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HOW TO EXTEND CLOSURE AND INTERIOR OPERATIONS
TO MORE MODULES

NEIL EPSTEIN , REBECCA R. G. and JANET VASSILEV

Abstract. There are several ways to convert a closure or interior operation

to a different operation that has particular desirable properties. In this paper,

we axiomatize three ways to do so, drawing on disparate examples from the

literature, including tight closure, basically full closure, and various versions

of integral closure. In doing so, we explore several such desirable properties,

including hereditary, residual, and cofunctorial, and see how they interact with

other properties such as the finitistic property.

Contents

1 Introduction 514

2 Background 515

2.1 Pair operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

2.2 Versions of integral and tight closures . . . . . . . . . . . . . . . . . . . . . . . 517

3 New properties for pair operations 519

3.1 Functorial and cofunctorial pair operations . . . . . . . . . . . . . . . . . . . . 519

3.2 Hereditary and cohereditary pair operations . . . . . . . . . . . . . . . . . . . . 524

3.3 Connection to submodule selectors . . . . . . . . . . . . . . . . . . . . . . . . . 527

3.4 Finitistic pair operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

4 Cohereditary versions of pair operations 531

5 Hereditary versions of pair operations 538

6 Duality of hereditary and cohereditary versions of pair operations 542

7 Hereditary and cohereditary versions of J -basically full closure and

J -basically empty interior 546

8 Pair operations derived from a pre-enveloping class 551

9 Applications to integral closure, tight closure, and other closures defined

using pre-envelopes 554

Acknowledgments 559

References 559

Received February 15, 2023. Revised August 28, 2023. Accepted October 29, 2023.
2020 Mathematics subject classification: Primary 13C60; Secondary 13B22, 13A35, 13J10.

Keywords: closure operation, integral closure, tight closure, hereditary, residual.

© The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical

Journal. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://doi.org/10.1017/nmj.2023.36 Published online by Cambridge University Press

http://dx.doi.org/10.1017/nmj.2023.36
https://orcid.org/0000-0003-2167-2001
https://orcid.org/0000-0002-7700-4312
https://orcid.org/0000-0002-7278-4612
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/nmj.2023.36&domain=pdf
https://doi.org/10.1017/nmj.2023.36


514 N. EPSTEIN, REBECCA R. G., AND J. VASSILEV

§1. Introduction

In extending a closure operation on ideals to a closure operation on modules, there are

three main techniques that appear in the literature:

(1) (Hereditary version) Start by defining the closure operation on submodules of injective

modules. Given L ⊆M , embed M in an injective module E. To compute the closure of

L in M, compute the closure of im(L) ⊆E, then intersect with M (see §5).
(2) (Residual version) Start by defining the closure operation on submodules of free

modules. Given L ⊆M , find a free module F that surjects onto M. To compute the

closure of L in M, take the closure of pre-im(M) in F and project it back to M (see §4).
(3) (Free module pre-enveloping class version) Start by defining the closure operation on

submodules of free modules. Given L ⊆M , consider all maps from M to free modules F.

To compute the closure of L in M, compute the closure of im(L) in all such F, then

take the intersection of the pre-images in M (see §8).

For example, Rees’s extension of integral closure to finitely generated modules over a

domain in [19] takes the hereditary approach modeling the version of integral closure for

ideals defined by extending to valuation rings in the fraction field and contracting back to

the ring, whereas the integral closure defined by Eisenbud, Huneke, and Ulrich (EHU) [4]

uses the free module pre-enveloping class version modeling the version of integral closure

for ideals defined through the Rees algebra of the ideal. Motivated by the study of tight

closure, Epstein and Ulrich [11] have shown that there is a unique residual version of integral

closure, which they call the liftable integral closure. These versions of integral closure are

known to disagree on examples [4], [11]. We do have a few results comparing these closures,

such as that Rees integral closure is contained in EHU integral closure, with equality if and

only if the module is a submodule of a free module or the ring is a domain [11]. But this

does not provide a framework for comparing the closures in general.

In contrast to the work done for integral closure, extensions of tight closure and Frobenius

closure to submodules of finitely generated modules have for the most part been defined

through the residual approach as this has been fruitful in the study of singularities. However,

in [14, §8], Hochster and Huneke did introduce a hereditary version of tight closure that

they called the absolute tight closure.

Very few closure operations are both hereditary and residual, though module closures

coming from flat modules are [18]. Research using residual operations (tight closure,

Frobenius closure, plus closure, and module closures; see, e.g., [7]) tends to focus on

the study of singularities of Noetherian rings. Research using hereditary operations (star

operations and semi-prime operations; see, e.g., [5], [13], [17]) tends to focus on the study of

fractional ideals over integral domains. Recent work of Elliott [5, Chap. 5] extends results on

these classes of hereditary closure operations to more general classes of modules, enabling

a more direct comparison between residual and hereditary operations. The various versions

of integral closure straddle the divide, coming up in both contexts.

Our prior work built a foundation for exploring these three methods in greater generality.

In [8], the first two authors described a duality between residual closure operations cl

and interior operations i over complete local rings. This duality assigns to each residual

closure operation a dual interior operation, such that taking the dual twice returns the

original residual closure operation. We additionally showed that a number of structures
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HOW TO EXTEND CLOSURE AND INTERIOR OPERATIONS TO MORE MODULES 515

in commutative algebra not usually viewed as closure operations or interior operations

actually satisfy the conditions needed to use this duality, including variations on trace

modules, torsion submodules, divisible submodules, and zeroth local cohomology modules.

In [9], we defined a new version of duality that works on any pair operation, a notion

that encompasses both closure and interior operations. In particular, we used this duality

to find the duals of non-residual closures, which are relative interior operations. A relative

interior operation takes a pair of modules N ⊆M to a submodule NM
i of N, and in contrast

to an (absolute) interior operation, NM
i may depend on both N and M. When the closure

operation is residual, this new duality agrees with the duality of [8], and the resulting interior

operation is absolute, meaning that the interior of a module N does not depend on an

ambient module M containing N. This enabled us to compute integral hulls of submodules

of the injective hull of the residue field over a local ring, using the duality to cores of ideals

in the ring.

In this paper, we generalize the three methods of extending a closure operation to the

context of pair operations, as well as discussing how to convert a closure operation to a

hereditary or residual one. In §2, we recall the relevant properties of pair operations that we
introduced in [9] along with a number of versions of integral closure and tight closure. In §3,
we discuss some new properties for pair operations. In particular, we define cofunctoriality

for pair operations, and show that it is the dual of functoriality for pair operations in

Proposition 3.9. However, when the pair operation is order-preserving on submodules as

with closure or interior operations, cofunctorial and functorial pair operations are equivalent

(see Proposition 3.5). In §3, we also define the dual notions of hereditary and cohereditary

pair operations, pair operations arising from submodule selectors, as well as finitistic

versions of pair operations.

In §4, from any pair operation p, we construct a cohereditary version pc. When the

pair operation is a closure operation, this becomes a residual version. In §5, from a pair

operation p, we construct a hereditary version ph. In §6, we show that when the ring (R,m)
is a complete local ring, then the cohereditary and hereditary versions of pair operations

that we constructed in §§4 and 5 are dual to each other. In §7, we continue the study

of J -basically full closures and J -basically empty interiors we began in [9], by discussing

the residual version of the J -basically full closure (which is a hereditary closure) and the

absolute version of the J -basically empty interior (which is a cohereditary interior). In §8,
we introduce pair operations defined by pre-enveloping classes. In §9, we analyze known

closures such as integral closure and tight closure through the lens of pre-enveloping classes.

In [9], for any ideal J, we discussed the Jbf-closure and introduced the Jbe-interior. In

Propositions 7.3 and 7.12, we show that Jbf is hereditary and Jbe is cohereditary. Then,

in Propositions 9.6 and 9.11, we show that EHU integral closure is hereditary, and more

generally, that closures constructed through pre-enveloping classes are hereditary.

§2. Background

2.1 Pair operations

In this section, we define pair operations and describe some of their properties. The

purpose of using a pair operation is to have a structure that generalizes both closure

operations and interior operations.
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516 N. EPSTEIN, REBECCA R. G., AND J. VASSILEV

Definition 2.1 [9, Def. 2.2]. LetM be a category of R-modules. Let P be a collection

of pairs (L,M), where L is a submodule ofM, and L,M ∈M, such that whenever ϕ ∶M →M ′

is an isomorphism inM and (L,M) ∈ P , (ϕ(L),M ′) ∈ P as well.

A pair operation is a function p that sends each pair (L,M) ∈ P to a submodule p(L,M)
of M, in such a way that whenever ϕ ∶M→M ′ is isomorphism in M and (L,M) ∈ P , then
ϕ(p(L,M)) = p(ϕ(L),M ′).

A pair operation p on a class P of pairs of R-modules (L,M) as above is:

• idempotent if whenever (L,M) ∈P and (p(L,M),M) ∈P , we always have p(p(L,M),M) =
p(L,M);

• extensive if we always have L ⊆ p(L,M);
• intensive if we always have p(L,M) ⊆L;
• order-preserving on submodules if whenever L ⊆N ⊆M such that (L,M),(N,M) ∈ P , we
have p(L,M) ⊆ p(N,M);

• order-preserving on ambient modules if whenever L ⊆N ⊆M such that (L,N),(L,M) ∈ P ,
we have p(L,N) ⊆ p(L,M);

• surjection-functorial if whenever π ∶M ↠M ′ is a surjection and (L,M),(π(L),M ′) ∈ P ,
we have

π(p(L,M)) ⊆ p(π(L),M ′).

Equivalently, when (L,M) ∈ P and for U ⊆M , ((L+U)/U,M/U) ∈ P , then

(p(L,M)+U)/U ⊆ p((L+U)/U,M/U);

• functorial if whenever g ∶M→M ′ and (L,M),(g(L),M ′) ∈ P , we have

g(p(L,M)) ⊆ p(g(L),M ′).

(Note that if (g(L),g(M)) is also in P , it is equivalent that p be both order-preserving

on ambient modules and surjection-functorial, by the usual epi-monic factorization);

• a closure operation if it is extensive, order-preserving on submodules, and idempotent;

• a (relative) interior operation if it is intensive, order-preserving on submodules, and

idempotent;

• restrictable if whenever L,N ⊆M such that (L∩N,N),(L,M) ∈ P , p(L∩N,N) ⊆ p(L,M).

Remark 2.2. In [5, Def. 5.5.10], Elliott introduces a notion related to that of the pair

operation, namely a system of (order-preserving) operations. While we take the requirement

of isomorphism preservation as basic, he names this property invariant, while on the other

hand he takes the requirement of order preservation (on submodules) as basic. With this in

mind, we may compare our terminology to his. For instance, our definition of idempotent

is a generalization of his left semiexact. His notion of left functorial becomes equivalent to

our notion of order-preserving on ambient modules, given our requirement to be invariant

in his sense. And, his notion of right functorial matches our surjection-functorial.

Remark 2.3. We severely limit the hypotheses on P so that our results cover pair

operations not only on modules or finitely generated modules, but also on more restrictive

classes like ideals, graded modules (with graded homomorphisms), or m-primary modules.

Hypotheses like closed under taking submodules or closed under taking quotient modules
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would be too strong for our purposes: Consider

P1 = {(N,M) ∣N is m-primary in M}.

For any L ⊆N ⊆M , with L not m-primary in N, but N m-primary in M, (L,M) and (L,N)
will not be in P1; however, (N,M),(N/L,M/L) ∈ P1. Whereas for

P2 = {(N,M) ∣N and M m-primary modules with N ⊆M},

if (N,M) ∈ P2 and R has dimension at least 1, (N/N,M/N) ∉ P2 even if (N,M) is.

We recall the definition of the dual of a pair operation from [9].

Definition 2.4 [9, Def. 3.1]. Let R be a complete local ring, and let ∨ denote the Matlis

duality operator. Let p be a pair operation on a class of pairs of Noetherian and/or Artinian

R-modules P as in Definition 2.1. Set P∨ ∶= {(A,B) ∣ ((B/A)∨,B∨) ∈ P}, where (B/A)∨ is

seen as a submodule of B∨ via the dual of the projection map π ∶B↠B/A. It is an easy

exercise to show that (P∨)∨ = P .
We define the dual p⌣ of p by

p⌣(A,B) ∶= ( B∨

p((B/A)∨,B∨))
∨

.

Remark 2.5. Recall that Matlis duality ∨ is an exact contravariant functor, and hence

preserves short exact sequences, turning injections into surjections and vice versa. Moreover,

for Noetherian or Artinian R-modules M, there is a functorial isomorphism M ≅M∨∨.

Throughout the paper, we will view submodules of M∨∨ as submodules of M via this

isomorphism.

The next definition will come into play when we discuss cl-cores and i-hulls later.

Definition 2.6 [9, Defs. 2.11 and 3.11]. Let (R,m) be a Noetherian local ring.

Let cl be a closure operation on the class of pairs of finitely generated R-modules. We

say that cl is a Nakayama closure if for L ⊆N ⊆M finitely generated R-modules, if L ⊆N ⊆
(L+mN)clM then Lcl

M =N cl
M .

Let i be a (relative) interior operation on the class of pairs of Artinian R-modules. We

say that i is a Nakayama interior if for any Artinian R-modules A ⊆C ⊆B, if (A ∶C m)Bi ⊆A,
then AB

i =CB
i (or equivalently, CB

i ⊆A).

2.2 Versions of integral and tight closures

We define the versions of integral closure and tight closure discussed in this paper.

Integral closure is defined in a standard way on ideals. Most extensions of integral closure

to modules use the definition below for submodules of free modules.

Definition 2.7 (Integral closure in a free module). Let R be a Noetherian ring, and

let L ⊆ F be R-modules where F is free. Let Sym(F ) be the naturally graded symmetric

algebra over R defined by F, and let T be the subring of Sym(F ) induced by the inclusion

of L ⊆ F . Note that both Sym(F ) and T are N-graded rings generated in degree 1 over R.

The integral closure of L in F, denoted L−F , is the degree 1 part of the integral closure of

the subring T in Sym(F ).
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The primary versions of integral closure that we will focus on in this paper are EHU

integral closure and liftable integral closure, both of which are functorial. We define them

below.

Definition 2.8 [11, Def. 1.3], derived from [4]. (EHU integral closure) Let R be a

Noetherian ring, and let L ⊆M be finite R-modules. For x ∈M , we say x is in the EHU

integral closure of L inM, written x ∈L−EHU
M if for every R-module homomorphism g ∶M →F

where F is free we have g(x) ∈ g(L)−F .
Definition 2.9 [11]. (Liftable integral closure) Let L⊆M be R-modules. Let π ∶F ↠M

be a surjection of a free R-module F onto M. Let K ∶= π−1(L). Then the liftable integral

closure of L in M is L�M ∶= π(K−F ).
[11, Prop. 2.4(2)] shows that liftable integral closure is functorial. We will show that EHU

integral closure is functorial in Theorem 9.3. We will also briefly mention Rees integral

closure.

Definition 2.10 [19]. (Rees integral closure for Noetherian domains) Let R be a

Noetherian domain, and let L ⊆M be R-modules. We say x ∈M is in the Rees integral

closure of L in M denoted x ∈L−Rs
M if for every valuation ring V between R and its fraction

field Q, x is in the image LV of L⊗RV in M ⊗RQ.

Definition 2.11 [19]. (Rees integral closure for Noetherian rings) Let R be a

Noetherian ring, and let L⊆M be R-modules. We say x ∈M is in the Rees integral closure of

L in M denoted x ∈L−Rs
M if for every minimal prime p, x+pM ∈ (L+pM

pM
)
−Rs

M/pM

as modules

over the ring R/p.
We show below that this closure is functorial.

Proposition 2.12. Let R be a Noetherian ring. Then Rees integral closure is functorial,

that is, if R is a Noetherian ring, L⊆M and N are R-modules, and f ∶M →N is an R-module

map, then f(L−Rs
M ) ⊆ f(L)−Rs

N .

Proof. First, assume that R is a domain and let x ∈ L−Rs
M . Let V be a valuation ring

between R and its fraction field Q. Then x (or x⊗1) is in the image of ϕ ∶L⊗RV →M⊗RV ,

say x = ϕ(z). Let ψ ∶ f(L)⊗R V →N ⊗R V . Then ψ(f(z)) = f(x) (where f is really f⊗ the

appropriate identity map in each place). So f(x) is in the image of ψ, as desired.

Next, let R be any Noetherian ring and let x ∈ L−Rs
M . We want to show that for

every minimal prime p of R, f(x) + pN ∈ (f(L)+pN
pN

)
−Rs

N/pN

. We know that x + pM ∈

(L+pM
pM

)
−Rs

M/pM

. Since we are now working over a domain and functoriality holds in the

domain case, we get

f ((L+pM
pM

)
−Rs

M/pM

) ⊆ (f(L)+pN
pN

)
−Rs

N/pN

.

So

f̄(x+pM) = f(x)+pN ∈ (f(L)+pN
pN

)
−Rs

N/pN

= f(L)−Rs
N .
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We note that as a result of the first author and Ulrich [11, Cor. 1.5], L−Rs
M ⊆L−EHU

M with

equality if M is free or R is a domain. In the same paper, there is an example given where

R is not a domain and the inequality is strict.

Simis, Ulrich, and Vasconcelos (SUV) also define a version of integral closure on modules

with rank [21]. They note that if M is a module with rank and is a torsion-free submodule

of a free module, then the Rees algebra of M agrees with Rees’s definition of Rees algebra

of M. It seems that in EHU, they note that the EHU construction of the Rees algebra agrees

with the Rees algebra when the module is an ideal. It seems that this would imply that the

EHU integral closure of an ideal J with rank inside another ideal I agrees with the SUV

integral closure of J in I. Hence, we do not consider this version of integral closure in this

paper.

We also give the definition of absolute tight closure, originally from [14].

Definition 2.13 [14, §8]. Let R be a Noetherian ring of characteristic p > 0 and N ⊆M .

We define N∗fgM , the finitistic tight closure of N in M, to be

N∗fgM ∶= ⋃
M ′⊆M,M ′ f.g.

(M ′∩N)∗M ′ ,

where ∗ denotes tight closure.

We define N∗absM , the absolute tight closure of N in M, to be

N∗absM = {x ∈M ∶ x ∈N∗fgQ for some Q ⊇M}.

§3. New properties for pair operations

We give some new properties for pair operations and show how they are related. These

properties will be the focus of this paper.

3.1 Functorial and cofunctorial pair operations

Although not all closure operations are functorial, functoriality is an important assump-

tion to discuss a closure on different rings. We introduce cofunctoriality and the dual notion

of functoriality, and prove that these two properties are equivalent for pair operations which

are order-preserving on submodules.

Definition 3.1. A pair operation p on a class P of pairs of R-modules (L,M) with

L ⊆M is:

• surjection-cofunctorial if whenever π ∶ M→M ′ is a surjective homomorphism and

(L,M ′),(π−1(L),M) ∈ P , we have

p(π−1(L),M) ⊆ π−1(p(L,M ′));

• cofunctorial if whenever g ∶M→M ′ and (L,M ′),(g−1(L),M) ∈ P , we have

p(g−1(L),M) ⊆ g−1(p(L,M ′)).

For closure and interior operations, we will see that functoriality and cofunctoriality are

interchangeable under mild hypotheses (see Proposition 3.5(5)). However, this is not the

case with pair operations. We will note in Example 3.8 and Remark 3.14 that the Ratliff–

Rush operation is a pair operation where functoriality and cofunctoriality can differ.
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Remark 3.2. One might wonder why we have not included the definitions of

injection-functorial in Definition 2.1 (i.e., functorial for injective homomorphisms) or

injection-cofunctorial in Definition 3.1 (i.e., cofunctorial for injective homomorphisms).

The reason for this is that they are equivalent to notions that we have already defined,

namely order-preserving on ambient modules and restrictable, respectively. We prove that

these notions are equivalent below.

Lemma 3.3. Let p be a pair operation on P.

(1) p is order-preserving on ambient modules if and only if for all injective homomorphisms

i ∶ M → N and all submodules L ⊆ M such that (L,M),(i(L),N) ∈ P, we have

i(p(L,M)) ⊆ p(i(L),N).
(2) p is restrictable if and only if for all injective homomorphisms i ∶ N → M and

all submodules L ⊆ M such that (L,M),(i−1(L),N) ∈ P, we have p(i−1(L),N) ⊆
i−1(p(L,M)).

Proof. (1): If p is order-preserving on ambient modules, then for arbitrary

(L,N),(L,M) ∈ P with L ⊆N ⊆M , p(L,N) ⊆ p(L,M). Suppose i ∶K →M is an injective

homomorphism and L ⊆ K such that (L,K),(i(L),M) ∈ P . Since i restricts to an

isomorphism between L and i(L) (and between K and i(K)), (i(L), i(K)) ∈ P . Since

p is order-preserving on ambient modules, p(i(L), i(K)) ⊆ p(i(L),M). But i(p(L,K)) =
p(i(L), i(K)) since i is an isomorphism on K. So i(p(L,K)) ⊆ p(i(L),M), as desired.

Now, assume the condition: for all injective homomorphisms i ∶M →N and all submodules

L ⊆M such that (L,M),(i(L),N) ∈ P , we have i(p(L,M)) ⊆ p(i(L),N). If M ⊆N , setting

i be the inclusion map of M into N, we obtain p(L,M) = i(p(L,M)) ⊆ p(i(L),N) = p(L,N)
which implies that p is order-preserving on ambient modules.

(2): Suppose p is restrictable. Let i ∶N→M be an injective homomorphism and L ⊆M
such that (L,M),(i−1(L),N) ∈ P . Since pair operations are invariant under isomorphisms,

we may assume that i is an inclusion map. Then i−1(L) =L∩N . So

p(i−1(L),N) = p(L∩N,N) ⊆ p(L,M).

Since p(L∩N,N) is by definition contained in N as well,

p(i−1(L),N) ⊆ p(L,M)∩N = i−1(p(L,M)).

Now, suppose that p satisfies the condition given in the statement of the Lemma. Let

L ⊆N ⊆M . Let i ∶N →M be the inclusion. Then

p(L∩N,N) = p(i−1(L),N) ⊆ i−1(p(L,M) = p(L,M)∩N,

so p is restrictable.

Lemma 3.4. Let (R,m) be a complete local ring. Let M and N both be finite or Artinian

R-modules, and let g ∶M→N be an R-module homomorphism. Define ϕ = g∨ ∶N∨→M∨.

(1) If L ⊆M is a submodule, then ϕ−1((M/L)∨) = (N/g(L))∨.
(2) Let K ⊆N be a submodule, then ϕ((N/K)∨) = (M/g−1(K))∨.

Proof. (1) First, assume x ∈ (N/g(L))∨. Then x ∶N →E and g(L) ⊆ker(x). So ϕ(x) =x○g
is a map from M to E, and its kernel contains L because (x○g)(L) = x(g(L)) = 0.
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Now, assume x ∈ϕ−1((M/L)∨). Then ϕ(x) =x○g is a mapM to E such that (x○g)(L) = 0.
Then x(g(L)) = 0, so x ∈ (N/g(L))∨.

(2) Assume z ∈ (N/K)∨. Then z ∶ N→E and z(K) = 0. For u ∈ g−1(K), g(u) ∈ K, so

ϕ(z)(u) = (z ○g)(u) = 0 implying ϕ(z) ∈ (M/(g−1(K))∨.
Now, we need to show that (M/g−1(K))∨ ⊆ ϕ(N/K)∨. Let x ∈M∨ such that x kills

g−1(K). We need to show that there is some y ∈N∨ that kills K and such that x = y ○g.

M
p��

g

��

x

��
M/g−1(K)x

′
��

g′

��

E

N q
��

y

��

N/K
z

������������

Write x = x′ ○p, where p ∶M↠M/g−1(K) is the natural map and x′ ∶M/g−1(K)→E is

the induced map from the first isomorphism theorem. Let q ∶ N↠N/K be the quotient

map. Since g−1(K) is the kernel of the composite q ○g, the first isomorphism theorem gives

us an induced injective map g′ ∶M/g−1(K)→N/K such that g′ ○ p = q ○ g. Since g′ is an

injective map and E is an injective module, the map x′ can be extended across g′ to a map

z ∶N/K→E. That is, z ○g′ = x′. But then, z ○q ○g = z ○g′ ○p = x′ ○p = x. So, if we set y = z ○q,
then ϕ(y) = x and y ∈ (N/K)∨.

In the following proposition, we include (2) and (3) for completeness.

Proposition 3.5. Let p be a pair operation on a class P of pairs of R-modules.

(1) If p is surjection-functorial, then p is surjection-cofunctorial.

(2) [9, Lem. 2.5(1)] If p is restrictable, then p is order-preserving on ambient modules.

(3) [9, Def. 2.2] If p is functorial, then it is surjection-functorial and order-preserving on

ambient modules. The converse holds if whenever g ∶M→M ′ is in M and (L,M) ∈ P,
we have (g(L),g(M)) ∈ P.

(4) If p is cofunctorial, then it is surjection-cofunctorial and restrictable. The converse

holds if whenever g ∶M →M ′ is a homomorphism, L⊆M ′, (L,M ′),(g−1(L),M) ∈P, and
we can write g = i○π where π is surjective and i is injective, then (i−1(L),π(M)) ∈ P.

(5) If p is order-preserving on submodules, then

(a) if for any surjection π ∶M →M ′ and L ⊆M such that (L,M), (π(L),M ′) ∈ P,
we have (π−1(π(L)),M) ∈ P, then p is surjection-functorial if and only if p is

surjection-cofunctorial.

(b) [9, Lem. 2.5(2)] if when (L∩N,N),(L,M) ∈ P we also have (L∩N,M) ∈ P, then
p is order-preserving on ambient modules if and only if p is restrictable.

(c) if p is functorial, then p is cofunctorial as long as when (L ∩N,N),(L,M) ∈
P, (L ∩N,M) is also in P and whenever g ∶ M → M ′ is a homomorphism,

(L,M ′),(g−1(L),M) ∈ P and we can write g = i ○π where π is surjective and i

is injective, then (i−1(L),π(M)) ∈ P. The converse holds if whenever g ∶M→M ′ is

in M and (L,M) ∈ P, we have (g(L),g(M)) ∈ P, and whenever π ∶M →M ′ is a

surjection with (L,M),(π(L),M ′) ∈ P, (π−1(π(L)),M) ∈ P.
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Remark 3.6. In [9, Lem. 2.5(2)], the hypothesis on P is stated incorrectly and should

match the hypothesis given in the statement of 5b above.

Remark 3.7. We note that the additional hypotheses on P required for some parts

of this result tend to hold for most choices of P found in the literature. For example, if

P consists of all pairs of R-modules, finitely generated R-modules, finitely generated and

Artinian R-modules, or graded R-modules (with graded homomorphisms), all of the extra

hypotheses hold. Or more generally, ifM is an abelian category and P consists of all nested

pairs of modules inM, then all of the extra hypotheses hold.

Proof of Proposition 3.5. (1) Suppose that p is surjection-functorial. Suppose that π ∶
M →M ′ is a surjective homomorphism of R-modules, L ⊆M ′, and (L,M ′),(π−1(L),M) ∈P .
Since π is surjective, we know that π(π−1(L)) = L. Since p is surjection-functorial and

(π−1(L),M),(π(π−1(L)),M ′) = (L,M ′) ∈ P , we have

π(p(π−1(L),M)) ⊆ p(π(π−1(L)),M ′) = p(L,M ′).

By the definition of the preimage,

p(π−1(L),M) ⊆ π−1(p(L,M ′)),

implying that p is surjection-cofunctorial.

(4) The forward direction is immediate from Lemma 3.3(2). For the reverse direction,

suppose that p is surjection-cofunctorial and restrictable. Let g ∶M →M ′ be an arbitrary

map, and L ⊆M ′ such that (L,M ′),(g−1(L),M) ∈ P . We can write g as a composite

M
π�→M/ker(g) i�→M ′.

By our hypotheses, (i−1(L),M/ker(g)) ∈ P . Then

p(g−1(L),M) = p((i○π)−1(L),M) = p(π−1(i−1(L)),M)
⊆ π−1(p(i−1(L),M/ker(g)) ⊆ π−1 (i−1(p(L,M ′)))
= (i○π)−1(p(L,M ′)) = g−1(p(L,M ′)).

(5a) It is enough to show that if p is order-preserving on submodules and surjection-

cofunctorial, then p is surjection-functorial by (1). Suppose that p is order-preserving on

submodules and surjection-cofunctorial. Suppose that π ∶M →M ′ is a surjective homomor-

phism of R-modules, L⊆M , and (L,M),(π(L),M ′) ∈P . By hypothesis, (π−1(π(L)),M) ∈P
as well. By properties of images and preimages of functions, we know L ⊆ π−1(π(L)). Since
p is surjection-cofunctorial and order-preserving on submodules, we have

p(L,M) ⊆ p(π−1(π(L)),M) ⊆ π−1(p(π(L),M ′)).

Now, take the image of each of the submodules to obtain

π(p(L,M)) ⊆ π(π−1(p(π(L),M ′))) = p(π(L),M ′),

implying that p is surjection-functorial.

(5c) First, assume that p is functorial and the other given hypotheses hold. By (3), p

is surjection-functorial and order-preserving on ambient modules. By (5b), p is restrictable

and by (1), p is surjection cofunctorial. Then, by (4), p is cofunctorial.
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Now, assume that p is cofunctorial and the other given hypotheses hold. By (4), p is

surjection-cofunctorial and restrictable. By (2), p is order-preserving on ambient modules.

By (5a), p is surjection-functorial, and so by (3), p is functorial.

Example 3.8. In [9, Exam. 2.6], we showed that the Ratliff–Rush operation given by

p(I,J) = IRR
J = ⋃

n≥0

(In+1 ∶J In),

when defined on pairs of ideals of a ring R is not restrictable. By Proposition 3.5(4),

any cofunctorial operations must be restrictable; hence, the Ratliff–Rush operation is not

cofunctorial.

However, if R is a domain, then the Ratliff–Rush operation is functorial. To see this,

let I ⊆ J be ideals of R, with J nonzero. Let ϕ ∶ J → J ′ be an R-module homomorphism,

where J ′ is another ideal. Let j ≠ 0 be a fixed nonzero element of J. Then, for any x ∈ J , we
have jϕ(x) = ϕ(jx) = xϕ(j). Similarly, ϕ(j)I = jϕ(I). Let f ∈ IRR

J and suppose Inf ⊆ In+1.
We will show that ϕ(I)nϕ(f) ⊆ ϕ(I)n+1, which will prove that the Ratliff–Rush operation

is functorial.

To see this, it is enough to show that for any a1, . . . ,an ∈ I, we have ϕ(a1)⋯ϕ(an)ϕ(f) ∈
ϕ(I)n+1. Multiplying the left-hand side by jn+1, we have

jn+1ϕ(a1)⋯ϕ(an)ϕ(f) =ϕ(ja1)⋯ϕ(jan)ϕ(jf)
=ϕ(j)n+1a1⋯anf ∈ϕ(j)n+1In+1

= (ϕ(j)I)n+1 = (jϕ(I))n+1 = jn+1ϕ(I)n+1.

Since jn+1 is a regular element of R, we can cancel it to get the required inclusion.

Proposition 3.9. Let R be a complete Noetherian local ring, assume M contains

Matlis-dualizable modules, and let p be a pair operation on a class of pairs of Matlis-

dualizable R-modules P as in Definition 2.1. Then p is functorial if and only if p⌣ is

cofunctorial.

Proof. Suppose p is functorial. Let D ⊆C and ϕ ∶B→C such that (D,C),(ϕ−1(D),B) ∈
P∨. We will show that p⌣ is cofunctorial, that is, p⌣(ϕ−1(D),B) ⊆ ϕ−1(p⌣(D,C)). Set N =
B∨, M =C∨, L = (C/D)∨ and g ∶= ϕ∨ ∶M →N . Note that, by Matlis duality, D = (M/L)∨.
By Lemma 3.4,

p⌣(ϕ−1(D),B) = p⌣(ϕ−1((M/L)∨),B) = p⌣((N/g(L))∨,B).

By the definition of p⌣,

p⌣((N/g(L))∨,B) = ( B∨

p((B/(N/g(L))∨)∨,B∨))
∨

= ( N

p(g(L),N))
∨

,

where the last inequality follows from Matlis duality. By functoriality,

( N

p(g(L),N))
∨

⊆ ( N

g(p(L,M)))
∨

.

Applying Lemma 3.4,

( N

g(p(L,M)))
∨

=ϕ−1 ((M/p(L,M))∨) .
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Now, by the definition of p⌣, and since p⌣⌣ = p,

ϕ−1((M/p(L,M))∨) =ϕ−1(p⌣((M/L)∨,C)) =ϕ−1(p⌣(D,C)),

which implies that p⌣ is cofunctorial.

Suppose now that p is cofunctorial, K ⊆ N , and g ∶M→N . Set B = N∨ and C =M∨,

A = (N/K)∨, and ϕ ∶= g∨ ∶ B→C such that (A,B),(ϕ(A),C) ∈ P∨. We need to show that

ϕ(p⌣(A,B)) ⊆ p⌣(ϕ(A),C). By the definition of p⌣,

ϕ(p⌣(A,B)) =ϕ(( B∨

p((B/A)∨,B∨))
∨

) =ϕ(( N

p(K,N))
∨

) .

By Lemma 3.4,

ϕ(( N

p(K,N))
∨

) = ( M

g−1(p(K,N)))
∨

.

Using the fact that p is cofunctorial, we obtain

( M

g−1(p(K,N)))
∨

⊆ ( M

(p(g−1(K),M))
∨

.

By the definition of p⌣, we have

( M

p(g−1(K),M))
∨

= p⌣(( M

g−1(K))
∨

,M∨) = p⌣(( M

g−1(K))
∨

,C) .

Applying Lemma 3.4, we obtain

p⌣(( M

g−1(K))
∨

,C) = p⌣(ϕ((N
K
)
∨

) ,C) = p⌣(ϕ(A),C),

completing the proof that p⌣ is functorial.

Remark 3.10. The proof of Proposition 3.9 also provides the following dualities for

pair operations p and p⌣ for Matlis dualizable pairs over a complete Noetherian local ring.

(1) [9, Prop. 3.6(8)] p is surjection-functorial if and only if p⌣ is restrictable.

(2) p is surjection-cofunctorial if and only if p⌣ is order-preserving on ambient modules.

In particular, (2) follows from the second part of the proof of Proposition 3.9 by restricting

the map g to be a surjection.

Remark 3.11. Let p be the Ratliff–Rush operation, as defined in Example 3.8, on

pairs of ideals of a complete local domain. Proposition 3.9 implies that p⌣ is an example

of a pair operation on pairs of submodules of the injective hull of the residue field which is

cofunctorial but not functorial.

3.2 Hereditary and cohereditary pair operations

Here, we define properties of pair operations that we use to better understand how

various closure and interior operations have been extended from operations on ideals to

operations on submodules. For closure operations, the terms residual and hereditary may

be familiar. These two notions are dual for closure operations, but not for pair operations

more generally. Through the lens of pair operations, we discuss these properties and their

duals.
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Definition 3.12. A pair operation p on a class P of pairs of R-modules (L,M) with
L ⊆M is:

• absolute if whenever L ⊆N ⊆M with (L,M),(L,N) ∈ P , we have p(L,N) = p(L,M) [9,

Def. 2.2];

• residual if whenever L ⊆ N ⊆ M with (N,M),(N/L,M/L) ∈ P , we have p(N,M) =
π−1(p(N/L,M/L)), where π ∶M↠M/L is the natural surjection [9, Def. 2.2];

• hereditary if whenever L ⊆N ⊆M with (L,M),(L,N) ∈ P , we have p(L,N) = p(L,M)∩N ;

• cohereditary if whenever L⊆N ⊆M with (N,M),(N/L,M/L) ∈P , we have p(N/L,M/L)=
p(N,M)+L

L
.

Remark 3.13. Note that by definition, hereditary implies restrictable.

Remark 3.14. In [5, 5.5.10], Elliott calls left exact what we call hereditary, and he calls

residual or right exact what we call cohereditary. The conflict in terminology arises from

our need here to distinguish between two notions that we call cohereditary and residual.

Lemma 3.15. Let p be a pair operation on a class P of pairs of R-modules. If p is

intensive and hereditary, then p is absolute. If we further assume that when (L,M) ∈ P,
(L,L) ∈ P, then the converse holds.

Proof. Suppose that p is intensive and hereditary. Let L⊆N ⊆M with (L,N),(L,M) ∈P .
Then p(L,N) = p(L,M)∩N = p(L,M), with the first equality by hereditariness and the

second by intensivity.

Now, suppose that p is absolute, and let (L,M) ∈ P . Since we also have (L,L) ∈ P , we
have p(L,L) = p(L,M) by absoluteness, and by the definition of pair operation, we have

p(L,L) ⊆ L. Hence, p is intensive. Now, let L ⊆N ⊆M with (L,N),(L,M) ∈ P . Then, by
intensivity, we have p(L,M) ⊆L ⊆N , so that p(L,N) = p(L,M) = p(L,M)∩N .

Lemma 3.16. Let p be a pair operation on P. If p is extensive and cohereditary, then p

is residual. If we further assume that (0,M/L) ∈ P for all (L,M) ∈ P with L ⊆M , then the

converse holds.

Proof. Suppose that p is cohereditary and extensive. Let L ⊆ N ⊆ M with

(N,M),(N/L,M/L) ∈ P , setting π ∶M↠M/L as the canonical surjection. Then

π(p(N,M)) = p(N,M)+L
L

= p(N/L,M/L),

so that p(N,M) ⊆ π−1(p(N/L,M/L)). For the reverse containment, let z ∈ π−1(p(N/L,
M/L)). Then π(z) ∈ p(N/L,M/L) = π(p(N,M)) by the cohereditary property. Hence,

z ∈ p(N,M)+kerπ = p(N,M)+L = p(N,M), with the latter equality since L ⊆N ⊆ p(N,M)
by extensivity. Hence, p is residual.

Now, suppose that p is residual and that whenever (L,M) ∈ P , (0,M/L) ∈ P as well.

Then it is extensive because if (L,M) ∈ P and π ∶M↠M/L is the natural surjection, then

setting L =N in the definition, we have L = π−1(0) ⊆ π−1(p(0,M/L)) = p(L,M). To see that

it is cohereditary, from the fact that π is surjective, we have

p(N,M)+L
L

= π(p(N,M)) = π(π−1(p(N/L,M/L))) = p(N/L,M/L)

as long as all of the relevant pairs are in P .
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Proposition 3.17. Let R be a complete Noetherian local ring, assume thatM contains

Matlis-dualizable modules, and let p be a pair operation on a class of pairs of Matlis-

dualizable R-modules P as in Definition 2.1. Then:

(1) [9, Prop. 3.6(2) and (3)] p is extensive if and only if p⌣ is intensive.

(2) If p is hereditary, then p⌣ is cohereditary.

(3) If p is cohereditary, then p⌣ is hereditary.

(4) Suppose that for all (L,M) ∈ P, (0,M/L) ∈ P and (L,L) ∈ P. Then p is residual if and

only if p⌣ is absolute.

Proof. (2): Let L ⊆N ⊆M with (N/L,M/L),(N,M) ∈ P∨. Let B ∶=M∨, and let A ∶=
(M/N)∨, C ∶= (M/L)∨, considered as submodules of B. Then A ⊆ C ⊆ B, and we have

(A,B) = ((M/N)∨,M∨) = (N,M)∨ ∈P and (A,C) = ((M/N)∨,(M/L)∨) = (N/L,M/L)∨ ∈P .
Thus, we have

p⌣(N,M)+L = ( B

p(A,B))
∨

+(B
C
)
∨

= ( B

p(A,B)∩C )
∨

= ( B

p(A,C))
∨

.

Here, the second equality is by [10, Lem. 6.15] and the third is since p is hereditary. Hence,

p⌣(N,M)+L
L

= (B/p(A,C))
∨

(B/C)∨ = (C/p(A,C))∨ = p⌣(N/L,M/L).

(3): Let L ⊆N ⊆M with (L,M),(L,N) ∈ P∨. Let B ∶=M∨, and let A ∶= (M/N)∨, C ∶=
(M/L)∨, considered as submodules of B. Then (C,B) = ((M/L)∨,M∨) = (L,M)∨ ∈ P and

(C/A,B/A) = ((N/L)∨,N∨) ∶= (L,N)∨ ∈ P . Thus, we have

p⌣(L,N) = p⌣((B/C)∨,(B/A)∨) = ( B/A
p(C/A,B/A))

∨

= ( B/A
(p(C,B)+A)/A)

∨

= ( B

p(C,B)+A)
∨

= ( B

p(C,B))
∨

∩(B/A)∨ = p⌣(L,M)∩N.

Here, the third equality is because p is cohereditary, the fourth equality is by the third

isomorphism theorem, and the fifth equality is by [10, Lem. 6.15].

(4): This follows from (2) and (3), Lemmas 3.15 and 3.16, and (1).

Lemma 3.18. Let (R,m) be a Noetherian local ring, and let cl be a residual closure

operation on the class of pairs of finitely generated R-modules. Then cl is Nakayama if and

only if whenever N ⊆ (mN)clM , N ⊆ 0clM .

Proof. The forward direction is immediate from Definition 2.6. For the reverse direction,

let L ⊆N ⊆M such that N ⊆ (L+mN)clM . Then

N/L ⊆ (L+mN)clM/L = (
L+mN

L
)
cl

M/L
.

By our hypotheses, this implies that N/L ⊆ 0clM/L. Since cl is residual, N ⊆Lcl
M . This implies

that N cl
M =Lcl

M , as desired.
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3.3 Connection to submodule selectors

There are two natural ways to define a pair operation from a submodule selector. In

this subsection, we discuss how properties of a given submodule selector compare with the

properties of the associated pair operations.

Remark 3.19. In [8], we discussed hereditary and cohereditary properties in the context

of submodule selectors. In that paper, the dual of a hereditary submodule selector is also

called co-hereditary (Definition 6.1). Note that this is referring to the duality between

submodule selectors of [8], whereas the duality of this paper takes submodule selectors

to residual extensive operations and vice versa. The two notions are compatible in the

sense that if cl is a residual closure operation, then the submodule selector α(M) ∶= 0clM
is co-hereditary by definition. If a submodule selector α is co-hereditary, then its dual

submodule selector α⌣ is hereditary by Proposition 6.5 of [8]. Hence, if we apply the duality

of this paper to α⌣ to get an extensive operation, this extensive operation will be residual

and agrees with what we get if instead we take the residual closure operation cl such that

α(M) = 0clM for R-modules M ∈M as in Construction 2.3 of [8].

We discuss residual and absolute in the context of submodule selectors in the next result.

Definition 3.20 [8, Def. 2.1]. LetM be a category of R-modules. A submodule selector

is a map α ∶M→M sending each module M to a submodule of M such that if M ≅N in

M, α(M) ≅ α(N) under the restriction of the isomorphism.

Let R be a complete local ring and ∨ denote the Matlis duality operator. We define a

dual α⌣ to a submodule selector α by

α⌣(M) ∶= ( M∨

α(M∨))
∨

.

Definition 3.21. Let α be a submodule selector. Then there is a residual operation

r = ρ(α) given by r(L,M) = π−1(α(M/L)), where π ∶M↠M/L is the canonical map.

Also, there is an absolute operation g = γ(α) given by g(L,M) = α(L).

Proposition 3.22. Let R be complete local commutative Noetherian. Let α be a

submodule selector on a category M of Matlis dualizable modules. Then ρ(α⌣) = γ(α)⌣,
and ρ(α)⌣ = γ(α⌣).

Proof. Let (L,M) ∈ P∨. Then

ρ(α⌣)(L,M) = π−1(α⌣(M/L)) = π−1(( (M/L)∨
α((M/L)∨))

∨

)

= ( M∨

α((M/L)∨))
∨

= ( M∨

γ(α)((M/L)∨,M∨))
∨

= γ(α)⌣(L,M).

The third equality is by Lemma 3.4.

For the second statement, the above applies to yield the following:

ρ(α)⌣ = ρ(α⌣⌣)⌣ = γ(α⌣)⌣⌣ = γ(α⌣).

We discussed functorial and cofunctorial pair operations in §3.1. We now remind the

reader of the definition of functoriality for submodule selectors.
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Definition 3.23 [8, Defs. 2.1 and 5.1]. Let M be a category of modules, let P be the

set of pairs (L,M) such that L ⊆M and L,M ∈M, and let α be a submodule selector on

M (see Definition 3.20). Suppose that M,N ∈M. We say that:

• α is order-preserving if for any (L,M) ∈ P , α(L) ⊆ α(M).
• α is surjection-functorial if for π ∶M↠N , π(α(M)) ⊆ α(N).
• α is functorial if for f ∶M →N , f(α(M)) ⊆ α(N).
• α is idempotent if for any M ∈M, α(α(M)) = α(M).

We define the finitistic version αf of α to be

αf(M) =∑{α(L) ∣L ⊆M is finitely generated and L ∈M}.

We say that α is finitistic if for every M ∈M, α = αf .

Note that functoriality here is equivalent to order-preservation plus surjection-

functoriality, assuming that for any f ∶M→N in P , there is some epi-monic factorization

M↠Q↪N such that Q ∈M. Note also that since

α(M) ⊆ f−1(f(α(M))) ⊆ f−1(α(N)),

then if we were to define cofunctorial to be f−1(α(N)) ⊇ α(M), this would be the same as

α being functorial in the sense of [8, Def. 2.1].

Proposition 3.24. Let α be a submodule selector on an abelian categoryM of modules

and P be as in Definition 3.23. Let g = γ(α) and r = ρ(α).

(1) The following are equivalent:

(a) α is order-preserving.

(b) g is order-preserving on submodules.

(c) g is restrictable.

(d) r is cofunctorial.

(2) The following are equivalent:

(a) α is surjection-functorial.

(b) g is functorial.

(c) r is order-preserving on submodules.

(3) The following are equivalent:

(a) α is functorial.

(b) g is functorial and order-preserving on submodules.

(c) r is cofunctorial and order-preserving on submodules.

(d) r is functorial and order-preserving on submodules.

(4) α is idempotent ⇐⇒ g is idempotent.

For more such equivalences, see [8, Prop. 2.6].

Proof. (1) (a) ⇐⇒ (b): Let L ⊆N ⊆M such that (L,M),(N,M) ∈ P . Since g(L,M) =
α(L) and g(N,M) = α(N), we have α(L) ⊆ α(N) if and only if g(L,M) ⊆ g(N,M).

(1) (b) ⇐⇒ (c): First, assume that g is order-preserving on submodules. Then g is

restrictable if and only if g is order-preserving on ambient modules. Let L ⊆N ⊆M such

that (L,N),(L,M) ∈ P . We have g(L,N) = α(L) = g(L,M), so g is order-preserving on

ambient modules and hence is restrictable.
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Now, assume that g is restrictable. Note that by the definition of P , we meet the

hypotheses of Proposition 3.5(5b). This means that for L,N ⊆M , g(L∩N,L) ⊆ g(N,M).
Assume that L ⊆ N ⊆ M . Then g(L ∩N,L) = g(L,L) = α(L) and g(N,M) = α(N). So

α(L) ⊆ α(N), which implies that g(L,M) ⊆ g(N,M), as desired.
(1) (a) ⇐⇒ (d): Suppose that α is order-preserving. Let f ∶M →N be a map, and let

K ⊆N be a submodule. Let π ∶M↠M/f−1(K) and q ∶N↠N/K be the natural surjections,

and let e ∶ M/f−1(K) → N/K be the natural injective map guaranteed by the first

isomorphism theorem. Then e○π = q○f . Now, let x ∈ r(f−1(K),M). Then, by the definition

of r, we have x ∈ π−1(α(M/f−1(K))). That is, π(x) ∈ α(M/f−1(K)). Thus,

q(f(x)) = e(π(x)) ∈ e(α(M/f−1(K))) ⊆ α(N/K)

since α is order-preserving. But then, x ∈ f−1(q−1(α(N/K))) = f−1(r(K,N)). Thus, r is

cofunctorial.

Conversely, suppose that r is cofunctorial. Let L ⊆M be R-modules, with i ∶L→M the

inclusion map. Cofunctoriality of r means that

α(L) = r(0,L) = r(i−1(0),L) ⊆ i−1(r(0,M))
= r(0,M)∩L ⊆ r(0,M) = α(M).

(2) (a) ⇐⇒ (b): Suppose that α is surjection-functorial. Let f ∶M →N be a map, let L

be a submodule of M, and let e ∶ L↠f(L) be the induced surjective map on submodules.

Then

f(g(L,M)) = f(α(L)) = e(α(L)) ⊆ α(f(L)) = g(f(L),N).

Conversely, suppose that g is functorial. Let q ∶ M↠N be a surjective map. Then

q(α(M)) = q(g(M,M)) ⊆ g(q(M),N) = g(N,N) = α(N).
(2) (a) ⇐⇒ (c): Suppose that α is surjection-functorial. Let L⊆N ⊆M be R-modules. Let

πL ∶M↠M/L, q ∶M/L↠M/N , and πN ∶M↠M/N be the natural maps, so that πN = q○πL.

Then, by surjection-functoriality of α, q(α(M/L)) ⊆α(M/N). Accordingly, let x ∈ r(L,M).
Then πL(x) ∈ α(M/L), so

πN(x) = q(πL(x)) ∈ q(α(M/L)) ⊆ α(M/N).

Then, by definition, x ∈ r(N,M).
Conversely, suppose that r is order-preserving on submodules. Let q ∶ M↠N be a

surjection. Without loss of generality, N =M/L for some submodule L of M, and q is

the natural map. Then

α(M) = r(0,M) ⊆ r(L,M) = q−1(α(M/L)),

so for any x ∈ α(M), we have q(x) ∈ α(M/L) = α(N).
(3): This follows from 1 and 2 and Proposition 3.5((5c)).

(4): Let L ⊆M such that (L,M),(g(L,M),M) ∈ P . Then g(g(L,M),M) = g(α(L),M) =
α(α(L)). So α is idempotent if and only if g is idempotent.

Suppose that p and q are pair operations on a class of pairs P . We say that p ≤ q if for

all (L,M) ∈ P , p(L,M) ⊆ q(L,M). As we have pointed out both in this and our previous

paper [9], pair operations are a generalization of submodule selectors. In [8, Prop. 7.5], the

first- and second-named authors proved that if α and β are submodule selectors on a class
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of Matlis-dualizable modules M with α ≤ β, then β⌣ ≤ α⌣. A similar statement holds for

pair operations.

Proposition 3.25. Let (R,m) be a complete local ring. Let p and q be pair operations

defined on a class of Matlis dualizable pairs P satisfying p ≤ q. Then q⌣ ≤ p⌣.

Proof. The proof follows the same steps as the proof of [8, Prop. 7.5] replacing the

submodule selectors α and β by the pairs p and q.

3.4 Finitistic pair operations

We define the finitistic version of a pair operation and prove some of its properties. This

material will be used in §4 to give a method for computing certain interiors and in §9 to

compare EHU integral closure to its hereditary version.

Definition 3.26 (c.f. [9, Def. 3.7]). Let R be a Noetherian ring, and let p be a pair

operation on a class P of pairs of nested R-modules. We define the finitistic version pf of

p to be

pf(L,M) =⋃{p(L∩U,U) ∣U ⊆M is finitely generated and (L∩U,U) ∈ P}.

We say that p is finitistic if for every (L,M) ∈ P , p = pf .

Lemma 3.27 (cf. [10, Lem. 3.2]). If P is a class of pairs of R-modules such that if

(L∩U,U) ∈ P, then (L,L+U) ∈ P, and if p is a restrictable pair operation, then for every

(L,M) ∈ P,

pf(L,M) ⊆ ⋃
L⊆N⊆M, N/Lf.g.,(L,N)∈P

p(L,N).

If (L,N) ∈ P if and only if (0,N/L) ∈ P and p is also residual, then the containment is an

equality.

Proof. The forwards containment holds because p(L∩U,U) ⊆p(L,U +L) and (U +L)/L≅
U/(L∩U) is finitely generated when U is.

For the backward containment, let z ∈ p(L,N) for some L ⊆N ⊆M with N/L finitely

generated and (L,N) ∈ P . Set x1 = z,x2, . . . ,xt ∈N whose images generate N/L. Then N =
L+U , where U = ∑t

i=1Rxi is finitely generated. Set π ∶N →N/L to be the quotient map.

By the Second Isomorphism Theorem, there is an isomorphism j ∶ L+U
L
→ U

L∩U
such that for

any y ∈U , j(ȳ) = ȳ. Since p is residual,

π(z) ∈ p(0,N/L) = p(0,(L+U)/L).

Thus, j(π(z)) = z̄ ∈ p(0,U/(L∩U)). Hence, z ∈ p(L∩U,U), as desired.

If we have a pair operation defined only on finitely generated R-modules, its finitistic

version gives us an extension to all R-modules:

Lemma 3.28. Let R be a Noetherian ring, and let p be a pair operation defined on all

nested pairs of finitely generated R-modules. If p is restrictable, then pf(L,M) = p(L,M)
when L ⊆M are finitely generated R-modules.

Proof. Let L ⊆M be finitely generated R-modules. By the definition of pf , p(L,M) ⊆
pf(L,M). For the other containment, notice that for any U ⊆M , U is finitely generated,

and p(L∩U,U) ⊆ p(L,M). So pf(L,M) ⊆ p(L,M).
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Lemma 3.29. If R is Noetherian and cl is a restrictable closure operation on all nested

pairs of finitely generated R-modules, then clf is a closure operation on all R-modules.

Proof. Since cl is extensive, for each U ⊆M finitely generated such that (L∩U,U) ∈ P ,
L∩U ⊆ (L∩U)clU . So clf is extensive.

Let L⊆N ⊆M . Since cl is order-preserving on submodules, for each U ⊆M with U finitely

generated,

(L∩U)clU ⊆ (N ∩U)clU .

Consequently,

⋃
U⊆M,U f.g.

(L∩U)clU ⊆ ⋃
U⊆M,U f.g.

(N ∩U)clU ,

so clf is order-preserving on submodules.

For idempotence, let L ⊆M be R-modules and let x ∈ (Lclf
M )

clf
M . Then there is some

finitely generated submodule U ⊆M such that x ∈ (Lclf
M ∩U)clU . Choose a finite generating

set y1, . . . ,yt for L
clf
M ∩U . Since each yj is in L

clf
M , there are finitely generated submodules

V1, . . . ,Vt of M such that for 1 ≤ j ≤ t, we have yj ∈ (L∩Vj)clVj
. Set V ∶=U +∑t

j=1Vj . Then, for

each j, we have

yj ∈ (L∩Vj)clVj
= ((L∩V )∩Vj)clVj

⊆ (L∩V )clV

by restrictability of cl. Hence, L
clf
M ∩U ⊆ (L∩V )clV . Thus, we have

x ∈ (Lclf
M ∩U)clU ⊆ (L

clf
M ∩U)clV ⊆ ((L∩V )clV )clV = (L∩V )clV ⊆L

clf
M .

The first containment holds because cl is order-preserving on ambient modules by Propo-

sition 3.5(2). The second containment holds because cl is order-preserving on submodules.

The first equality follows from idempotence of cl. The last containment is by the definition

of clf . Since x was arbitrarily chosen and clf is extensive, idempotence of clf follows.

§4. Cohereditary versions of pair operations

In this section, we show how to define a cohereditary version pc of a pair operation p that

is not necessarily cohereditary. Since residual operations are cohereditary and extensive (see

Lemma 3.16), we will apply our results to closure operations to define a residual version of

a closure operation that is not necessarily residual. We end by extending a result of [10] to

non-residual closure operations by working with their residual versions.

Notation 4.1. Throughout this section, we assume the following:

(1) M will denote an abelian category of R-modules that has enough projectives.

(2) P will denote a set of pairs of R-modules (N,P ) with N ⊆ P , N,P ∈ M, and P

projective.

(3) P ′ will denote a set of pairs such that P ⊆P ′ and for every (L,M) ∈P ′ with L⊆M , there

is a projective module P ∈M and a surjection π ∶ P →M inM with (π−1(L),P ) ∈ P .
(4) In addition, if (L,M),(N,M) ∈ P ′ with L ⊆N , then there exists π ∶ P ↠M such that

(π−1(L),P ),(π−1(N),P ) ∈ P .
(5) We further assume:
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(∗) Given L,M,P,π as above, if we have a commutative diagram

P

π
����

ϕ̃ �� Q

q
����

M
ϕ �� �� N

inM satisfying

(a) ϕ ∶M →N is surjective,

(b) q ∶Q→N is a surjection from a projective module onto N,

(c) (q−1(ϕ(L)),Q) ∈ P ,
(d) ϕ̃ ∶ P →Q is any map such that ϕ ○π = q ○ ϕ̃ (such a ϕ̃ always exists by the

projectiveness of P),

then (ϕ̃(π−1(L)),Q) ∈ P .

Remark 4.2. In making this definition, the examples we have in mind are:

(1) M = R-modules, P = all nested pairs where the second module is projective, and

P ′ = all nested pairs inM.

(2) M= finitely generated R-modules, P = all nested pairs inM where the second module

is projective, and P ′ = all nested pairs inM.

(3) M= graded R-modules with graded R-module homomorphisms, P = all nested pairs

inM where the second module is graded projective, and P ′ = all nested pairs inM.

The last example demonstrates the need for some of our hypotheses. Working this generally

also allows us to include cases where P ′ consists of finite-length modules or m-primary

modules over a local ring.

Proposition 4.3. Let M, P, and P ′ be as in Notation 4.1, and let p be a cofunctorial

pair operation defined on P. Then we can define a cohereditary, cofunctorial pair operation

pc on P ′ as follows: for a pair (L,M) ∈ P ′, let π ∶ P →M be a surjection in M with P

projective such that (π−1(L),P ) ∈ P. Define

pc(L,M) ∶= π(p(π−1(L),P )).

In particular, if p is a cohereditary, cofunctorial pair operation defined on P ′, then pc = p.
Proof. We first show that pc(L,M) is well defined, that is, independent of our choice

of π and P. Accordingly, suppose that π ∶ P↠M and π′ ∶ P ′↠M in M, where P,P ′ are

projective and (π−1(L),P ),((π′)−1(L),P ′) ∈ P . Let z ∈ pc(L,M) with respect to π. That is,

there is some y ∈ p(π−1(L),P ) with π(y) = z.
Since π′ is surjective and P is projective, there is a map ϕ ∶ P→P ′ in M with π = π′ ○ϕ.

By the cofunctoriality hypothesis,

p(π−1(L),P ) = p((π′ ○ϕ)−1(L),P ) = p(ϕ−1((π′)−1(L)),P ) ⊆ϕ−1(p((π′)−1(L),P ′)).

So ϕ(y) ∈ p((π′)−1(L),P ′). Further, π′(ϕ(y)) = π(y) = z. So z ∈ pc(L,M) with respect to π′.

Hence, pc(L,M) with respect to P and π is contained in pc(L,M) with respect to P ′ and

π′, and by symmetry, they are equal.

Next, we show that pc satisfies the isomorphism criterion. Suppose ϕ ∶ M → M ′

is an isomorphism, (L,M) ∈ P ′, and π ∶ P↠M with P projective and (π−1(L),P ) =
((ϕ○π)−1(ϕ(L)),P ) ∈ P . Then
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ϕ(pc(L,M)) =ϕ(π(p(π−1(L),P ))) =ϕ(π(p(π−1(ϕ−1(ϕ(L))),P )))
=ϕ○π(p((ϕ○π)−1(ϕ(L)),P )) = pc(ϕ(L),M ′),

which shows that pc is invariant under isomorphisms.

Now, we show that pc is cohereditary. Let L ⊆N ⊆M with

(N,M),(N/L,M/L) ∈ P ′,

and let π ∶ P↠M in M with P projective such that (π−1(N),P ) ∈ P . Let q ∶M↠M/L
be the canonical surjection. Note that q−1(N/L) = N , so that (q−1(N/L),M) ∈ P ′, and

(q ○π)−1(N/L) = π−1(N), so that ((q ○π)−1(N/L),P ) ∈ P . Then

pc(N/L,M/L) = (q ○π)(p((q ○π)−1(N/L),P ))
= q(πp(π−1(q−1(N/L)),P )))
= q(pc(q−1(N/L),M))

= pc(q−1(N/L),M)+L
L

= pc(N,M)+L
L

.

Hence, pc is cohereditary.

We now show that pc is cofunctorial. Accordingly, let L ⊆ N and let ϕ ∶M → N be a

homomorphism inM with (L,N),(ϕ−1(L),M) ∈ P ′. Choose maps π ∶ P↠M and q ∶Q↠N

in M with P,Q projective such that (π−1(ϕ(L)),P ),(q−1(L),Q) ∈ P . Then, since P is

projective and q is surjective, there is some map ϕ̃ ∶ P→Q inM with q ○ ϕ̃ =ϕ○π.
Now, let z ∈ pc(ϕ−1(L),M). Then there is some y ∈ p(π−1(ϕ−1(L)),P ) with z = π(y).

Then, by cofunctoriality of p when the ambient modules are projective,

p(π−1(ϕ−1(L)),P ) = p((ϕ○π)−1(L),P ) = p((q ○ ϕ̃)−1(L),P )
= p(ϕ̃−1(q−1(L)),P ) ⊆ ϕ̃−1(p(q−1(L)),Q).

So ϕ̃(y) ∈ p(q−1(L),Q). Hence, ϕ(z) = q(ϕ̃(y)) ∈ pc(L,N), which shows that pc is cofuncto-

rial.

To see that p = pc when p is cohereditary, first we show that if P is projective, K ⊆L ⊆P ,

(L,P ) ∈ P , and (L/K,P /K) ∈ P ′, then p(L/K,P /K) = pc(L/K,P /K). Let π ∶ P → P /K.

Then

pc(L/K,P /K) = π(p(L,P )) = p(L,P )+K
K

= p(L/K,P /K)

since p is cohereditary.

Now, let (N,M) ∈ P ′ and π ∶ P ↠M in M with P projective and (π−1(N),P ) ∈ P . Set
ker(π) =K so that π̄ ∶ P /K →M is an isomorphism. Then, setting L/K = π̄−1(N) where

K ⊆L ⊆ P , we have

pc(N,M) = pc(L/K,P /K) = p(L/K,P /K) = p(N,M).

Proposition 4.4. Let M, P, and P ′ be as in Proposition 4.3. Let p be a cofunctorial

(eq. functorial) pair operation defined on P that is order-preserving on submodules. Then

pc is a cohereditary cofunctorial pair operation that is order-preserving on submodules. In

particular, if for morphisms g ∶M →M ′ in M, (L,M) ∈ P ′, then (g(L),g(M)) ∈ P ′, and
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if for surjections π ∶M →M ′ in M, if (L,M),(π(L),M ′) ∈ P ′, then (π−1(π(L)),M) ∈ P ′,
then pc is functorial.

Proof. By Proposition 4.3, it suffices to show that pc is order-preserving on submodules.

The final comment follows by Proposition 3.5(c).

Suppose L ⊆N ⊆M and (L,M),(N,M) ∈ P ′ and suppose P is a projective module such

that π ∶ P↠M inM and (π−1(L),P ),(π−1(N),P ) ∈ P as in Notation 4.1.

Since π−1(L) ⊆π−1(N) ⊆P , and p is order-preserving on submodules, then p(π−1(L),P ) ⊆
p(π−1(N),P ). Now, observe that

pc(L,M) = π(p(π−1(L),P )) ⊆ π(p(π−1(N),P )) = pc(N,M),

implying that pc is order-preserving on submodules.

Corollary 4.5. Let M, P, and P ′ be as in Proposition 4.3, and assume too that for

every (L,M) ∈ P ′, (0,M/L) ∈ P ′. Let p be a cofunctorial pair operation defined on P that

is extensive. Then pc is a residual, cofunctorial pair operation on P ′. In particular, if p is

a residual, cofunctorial pair operation defined on P ′, then pc = p.

Proof. Suppose (L,M) ∈ P ′ and π ∶ P↠M is a surjective homomorphism in M with

(π−1(L),P ) ∈ P . Since p is extensive

L = π(π−1(L)) ⊆ π(p(π−1(L),P )) = pc(L,M),

implying that pc is extensive. Now, by Lemma 3.16, an extensive cohereditary pair operation

is residual. Thus, by Proposition 4.3, pc is residual and cofunctorial. If p is a cofunctorial

residual pair operation, then p is a cofunctorial extensive cohereditary pair operation by

Lemma 3.16 and again Proposition 4.3 gives us that pc = p when p is residual.

Notation 4.6. When p is extensive, we will denote pc by pr from now on.

When p = cl is a closure operation and L ⊆M , we will denote p(L,M) =Lcl
M .

Proposition 4.7. Let M, P, and P ′ be as in Proposition 4.3, and let cl be a

cofunctorial closure operation defined on P. Then the cohereditary version clr of cl is a

residual, cofunctorial closure operation on P given as follows:

Lclr
M ∶= π((π−1(L))clP ).

In particular, if cl is itself residual, then cl = clr.

Proof. Since every cofunctorial closure operation is a cofunctorial pair operation, then

Corollary 4.5 gives us that clr is a cofunctorial residual pair operation on P ′ and if cl is a

residual closure on P ′, then cl = clr. By Proposition 4.4 and Corollary 4.5, we see that clr
is extensive and order-preserving on submodules. When we have shown clr is idempotent,

our proof will be complete.

Let (N,M) ∈ P ′ and P be a projective R-module with submodule L such that M ≅P /K
and N ≅ L/K in M, and (L,P ) ∈ P . It will be enough to show that clr is idempotent on

submodules of P /K. Suppose π ∶ P↠P /K, then by definition,

(L/K)clr
P /K

= Lcl
P +K
K

= Lcl
P

K
,
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where the last equality holds because cl is extensive. Now, applying clr to (L/K)clr
P /K

and

using the above equality and the idempotence of cl, we obtain

((L/K)clr
P /K

)clr
P /K

= (L
cl
P )clP
K

= Lcl
P

K
= (L/K)clr

P /K
,

concluding our proof.

Notation 4.8. When i is an interior operation, we denote LM
i ∶= i(L,M).

Proposition 4.9. Let M, P, and P ′ be as in Notation 4.1, and let i be a cofunctorial

(eq. functorial) interior operation defined on P. Assume that whenever (L,P ) ∈ P and

(L/K,P /K) ∈ P ′, then (LP
i ,P ),(LP

i +K,P ) ∈ P. Then the cohereditary version ic of i is

a cohereditary, cofunctorial (eq. functorial) interior operation given by

LM
ic ∶= π((π

−1(L))Pi ).

In particular, if i is a cohereditary, cofunctorial (eq. functorial) interior operation on P ′,
then ic = i.

Proof. First, we show that ic is intensive. Note that if (L,M) ∈ P ′ and π ∶ P↠M is a

surjective homomorphism inM with (π−1(L),P ) ∈ P , then since i is intensive

LM
ic = π((π

−1(L))Pi ) ⊆ π(π−1(L)) =L,

implying that ic is intensive.

Proposition 4.4 implies that ic is order-preserving on submodules. Thus, to show that ic
is a cohereditary interior operation, we need only show that ic is idempotent. Suppose P

is a projective R-module and K ⊆L ⊆ P are such that (L,P ) ∈ P and (L/K,P /K) ∈ P ′. By
the definition of ic and intensivity, we have

(L/K)P /Kic
= LP

i +K
K

⊆L/K.

Assuming further that ((L/K)P /Kic
,P /K) ∈ P ′, then

(L/KP /K
ic

)P /Kic
⊆ (L/K)P /Kic

as ic is order-preserving on submodules. We also know that LP
i ⊆ LP

i +K, so since

(LP
i ,P ),(LP

i +K,P ) ∈ P by hypothesis, then using the fact that i is idempotent, we have

LP
i = (LP

i )Pi ⊆ (LP
i +K)Pi ,

which implies that

(L/K)P /Kic
= LP

i +K
K

= (L
P
i )Pi +K
K

⊆ (L
P
i +K)Pi +K

K
= ((L/K)P /Kic

)P /Kic
.

Now, for any (N,M) ∈ P ′, with M ≅ P /K and N ≅L/K inM, we have

(NM
ic )

M
ic =N

M
ic ,

which implies that ic is idempotent and hence a cohereditary functorial interior

operation.

https://doi.org/10.1017/nmj.2023.36 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.36


536 N. EPSTEIN, REBECCA R. G., AND J. VASSILEV

Proposition 4.10. Let M, P, and P ′ be as in Notation 4.1, let p be a cofunctorial

pair operation defined on P ′, and let pc be its cohereditary version on P ′. Then pc ≤ p.

Proof. Suppose (L,M) ∈ P ′, and let π ∶ P↠M be a surjection in M such that

(π−1(L),P ) ∈ P . By definition pc(L,M) = π(p(π−1(L),P )). Since p is cofunctorial, then

π(p(π−1(L),P )) ⊆ π(π−1(p(L,M))) = p(L,M)

since π is surjective. Hence, pc ≤ p.

Corollary 4.11. Let cl be a cofunctorial (eq. functorial) closure operation defined

on P. Then clr ≤ cl.

Proof. Since cl is both cofunctorial and extensive, and cohereditary, extensive operations

are residual by Lemma 3.16, this is a direct consequence of Proposition 4.10.

Example 4.12. We note here that the inequality in Proposition 4.11 can be strict.

Namely, let R be any Noetherian local domain that is not a DVR or a field, let L be a

non-integrally closed ideal of R, and let N be the integral closure of L. Then the usual

integral closure of L in N is N itself, but the liftable (i.e., residual) integral closure of L in

N cannot be N (see Definition 2.9). Indeed, by [11, Prop. 2.4(11)], we have L�N ⊆L+mN ,

so by Nakayama’s lemma, we cannot have L�N =N .

For a concrete example, let R =k[[x,y]] where k is any field, let N be the ideal (x2,xy,y2),
and let L be the subideal (x2,y2). Then we have a surjection π ∶R→N/L given by 1↦xy+L.
The kernel is L ∶N = (x2,y2) ∶ xy = (x,y) =m, so L�N/L = π(m−R) = π(m) = 0, whence L�N =L.

Indeed, we can expand this example to give a case where 0clM and 0clrM can differ. For

this, let M =N/L, where R =R = k[[x,y]], N = (x2,xy,y2), and L = (x2,y2). Then, as above,
0�M = L�N

L
= 0, but 0−EHU

M =M . To see the latter equality, note first that HomR(M,R) = 0.
This is because if g ∶M→R is R-linear and c = g(xy+L), then since x2y ∈ L, we have 0 =
g(x2y+L) = g(x(xy+L)) = xg(xy+L) = xc, but since x is an R-regular element, it follows

that c=0. Thus, HomR(M,F ) =0 for any free module F, so that 0−EHU
M =M by Definition 2.8.

Since !=EHUr, we are done.

In Example 7.11, we present an example where the residual versions of two closures agree

on a particular pair, but the original closures disagree on the same pair.

Lemma 4.13. Let M, P, and P ′ be as in Notation 4.1. If p ≤ q are cofunctorial pair

operations defined on P, then pc ≤ qc on P ′. In particular, if c ≤ d are closure operations

on P, then cr ≤ dr on P ′.

Proof. If p ≤ q, then for all (N,P ) ∈ P , p(N,P ) ⊆ q(N,P ). If (L,M) ∈ P ′, then there exist

a projective module P and surjection π ∶P↠M inM such that pc(L,M) = π(p(π−1(L),P ))
and qc(L,M) = π(q(π−1(L),P )). Since p(π−1(L),P ) ⊆ q(π−1(L),P ), then

pc(L,M) = π(p(π−1(L),P )) ⊆ π(q(π−1(L),P )) = qc(L,M),

giving us the result.

Lemma 4.14. Let M, P, and P ′ be as in Notation 4.1. Let cl be a cofunctorial

(eq. functorial) closure operation on P with residual version clr. Let (L,M) ∈ P ′. Then,

for any projective module P and surjection π ∶ P↠M in M with (π−1(L),P ) ∈ P, we have

π−1(Lclr
M ) ⊆ π−1(L)clP .
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Proof. Let y ∈P with π(y) ∈Lclr
M . Let q ∶M↠M/L =∶ M̄ be the natural surjection. Then,

by functoriality of clr and by definition, we have

(q ○π)(y) ∈ q(Lclr
M ) ⊆ 0

clr
M/L

= (q ○π)((ker(q ○π))clP ) = (q ○π)(π−1(L)clP ) .

Hence, there is some a ∈ π−1(L)clP with q(π(y)) = q(π(a)). That is, π(y−a) ∈ kerq =L. Thus,
y−a ∈ π−1(L), whence

y = (y−a)+a ∈ π−1(L)+π−1(L)clP = π−1(L)clP .

The next result allows us to extend the notion of a cl-core from a functorial closure

operation to its residual version.

Proposition 4.15. Let (R,m) be a Noetherian local ring. Let M be the category of

finitely generated R-modules with R-module maps. