because there are jets on the upper and lower sides of the
body). The velocity ratio represents the ratio between the jet velocity magnitude and the
free-stream velocity, whereas the momentum coefficient is the ratio of the jet momentum
to the effective momentum of the flow over the area being controlled.

The exit velocity of the synthetic jets was measured in the absence of a cross-flow
using hot-wire anemometry (HWA). Typically, the hot wire was individually placed at
the jet centrelines at a depth of approximately 0.1D into each slot where the velocity in
the expulsion stroke was approximately 10 % greater than the velocity during the suction
stroke. It was found that the placement of the hot wire at depths ranging from the exit plane
to 0.3D into the slot (corresponding to where the magnitude of the blowing ranged from
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Figure 3. Schematic of the different PIV planes of the boundary layer and wake of the BTE body.

30 % greater to equal to the magnitude of the suction) affected the blowing average velocity
by less than 5 % provided that u j � 4 m s−1 (approximately R � 2.7). For u j < 4 m s−1,
the average blowing velocity was measured to be as much as 8 % higher when the hot
wire was positioned at 0.3D in the slot compared with when it was at the exit plane. This
was not investigated further as it is considered an acceptable level of uncertainty for the
purposes of the present investigation.

For a given excitation voltage, the velocity from each jet was measured simultaneously
with the input electrical signal (before amplification) and averaged with respect to the
phase of the electrical signal such that u j could be calculated by (2.1). Each jet was
characterised by exciting it with a range of excitation voltages such that u j typically ranged
from 2.5 to at least 8 m s–1, which was sufficient to cover the desired forcing amplitudes
of this study. The forcing amplitude of the jets was balanced throughout the array for the
forcing experiments by providing each jet with a different voltage based on their individual
calibrations.

2.3. Description of experiments and measurement techniques
The velocity in the boundary layer and wake regions was measured with PIV and HWA.
A schematic of the different PIV planes is provided in figure 3. The {x, y} plane is
referred to as the streamwise plane. The boundary layer region was measured in a
streamwise plane with stereoscopic PIV spanning x = −2.1d to 0.1d and y = 0.515d to
1.9d at z = 0.05d, where z = 0 corresponds to the centreline of the middle jet slot in the
array. To measure the wake velocity field, the streamwise PIV planes were positioned
symmetrically about y = 0 and with their upstream edge close to the trailing edge of
the body. Streamwise-plane two-component (2C)-PIV measurements of the wake were
taken at five positions between 0.05d � z � 0.82d. Stereo PIV measurements were also
made in the streamwise wake plane at z = 0.08d. The {y, z} PIV plane is referred to as
the cross-plane and was always viewed stereoscopically. The cross-plane was measured
in the boundary layer downstream of the middle jet slot on the upper side of the body
at x = −1.55d. In the wake, it was positioned approximately symmetrically about y = 0
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PIV plane Vector fsamp dt Interrogation
field of view Stereo Red R Cμ resolution (Hz) Nsamp (μs) windows (pixels2)

Streamwise
boundary layer
x = [−2.1d, 0.1d]
y = [0.515d, 1.9d]
z = 0.05d

� 2500 2.7, 3.1,
3.9

0.23, 0.3,
0.47

0.009d 2 400 per
phase

20–50 1. 2 × (512 × 512)

2. 2 × (24 × 24)

Streamwise wake
x = [0.3d, 5.5d]
y = [−2.0d, 2.0d]
z = {0.05d, 0.24d
0.38d, 0.6d, 0.82d}

2500 3.1 0.3 0.019d 2.1 1560 140 1. 2 × (48 × 48)

2. 2 × (16 × 16)

Streamwise wake
x = [0.55d, 6.0d]
y = [−2.0d, 2.0d]
z = 0.08d

� 2500 3.1 0.3 0.02d 2 1560 190 1. 1 × (32 × 32)

2. 2 × (16 × 16)

Cross boundary
layer
x = −1.55d
y = [0.52d, 1.9d]
z = [−1d, 0.9d]

� 2500 2.7, 3.1,
3.9

0.23, 0.3,
0.47

0.009d 2 400 per
phase

40–50 1. 2 × (128 × 128)

2. 2 × (24 × 24)

Cross wake
x = 1d
y = [−1.9d, 1.5d]
z = [−1.5d, 1.5d]

� 2500 2.7, 3.1,
3.9

0.23, 0.3,
0.47

0.033d 2.5 1040 120 1. 2 × (64 × 64)

2. 2 × (48 × 48)

Cross wake
x = 1d
y = [−1.9d, 1.5d]
z = [−1.5d, 1.5d]

� 5000 1.9, 2.5 0.11, 0.20 0.033d 2.5 1040 60 1. 2 × (64 × 64)

2. 2 × (48 × 48)

Cross wake
x = 4d
y = [−1.8d, 1.8d]
z = [−1.8d, 1.8d]

� 2500 1.9, 2.3,
2.7, 3.1,
3.4, 3.5,
3.9, 4.1,

4.4

0.11, 0.17,
0.23, 0.3,
0.36, 0.39
0.47, 0.52,

0.60

0.039d 2.5 1040 100 1. 2 × (64 × 64)

2. 4 × (48 × 48)

Cross wake
x = 4d
y = [−1.8d, 1.8d]
z = [−1.8d, 1.8d]

� 5000 1.0, 1.4,
1.9, 2.1,
2.3, 2.5

0.03, 0.06,
0.11, 0.14,
0.17, 0.20

0.039d 2.5 1040 60 1. 2 × (64 × 64)

2. 4 × (48 × 48)

Table 1. Summary of the experimental details, forcing conditions and processing parameters for the various
PIV measurements.

and z = 0 at two streamwise positions, x = 1d and x = 4d. The effect of a single forcing
amplitude of R = 3.1 (Cμ = 0.3) is investigated in the streamwise wake planes and only
at Red = 2500, whereas a wider range of forcing amplitudes are explored in the other
planes. More specifically, forcing is investigated for 1.9 � R � 4.4 (0.11 � Cμ � 0.6) at
Red = 2500 and 1 � R � 2.5 (0.03 � Cμ � 0.2) at Red = 5000 in the wake cross-planes,
and the forcing results are examined for 2.7 � R � 3.9 (0.23 � Cμ � 0.47) at Red = 2500
for the boundary layer planes. A summary of the field of views and forcing cases for the
PIV measurements is provided in table 1.

The laser beam in all the PIV planes was generated by a dual-pulse Nd-YAG 532 nm
Quantel EverGreen laser with 200 mJ energy per pulse. It was directed to the points
of interest using a series of mirrors placed on rails outside the wind tunnels. For the
boundary layer PIV planes, a 50 mm focal length cylindrical lens was used to spread the
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laser sheet and a 1000 mm focal length cylindrical lens was used to narrow its thickness
in the fields of view. The laser sheets in the streamwise planes and cross-planes of the
wake were formed by a cylindrical lens with a focal length of 25 mm and a 500 mm focal
length spherical lens. The thickness of the laser sheet in the respective field of views
was 1–2 mm. The lasers sheets illuminated di(2-ethylhexyl)sebacate particles that were
seeded homogeneously into the flow by a LaVision aerosol generator. The PIV system was
managed using LaVision FlowMaster hardware and software. The images were acquired
by LaVision Imager sCMOS cameras which have resolutions of 2560 pixels by 2160
pixels and 16-bit dynamic range. AF Micro-Nikkor 60 mm lenses with the apertures set
to f/2.8 were used for the streamwise wake planes, Sigma EX DG 105 mm lenses at
f/4 were used for the wake cross-planes, and Sigma EX DG 105 mm lenses with 15 mm
extension tubes, with the apertures at f/11, were used for the boundary layer planes. To
minimise the intensity of spurious laser reflections seen by the cameras, the back face of
the model was painted with a rhodamine–acrylic mixture for the wake PIV measurements
and graphic film was taped around the back surface of the body for the boundary layer
PIV measurements, and in all cases the camera lenses were outfitted with narrow bandpass
532 nm filters.

For the wake streamwise plane PIV measurements, the laser sheet entered the wind
tunnel from the bottom. The camera was positioned normal to the streamwise 2C-PIV
wake measurement planes. The cameras were located on opposite sides of the light sheet
for the stereo PIV measurements in the streamwise plane of the wake and viewed at
34◦ and 38◦ angles relative to the normal of the laser plane. For the cross-plane wake
PIV measurements, the two cameras were both located downstream of the laser plane
(which entered from the side), viewing the flow from above and below the wind tunnel,
respectively. At x = 1d, the angles of the cameras were at 45◦ and 47◦ with respect to
the normal of the laser plane, whereas at x = 4d, the angles were 28◦ and 45◦. The laser
sheet for both the streamwise and cross-plane boundary layer PIV measurements entered
from a side of the wind tunnel. The cameras for the streamwise PIV plane in the boundary
layer were located on opposite sides of the wind tunnel at angles of 44◦ and 49◦ with
respect to the normal of the laser plane. For the cross-plane measurements, the cameras
were also on opposite sides of the wind tunnel, with one camera at 60◦ and the other at 64◦
from the normal of the laser plane. Scheimpflug adapters were installed between the lenses
and camera sensors, and were angled such that the particles were in focus throughout the
images.

The acquisition frequencies of the snapshots, listed in table 1, are non-integer multiples
of the frequencies of the relevant flow structures – in particular, vortex shedding – and so
the images are considered to be asynchronous with respect to the large-scale structures.
The snapshots in the boundary layer PIV planes were taken phase-locked at two phases
with respect to the jet forcing cycle (2000 Hz). The reference signal for phase locking was
the input voltage signal to the piezoelectric actuators. The phase difference between the
jet output velocity and the driving voltage was measured from the synthetic jet calibration.
If φ j = 0◦ is defined as the start of the blowing cycle and φ j = 90◦ is peak blowing, then
the phases measured are φ j = 78◦ (near peak blowing) and φ j = 258◦ (near peak suction).
For the wake PIV planes, the snapshots were acquired irrespective of the phase of the
synthetic jets. The pulse delay, dt , between the snapshot pairs is also summarised in table 1
for the various planes. It was set such that the maximum particle displacements were
approximately 5–8 pixels in all planes. The PIV images for the stereo wake streamwise
plane and the wake cross-planes were processed with DaVis 8.4, whereas DaVis 11 was
used for the 2C-PIV wake streamwise planes and the boundary layer plane measurements.
The raw images were pre-processed to remove background noise. The velocity vector fields
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were calculated from the PIV images using a sequential cross-correlation algorithm with
multiple passes in DaVis. Table 1 lists the initial and final size of the interrogation windows
as well as the number of passes in the processing. The final pass had interrogation windows
that were 24 × 24 pixels2 for the boundary layer planes, 16 × 16 pixels2 for the streamwise
wake planes and 48 × 48 pixels2 for the wake cross-planes, all with 50 % overlap. The
instantaneous velocity fields were post-processed to remove outlying vectors which were
identified using global (from time-averaged statistics) and local (based on median spatial
filters constructed from instantaneous fields) metrics. Rejected vectors were replaced with
bilinear interpolation. Uncertainties of the statistics derived from the PIV measurements
were calculated with a bootstrapping approach (Efron 1979).

