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Quasistatic magnetoconvection of a fluid with low Prandtl number (Pr = 0.025) with a
vertical magnetic field is considered in a unit-aspect-ratio box with no-slip boundaries.
At high relative magnetic field strengths, given by the Hartmann number Ha, the
onset of convection is known to result from a sidewall instability giving rise to the
wall-mode regime. Here, we carry out three-dimensional direct numerical simulations of
unprecedented length to map out the parameter space at Ha = 200, 500, 1000, varying the
Rayleigh number (Ra) over the range 6 × 105 � Ra � 5 × 108. We track the development
of stable equilibria produced by this primary instability, identifying bifurcations leading
to limit cycles and eventually to chaotic dynamics. At Ha = 200, the steady wall-mode
solution undergoes a symmetry-breaking bifurcation producing a state that features a
coexistence between wall modes and a large-scale roll in the centre of the domain,
which persists to higher Ra. However, under a stronger magnetic field at Ha = 1000, the
steady wall-mode solution undergoes a Hopf bifurcation producing a limit cycle which
further develops to solutions that shadow an orbit homoclinic to a saddle point. Upon a
further increase in Ra, the system undergoes a subsequent symmetry break producing a
coexistence between wall modes and a large-scale roll, although the large-scale roll exists
only for a small range of Ra, and chaotic dynamics primarily arise from a mixture of
chaotic wall-mode dynamics and arrays of cellular structures.

Key words: magneto convection, instability, nonlinear dynamical systems

1. Introduction

Convective flows of electrically conducting fluids influenced by magnetic fields are readily
found throughout nature and in many industrial processes. Examples of such naturally
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occurring flows arise in the study of stellar convection zones and liquid metal planetary
cores (Jones 2011), with industrial applications including liquid metal batteries, casting,
semi-conductor crystal growth and liquid-metal blanket cooling systems for nuclear
fusion reactors (Davidson 1999). Despite the physical relevance of such systems, our
understanding of magnetoconvection has been limited because of numerous experimental
and computational difficulties (Schumacher 2022). Experiments, which often require the
use of opaque liquid metals, are unable to use commonly available optical imaging
techniques, and numerical studies usually require substantial computational resources. To
mitigate these challenges, either greatly simplified systems are used or the simulations
are evolved only for short times. The result is that little is known about the often slowly
evolving spatiotemporal dynamics in such systems, especially at high magnetic field
strengths.

The onset of magnetoconvection with a vertical magnetic field has been studied in a
few isolated scenarios through linear stability analysis: in the case of an infinite/periodic
plane layer by Chandrasekhar (1961), and in the case of a semi-infinite sidewall by Busse
(2008). Such analysis reveals that the sidewalls in a system are responsible for the onset
of convection at high relative magnetic field strengths (typically characterised by the
Hartmann number Ha), particularly relevant to industrial processes that often occur in
closed vessels. Indeed, an analytic–numerical hybrid analysis performed by Houchens,
Witkowski & Walker (2002) for the special case of a cylindrical geometry showed that
sidewalls were responsible for the onset, producing thin convective layers attached to
these sidewalls, commonly referred to as wall modes. However, knowledge about nonlinear
effects and the later stages of transition to turbulence is still limited.

Wall modes in quasistatic magnetoconvection with a vertical magnetic field were first
examined in the full system numerically by Liu, Krasnov & Schumacher (2018), who
conducted direct numerical simulations in a box of aspect ratio Γ = 4 up to Ha = 2000
with no-slip boundaries, confirming that onset occurred below the linear stability threshold
of the infinite plane layer. Wall modes were seen to have a three-dimensional spatial
structure, featuring thin rolls pressed against the sidewalls in an alternating pattern of
positive and negative rotation. Thus, between each set of rolls lay alternating structures
with positive and negative vertical velocities which were additionally seen to have
protrusions that extended into the bulk of the domain. At increased levels of thermal
driving (typically characterised by the Rayleigh number Ra), more chaotic cellular-style
regimes were observed, although details of the transition were not characterised.

