POSTERS 559

Classification of Dust Emission Features in Carbon Stars

IRENE R. LITTLE-MARENIN¹, GREGORY C. SLOAN², and STEPHAN D. PRICE³

- ¹ Wellesley College, Wellesley MA, U.S.A.
- ² NASA/Ames Research Center, Moffett Field CA, U.S.A.
- ³ Phillips Lab., Hanscom AFB, Hanscom MA, U.S.A.

We have cross-referenced the IRAS PSC with the GCVS, searching for AGB carbon stars, and found 99 sources brighter than 28 Jy at 12 μ m. We have classified their LRS spectra after removing an estimated stellar contribution. The majority of our sources fall into two categories: spectra with the classic SiC emission feature peaking around 11.2-11.5 μ m (class SiC), and spectra where the SiC feature appears along with an additional component peaking around 8.5–9.0 μ m (class SiC+). In a few stars the 8.5–9 μ m feature rivals or exceeds the SiC feature in strength (class SiC++). Our sample also contains several unusual and low-contrast dust spectra which are difficult to classify. The classic SiC class contains mostly Mira variables, while the SiC+ and SiC++ classes contain mostly SRs and Lbs. Classic SiC sources tend to have redder [12]-[25] colors, correspondingly lower photospheric temperatures, and longer periods than SiC+ and SiC++ sources. The SiC feature appears to be superimposed on a featureless continuum most likely due to amorphous carbon or graphitic material. The C/O ratio increases along the sequence $SiC \rightarrow SiC+ \rightarrow SiC++$ from an average of 1.07 (SiC) to 1.2 (SiC+) to 1.3 (SiC++). If a:C-H is the carrier of the 8-9 μ m feature (Goebel et al. 1995, ApJ, 449, 246), we suggest that this feature will strengthen with increasing C/O ratio. We find support for this suggestion in the increasing strength of the C_2H_2+HCN absorption feature seen in the 13-15 μm region and in the spectrum of VX And, which has the strongest 8–9 μ m feature and the largest C/O ratio (1.76).

This work was supported by my friends in Washington and at Wellesley College.