Analogue signals were collected using a National Instruments PCI-6259 data acquisition
card through an SCC-68 terminal block. Hot-wire anemometry was employed using a
StreamLine 90N10 CTA system with StreamWare v1.17 software. Straight single-wire
Dantec 55P01 probes were used, modified in house utilising copper-plated tungsten wire.
The sensing elements were 5 μm in diameter and approximately 1–1.5 mm long. The
system was operated at an overheat ratio of 0.6 for all the measurements of the wake. The
hot wires were oriented tangentially to the z direction and with the probes at approximately
15◦ relative to the horizontal. The wires that were used to make measurements in the wind
tunnel were calibrated in situ using the velocity calculated from pitot-static probe pressure
measurements in the free stream as the reference. A MKS Baratron 225A 1 Torr transducer
was connected to both sides of the pitot-static probe for the experiments. The accuracy of
the pressure measured with the MKS Baratron 225A transducer is 0.5 % of full scale. The
reference velocities for the synthetic jet characterisation were provided by a StreamLine
90H02 flow unit. Hot-wire calibration curves for the wake measurements were constructed
from 12 mean reference velocity data points that were logarithmically distributed from
approximately 1 to 10 m s−1. A King’s law curve fit was employed to relate the measured
voltage to velocity. The ambient temperature was measured with a J-type thermocouple.
The temperature was allowed to drift up to 1 ◦C from the temperature at which the bridge
was balanced. The measured voltages from the hot wires were temperature-corrected using
the methodology of Hultmark & Smits (2010) to account for changes in the ambient
temperature. The systematic uncertainty associated with hot-wire calibration is estimated
to be 3 % based on the methodology of Yavuzkurt (1984).

The hot wires were positioned in the wake by a three-axis traverse system. Velocity
profiles of the separated shear layers at x = 0.2d from 0.35 � y � 1.8d and along
0 � z � 1.1d were measured over the ranges of Red = 2500 (2.3 � R � 3.2), Red =
3700 (1.8 � R � 2.3) and Red = 5000 (1.4 � R � 1.9). This was accomplished with hot
wires spanwise-separated by 0.6d that simultaneously sampled the flow (see figure 2).
Another spanwise scan was done at {x = 4.5d, y = −0.8d} along 0 � z � 1.1d at {Red =
2500; R = 3.1 and 3.9}, also with two hot wires spanwise-separated by 0.6d. All the
points measured with HWA were sampled for 120 s at 25 kHz, with an analogue 10 kHz
low-pass filter to prevent aliasing.

3. Results and discussion

3.1. Interaction of a synthetic jet with the boundary layer
This investigation begins by examining the PIV measurements of a synthetic jet issuing
into the boundary layer of the BTE-profiled body. Although the primary region of interest
in this study is the wake, the von Kármán vortex street develops from the separated
shear layers, which themselves can be envisioned as continuations of the boundary layers
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Figure 4. Streamwise velocity field with (v, w) vectors in the cross-plane at x = −1.55d, averaged at constant
phases of the synthetic jet oscillation cycle at Red = 2500: (a) φ j = 258◦, R = 2.7, (b) φ j = 258◦, R = 3.1,
(c) φ j = 258◦, R = 3.9, (d) φ j = 78◦, R = 2.7, (e) φ j = 78◦, R = 3.1 and (f ) φ j = 78◦, R = 3.9.

developed over the body. Because the synthetic jets issue into the boundary layers and
force the wake via the boundary layers, it is important to understand the jet–boundary
layer interaction to interpret the effects on the vortex shedding.

The blowing of a jet in a cross-flow results in a momentum exchange between the jet
and the surrounding fluid and generates a wide variety of coherent vortical structures (Fric
& Roshko 1994). Commonly, the downstream flow of a jet in cross-flow is dominated
by a counter-rotating vortex pair (Karagozian 2014). However, the jet trajectory and the
particular vortical structures formed are strongly dependent on the relative strength of the
jet as well as the jet geometry/orientation (Tricouros, Amitay & Van Buren 2023). For
a pulsed or synthetic jet, the frequency also significantly impacts the types of vortical
structures (Eroglu & Breidenthal 2001; Jabbal & Zhong 2008; Sau & Mahesh 2008). The
focus of the present study is not to map this wide parameter space, but to investigate
specific forcing amplitudes that are important for distributed forcing with the current jet
geometry. Because the jet geometry is fixed, the interpretation of the results in the present
study is not affected by whether R or Cμ is used to characterise the forcing amplitude.
However, for this study, R is preferred over Cμ because R characterises only the strength
of the forcing at a particular spanwise position along the jet, whereas Cμ incorporates
both the relative momentum flux at a particular position and the area that the jet acts over.
Hence, characterising the forcing amplitude with Cμ makes an assumption that � and D
are equally important, which cannot be tested from the present results. The focus of this
section is on velocity ratios of R = {2.7, 3.1 and 3.9} at Red = 2500.

Figures 4 and 5 present the streamwise velocity and spanwise vorticity fields,
respectively, in the cross-plane at x = −1.55d (0.125d downstream of a jet slot) averaged
at constant phases with respect to the synthetic jet oscillation cycle for the selected forcing
amplitude cases. Figure 4(a–c) shows the field near the suction peak at φ j = 258◦ and
figure 4(d–f ) that averaged near the blowing peak at φ j = 78◦. The measurements in this
near-field region of the jet show a clear cyclic variation of the velocity at the forcing
frequency. In particular, the v component in the centre region of the slot near the wall
(|z|� 0.3d, y � 0.7d) is directed towards the wall during the suction part of the cycle
and vice versa during the blowing part of the cycle. Additionally, there is a significant
spanwise gradient of v near the edges of the slot from 0.3d � |z|� 0.6d at all phases
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Figure 5. Spanwise vorticity field with (v, w) vectors in the cross-plane at x = −1.55d, averaged at constant
phases of the synthetic jet oscillation cycle at Red = 2500: (a) φ j = 258◦, R = 2.7, (b) φ j = 258◦, R = 3.1,
(c) φ j = 258◦, R = 3.9, (d) φ j = 78◦, R = 2.7, (e) φ j = 78◦, R = 3.1 and (f ) φ j = 78◦, R = 3.9.

of the cycle. This is indicative of the development of edge streamwise vortices, seen
directly in figure 5, which is a characteristic feature of rectangular synthetic jets that
issue normal to the wall (Van Buren et al. 2016). The sense of rotation of the streamwise
vortices is such that fluid is lifted away from the wall in the jet centreline region and
brought towards the wall in the regions near the slot edges. These streamwise vortices may
be expected to convect downstream and to redistribute the momentum in the boundary
layer, energising the regions close to the jet slot edges with higher-velocity fluid from the
outer part of the boundary layers and vice versa in regions more closely aligned with the
jet centreline. If the changes in the flow field between phases (time) at x = −1.55d are
primarily driven by the downstream convection of coherent structures through this plane,
then the phase dependence could be converted into spatial information through Taylor’s
hypothesis. However, the streamwise vorticity in this plane does not appear to significantly
change during the cycle in spite of the significant phase variation of v near the jet edges
because the average gradients in y and z remain relatively constant during the cycle. This
implies that Taylor’s hypothesis cannot be applied in this plane. During the suction phase
of all the investigated cases, u points upstream near the wall in the x = 1.55d plane, which
is consistent with the jet ingesting the boundary layer fluid at this phase of the cycle.
However, the region of reversed flow is notably larger in the R = 3.9 case compared to
the lower-R cases at Red = 2500. Indeed, there is negative u in the x = 1.55d plane even
during the blowing part of the cycle. This is indicative of the jet in the R = 3.9 case
having sufficient strength to block the incoming boundary layer and highlights a change in
the jet–boundary layer interaction.

The interaction of the jet and the boundary layer and its propagation downstream can be
better seen in the streamwise plane over a jet slot. Figure 6 shows the velocity/vorticity
fields without forcing and for the selected forcing cases in the streamwise plane at
z = 0.05d. The forcing results are again presented near the suction peak at φ j = 258◦
for figure 6(b–d) and near the blowing peak at φ j = 78◦ for figure 6(e–g). Without
forcing (figure 6a), the boundary layer thickness is approximately 0.3d at Red = 2500;
the boundary layer shear manifests as significant negative spanwise vorticity on the upper
side of the body up to y ≈ 0.75d. For a rectangular synthetic jet issuing in quiescent
conditions, a vortex ring would be expected to be generated during the blowing phase,
producing opposite-sign vorticity components at the opposite sides of the slot (Van Buren,
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Figure 6. Spanwise vorticity field with (u, v) vectors in the streamwise plane at z = 0.05d, averaged at
constant phases of the synthetic jet oscillation cycle at Red = 2500: (a) no forcing, (b) φ j = 258◦, R = 2.7, (c)
φ j = 258◦, R = 3.1, (d) φ j = 258◦, R = 3.9, (e) φ j = 78◦, R = 2.7, (f ) φ j = 78◦, R = 3.1 and (g) φ j = 78◦,
R = 3.9.
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Figure 7. Sketch of the dominant spanwise vorticity components from the boundary layer and a synthetic jet
(during the blowing phase). (a) The vorticity from the boundary layer and synthetic jet is shown separately. (b)
The synthetic jet is shown issuing into the boundary layer, which causes the vortex on the upstream side of the
jet either to be cancelled or to get weaker and the vortex on the downstream side to get stronger.

Whalen & Amitay 2014). This is sketched in figure 7(a). When a cross-flow boundary layer
is introduced, the shear from the boundary layer opposes the positive-sign jet vorticity
that would be generated on the upstream side of the slot in quiescent conditions. In the
R = 2.7 and R = 3.1 cases at Red = 2500, the boundary layer is still largely dominated by
negative spanwise vorticity, indicating that the jet vorticity on the upstream side is mostly
cancelled except for some localised regions just upstream of the slot during the blowing
phase, as sketched in figure 7(b). In the R = 3.9 case, a much larger region of +ωz can
be observed on the upstream side during the blowing phase that extends up to y ≈ 0.75d,
indicating that the jet is sufficiently strong to overcome the boundary layer vorticity. This
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observation is similar to that of Jabbal & Zhong (2008) for a synthetic jet emanating from
a circular orifice and that of Sau & Mahesh (2008) for a pulsed circular jet. In particular,
Jabbal & Zhong (2008) found that the structures formed by their synthetic jet changed
from hairpin vortices to distorted vortex rings when R reached a critical amplitude. The
distorted vortex rings generated by Jabbal & Zhong (2008) penetrated much more deeply
through the boundary layer than the hairpin vortices, which can be attributed to the
inherent self-induced velocity pointing away from the wall of vortex rings. In the present
study, coherent vortex rings are not evident from the synthetic jet slot in the cross-flow,
consistent with the observations of Van Buren et al. (2016) for rectangular synthetic jets.
Van Buren et al. (2016) attributed the absence of vortex rings to them breaking up almost
immediately after they form. However, the considerable phase-coherent fluctuations at
the forcing frequency in the near field of the jet are indicative of some type of coherent
structure. Theoretically, if the phase-coherent fluctuations are carried by vortices of O(D),
this would correspond to only about three vectors at the current resolution. The fact that
these small-scale structures are not directly evident in the PIV flow fields suggests that they
are simply too small and closely packed to be resolved from the current measurements. It
can be seen in figure 6 that the emergence of positive vorticity at the upstream side of the
slot is associated with a considerable increase in the jet penetration compared with the
lower-R cases. This suggests that the emergence of a significant concentration of positive
vorticity at the upstream side of the slot has a similar effect to the self-induced velocity
from an actual vortex ring.