Although hints of wall modes were present in the experiments of Cioni, Chaumat &
Sommeria (2000), wall modes were first confirmed experimentally in a cylinder by Zürner
et al. (2020), who additionally characterised the cellular regime more carefully, with
various numbers of cells being observed at different regions of the (Ra, Ha) parameter
space. Further simulations in a cylinder were performed by Akhmedagaev et al. (2020),
as well as more recently by Xu, Horn & Aurnou (2023), who combined new experimental
and numerical results. From the current data, it appears that the wall-mode protrusions
grow with increased Ra, extending towards the bulk of the domain exhibiting quasi-steady
dynamics. Once the critical Ra of the bulk onset is reached, i.e. the onset in the infinite
plane layer (Chandrasekhar 1961), the cellular regime ensues, producing a more chaotic
variation in system observables such as the dimensionless heat transport (Nusselt number
Nu). For Ha < 300 at mostly higher Ra, Zürner et al. (2020) observed large-scale rolls,
i.e. the large-scale circulation (LSC) that is commonly found in classical Rayleigh–Bénard
convection (RBC), and thus it is assumed that at sufficiently large Ra magnetoconvection
will approach more familiar solutions of RBC.
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Wall mode dynamics in magnetoconvection

In summary, although some information about the transition to turbulence is known
in magnetoconvection, many questions are still open, mostly concerning the various
dynamics admissible by this system. Specifically, it is currently not well understood how
the transition between steady wall mode solutions and the more chaotic cellular regime
takes place, or what states potentially exist in between. In particular, it is relevant to try and
characterise the series of bifurcations that occur upon increased Ra in this system, and to
study how heavily this depends on the relative magnetic field strength Ha. To address these
questions in the present study, we have performed an array of long numerical simulations
in a box of aspect ratio Γ = 1, in many instances on the order of 1000 free-fall times, to
study this transition and the associated spatiotemporal dynamics.

Wall modes also occur in rotating Rayleigh–Bénard convection (RRBC). There are
similarities between wall modes in magnetoconvection and in RRBC, especially near
onset, where both types of wall modes have a similar two-layer structure. This is likely
attributable to the extensive similarities in the linear theory between the two systems
(Herrmann & Busse 1993; Busse 2008). However, a number of differences exist between
the two systems in terms of their secondary instabilities and further nonlinear effects.
In the rotating case, a Hopf bifurcation leads to an azimuthal precession of the wall
modes (Ecke, Zhong & Knobloch 1992), which is not seen to occur in magnetoconvection.
Concerning the spatial structure, striations found in the RRBC wall modes at higher
supercriticalities, as observed by Ecke, Zhang & Shishkina (2022), have not been found
in magnetoconvection. With that being said, the two systems do exhibit similarities with
regard to some nonlinear effects, such as wall-mode protrusions extending into the bulk,
which are sometimes identified as plume-like jets in the rotating case. It is yet to be seen
whether somewhat similar dynamics to those presented here could exist in some regimes
of RRBC.

2. Formulation

We consider a three-dimensional flow of electrically conducting fluid driven by an
imposed vertical temperature difference between the top and bottom of the domain, and in
the presence of a vertical magnetic field B = B0ez. Under the quasistatic approximation –
that is, for magnetic Reynolds number Rm = U�/η � 1 and magnetic Prandtl number
Pm = ν/η � 1, where U and � are characteristic velocity and length scales, η is the
magnetic diffusivity and ν is the kinematic viscosity – and the Oberbeck–Boussinessq
approximation, the velocity field u and the temperature field T evolve from suitable initial
conditions according to the following equations:

∂tu + u · ∇u + ∇p =
√

Pr
Ra

[∇2u + Ha2( j × ez)] + Tez, (2.1a)

∂tT + u · ∇T = 1√
RaPr

∇2T, (2.1b)

∇ · u = 0, j = −∇φ + (u × ez), ∇2φ = ∇ · (u × ez), (2.1c)

where p is the kinematic pressure, j is the electric current density, φ is the electric field
potential and ez is the unit vector that points vertically, opposed to gravity. Here, variables
have been made dimensionless by using the container height H and the free-fall velocity
uf = (αgHδT)1/2 to construct length, velocity and time scales, while the temperature
difference between the bottom and top plates, δT = T+ − T−, and the applied magnetic
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field strength B0 have been used to construct the dimensionless temperature and magnetic
field strength, respectively. In turn, the control parameters of the governing equations
(2.1) are the Rayleigh number Ra = αgδTH3/κν, the Prandtl number Pr = ν/κ and the
Hartmann number Ha = B0H(σ/ρν)1/2, where σ is the electrical conductivity, ρ is the
mass density, α is the thermal expansion coefficient, g is the acceleration due to gravity
and κ is the thermal diffusivity. No-slip boundary conditions are applied to all boundaries,
and constant temperatures T+ and T− are applied to the bottom (z = 0) and top (z = H)

plates, respectively. The domain is equipped with adiabatic sidewalls ∂T/∂n = 0, where n
is the vector orthogonal to the surface, and electrically insulating boundaries ∂φ/∂n = 0.

These equations have been solved numerically at a range of Ra and Ha for a fluid with
Pr = 0.025 (such as the GaInSn alloy) in a cubic domain of unit aspect ratio, i.e. Γ =
L/H = W/H = 1, where L and W are respectively the length and the width of the domain
perpendicular to ez. This has been done using the direct numerical solver GOLDFISH
(Reiter, Zhang & Shishkina 2022), which has been widely used in previous studies of
convective flows. This version (Teimurazov et al. 2023) uses a fourth-order finite-volume
discretisation on staggered grids, and a third-order Runge–Kutta time marching scheme
which has been extended to simulate magnetoconvective flows using a consistent and
conservative scheme (Ni & Li 2012). A compromise had to be made in terms of the grid
resolution, owing to the high computational cost. The flows are resolved on non-uniform
grids with 2202 points in the cross-plane direction and with either 300 or 350 points in
the vertical direction, which are sufficient to resolve the Hartmann, Shercliff and thermal
boundary layers, with at least 5, 15 and 20 grid points, respectively, within each layer. The
ratio between the largest finite-volume cell length and the Kolmogorov scale, calculated
from the mean dissipation rate, is less than 3 in the worst case, and less than 2 in the
vast majority of simulations. Changes in grid resolution were not seen to qualitatively
change the observed dynamics. Most simulations were initialised from a lower-resolution
simulation with Ha = 0, with the magnetic field strength being progressively increased,
although a few of the solutions were continued from one another. We try here to broadly
classify the states that exist in this flow, rather than tracking a detailed route to turbulence.

3. Numerical results

3.1. Comparison to linear stability theory
A number of linear stability results are relevant for the system under consideration. Each
of these results is derived from perturbations to a static flow field u = 0 and linear
temperature profile. The dispersion relation for the case of an infinite plane layer/periodic
sidewalls and no-slip upper and lower boundaries was derived by Chandrasekhar (1961).
To apply this result to our cube (Γ = 1), we minimise the dispersion relation for each value
of Ha over the discrete horizontal wavenumbers admitted by the domain. This results in
the critical Rayleigh number in the bulk, Rac,b, which is plotted in figure 1. At the values
of Ha considered, the wavelength of the most unstable mode in the infinite plane layer is
smaller than the size of our domain, and continues to decrease with Ha. Thus, the bulk
onset is seen to be nearly identical in our closed geometry compared to the infinite plane
layer.

Additionally, the influence of no-slip sidewalls is seen to give rise to another linear
instability, which leads to the formation of thin convective zones close to these sidewalls,
known as wall modes (Busse 2008; Liu et al. 2018). An asymptotic linear stability result to
second order, derived by Busse (2008) for a domain bounded by a semi-infinite sidewall,
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Figure 1. The parameter space studied, given by the Hartmann number (Ha) and Rayleigh number (Ra)
compared to the critical Rayleigh numbers for bulk onset, Rac,b, and wall-mode onset, Rac,w.

gives a relation for the critical Rayleigh number for the sidewalls, denoted by Rac,w, which
has also been plotted in figure 1. The most unstable mode in this case is seen to spatially
decay away from the wall with Ha−1/2 at leading order, so becomes increasingly thin
compared to our domain with increased magnetic field strength.

In both cases, the linear stability results have been derived for the full
magnetohydrodynamic (MHD) system. However, the results are seen in both cases to be
independent of the Prandtl number Pr and the magnetic Prandtl number Pm. Thus, both
results hold in the quasistatic MHD case which we examine here. The critical Rayleigh
numbers for both bulk and wall-mode onset have been compared to an overview of our
computational data set, shown by the blue markers in figure 1. Differences in the velocity
boundary conditions are expected to have a small effect on the value of Rac in both cases,
with free-slip boundary conditions typically reducing the value of the critical Rayleigh
number.

Notably, in the regime covered by our data (200 ≤ Ha ≤ 1000), the minimum critical
Rayleigh number from linear theory is that of the wall-mode onset Rac,w, which is lower
than that of the bulk onset; thus, we expect the onset in our system to occur in the form of a
wall-mode instability. At low values of Ra, close to onset, we observe equilibrium solutions
showing clear evidence of wall modes at each value of Ha. Our data set at Ha = 500
has been extended below the predicted wall-mode onset of Busse (2008) to as low as
Ra = 6 × 105.

Comparing this to the linear stability results (figure 2a,e), we see that the onset of
the wall-mode regime appears to be lower than the asymptotic solution derived in the
semi-infinite-sidewall case by Busse (2008), with the convective part of the heat transport
being approximately 3 % of the conductive heat transport at Ra = 6 × 105 (i.e. Nu =
1.03). This indicates that the presence of multiple sidewalls has a significant effect on
the critical Rayleigh number, at least at this value of Ha. Although the onset of convection
occurs beneath Rac,w, the onset here is in line with linear theory, with exponential growth
being observed from a perturbed laminar state at Ra = 8 × 105 in figure 3(a), and there is
no evidence to suggest a subcritical transition. In some instances, we additionally observe
equilibrium solutions above the bulk onset Rac,b, as shown by the equilibrium solution
at Ra = 3 × 106 (figure 2d,e). In this case, it is likely that perturbations about the basic
state used in the linear stability analysis are not representative of perturbations about a
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107106

Ra
Rac,w Rac,b(e)

(b)(a) (c) (d )

Figure 2. Overview of the equilibrium solutions at Ha = 500. (a–d) Vertical velocity isosurfaces uz = ±7 ×
10−3 (pink/blue) and instantaneous streamlines (black), from the top view. (e) Comparison of data points to
linear theory. (a) Ra = 6 × 105; (b) Ra = 8 × 105; (c) Ra = 2 × 106; (d) Ra = 3 × 106.
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Figure 3. (a) Temporal evolution of the dimensionless heat transport Nu from the laminar state perturbed by
a cross-flow at Ha = 500, Ra = 8 × 105. Exponential growth Nu − 1 ∼ exp(λt) is seen, with λ ≈ 0.07889, for
a short time before nonlinear growth is observed. (b) Vertical velocity isosurfaces uz = ±4 × 10−4 (pink/blue)
and instantaneous streamlines (black), from the top view, showing the exponentially growing mode.

wall-mode-dominated flow field, and thus the analysis of Chandrasekhar (1961) is not
valid in this regime.

An overview of the equilibrium solutions found at Ha = 500 is shown in figure 2,
revealing clear wall-mode structures very similar to those found in Liu et al. (2018). At
Ra = 6 × 105, convective zones are nearly entirely restricted to the near-sidewall region,
with individual wall modes pinned to each of the four corners from the top view (figure 2a),
and with the velocity isosurfaces being near uniform in the vertical direction. On each flat
sidewall, a roll exists between the wall-mode structures, confined to this near-wall region.
Small vertical counter-flow structures sit closer to the centre of the domain, in front of
each wall mode. As Ra is increased, regions of high vertical velocity begin to protrude
from the centre of each wall mode, extending into the domain. This results in a bending of
the counter-flow structures at Ra = 8 × 105 (figure 2b), which subsequently split into two
distinct counter-flow structures by Ra = 2 × 106 (figure 2c). At this point, the wall-mode
protrusions have extended into the central part of the domain, which had near zero velocity
at Ra = 6 × 105. At Ra = 3 × 106 (figure 2d), the protrusions have fully extended into the
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central part of the domain and show clear interaction with the wall mode in the opposing
corner.

It currently appears that nonlinear effects have a significant influence on the final
structure of these wall-mode solutions. As can be seen from the time evolution of Nu from
the laminar state perturbed by a cross-flow for Ha = 500 and Ra = 8 × 105 in figure 3(a),
the Nusselt number grows exponentially after a short transient. Hence, the snapshot
shown in figure 3(b), taken during this phase of exponential growth, corresponds to the
most unstable mode. In comparison with the nonlinear solution shown in figure 2(b), we
observe a slightly different symmetry in the velocity fields. Concerning the heat transport,
we currently observe a deviation from exponential growth at Nu ≈ 1.03, with the final
equilibrium solution having Nu ≈ 1.28.

Before discussing secondary instabilities, and in view of the aforementioned similarities
between wall modes in magnetoconvection and RRBC, we briefly discuss linear stability
for RRBC, for which more refined analyses have been carried out (Liao, Zhang & Chang
2006; Zhang & Liao 2009). Asymptotic analyses for no-slip and stress-free sidewalls
differ at second order in the expansions, with the critical Rayleigh number at the onset
of near-wall convection being Raw ≈ 31.8Ek−1 + 46.49Ek−2/3 (where Ek is the Ekman
number) in the no-slip case and Raw ≈ 31.8Ek−1 − 25.25Ek−2/3 in the free-slip case,
for a duct geometry (two rigid walls and one periodic direction) (Liao et al. 2006)
and a cylindrical geometry (Zhang & Liao 2009). In the former case, the asymptotic
solutions were compared against a numerical linear stability analysis, assuming two
unstable modes, one with retrograde and one with prograde rotation. For the stress-free
case, the asymptotics overestimate the critical Rayleigh number for Ek ≥ 10−2, then
underestimate it in the range 10−2 ≤ Ek ≤ 10−6. A similar trend is observed for the
no-slip case, with overestimation for Ek ≥ 10−2, followed by underestimation in
the range 10−2 ≤ Ek ≤ 10−4. Apart from the asymptotic result reached at lower Ek, the
underestimations are less pronounced in the no-slip case. Further differences may arise for
closed rectangular systems.

3.2. Beyond the primary instability
We now turn our attention to the dynamics of the flow past the primary wall-mode
instability. It is observed that distinct transition processes occur at varying Ha, and thus
the strength of the magnetic field plays a pivotal role in the transition to turbulence in this
system.

At all values of Ha considered, the basic wall-mode equilibrium solution features a
fourfold symmetry from the top view (90◦ rotation and flip) and a vertical symmetry
about the midplane rotated 180◦ about ez (see figures 2, 4a and 7a). More precisely, the
discrete rotational symmetries of the vertical velocity field form a group isomorphic to Z4
generated by the symmetry operation

Z4 : uz(x, y, z) = −Rπ/2uz(x, y, −z), (3.1)

which in turn produces the additional symmetry observed, (uz(x, y, z) = Rπuz(x, y, z)),
where Rβ represents a rotation of β about ez, and the coordinates x = (x, y, z) have
their origin at the centre of the domain. Another common symmetry observed in the
vertical velocity fields is a similar twofold symmetry seen in various states whose
rotational symmetry forms a group isomorphic to Z2, generated by the following symmetry
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107106105

RaRac,w Rac,b
(e)

(b)(a) (c) (d )

Figure 4. Overview of the transition at Ha = 200. (a–d) Vertical velocity isosurfaces uz = ±0.1 (pink/blue)
and instantaneous streamlines (black) from the top view. (e) Comparison of data points to linear theory.
(a) Ra = 5 × 105; (b) Ra = 1 × 106; (c) Ra = 2 × 106; (d) Ra = 5 × 106.
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Figure 5. Phase portrait consisting of thermal energy ET , vertical kinetic energy Ew and cross-plane kinetic
energy Eu + Ev , and dimensionless heat transport Nu time series data for each value of Ra considered at Ha =
200. Here the colours highlight different parts of the Nu time series for easy comparison with the corresponding
phase portrait. (a) Ra = 5 × 105; (b) Ra = 1 × 106; (c) Ra = 2 × 106; (d) Ra = 5 × 106.

operation:
Z2 : uz(x, y, z) = −Rπuz(x, y, −z). (3.2)

At Ha = 200, wall-mode equilibrium solutions are observed at Ra = 4 × 105 to Ra =
6 × 105 (see phase portrait and time series data in figure 5a) with a Z4 symmetry
(figure 4a). With increased Ra, the wall-mode protrusions extend into the centre of
the domain, similarly to the equilibria at Ha = 500 (§ 3.1). However, by Ra = 1 × 106,
a symmetry-breaking bifurcation has occurred, resulting in a state with Z2 symmetry
(figure 4b), which produces a periodic solution (figure 5b) with period T = 82.8 and
marks the breakdown of the rolls near the sidewalls which existed between the wall
modes. Physically, the wall modes at Ra = 1 × 106 consist of two vortices, one near
the corner of the domain and one near the outer tip of the wall mode. The outermost
of these is seen to contract and extend away from and into the centre of the domain,
periodically switching between being biased to one side of the diagonal and being biased
to the other (animated versions of figures 4 and 7 can be found in the supplementary
movies available at https://doi.org/10.1017/jfm.2023.863). Of note is that wall modes
at Ra = 1 × 106 coexist with a large-scale roll in the centre of the domain, orientated
about the diagonal as shown in figure 6. At these values of Ra, the orientation of the
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Wall mode dynamics in magnetoconvection

(b)(a) (c)

Figure 6. Vertical velocity isosurfaces uz = ±0.1 (pink/blue) and instantaneous streamlines (black),
showing coexistence of wall modes and large-scale circulation at Ha = 200, Ra = 106: (a) top view;
(b) three-dimensional view; (c) angled side view.

large-scale roll is seen to oscillate back and forth with the wall modes as they contract and
expand. However, as Ra is increased to 2 × 106, the large-scale roll begins to dominate
the dynamics, maintaining a fixed diagonal orientation and pinning the wall modes into
the position shown in figure 4(c). The wall modes, now pinned close to the corners,
produce higher-frequency oscillations due to a rapid churning of the wall-mode vortex
closest to the wall. The combined effect of these processes is a weakly aperiodic signal,
shown in figure 5(c). Upon further increase of Ra, the Z2 symmetry is seen to break, and
aperiodic solutions are observed at Ra = 5 × 106 and Ra = 1 × 107 (figure 5d). These
solutions exhibit chaotic behaviour in the velocity fields and are seen to contain more
small-scale structures (figure 4d), which appear to be associated with more chaotic wall
mode dynamics that invade the bulk of the domain. Although masked by the small-scale
chaotic dynamics in the instantaneous velocity fields, clear evidence of a large-scale roll
can still be seen in the mean flow at these higher Rayleigh numbers (see figure 9a for
example).

At Ha = 1000, the wall-mode equilibrium solution appears to have a similar structure
to those at lower magnetic field strengths, featuring the same Z4 symmetry, although
the characteristic length scale of the wall modes is affected by the magnetic field. The
result of this is that the wall-mode protrusions become shorter and thinner compared
to the length scale along the sidewall (compare figure 7a to figure 2c, for example).
This is consistent with the linear theory, which suggests that the most unstable sidewall
mode spatially decays into the bulk with Ha−1/2 at leading order, thus producing a
thinner sidewall layer at higher Ha (Busse 2008). At increased Ra, the equilibrium
solution undergoes a Hopf bifurcation, resulting in the simple limit cycle oscillation
(T = 13.8) observed at Ra = 7 × 106 (figure 8b), which maintains the Z4 symmetry.
This periodic signal arises from an oscillation of the wall-mode protrusions themselves,
which synchronously flap back and forth across the diagonal (figure 7b). As Ra is further
increased to Ra = 8 × 106, the amplitude of the wall-mode nose oscillations increases
as the protrusions extend further into the domain (figure 7c), appearing to violently
crash into the sidewall rolls between the wall modes. This modulates the amplitude of
the flapping, damping the wall-mode protrusions to a straighter position, closer to the
equilibrium solution seen at Ra = 5 × 106. The protrusions then undergo an instability
and quickly return to a large-amplitude flapping motion, which damps again, continuing
the cycle. Autocorrelation of the Nu time series exhibits decays that scale as exp(−λτ )

with λ ≈ 0.041 for time lag τ . The mathematical interpretation of this behaviour is made
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Figure 7. Overview of the transition at Ha = 1000. Vertical velocity isosurfaces uz = ±0.01 (a–e) and
uz = ±0.025 ( f –h) (pink/blue), and instantaneous streamlines (black), from the top view. (i) Comparison
of data points to linear theory. (a) Ra = 5 × 106; (b) Ra = 7 × 106; (c) Ra = 8 × 106; (d) Ra = 9 × 106;
(e) Ra = 1 × 107; ( f ) Ra = 1.5 × 107; (g) Ra = 2 × 107; (h) Ra = 5 × 107.
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Figure 8. Phase portrait consisting of thermal energy ET , vertical kinetic energy Ew and cross-plane kinetic
energy Eu + Ev , and dimensionless heat transport Nu time series data for each value of Ra considered
at Ha = 1000. Here the colours highlight different parts of the Nu time series for easy comparison with
the corresponding phase portrait. (a) Ra = 5 × 106; (b) Ra = 7 × 106; (c) Ra = 8 × 106; (d) Ra = 9 × 106;
(e) Ra = 1 × 107; ( f ) Ra = 1.5 × 107; (g) Ra = 2 × 107; (h) Ra = 5 × 107.
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(b) (c)(a)

Figure 9. Mean vertical velocity isosurfaces uz = ±0.1 (a) and uz = ±0.05 (b,c) (pink/blue), and streamlines
of mean flow (black), from the angled side view. (a) Ha = 200, Ra = 107; (b) Ha = 1000, Ra = 2 × 107;
(c) Ha = 1000, Ra = 5 × 107.

clearer by the phase portrait and time series data in figure 8(c), where the solution appears
to decay along the stable manifold of a saddle point before being ejected along the unstable
manifold of the saddle; i.e. the solution appears to shadow an orbit homoclinic to a saddle
focus, with the saddle point having a similar flow structure to that of the equilibrium found
at Ra = 5 × 106. This behaviour is reminiscent of the Shilnikov phenomenon (Wiggins
1988), which arises in the third-order system first studied by Shilnikov (1965).

By Ra = 9 × 106, the ejections are more frequent (figure 8d), with Nu autocorrelations
decaying with λ ≈ 0.078, and the protrusions exhibit stronger and more complex flapping
behaviour, as seen in figure 7(d). At Ra = 1 × 107, the flow is observed undergoing a
break in symmetry, resulting in a bursting limit cycle with period T = 147.2 (figure 8e).
The velocity field reveals that three wall-mode structures move across opposing sidewalls,
which subsequently collide with the end sidewall, producing a large flap from the end
wall mode, as shown in figure 7(e), which then decays to the original flow field. This
large flap produces a large increase in the dimensionless heat transport, resulting in the
bursting behaviour observed in the Nusselt-number time series data shown in figure 8(e).
At Ra = 1.5 × 107, the Z4 symmetry has been fully broken and has been replaced by
the Z2 symmetry. This state sustains large periodic wall-mode flapping in two opposing
corners, which converges to the limit cycle (T = 31.2) shown in figure 8( f ). Interestingly,
this state also features steady convection in the bulk, which occurs at a Rayleigh number
higher than Rac,b (figure 7i), and features a thin roll, aligned along the diagonal, in the
centre of the domain (figure 7 f ). Additionally, as Ra is increased further to 2 × 107, this
large-scale roll appears in the mean flow field (figure 9b), and the bulk is dominated by
vertical flow structures which interact heavily with now chaotically flapping wall-mode
protrusions, which extend far into the domain and shed large-scale structures into the bulk
as shown at Ra = 2 × 107 in figure 7(g). However, by Ra = 5 × 107, no evidence of such
a large-scale roll is observed in the instantaneous or mean flow (figure 9c), unlike in the
Ha = 200 case. Chaotic solutions ensue, with a combination of unsteady bulk dynamics
in the form of interconnected columnar structures and the remnants of more chaotic
wall-mode dynamics in the corners, similar to the cellular regimes observed previously
(Liu et al. 2018; Akhmedagaev et al. 2020; Zürner et al. 2020; Xu et al. 2023). The
destruction of the large-scale roll at Ha = 1000 has occurred by at most Ra/Rac,b ≈ 4.84
(Ra = 5 × 107), whereas at Ha = 200, the large-scale roll has been seen to persist in our
simulations up to at least Ra/Rac,b ≈ 218.36 (Ra = 1 × 108). This shows the clear impact
of the magnetic field on the large-scale circulation.

The transition process near onset at Ha = 500 is seen to be qualitatively more similar
to the transition at Ha = 1000, with a Hopf bifurcation leading to a limit cycle with a Z4
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symmetry, which subsequently undergoes a break in symmetry to a Z2 state. However,
the highest-Ra simulations (Ra = 5 × 108) carried out at Ha = 500 show a large-scale
roll in the mean flow, as in the Ha = 200 case at high supercriticalities, and unlike in the
Ha = 1000 case, where a cellular regime is observed at high Ra.

4. Conclusions

We have studied three-dimensional quasistatic magnetoconvection for Hartmann numbers
between 200 ≤ Ha ≤ 1000 in a cube (Γ = 1) with no-slip boundaries, tracking the base
state to states exhibiting chaotic multi-scale dynamics. In line with the linear theory
in semi-infinite domains, we confirm that the primary instability in this system comes
from the sidewalls, giving rise to an equilibrium wall-mode solution for all values of Ha
considered. However, the later stages of the transition to chaos past this primary instability
are seen to vary with Ha. At Ha = 200, the basic wall-mode state undergoes a symmetry
break from a Z4 to a Z2 symmetry, giving rise to limit cycles involving a large-scale roll
which re-orientates in time with wall-mode oscillations. At increased Rayleigh numbers,
the large-scale roll is seen to persist, accompanied by more chaotic dynamics from
the wall modes. However, at Ha = 1000, the equilibrium wall-mode state undergoes
a Hopf bifurcation, resulting in limit cycles involving synchronous oscillations of the
wall-mode protrusions, which further evolve to states that shadow an orbit homoclinic to
a saddle focus involving more complex oscillatory behaviour. The system then undergoes
a Z4-to-Z2 symmetry-breaking bifurcation, producing limit cycles featuring a large-scale
roll which is dominated by more vigorous wall-mode oscillations, which subsequently
begin to shed large-scale structures into the bulk. At higher Ra this develops to form the
cellular regime, and no large-scale roll persists.

The degree to which the results of this study generalise to other geometries, aspect
ratios and magnetic boundary conditions is not currently clear. In boxes of larger aspect
ratio, it is expected that similar dynamics could occur, and indeed some evidence of
potential wall-mode nose flapping can be seen in some flow snapshots in the Γ = 4
system of Liu et al. (2018), although the short run times of these simulations mean that
this cannot be confirmed, and furthermore, it is unclear whether such oscillations are
synchronised between the larger number of wall modes. In cylindrical containers there is
also some evidence of extended wall-mode protrusions and potential dynamics in the flow
snapshots presented by Zürner et al. (2020) and Xu et al. (2023), although the continuous
symmetry in this geometry appears to result in less strict wall-mode symmetries in some
instances, and dynamics such as those described here have not yet been identified. It is
currently unclear whether wall modes persist in more generalised geometries. However,
wall modes in rotating convection have been seen to persist independently of the geometry
in both numerical and experimental studies (Favier & Knobloch 2020; Ecke et al. 2022).
With respect to magnetic boundary conditions, we expect that the results here would
generalise to low but finitely conducting boundaries, such as those found in experiments.
The reason is that wall modes arise from a suppression of the Lorentz force near the
boundary, largely due to electrically insulated boundaries. However, an investigation into
the subsequent bifurcations from the basic wall-mode state and dynamics of the ensuing
states as discussed here has not yet been carried out experimentally.

Here, we focused on the identification of a large number of flow states, including
equilibria, limit cycles and chaotic dynamics, to map out the parameter space and to
compare with results from linear stability of wall-mode and bulk onset. Further analysis is
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currently underway to describe the transition to turbulence, for instance through a series
of bifurcations. Preliminary results suggest the presence of multiple states and hysteresis.
In the context of pattern formation, the possibility of hysteresis in this system has been
suggested in experimental studies (Zürner et al. 2020).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.863.
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