In all the forcing cases, the jets cause a streamwise velocity deficit downstream of the
slots. This can be attributed to at least two different fundamental mechanisms. Firstly, the
jets have a blockage-like effect because the fluid coming out from the plane of the slot is
initially pointed in the wall-normal direction. Therefore, the jet transfers its wall-normal
momentum to the cross-flow. By the same token, the cross-flow transfers some streamwise
momentum to the jet fluid, causing the fluid downstream of the slot to slow down and the
jet bends in the direction of the cross-flow until a new equilibrium is reached. Secondly,
the streamwise vortices generated at the edges of the synthetic jet slots (see figure 5) are
rotating in a direction to cause the low-momentum fluid aligned with the jet centreline
plane to move away from the wall (Rathnasingham & Breuer 2003). The wake-like region
downstream of the slot in the z = 0.05d streamwise plane is more evident for the R = 3.1
case compared with R = 2.7 when Red = 2500. This is consistent with the jets in the
R = 3.1 case penetrating deeper into the cross-flow and convecting downstream closer to
the jet centreline plane, similar to the flow fields presented by Van Buren et al. (2016) for
a rectangular spanwise-oriented synthetic jet. The R = 3.9 case has a significantly larger
wake-like region downstream of the slot than the lower-R cases at this Red because the
jet is sufficiently strong to cause the incoming boundary layer to completely separate.
Consequently, the shear layer along the jet centreline plane splits into two parts: an
inner region associated with the boundary layer as it recovers downstream, and an outer
region associated with the penetrating jet above which the flow finally reaches the free
stream. Notably, the phase coherence of the fluctuations at the jet frequency disappears
downstream of x ≈ −0.5d, or ≈ 35D downstream of the slot. The loss of phase-coherent
fluctuations as a synthetic jet evolves downstream has been used as an indication of the
transition between the near field and far field of the jet–cross-flow interaction by Van
Buren et al. (2016), where they estimated this transition happened at approximately 20D
downstream of their jets. In the present case, the loss of phase-coherent high-frequency
jet fluctuations upstream of the trailing edge further highlights that the perturbations to
the wake from the synthetic jets can justifiably be considered as steady with respect to
the energy-containing structures of the wake. Importantly, these results indicate that the
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Figure 8. Mean streamwise vorticity field with (v, w) vectors in the cross-plane at x = 1d with (a) {Red =
2500, no forcing}, (b) {Red = 2500, R = 2.7}, (c) {Red = 2500, R = 3.1}, (d) {Red = 2500, R = 3.9},
(e) {Red = 5000, R = 1.9} and (f ) {Red = 5000, R = 2.5}.

forcing from the array of synthetic jets is capable of significantly perturbing the boundary
layers.

3.2. Spanwise variation in the wake structure
The cross-plane in the near wake is studied next in order to observe the spanwise variations
in the wake upstream of vortex street formation that are induced by the distributed
forcing. figure 8 shows the distributions of the mean streamwise vorticity, ωx , at x = 1d
for the unforced case at Red = 2500, as well as with forcing at {Red = 2500; R =
2.7, 3.1 and 3.9} and {Red = 5000; R = 1.9 and 2.5}. At this location, the shear layers are
rolling up and so it is at approximately the end of what one could call the separated shear
layer region. Without forcing, ωx is very low in this plane because the time-averaged wake
is approximately spanwise uniform. Nevertheless, it should be appreciated that the wake
is turbulent and exhibits instantaneous three-dimensional features, such as small-scale
coherent streamwise vortices (Gibeau, Koch & Ghaemi 2018), but they are not observed
in figure 8(a) because of the time-averaging.

Coherent streamwise vortices are evident in the cross-plane mean field of the forced
cases. On each side of the body, there are two pairs of streamwise vortices in the x = 1d
plane: one set that is biased towards the free-stream side of the separated shear layers at
|y| > 0.5, and another set at |y| < 0.4d inside the recirculation region. In accordance with
the matched forcing amplitude from all the jets and symmetric placement of the actuators
on both sides of the body, the perturbations in the mean fields exhibit vertical symmetry
about y = 0 and spanwise symmetry about z = 0. The vortex pairs that are located at |y| >
0.5 are consistent with the jet edge streamwise vortices shown in figure 5. The sense of
rotation of the vortices is such that outboard of the vortices, the higher velocity flow from
the free stream is brought lower into the boundary layer, and vice versa for the region
inboard of the vortices closer to the jet centreline (z = 0). Hence, it can be surmised that
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Figure 9. The ∂u/∂y field with (v, w) vectors in the cross-plane at x = 1d when Red = 2500 with (a) no
forcing, (b) R = 2.7, (c) R = 3.1 and (d) R = 3.9.

these vortices redistribute momentum in the boundary layer and near wake as they convect
downstream.

The jet edge vortices of the {Red = 2500, R = 2.7} and {Red = 5000, R = 1.9} cases
are located close to the jet slot edge plane. They are centred at |y| ≈ 0.5d−0.55d but
extend up to |y| ≈ 0.75d in the {Red = 2500, R = 2.7} case and to |y| ≈ 0.6d in the
{Red = 5000, R = 1.9} case. The boundary layer thickness is approximately 0.3d and
0.21d, respectively, at Red = 2500 and 5000, so these vortices are approaching the edge of
the boundary layer but are not penetrating beyond. In the {Red = 2500, R = 3.1} case, the
edge streamwise vortices on the |y| > 0.5 side are still mostly concentrated at |y| < 0.8, but
there are small amounts of streamwise vorticity outside of |y| > 0.8 in the jet centreline
region, indicating that the streamwise vortices are penetrating right up to the edges of
the boundary layers. In the {Red = 2500, R = 3.9} and {Red = 5000, R = 2.5} cases, the
streamwise vortices formed by the jet–boundary layer interaction are larger and can be seen
to be extending outside the boundary layers. For these relatively higher-forcing-amplitude
cases, the pairs of vortices are more closely spaced, consistent with the findings of Van
Buren et al. (2016) for spanwise-oriented synthetic jet slots. The fact that this occurs at
a much lower R when Red = 5000 compared with Red = 2500 suggests that R (or Cμ)
is not a very appropriate way to scale the forcing amplitude across different Red for this
type of forcing. An alternative way of scaling the forcing amplitude that provides a better
collapse over different Red is proposed in § 3.3.

Figure 8 shows that on the free-stream sides of the separated shear layers (|y| > 0.5),
the jet edge vortices direct the flow along z towards the jet centreline plane. Inside the
recirculation region (|y| < 0.4d), the flow points in the opposite direction, away from
the jet centreline plane. This forms a set of induced streamwise vortices which have
the opposite sense of rotation to that of the jet edge vortices. Although ωz cannot be
directly calculated from a cross-plane, the ∂u/∂y field should be representative of the
trends of the ωz = (∂v/∂x − ∂u/∂y) field at x = 1d because it is still relatively close
to the trailing edge. Figure 9 plots ∂u/∂y in the x = 1d cross-plane for the {Red =
2500; R = 0, 2.7, 3.1 and 3.9} cases. When the forcing amplitude is at R = 3.1, the
greater penetration of the jets as compared with R = 2.7 causes the shear layer thickness
to increase more in the inboard region of the wake, as can also be seen in figure 6. The
R = 3.9 case can be contrasted to the lower-R cases at Red = 2500 by the presence of two
distinct regions in the shear layers in the inboard region of the slots. This is consistent with
the vorticity field of figure 6(d,g), and can be attributed to the boundary layers completely
separating when they encounter the jet slots when R = 3.9 at Red = 2500, thereby
allowing the jets to penetrate outside of the boundary layers. This increases the width
of the wake inboard of the slots and can be expected to result in a higher drag compared
with the R = 2.7 and R = 3.1 cases at Red = 2500 because the momentum deficit grows
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Figure 10. Selected shear layer profiles along the span at x = 0.2d for {Red = 2500, R = 3.1}, measured using
HWA: (a) u/u∞; (b) u′u′/u2∞.

when the wake is wider. Therefore, it can be surmised that the forcing amplitude that
achieves the best drag reduction should be a compromise between increasing the spanwise
variations in the wake without causing it to significantly widen anywhere along the span.

Figure 10 shows profiles of u/u∞ and u′u′/u2∞ in the upper separated shear layer at
various locations along the span for the {Red = 2500, R = 3.1} case at x = 0.2d, where
the approximation that −∂u/∂y is representative of ωz should be more valid. It can be
seen that the shear layer varies significantly along the span in the forced cases. Generally,
the velocity gradient along y at y = 0.5d is less steep in the |z|� 0.35d profiles and
more concentrated from |z|� 0.45d compared with the unforced case. For this case,
the shear layer is least concentrated, i.e. at its thickest, from 0.25d � z � 0.35d. The
spanwise variations in the shear layer thickness are driven by the combined effect of the
jet blockage and the regions of upwash and downwash associated with the streamwise
vortices that redistribute the momentum in the boundary layers. The influence of the jet
edge vortices can be clearly seen in the z = 0.45d and 0.55d shear layer profiles of the
{Red = 2500, R = 3.1} case, where there is a velocity deficit in the outer region of the
shear layer and accelerated velocity closer to y = 0.5d. The profile at z = 0.8d also exhibits
a steeper velocity gradient along y, but the effect diminishes moving away from the slot
towards z = 1.1d.

Given that vortex shedding is periodic, further insight into the origin of the streamwise
vortices in the x = 1d cross-plane can be gained by phase-averaging the measurements.
Using the methodology outlined in Appendix A, the phase reference for this plane is
based on the relationship between the u and v components in the instantaneous snapshots
at {x, y} = {1d, ±1.05d}, averaged across the spanwise domain of the snapshots. This
methodology is possible because the turbulent velocity fluctuations are not very large
in this part of the wake and the u and v components are periodically modulated by
the passage of the von Kármán vortices. The snapshots in the x = 1d plane for the
{Red = 2500, R = 3.1} case were sorted with respect to the phase reference into 12 phase
bins. For a given shedding phase bin, φv , composed of Nφ samples, the phase-averaged
velocity is calculated as

ũ(φv) =
Nφ∑
i=1

ui (φv)

Nφ

, (3.1)

adopting a notation where phase-averaged statistics are denoted with a tilde. The
streamwise vorticity fields of the {Red = 2500, R = 3.1} case at two different shedding
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Figure 11. Streamwise vorticity fields and (v, w) vectors for the {Red = 2500, R = 3.1} case in the x = 1d
plane at (a,b) two different phases (180◦ apart) of the shedding cycle.
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z = 0z = −1.2d z = +1.2d

Figure 12. Sketch of the vortical structures induced by forcing in the separated shear layer from the y > 0 side
of the body.

phases 180◦ apart are shown in figure 11. Throughout the shedding cycle, the streamwise
vortex pairs at |y| > 0.5d are relatively stable in strength and location in this plane. Their
consistency can be attributed to the synthetic jets operating at a much higher frequency
than the vortex shedding. Hence, the steadiness of these vortices over the shedding cycle
is another indication that the outer-region vortex pairs originate from the jet–boundary
layer interaction and convect into the wake. In contrast, the streamwise vortices in the
recirculation region periodically alternate between the upper and lower sides of the wake
during the cycle, indicating a much closer connection to the wake dynamics. The phases
presented in figures 11(a) and 11(b) correspond to when these vortices are at maximum
strength in the upper and lower sides of the wake, respectively.

Figure 12 presents a sketch of the mean flow field in the near wake, showing the
spanwise variation of the shear layer thickness and coherent vortices based on figures 8
to 11. The process by which the spanwise variations in the shear layers affect the
vortex shedding and periodically induce streamwise vortices to form can be illustrated
by considering the vorticity transport equation for incompressible flow, neglecting viscous
diffusion:

Dωi

Dt
= ωκ

∂ui

∂xκ

, (3.2)
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Figure 13. Sketch of the tilting of the spanwise vorticity shed from the upper side of the body due to spanwise
gradients in the streamwise velocity in the shear layer, from a top view.

and for the streamwise component, this can be decomposed as

Dωx

Dt
= ωx

∂u

∂x
+ ωy

∂u

∂y
+ ωz

∂u

∂z
. (3.3)

Special attention is drawn to the ωz(∂u/∂z) vortex tilting term because of the inherently
large ωz concentrations which compose the separated shear layers and from which the
von Kármán vortices develop. The establishment of spanwise gradients in the streamwise
velocity inside the separated shear layers provides the condition necessary to tilt the
spanwise von Kármán vortices into the streamwise direction and to cause gradients in
the spanwise vorticity along the span. It is noted that conservation of circulation requires
the generation of streamwise vorticity through the diversion of spanwise vorticity to be
associated with a corresponding reduction in the overall spanwise circulation. The process
of shear layer tilting on the upper side of the body is sketched in figure 13. The region
of ∂u/∂z < 0 in the separated shear layer on the z < 0 side of the jet creates +ωx , and
vice versa for the other side. Hence, the direction of the tilting of the spanwise vorticity
is such that the von Kármán vortices are retarded in the inboard region of the jet slots
as they shed. The sense of rotation of the streamwise vortices within the recirculation
region in figures 8 and 11 and that are sketched in figure 12 are consistent with this vortex
street rollup pattern. As a von Kármán vortex from one side of the body is developed, the
streamwise vortex pair that is developed due to the tilting of the vorticity of the separated
shear layer also grows. Then, the streamwise vorticity declines on that side of the body
after the von Kármán vortex sheds while the reverse of this process occurs in the shear
layer from the opposite of the body. The resulting structure of the wake downstream of the
vortex formation region is examined in § 3.3.

Power spectral density of the velocity is used to measure the effect of forcing on
the spectral characteristics and structure of the wake. The power spectra at {x, y} =
{4.5d, 0.8d} for {Red = 2500; R = 0, 3.1 and 3.9} are presented in figures 14(a) and
14(b), respectively. Without forcing, the power spectrum is dominated by a vortex
shedding frequency peak at fvd/u∞ = Ŝtv = 0.25. This value of Ŝtv is comparable with
that measured by Bearman (1965) and Petrusma & Gai (1996) for similar BTE body
geometries. Clearly the vortex shedding is attenuated in the forcing cases, but also
importantly, Ŝtv is constant along the span. Interestingly, the power at most frequencies
other than Ŝtv is increased by forcing in the R = 3.9 case. This implies that the break-
up of the vortex street in that case also generated a series of smaller-scale structures
in the wake, which cascade to even smaller scales. The main difference that is evident
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Figure 14. Power spectral density of the velocity, measured along the span at {x = 4.5d, y = −0.8d} at Red =
2500 for (a) R = 3.1 and (b) R = 3.9. Here z = 0 corresponds to the jet-centreline plane.

from the power spectra between the R = 3.1 and R = 3.9 cases at Red = 2500 is that
the shedding frequency increases to Ŝtv ≈ 0.26 for R = 3.9. Additionally, it is found that
further increases to R drive even higher Ŝtv and it does not appear to plateau at least up to
R = 5, although these results are not presented in this paper for conciseness. An increase
in Ŝtv is considered undesirable for drag reduction in the present context because it implies
that the rate of circulation entering the wake rises.

A spanwise constant Ŝtv has also been reported in some other distributed forcing
studies with different types of spanwise perturbations, such as Park et al. (2006) with
a series of tabs on a BTE-profiled body, Dobre et al. (2006) for a wavy upstream face
on a square cylinder and Lam et al. (2004) for a wavy cylinder. However, many other
distributed forcing studies including Tombazis & Bearman (1997), Bearman & Owen
(1998), Bhattacharya & Gregory (2018) and Ling & Zhao (2009) have measured two Ŝtv .
Spanwise Ŝtv variations cause the phase difference between two locations in the wake to
change over time. When the phase difference is small, the vortices can bend along the
span but when the difference approaches 180◦, the vortex shedding desynchronises along
the span and the vortices break. This behaviour was referred to as vortex dislocations by
Williamson (1992), and results in a redistribution of the vorticity in the wake. The three-
dimensional structure of dislocations is driven by the fact that over several shedding cycles,
the out-of-phase von Kármán vortices must reconnect with the upstream and downstream
shed vortex cycles from neighbouring cell(s) of different Ŝtv . For the current forcing
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Figure 15. Vorticity field with velocity vectors in the streamwise plane without forcing at Red = 2500.
(a) Sample instantaneous field. (b) Phase-averaged field with respect to the vortex shedding.

methodology, the spanwise constancy of Ŝtv without low-frequency beating suggests a
different wake structure from these studies. The work of Kim & Choi (2005) suggests that
the reason for the inconsistency in the number of shedding frequencies among different
studies may be due to the spanwise wavelength of the flow perturbation. They identified
λz = 5d as a critical point below which Ŝtv was constant along the span and above which
the wake started to exhibit two shedding frequencies. The forcing wavelength of 2.4d
adopted in the present study falls into the low-wavelength regime, so a constant Ŝtv is
consistent with most other studies in this regime. Naghib-Lahouti et al. (2015) is a notable
outlier reporting different Ŝtv for λz = 2.4d; however, their Ŝtv values were measured
indirectly from the convective velocity and spatial separation of the von Kármán vortices,
which may have introduced errors.

Measurements of the wake in the streamwise {x, y} planes at Red = 2500 are used
to directly examine the separated shear layers and the vortex street. A representative
instantaneous velocity/vorticity field without forcing is shown in figure 15(a). It exhibits
the characteristic interaction of the separated shear layers and the resulting vortex street.
The vortex formation length is approximately 1.5d. Hence, the von Kármán vortex in the
phase shown at x ≈ 1d is still growing from the lower shear layer and the vortex that
originates from the upper shear layer at x ≈ 2d has been pinched off by the fluid drawn
from the lower part of the base region across the wake centreline.

The periodic component associated with vortex shedding is isolated by conditionally
averaging the velocity field measurements with respect to the shedding phase. For the
streamwise planes, the reference for the shedding cycle is obtained using a method based
on proper orthogonal decomposition (POD) as detailed by van Oudheusden et al. (2005).
The snapshots were sorted into 18 phase bins, translating to roughly 85 snapshots per bin.
Figure 15(b) plots the velocity/vorticity field for the unforced case averaged at a constant
phase that roughly corresponds to that shown in figure 15(a). The basic symmetry of vortex
shedding is evident with two rows of spanwise vortices that are 180◦ out of phase between
the y > 0 and y < 0 sides. Because vortex shedding is the dominant feature of the wake in
the absence of forcing, the instantaneous and phase-averaged fields appear very similar.

The results for R = 3.1 at Red = 2500 are examined in the streamwise plane because
at this forcing amplitude, the jet vortical structures penetrate approximately up the edges
of the boundary layers. This provides strong perturbations to the wake without causing
the wake to significantly widen. Phase-averaged velocity/vorticity fields for this case in
spanwise-separated planes at z = {0.08d, 0.24d, 0.38d, 0.6d and 0.82d} are shown in
figure 16. Phase-averaging reveals vortex shedding in all the planes with the same basic
symmetry as the unforced case. The shedding phases that are displayed are selected to
be consistent with the phase shown in figure 15, approximately corresponding to when
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Figure 16. Phase-averaged vorticity fields with velocity vectors in different streamwise planes and forcing for
R = 3.1 at Red = 2500: (a) z = 0.08d, (b) z = 0.24d, (c) z = 0.38d, (d) z = 0.6d and (e) z = 0.82d.

the negative vortex from the upper side has been fully shed from the body. This phase
of the vortex shedding also aligns with that shown in figure 11(b) when the induced
streamwise vortices in the separated shear layer reach maximum strength in the lower shear
layer at x = 1d. It is emphasised, though, that this does not imply actual synchronisation
between the measurements in the different planes. The vortices on either side of y = 0 have
approximately the same strength; however, the overall coherence and strength of the vortex
street are reduced, and its three-dimensional nature is apparent from the significantly
different distributions of the vorticity across the measurement planes.

In order to quantify the changes in the vortex shedding along the span, the downstream
evolution of the circulation contained in the von Kármán vortices, Γv , is computed. The
vortices are identified here using the Q-criterion (Hunt, Wray & Moin 1988), where Q
is the second invariant of the velocity-gradient tensor, ∇U , for incompressible flows.
Mathematically, Q = −(∂ui/∂xκ)(∂uκ/∂xi ), which for 2-C planar PIV reduces to

Q = −
(

∂u

∂x

)2

− 2
(

∂u

∂y

) (
∂v

∂x

)
−

(
∂v

∂y

)2

, (3.4)

if w and the gradients in z are neglected. According to the Q-criterion, vortices exist for
Q > Qthresh , where Qthresh is theoretically 0. A physical interpretation of this criterion
is that vortices are regions where swirling motions make a larger contribution to the
vorticity than irrotational shearing motions; however, it does not guarantee that every
vortical structure is identified or that every contour of Q > 0 actually corresponds to a
vortex. The circulation can be calculated by integrating the spanwise vorticity inside the
vortical regions identified for each phase-averaged bin as

Γv

u∞d
=

∫∫
S

(
ω̃zd

u∞

)
1

d2 dA, (3.5)

and the centroids of the vortices are calculated as

xv =
∫∫

S
x

(
ω̃zd

u∞

)
1

d2

(
Γv

u∞d

)−1

dA, (3.6)
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Figure 17. Mean downstream evolution of (a) the circulation contained in the von Kármán vortices and (b)
their path in the different streamwise planes that originate from the lower shear layer of the body at Red = 2500
without and with forcing at R = 3.1.

yv =
∫∫

S
y

(
ω̃zd

u∞

)
1

d2

(
Γv

u∞d

)−1

dA. (3.7)

In practice, contours at Q = 0 are overly sensitive to measurement noise near the edges of
the vortices, and so a slightly positive threshold is preferred to clearly define the vortex
boundaries. Thresholds ranging from 0 to 0.5 were tested for Qd2/u2∞, and 0.01 was
selected for the current datasets. For relatively more positive Qd2/u2∞ thresholds, the
computed circulation values are generally lower because smaller vortical structures are
identified. A complication with any Q � 0 threshold is that some regions of generally
positive Q may have a few points where Q < 0. On occasion, this can result in separate Q
regions in close proximity to each other which are clearly part of the same overall vortex.
In order to include the entirety of the vortex, the vorticity in the separate regions are added
together when any part of their boundaries is within 0.18d ≈ 0.05λx of each other.

The streamwise evolution of the circulation and the paths of the von Kármán vortices
are plotted in figure 17 for the unforced and R = 3.1 cases at Re = 2500. In the absence
of forcing, the circulation contained in a vortex just after it is shed is Γv/(u∞d) = 1.5.
The strength of the vortices reaches their maximum at this point and steadily decays
downstream. With forcing at R = 3.1, the circulation of the von Kármán vortices across
the span is reduced compared with the unforced case. In the region just downstream of
vortex formation (1.5d < x < 2d), the circulation of the von Kármán vortices is lowest
in the z = 0.6d plane. This is because a significant fraction of the vorticity entering the
wake in the z = 0.6d plane is not immediately available to be entrained into the von
Kármán vortices since it is contained in the outer shear layers. As can be appreciated from
figure 16, by x ≈ 2.5d, the outer shear layers are entrained into the von Kármán vortices
in the z = 0.6d plane. This also occurs to an extent in the z = 0.38d plane; however, in
that case, the vortical regions identified by the Q method encompass both the inner and
outer shear layer regions, and so all of this vorticity is summed with the Q methodology.
The von Kármán vortices approach the same strength in all the measurement planes for
x > 2.5d, containing about 65 % of the circulation of the unforced vortices by x = 5d.

The circulation that forms the vortex street originates from boundary layer separation
at the trailing edges of the BTE-profiled body. The rate at which circulation is introduced
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into the wake from the separated shear layers, dΓs/dt , can be calculated by integrating
from the inner edge, b, to the outer edge, s, of the shear layer:

dΓs

dt
=

∫ s

b
u ωzdy =

∫ s

b
u
∂u

∂y
dy = 1

2

(
u2

s − u2
b

)
. (3.8)

Equation (3.8) approximates ∂v/∂x = 0, which should be valid for boundary layer flows
and around the separation points. Furthermore, it is convenient to assume ub = 0 because
the fluid near the trailing edges inside the recirculation region is essentially stationary.
Hence, the rate of circulation entering the wake is effectively determined by the excess
velocity at the outer edge of the shear layer, us . It is instructive to relate the circulation
supply from the shear layers, Γs , and the resulting average circulation of the shed vortices.
From one side of the body, Γs can be estimated from the u profile near the separation
point/trailing edge assuming that the flow is steady. Following the methodology of Roshko
(1954), this involves integrating (3.8) over a shedding period as

Γs =
∫ 1/ fv

0

dΓs

dt
dt = u2

s

2 fv
. (3.9)

In the unforced Red = 2500 case, Ŝtv = 0.25 and us = 1.125u∞ at x = 0.2d (see
figure 10), so the normalised circulation supply during a shedding cycle is Γs/(u∞d) ≈
2.5. For the {Red = 2500, R = 3.1} case, the separated shear layers asymptotically
approach the free stream far enough away from the body, but also exhibit an overshoot
(figure 10). In the region between the jets, us = 1.11u∞ and for the profiles closer to
the jet centreline, us = 1.1u∞. Hence, the nominal supply of circulation in the {Red =
2500, R = 3.1} case is Γs/(u∞d) ≈ 2.45 – about the same as without forcing.

A simple model that relates the circulation in the wake to the separated shear layers
is Γs = Γv + ΓR, where ΓR represents the circulation that is cancelled within the
recirculation region. Partial cancellation of the circulation supply from a separated shear
layer occurs due to its mixing with opposite-sign vorticity from the shear layer on the other
side of the body. This is the main way that vorticity is usually lost in the near wake. For
the unforced Red = 2500 case, Γs/(u∞d) = 2.5 and Γv/(u∞d) = 1.5. This implies that
in the absence of forcing ΓR/(u∞d) ≈ 1, i.e. about 60 % of the circulation survives the
vortex formation process and 40 % is cancelled in the recirculation region. This ratio is
similar to that reported in other studies of bluff bodies, such as Cantwell & Coles (1983).
For the R = 3.1 forcing case, Γv/(u∞d) appears to settle at approximately (0.3−0.4)u∞d
lower than the unforced case in the measured planes. Because the distance that the vortices
are shed from the body is similar in the unforced and R = 3.1 cases at Red = 2500, it is
reasonable to assume that a similar amount of vorticity is cancelled in the formation region
as in the unforced case, i.e. ΓR/(u∞d) ≈ 1. Hence, this implies that about (0.3–0.4)u∞d
of the total circulation is missing, which is suspected to correspond to the partial diversion
of the spanwise von Kármán vortices into streamwise-oriented loops.

An indication of the three-dimensional structure of the vortex street can be obtained
from the path of the spanwise vortices in the different planes as plotted in figure 17(b).
Without forcing at Red = 2500, the average path of the vortex street is roughly a straight
line at about 0.15d away from the wake centreline. In all of the measured planes of the
{Red = 2500, R = 3.1} case, the von Kármán vortices are initially shed farther away from
the wake centreline and take much different paths downstream. In the z � 0.24d planes,
the centroids of the vortices start at y ≈ 0.4 and gradually advance towards the wake
centreline, such that by x = 5d, they approach y = 0.25d. However, in the z � 0.6d planes,
the centroids of the vortices move in the opposite direction, away from the wake centreline,
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Figure 18. Mean streamwise vorticity field with (v, w) vectors in the cross-plane at x = 4d with forcing for
(a) {Red = 2500, R = 2.7}, (b) {Red = 2500, R = 3.1}, (c) {Red = 2500, R = 3.9}, (d) {Red = 5000, R =
1.9} and (e) {Red = 5000, R = 2.5}.

to just below |y| = 0.4d at the edge of the measurement window. Therefore, despite the
similar strength of the von Kármán vortices across the span for x � 2.5d, the cores of the
shed vortices exhibit wavy undulations along the spanwise direction in an average sense
in response to the imposed forcing disturbances.

3.3. Wake three-dimensional structure and the forcing amplitude
The three-dimensional structure of the forced wake can be directly examined using the
cross-sectional view from the cross-plane at x = 4d. The spatial distribution of the mean
streamwise vorticity and the velocity with forcing at {Red = 2500; R = 2.7, 3.1 and 3.9}
and {Red = 5000; R = 1.9 and 2.5} is shown in figure 18. The general symmetry is the
same for all these cases, with a pattern of alternating positive and negative streamwise
vorticity along the span that is symmetric about the y = 0 and z = 0 planes, forming
four vortex concentrations per forcing wavelength. The −ωx vortices are in the {+z, +y}
and {−z, −y} quadrants with respect to the jet slot centred at z = 0, and vice versa
for the other quadrants. This matches the sense of rotation of the vortices at x = 1d
in the |y| < 0.45 region (see figure 8), indicating that the organisation enforced on
the vortex street during its initial development is maintained downstream. There is no
signature of the edge vortices emitted by the actuators at x = 4d, presumably because
those vorticity concentrations are entrained into the overall vortex street or dissipated.
Notably, the strength of the streamwise vortices at x = 4d declines from R = 3.1 to
R = 3.9 at Red = 2500 and from R = 1.9 to R = 2.5 at Red = 5000. This aligns with the
change in the jet–boundary layer interaction at these Red previously observed at x = 1d in
figure 8. Furthermore, the vortices in the {Red = 2500, R = 2.7} case are relatively closer
in strength to those in the {Red = 5000, R = 1.9} case than {Red = 5000, R = 2.5}. This
is another indication that R is not ideal for comparing across different Red with the present
methodology.
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Figure 19. Phase-averaged streamwise vorticity field with (v, w) vectors at a phase where it is maximised in
the y < 0 half of the cross-plane at x = 4d with forcing at an amplitude of R = 2.7 at Red = 2500.

The streamwise vortices at x = 4d are reflective of the spanwise phase variations in
the vortex shedding. To examine the connection of these vortices to the vortex shedding,
the measurements are phase-averaged with respect to the shedding cycle. The streamwise
plane measurements indicate that for forcing amplitudes where the jets do not penetrate
beyond the boundary layer, x = 4d is far enough downstream that the vortex street
has established a periodic structure, whereas for the higher-forcing-amplitude cases, the
structure may not yet be fully established. The cross-plane measurements are phase-
averaged directly with respect to the velocity near the outer edge of the shed vortices close
to the free stream at {x, y} = {4d, 1.25d} using the methodology described in Appendix A.
Each case was subdivided into 16 phase bins, resulting in approximately 65 snapshots
per bin.

Phase-averaging shows that the counter-rotating streamwise vortex pairs alternate
between both sides of the wake over a shedding cycle at x = 4d. Figure 19 captures the
phase when the streamwise vorticity is at its greatest in the y < 0 half for R = 2.7 at Red =
2500. This case is emphasised in this section because it most clearly demonstrates the
organisation of the induced three-dimensional wake structure, but a similar organisation
is evident in the {Red = 2500, R = 3.1} case and it also appears in the Red = 5000 cases.
In spite of the jets being active from both sides of the body throughout the entirety of the
shedding cycle, almost no streamwise vorticity is evident in the y > 0 half at this phase.
Half a shedding period later, the situation flips and streamwise vorticity is maximised
in the y > 0 half of the wake, except that the streamwise vortices have opposite sense
of rotation. The fact that the streamwise vorticity coherently varies over the shedding
cycle indicates that symmetric perturbations to the wake (about y = 0) still result in
an anti-symmetric wake structure due to presence of vortex shedding. It is consistent
with the streamwise vortices at x = 4d being loops that originate from the von Kármán
vortices. The phases where the streamwise vorticity is maximised are expected to occur
when the vortex legs are most normal to the cross-plane, and should also correspond to
when the ω̃y components of the loops are at their weakest. The comparable magnitude
of ω̃x in the cross-plane to ω̃z of the von Kármán vortices in the streamwise plane
underscores that these loops are a deformation of the von Kármán vortices. The spanwise
separation between the positive and negative streamwise vortex pairs is approximately
1.2d. Therefore, the spanwise wavelength of the vortex loops matches the λz = 2.4d of the
actuator spacing.

The vortical symmetry with the present distributed forcing methodology is the same
across all the forcing amplitudes and Red investigated. It is similar to that reported by
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Park et al. (2006) for distributed forcing with tabs, and is consistent with the mean
vorticity fields shown in the study of Zhang & Lee (2005), for example. Although Zhang
& Lee (2005) did not directly investigate the shedding phase-dependent variations, it
is reasonable to infer vortex looping based on their presented results. The streamwise
vorticity fields resulting from the present forcing methodology are also superficially
similar to the fields in the study of Bhattacharya & Gregory (2018). However, they reported
that the streamwise vorticity distribution was independent of the shedding phase and did
not alternate across the y = 0 plane. This suggests that the streamwise-induced vortices in
the work of Bhattacharya & Gregory (2018) were not loops of the von Kármán vortices.
Additionally, Bhattacharya & Gregory (2018) found that the streamwise vortices could
change their symmetry depending on the forcing amplitude and spanwise wavelength.
This highlights that different three-dimensional forcing schemes can also be beneficial
for the drag reduction of two-dimensional bluff bodies. However, it is clear that the
imposition of streamwise vorticity in the wake through spanwise-induced variations of the
streamwise velocity is a common feature of different three-dimensional control strategies
and is closely connected to the underlying mechanism. In discussing spanwise wavy wakes
from a linear stability perspective, Hwang, Kim & Choi (2013) found that von Kármán
vortex shedding was stabilised due to sinusoidal base flow perturbations along the span.
They argued that the stabilisation mechanism in their study proceeded in two steps. First,
their imposed spanwise variation in the streamwise velocity field tilted the von Kármán
vortices into the streamwise direction, resulting in the generation of streamwise vorticity.
Next, the streamwise vortex loops interacted with the spanwise von Kármán vortices due
to the spanwise shear in the base flow to attenuate the vortex shedding. This is essentially
in line with the present experimental observations even though the perturbation to the flow
is not purely sinusoidal along the span with the synthetic jet array and some streamwise
vorticity is directly introduced into the wake by the actuators.

The phase-averaged structure of the vortex street in unforced and forced conditions
can be visualised in three dimensions by stacking the two-dimensional phase-averaged
stereo cross-planes. The phase dimension is converted to the x spatial dimension using the
λx ≈ 3.5d of the vortex street that is measured in the streamwise planes. This provides a
three-dimensional approximation of the wake structure. Isosurfaces of the phase-averaged
vorticity for the unforced and R = 2.7 cases at Red = 2500 are given in figure 20. The
vorticity is coloured by the vector components at a constant level of ωi d/u∞ = 0.3. The
spanwise components of the von Kármán vortices are coloured red and blue for positive
and negative concentrations, respectively, which show the characteristic anti-symmetric
structure of vortex shedding. The |ωx | component is green and |ωy| is purple. In the
unforced case, the |ωx | and |ωy| surfaces do not form coherent structures in a phase-
averaged sense. These components are connected to construct vortex loops in the R = 2.7
case that repeat along the span with a wavelength matching the spacing of the actuators.
The loops exist in the braid region of the vortex street where the strain rate of the flow is
high, outside of the cores of the von Kármán vortices. For convenience, the loops may be
referred to as streamwise vortices, but as they wrap around a von Kármán vortex, the loops
reorient to be principally in the y direction.

An illustration of the vortical structure is given in figure 21. The principal direction of
the von Kármán vortices is spanwise in the illustration, but loops are pulled out of each
von Kármán vortex in the upstream direction symmetrically about the jet centreline planes
(z = 0) and wrap around the neighbouring upstream von Kármán vortex shed from the
opposite side of the body. The sense of rotation of the streamwise vortices is determined
by that of the von Kármán vortices. The vortex legs seen in the y > 0 half of the cross-
plane originate from the −ωz von Kármán vortices, and vice versa for the vortex legs in
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Figure 20. Phase-averaged vorticity isosurfaces, coloured by vector component at a constant level of
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Figure 21. Vortical structure of the wake with distributed forcing. Streamwise vortex loops are pulled out of
the spanwise-oriented von Kármán vortices. This forms a line of vorticity along the streamwise direction that
switches direction once per shedding wavelength.

the y < 0 half. A vortex leg that is pulled out of a von Kármán vortex in the upstream
direction at a given z location will have the opposite sense of rotation to the streamwise
vortex leg that is pulled in the exact same direction from a von Kármán vortex shed from
the opposite side of the body because the spanwise sense of rotation of the von Kármán
vortices switches. Over a shedding period, the sense of rotation of a streamwise vortex at
a given z location therefore switches sign once. Equivalently, it forms a line of streamwise
vorticity along the x direction that periodically alternates between positive and negative
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once during each shedding wavelength. Hence, the vortex loops link together von Kármán
vortices that rotate in opposite directions, forming a closed structure that repeats every
half shedding wavelength.

The type of symmetry in the forced wake is also exhibited in some other natural
vortical flows. For example, it is reminiscent of the three-dimensional structure predicted
by Ashurst & Meiburg (1988) in a temporally evolving plane shear layer subject to
a Kelvin–Helmholtz instability. This pattern was later simulated and experimentally
produced by Lasheras & Choi (1988), Meiburg & Lasheras (1988) and Lasheras &
Meiburg (1990) for shear layers, as well as the wake of a flat plate at Red ≈ 100. Lasheras
& Choi (1988) excited a shear layer with small sinusoidal spanwise perturbations and
observed the development of three-dimensionality in the resulting flow. They found that
the Kelvin–Helmholtz instability developed first, producing spanwise vortices. Farther
downstream, the perturbed vorticity on the braids of the spanwise vortices was stretched
in the streamwise direction to form vortex loops. These streamwise vortices then induced
waviness along the cores of the spanwise vortices through nonlinear interactions. Meiburg
& Lasheras (1988) observed the tilting of spanwise von Kármán vortices in the wake of
a flat plate at Red ≈ 100 with spanwise perturbations. The vortical symmetry observed in
these studies as well as the present work is also essentially the same as the self-sustaining
mode A secondary instability in wakes described by, for example, Williamson (1996).

Poncet et al. (2008) argued for a connection between optimal drag reduction and the
natural secondary instabilities of modes A and B because their numerical work identified
that drag minimums occurred for spanwise perturbations near the wavelengths of these
instabilities. Similar arguments have been put forth by Dobre et al. (2006), Bhattacharya &
Gregory (2015) and Naghib-Lahouti et al. (2015). In the present study, the arrangement of
the vortex loops in the forced wake arises because the actuators are located symmetrically
about both sides of the BTE body. This keeps the induced loops from the upper and
lower sides of the body approximately in line downstream of the jets. The fact that
this arrangement aligns with the mode A vortices could be construed as supporting the
hypothesis of Poncet et al. (2008). However, the mode A instability is typically associated
with the early stages of the wake transition regime (Red < 1000) and not in the turbulent
wake regime of the present work. Moreover, the spanwise wavelength of the mode A
vortices is about 4d (Ryan, Thompson & Hourigan 2005). The fact that this is much greater
than the wavelength of the forcing indicates that, at the very least, matching the mode A
instability is not required for distributed forcing.

The other secondary wake instability for this BTE body geometry, mode B, is not a
reorientation of the von Kármán vortices at all. The mode B instability is speculated to
develop in the braid region of the von Kármán vortices (Williamson 1996) or to be a three-
dimensional instability of the separated shear layers (Brede, Eckelmann & Rockwell 1996).
This mode persists throughout the turbulent wake regime, but its characteristic spanwise
wavelength is approximately 1d and its vortical symmetry is different from that induced
in the current investigation (Gibeau et al. 2018). For the mode A, the vortices form lines
of the same-sign streamwise vorticity along x instead of alternating every half-shedding
cycle. It may be possible to induce this type of symmetry in the streamwise vorticity field
by staggering the actuators along the span by λz/2 between the upper and lower sides
of the BTE body. However, the vertical symmetry of the wake would likely be lost with
a staggered arrangement of the actuators, i.e. the strength of the von Kármán vortices
would be different from both sides of the body at a given z location, and this is unlike the
mode B instability. Therefore, it would be challenging to produce the overall symmetry
of the mode B even with a staggered arrangement of actuators at a spanwise wavelength
of ≈ 1d. The spanwise wavelength of the present forcing configuration matches that of

1008 A16-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.37


R. Cruikshank, S. Baba and P. Lavoie

1.5 0.12

0.08
0.06

0.02
0

0.04

0.11.0
0.5

0
−1.5
−1.0
−1.5

1.5
1.0
0.5

0 0
−1.5
−1.0
−1.5

1.5
1.0
0.5

0
−1.5
−1.0
−1.5

1.5
1.0
0.5

−1.5
−1.0
−1.5

−1.8 −0.6 0.6 1.8 −1.8 −0.6 0.6 1.8 −1.8 0.6 1.8 −1.8 −0.6−0.6 0.6 1.8

(a) (b) (c) (d)

y/d

z/d z/d z/d z/d

k/
u2 ∞

Figure 22. Distribution of k in the cross-plane at x = 4d when Red = 2500: (a) without forcing, (b) R = 2.7,
(c) R = 3.1 and (d) R = 3.9.

Naghib-Lahouti et al. (2015), who perturbed the wake at λz = 2.4d in order to match the
wavelength of a mode B′ instability. However, recent work by Gibeau et al. (2018) has
cast significant doubt on whether a mode B′ exists at all. Moreover, the overall topology
of the mode B′ would match the mode B if it does exist, with the streamwise vortices
maintaining the same sense of rotation along x at a given z location (Naghib-Lahouti et al.
2014). Hence, the vortical structures introduced by the present forcing arrangement would
not be expected to align with the mode B′ either. It is therefore improbable that distributed
forcing depends on interactions with secondary instabilities.

Figure 22 shows the distribution of k = 0.5(u′u′ + v′v′ + w′w′) in the cross-plane
without and with forcing at {Red = 2500; R = 0, 2.7, 3.1 and 3.9}. As previously
indicated in figure 14, the magnitude of the velocity fluctuations in the near wake is largely
reflective of the strength of the vortex shedding. The total magnitude of the fluctuations
is generally the highest along the wake centreline (y = 0) because it experiences the
full extent of the cross-stream velocity variations induced by the von Kármán vortices
shed from both sides of the body, and the v fluctuations are typically stronger than the
u fluctuations in this region. Forcing causes k to decline throughout the cross-plane,
primarily because of the attenuation of the vortex shedding. As a result of the spanwise-
periodic nature of this forcing strategy, k is noticeably lower closer to the jet centreline at
z = 0 compared with that between the jets.

The streamwise vortices in the wake induced by the synthetic jet array resemble those
measured for a wavy cylinder by Zhang & Lee (2005). The sense of rotation of the vortices
is such that the spanwise regions downstream of the jet centrelines are analogous to the
cylinder saddles, and the regions between jet slots correspond to the nodes. In essence,
the synthetic jet forcing creates similar spanwise velocity gradients in the separated shear
layers to those that naturally occur for bodies with wavy geometries in order to achieve
a similar effect on the vortex shedding. The situation is also analogous because in the
low-λz regime of a wavy cylinder, Zhang & Lee (2005) found that the minimum k in the
wake downstream of the vortex formation region occurs in the saddle plane, and with the
synthetic jet array, k is minimised along the jet centreline plane.

The distribution of ωz and k with the synthetic jet forcing scheme is also similar to
that measured by Bhattacharya & Gregory (2018) in their high amplitude forcing and
λz � 4d regime for distributed plasma actuators on a cylinder; however, they argued that
the streamwise vortices did not alternate with the vortex shedding cycle. Synthetic jets
were used as the actuator for distributed forcing on a cylinder by Cui, Feng & Liu (2020),
who reported introducing streamwise vorticity into the wake, but there was not a clear
symmetry of the wake vortical structures downstream of the vortex formation length,
perhaps because the vortex shedding was more significantly disorganised than in the
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Figure 23. Peak phase-averaged streamwise circulation of the von Kármán vortex loops during a vortex
shedding cycle as a function of R for Red = 2500 and 5000.

present case. Therefore, the work of neither Bhattacharya & Gregory (2018) nor Cui et al.
(2020) is directly comparable with the present forcing methodology.

The circulation of the streamwise vortices is computed to test whether it can account for
the missing circulation in the spanwise von Kármán vortices from the streamwise-plane
PIV measurements. The PIV cross-plane at x = 4d is divided into quadrants bounding
0 � |z|� 1.2d and 0 � |y|� 1.05d which encompass each leg of the streamwise vortices.
The vortices in each quadrant are tracked in a phase-averaged manner to measure how the
streamwise circulation changes over the vortex shedding cycle. The vorticity inside each
of the legs is integrated to compute the circulation for each phase bin, φv , as

|Γx (φv)| =
∫∫

S
|ω̃x (φv)|dA =

∑
i

∑
κ

|ω̃x (φv)|
y
x, (3.10)

where S is the surface boundary, i and κ are indices and 
x = 
y = 0.039d. The
integration bounds are set by lines of constant vorticity at |0.15u∞d| to reject noisy data
near the vortex edges. The two vortices located in the y > 0 half, as well as the vortices in
the y < 0 half, form pairs consistent with a vortex loop structure. The phase with maximum
circulation is typically the same for the vortices in a pair, and variations in the circulation
are approximately 180◦ out of phase between the loops located in the y > 0 and y < 0
halves of the wake. The average of the peak circulations in all four quadrants is given by
|Γ̂x |, where

|Γ̂x | = 1
4

(|Γ̂x | U pper le f t + |Γ̂x | U pper right + |Γ̂x | Lower le f t + |Γ̂x | Lower right
)
. (3.11)

The variation of |Γ̂x | with R at Red = 2500 and 5000 is summarised in figure 23. It can be
seen that |Γ̂x |/(u∞d) increases up to about 0.45 when Red = 2500 and 0.4 when Red =
5000. Recalling the discussion in § 3.2, |Γ̂x |/(u∞d) = 0.45 is in line with the amount of
spanwise circulation hidden from observation in the streamwise planes. This supports the
hypothesis that the total circulation entering the wake is similar with and without forcing,
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but that about one-third of this circulation is in the streamwise/cross-stream directions in
the best-case forcing scenario.

Consistent with the observations from figure 18, figure 23 shows that |Γ̂x |/(u∞d) is
maximised at R = 3.1 when Red = 2500 and at R = 1.9 when Red = 5000. An indication
of how the scaling of the forcing amplitude should be modified to achieve better collapse
with Red is that the |Γ̂x | peak of the Red = 2500 case occurs at about the same forcing
amplitude that a significant amount of positive vorticity starts to appear at the upstream
side of the jet slot, which is associated with the jet structure changing to a type that
is more penetrating (see figure 6). At both Red = 2500 and 5000, this critical forcing
amplitude aligns with when the jet vortices penetrate just up to the edge of the boundary
layer, suggesting that the forcing effectiveness is more closely linked to the jet penetration.
The wall-normal penetration rate of a jet in a cross-flow is related to the momentum
flux introduced by the jet. Using an empirical power law based on RγD, the penetration
distance of a continuous jet emitted from a circular orifice is conventionally described as

y j

RγD = A
( x j

RγD
)n

, (3.12)

where A, n and γ are constants, y j is the wall-normal jet penetration distance relative
to the model surface and x j is the streamwise distance from the jet origin (Mahesh
2013; Berk et al. 2018). The scaling of synthetic jet penetration is complicated by their
unsteady nature. Assuming that the synthetic jet formation criterion is met and that the
vortices generated by a synthetic jet are not re-ingested into their cavities, the circulation
initially emitted into a flow comes from the developed vortex rings. Using a boundary layer
approximation, the instantaneous rate of circulation generation, Γ j , during the formation
of a vortex ring from a synthetic jet slot is

dΓ j (t)

dt
≈ ∂u j (t)

∂x
u j (t)dx ≈ u j (t)2

2
, (3.13)

where u j (t) is the instantaneous centreline jet velocity (Glezer 1988). The circulation
emitted from a synthetic jet varies periodically over the expulsion cycle, and it can be
shown in non-dimensional form by integrating (3.13) over the period of an expulsion cycle,
Tj/2, that Γ j/(Du∞) ∝ R2/St j , where St j = f jD/u∞ (Berk & Ganapathisubramani
2019). Using as a physical basis that the wall-normal velocity of a jet is proportional
to the emitted circulation in a vortex ring, Berk & Ganapathisubramani (2019) argued
that synthetic jet penetration should be a function of Γ j/(Du∞) ∝ R2/St j . Hence, they
proposed scaling the penetration distance as

y j/d

(R2/St j )0.6 = A

(
x j/d

(R2/St j )0.6

)0.26

. (3.14)

It is instructive to examine whether the scaling of Berk & Ganapathisubramani (2019) can
model the jet penetration for the various cases in the current work. The primary interest
here is y j/d when it is close to the trailing edge of the BTE model. If the actual path that
the jet takes is not included in the model, then the x j/d dependence can be grouped with
the A constant to form A†. This results in a final simplification of

y j/d = A†(R2/St j )
n†

, (3.15)

by rearranging (3.14).
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Figure 24. Mean penetration distance, y j /d, of the vortical structures generated by forcing, measured at x =
0.2d and 0.4d � z � 0.6d, over a range of Red and forcing amplitudes where the vortical structures remain
inside the boundary layer. The dashed line shows the best fit through the datapoints: y j /d = 0.1(R2/St j )

0.49.

Shear layer velocity profiles were measured at a fixed streamwise location of x = 0.2d
with HWA to determine y j/d for a range of forcing amplitudes that the jet did not penetrate
outside the boundary layer at Red = 2500, 3700 and 5000 (see figure 10 as an example
for the Red = 2500 and R = 3.1 case). For these forcing amplitudes, the induced edge
vortices remain close to the jet slot edges, producing the highest peaks in u′u′ in the
profiles taken at 0.4d � z � 0.6d. Therefore, y j/d is most appropriately identified from
the shear layer profiles in this range. The y j/d location of the jet is defined here as the
local peak in u′u′, although alternative definitions such as the local minimum in the
mean velocity or local maximum in the velocity gradient could have been used (Smith
2002). The u′u′ peak is used to define y j/d because it was more reliable than the other
methods at discriminating between the peak associated with the jet and the peak from
the wake shear layer of the BTE body itself. Figure 24 summarises the computed y j/d
for the different forcing amplitudes measured at Red = 2500, 3700 and 5000. The wall-
normal jet penetration datapoints follow a trend line that suggests that the model of Berk
& Ganapathisubramani (2019) is appropriate for the present forcing methodology. The
curve fit is best described as y j/d = (0.1 ± 0.01)(R2/St j )

0.49±0.09, where notably this n†

is consistent with the value of 0.44 obtained by Berk & Ganapathisubramani (2019).
The streamwise circulation of the von Kármán vortex loops is scaled based on the jet

penetration height using (R2/St j )
0.5, rounding to n† = 0.5. Figure 25 shows that |Γ̂x |

exhibits good correspondence with (R2/St j )
0.5 for both Red = 2500 and 5000. This

indicates that |Γ̂x | is better expressed as a function of the jet penetration height rather than
R or Cμ for the present forcing methodology. Evidently, the effectiveness of the present
forcing scheme is more related to how the jet penetrates inside the boundary layer rather
than the strength of the jet itself. Because the boundary layer thickness, δ, for a given
chord length is related to Re−0.5

d , a jet at the same R penetrates to a higher y j/δ when Red
increases. This helps to explain why the strength of the induced streamwise von Kármán
vortex loops for the same R increases with Red . However, the corresponding decrease in
the boundary layer thickness with Red also restricts the maximum strength of the jet that
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Figure 25. Peak phase-averaged streamwise circulation of the von Kármán vortex loops during a vortex
shedding cycle as a function of (R2/St j )

0.5 for Red = 2500 and 5000.

can be attained without penetrating past the boundary layer edge. This limits the ability of
the present forcing scheme to redirect the spanwise von Kármán vortices into streamwise
vortex loops and points to a lower maximum effectiveness at higher Red for a given BTE
body geometry with the present forcing strategy.

3.4. Drag
Attenuated vortex shedding is typically associated with reduced drag due to the close
connection between the concentration and formation distance of the shed von Kármán
vortices, and the resulting mean and fluctuating forces acting on a bluff body. A planar
momentum balance is employed with the PIV data to estimate the drag changes as a result
of forcing. The main assumptions are that the incoming flow is uniform and steady, the
only external force that acts on the control volume is the drag in the x direction, the flow
enters and exits the control volume only along the {y, z} plane boundaries and the pressure
in the free stream at the outflow plane is the same as at the inflow plane. Based on these
assumptions, the equation for the drag coefficient from the velocity profile at the exit plane,
Sout , is derived in Appendix B as

cd = 2
u2∞

∫
S,out

(
u∞(u2 + w2)1/2 − u2 − u′u′ + v′v′

)
d

( y

d

)
. (3.16)

For the streamwise 2C-PIV planes, the contribution of the w term is neglected since it is
not measured. The value of cd in these planes is computed as a function of x and plotted
in figure 26 for Red = 2500. It can be seen that cd declines when moving downstream.
The lack of convergence in cd is most likely related to the assumption that the pressure
at the inflow is the same as the free-stream pressure in the wake when, in actuality, the
free-stream pressure is still recovering in the near wake. Hence, the computed cd values
are inflated. The true cd for the present BTE-profiled body is unknown but cd = 0.57 was
measured by Li, Bai & Gao (2015) using force transducers for a BTE-profiled body where
rL E = d, so the true cd for the present body is likely similar. The best estimate of cd that
can be achieved with a momentum balance from the present data is from the downstream
edge of the measurement domain at x = 5.5d. Without measuring further downstream
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Figure 26. Downstream evolution of cd in the unforced Red = 2500 case and with forcing at an amplitude of
R = 3.1 across the different streamwise PIV planes.

to improve the reliability of the computations, the cd values at x = 5.5d should provide
enough information for comparison purposes. In the absence of forcing, cd = 0.71 at x =
5.5d. The local cd values in all the measured streamwise planes of the {Red = 2500, R =
3.1} case are consistently lower than those of the baseline case, highlighting that this
forcing condition reduces the drag. As suggested by the spanwise-variable nature of this
forcing strategy, the local cd changes significantly along the span. The drag is lowest close
to the jet centreline due to the greater degree of vortex street attenuation in this plane and
gradually increases away from the jet centreline.

The cross-plane data are used to determine the net 〈cd〉 by spanwise averaging over a
distance of one forcing wavelength for −1.2d < z < 1.2d. The measurements in the cross-
plane allow for a more complete analysis of 〈cd〉 because of the much better spanwise
resolution compared with the spanwise-separated streamwise planes. Additionally, the w

term of cd in (3.16) can be included using the cross-plane data. For the forcing cases, the
w term contributes to at most about 5 % of the local cd at the z locations where the forcing
induces the strongest w motions. There is a greater bias error in the drag computations
made from the cross-plane than from the streamwise planes because the cross-plane is
located even closer to the model than the x = 5.5d point that was available from the
streamwise planes. The streamwise-plane data indicate that the cd values in the cross-plane
at x = 4d are about 0.1–0.15 higher than they would be if they were measured at x = 5.5d.
Nevertheless, the trends in how 〈cd〉 varies between the forcing cases are not expected to
change much if the cross-plane was located further downstream. Because the relative 〈cd〉
trends are of more interest than the absolute values for this study, this inflation from the
cross-plane is an acceptable compromise for the greatly improved spanwise resolution.

Considering the bias of the computed cd values, the results are summarised as ratios
relative to the unforced case, 〈cd,0〉, in figure 27. It presents 〈cd〉/〈cd,0〉 as a function of
(R2/St j )

0.5 for the Red = 2500 and 5000 cases as the red dashed lines. The drag exhibits
a minimum at both Red that is about 25 % lower than that of the respective unforced
cases. As understood by von Kármán (1912), the pressure drag of a bluff body is directly
related to the strength of its vortex street. Physically, the greater the concentration of the
shed vortices, the larger the kinetic energy of the wake. Because the energy to create the
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Figure 27. Spanwise-averaged drag ratio, 〈cd 〉/〈cd,0〉 (red), plotted alongside the streamwise circulation, |Γ̂x |,
of the von Kármán vortex loops (blue) as a function of forcing amplitude. The forcing amplitude is scaled based
on the jet penetration distance, (R2/St j )

0.5.Here Red = 2500 and 5000 are represented by the circle and square
datapoints, respectively.

vortices comes from the work done by the relative movement of a body through a fluid,
less work is done when the vortex street is weaker and hence the drag is lower. Therefore,
the degree of drag reduction achieved with the current forcing methodology is in line with
the significant attenuation of the vortex shedding strength.

Figure 27 plots 〈cd〉/〈cd,0〉 alongside |Γ̂x | of the von Kármán vortex loops as the blue
solid lines. As in figure 25, plotting 〈cd〉/〈cd,0〉 as a function of (R2/St j )

0.5 provides a
much better collapse between the two Red cases than would be achieved with R or Cμ.
This provides further evidence that the effectiveness of the current forcing methodology
is more closely related to the wall-normal penetration distance of the jet near the trailing
edge rather than the emitted jet strength. The maximum net drag reduction for both Red

occurs at around (R2/St j )
0.5 ≈ 2.5−3, which also corresponds to when |Γ̂x | is maximised.

In agreement with the observations of Rodriguez (1991), this correspondence supports the
hypothesis that the drag reduction is proportional to the amount of spanwise vorticity
realigned into streamwise vorticity. By extension, it also suggests that similar results can
be achieved with this forcing scheme for other bluff-body geometries that feature vortex
shedding, and can be used to provide guidance in future studies to design better actuators
or forcing strategies.

4. Conclusion
Distributed forcing from an array of synthetic jet actuators on a profiled BTE body was
experimentally investigated at Red = 2500 and 5000. Each of the synthetic jets in the array
induced an upwash of fluid near their centreline planes and a downwash of fluid closer to
the slot edge planes, forming pairs of streamwise vortices. As a result, the thickness of
the separated shear layers varied along the span and spanwise vorticity in the shear layers
tilted into streamwise vortices.

The forcing amplitude controlled the extent to which the vortical structures generated by
the jets penetrated in the cross-flow. When {Red = 2500, R = 3.1} and {Red = 5000, R =
1.9}, the jets penetrated approximately up the edges of the boundary layers, generating
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strong streamwise vortices inside the separated shear layers. This provided the most
effective perturbations to the wake at those Red , attenuating the vortex shedding and
reducing the velocity fluctuations in the wake. For the {Red = 2500, R = 3.1} case in
particular, the wake width was found to decrease across the entire span and the spanwise
circulation of the von Kármán vortices was reduced by about 35 % compared to the
unforced case. Forcing at higher amplitudes at those Red resulted in the jet vortical
structures extending outside of the boundary layers, increasing the width of the wake near
the jet centreline planes and worsening the overall drag reduction. Therefore, there is a
critical forcing amplitude which corresponds to when the jets penetrate up to the edges of
the boundary layers and provides roughly the greatest drag reduction.

Due to forcing, the vortex shedding exhibited three-dimensionality consistent with the
spanwise variations in the separated shear layers. Most importantly, the attenuation of
the vortex shedding by forcing was accompanied by the emergence of counter-rotating
streamwise vortex pairs on both sides of the wake in a {y, z} cross-plane at x = 4d, which
was well downstream of the von Kármán vortex formation length. The spanwise distance
between positive and negative streamwise vortices was approximately 1.2d, and the pattern
repeated along the span with a wavelength of 2.4d, matching the spacing of the actuators.
In all cases the vortex shedding frequency, Ŝtv , did not vary along the span, indicating that
the current distributed forcing strategy produces an organised wake structure. A constant
Ŝtv along the span is in accordance with some previous studies of distributed forcing, such
as the tab-based perturbations of Park et al. (2006) and cylinder waviness of Lam et al.
(2004), but is in contrast to other studies, such as Tombazis & Bearman (1997), Bearman
& Owen (1998), Bhattacharya & Gregory (2018) and Ling & Zhao (2009). It was argued
that the reason for the different wake structures in these studies is that the present forcing
wavelength of λz = 2.4d is in a low-wavelength regime.

The measurements in the cross-planes of the wake were phase-averaged with respect to
the shedding cycle to reveal the three-dimensional structure of the forced wake. Over a
shedding cycle, the magnitude of streamwise vorticity concentrations varied periodically
and the streamwise vortices alternated between both sides of the wake. This vortical
symmetry is similar to that reported by Park et al. (2006) and Zhang & Lee (2005)
for different passive three-dimensional perturbations in the low-wavelength regime. An
approximation of the vortex shedding structure in three dimensions was obtained by
stacking the phase-averaged two-dimensional planar measurements at x = 4d, which
showed that the streamwise vortices are essentially loops that are pulled out of the cores
of the von Kármán vortices. The loops exist in the braid region of the wake and link
successive cycles of shed vortices. Therefore, the attenuation of the von Kármán vortices
by forcing is interpreted as being due to the tilting of the principally spanwise von Kármán
vortices into the streamwise direction. Because the vortex street has anti-symmetry and the
streamwise vortices in the wake emerge from this structure, the streamwise vortices rotate
in opposite directions in the y < 0 and y > 0 halves of the wake at a given z location. This
explains why the sense of rotation of a streamwise vortex at a given z location appears to
switch once per shedding cycle. The vortical symmetry of the forced wake is similar to
that exhibited by the mode A secondary instability (Williamson 1996); however, the mode
A has a spanwise wavelength of ≈ 4d and occurs in the wake transition regime, not the
turbulent wake regime of the present study. In contrast, the mode B secondary instability
may exist at the Red range of the present investigation, but its spanwise wavelength is ≈ 1d
and its vortical symmetry is completely different. This indicates that the vortex street can
be significantly realigned by distributed forcing without matching the wavelength to a
secondary instability.
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The relationship between the drag reduction and the concentration of streamwise
vortices in the wake was investigated by testing a range of forcing amplitudes. An
alternative scaling for the forcing amplitude was proposed as (R2/St j )

0.5 which is based
on the jet penetration distance. It was found to better collapse the present results between
the different Red than R or Cμ. This indicates that the generation of streamwise vorticity
with the present methodology is more closely related to how the jets penetrate in the
flow rather than from momentum considerations. An implication of this is that if Red
is controlled through u∞, as it is in the present study, then the maximum potential
of the synthetic jet array to control the wake is reduced when Red increases because
the boundary layers become thinner. However, provided that the forcing amplitude is
low enough that the jets do not penetrate beyond the boundary layer edges, the relative
effectiveness of the forcing may be expected to be better for the same R at higher Red
because of the change in boundary layer thickness. In line with the hypothesis, a clear
trend of decreasing drag with stronger streamwise vortices was exhibited up to the critical
forcing amplitudes at Red = 2500 and 5000. This implies that many different types of
three-dimensional perturbations should be able to attenuate the vortex street for various
bluff-body geometries, and that the major factor controlling the effectiveness of these
types of strategies is how well the perturbations tilt spanwise vorticity into streamwise
vorticity.
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Appendix A. Phase-averaging vortex shedding directly from the velocity field
The POD phase-averaging methodology outlined by van Oudheusden et al. (2005) requires
streamwise spatial information in order to work. Therefore, it is not possible to apply the
POD methodology to phase-average measurements in the {y, z} cross-plane. Instead, the
velocity variations at a point near the outer edge of the von Kármán vortices close to
the free stream are relied upon. At such a point, the turbulent velocity fluctuations are
not very large and the u and v components are periodically modulated by the passage of
the von Kármán vortices. For example, the phase-averaged variation of ũ and ṽ from the
streamwise plane at Red = 2500 and without forcing at {x, y} = {4d, 1.25d} is plotted in
figure 28. It is clear that ũ and ṽ vary sinusoidally at this location in the wake and, in
particular, that ũ leads ṽ by 90◦. This relationship should hold for the instantaneous u and
v fluctuations in the velocity field, except that instantaneously there are also competing
random fluctuations.

In the cross-plane, vortex shedding phase information for the instantaneous snapshots
can be obtained by analysing the relationship between u and v at a similar location
in the wake. Because the cross-plane has spanwise information, the u and v signals
are averaged along the span to help filter out turbulent fluctuations. A disadvantage of
spanwise averaging is that random large-scale spanwise variations in the vortex shedding
are not resolved. Therefore, this approach is best applied over spanwise distances less than
the streamwise wavelength of the vortex shedding. The notation adopted here uses 〈·〉 to
indicate a spanwise average. In the cross-plane, the relationship between

U(t) = 〈u(yp, t)〉 and V(t) = 〈v(yp, t)〉 (A1)
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Figure 28. Variation of ũ and ṽ over the vortex shedding cycle at {x = 4d, y = 1.25d} from the streamwise
plane when Red = 2500. The phase average was performed using a POD methodology. Note that the time-
averaged mean is removed.
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Figure 29. Scatter plot of the instantaneous variations of U(t) and V(t) at {x, y} = {4d, 1.25d} and
spanwise-averaged in the range −1.6d � z � 1.6d for the Red = 2500 case with no forcing.

is considered, where yp is a given y location and the spanwise averages are evaluated in
the range −1.6d � z � 1.6d.

The instantaneous variations of U and V are plotted against each other for the {Red =
2500, R = 0} case with yp = 1.25d in figure 29. The axes are normalised by the respective
standard deviations to scale the amplitude of the fluctuations. There is a clear relationship
between U and V that traces out a circle.

It was found that yp = 1.05d and yp = 1.25d were good locations to obtain phase
references for the x = 1d and x = 4d PIV cross-planes, respectively. They are close enough
to the wake centreline that the coherent fluctuations are sufficiently strong to be picked up,
but far enough away that the fluctuations are not obscured by turbulence. These locations
are also well positioned because they are outside of the part of the wake with the greatest
spanwise variations in the forcing cases that the jets do not significantly penetrate outside
of the boundary layers. Note that the yp location selected for the x = 4d plane is slightly
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Figure 30. Planar control volume of the body in a wind tunnel, showing the velocity flow and pressure forces.

farther away from the centreline than for the x = 4d plane to compensate for the von
Kármán vortices diffusing downstream. For the relatively higher-forcing-amplitude cases
where the jets extend well outside the boundary layers, obtaining the vortex shedding
phase reference with this procedure is less valid because the jets introduce significant
velocity fluctuations even in the outer regions of the wake which are not associated
with vortex shedding (especially in the x = 1d plane). Hence, none of the high-forcing-
amplitude cases are phase-averaged with this procedure in the paper. In the unforced
and relatively lower-forcing-amplitude cases, phase references similar to those calculated
from the selected coordinates can also be obtained within the range 0.75d < yp < 1.75d;
however, the relationship between U and V starts to deviate away from circular towards
the ends of those yp extremes.

The symmetry of vortex shedding across the wake centreline is ũ(x, y) = −ũ(x, −y)

and ṽ(x, y) = ṽ(x, −y). This symmetry is exploited to improve the phase calculations by
taking into account both sides of the wake. Therefore, the signals that are used to create
the phase reference are

U∗(t) = 〈u(yp, t) − u(−yp, t)〉,
V∗(t) = 〈v(yp, t) + v(−yp, t)〉, (A2)

spanwise-averaged over −1.6d � z � 1.6d, and the shedding phase is calculated as

φv(t) = arctan
V∗(t)/std[V∗(t)]
U∗(t)/std[U∗(t)] . (A3)

Appendix B. Drag from planar momentum balance
The drag force can be computed through a streamwise momentum balance over a control
volume large enough to encompass the body and the surrounding incompressible flow:∑

Fx = ρ

∫∫
S

V (V · n)dS, (B1)

where n = nx i + ny j + nz k is the normal vector to the control volume. The control
volume shown in figure 30 is expanding to account for the deflection of the streamlines by
the body such that the flow enters and exits the control volume only along the {y, z} plane
boundaries.
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The flow is assumed to be uniform and steady at the inflow plane of the control volume,
which has a height of Hin . Assuming that the only external force that acts on the control
volume is the drag, D, in the x direction, the Reynolds-averaged x momentum equation
evaluates as

− D +
∫
S,in

p∞nx�zdy −
∫
S,out

pnx�zdy

= ρ�z

∫
S,out

(u2 + u′u′)dy − ρ�z Hinu2∞ +
∫∫

S
(τxx nx + τxyny + τxznz)dS, (B2)

where p is the pressure, ∞ represents a condition in the free stream and �z is the thickness
of the control volume along z. The u2∞ and u2 terms represents the momentum from
the mean flow, and the difference between them is typically the main contributor to the
overall momentum deficit. The u′u′ term is the Reynolds stress term, which accounts for
the momentum carried by the streamwise velocity fluctuations. According to Antonia &
Rajagopalan (1990), the Reynolds stress term is an important contributor to the calculated
drag up to x ≈ 30d for cylinders at Red = 5600. The viscous stresses are represented as
τxx , τxy , τxz , but are neglected because they are significantly smaller (<1 %) than the other
components for flows such as the present case above the wake transition regime. Equation
(B2) can be rearranged for D as

D =
∫
S

(p∞ − pout (y)) nx�zdy + ρ�z Hinu2∞ − ρ�z

∫
S,out

u2dy − ρ�z

∫
S,out

u′u′dy.

(B3)
The pressure variation in the wake can be approximated based on the momentum equation
for shear layers (Townsend 1956):

1
ρ

∂p

∂y
= −∂v′v′

∂y
, (B4)

which can be integrated along y for the outflow plane from a point in the free stream where
v′v′ ≈ 0 to a point in the wake to obtain

p(y) = p∞,out − ρv′v′(y). (B5)

Assuming that the pressure in the free stream at the outflow plane is the same as at the
inflow plane, p∞,out = p∞, (B5) can be substituted into (B3) to obtain

D = ρ�z Hinu2∞ − ρ�z

∫
S,out

u2dy − ρ�z

∫
S,out

u′u′dy + ρ�z

∫
S,out

v′v′dy. (B6)

Continuity of the mass flow rate (ṁ) is used to find the height of the inflow plane as

ṁin = ṁout ,

ρ�z Hinu∞ = ρ�z

∫
S,out

(u2 + v2 + w2)1/2dy,
(B7)

considering the total outgoing velocity. Symmetry of the wake about y = 0 means that the
net contribution of v to the mass flux can be neglected. From this it follows that

Hin =
∫
S,out (u

2 + w2)1/2dy

u∞
, (B8)
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which can be substituted into (B6) and normalised appropriately so that the drag
coefficient for a cross-sectional plane is

cd = D
1
2ρ�zdu2∞

= 2
u2∞

∫
S,out

(
u∞(u2 + w2)1/2 − u2 − u′u′ + v′v′

)
d

( y

d

)
. (B9)
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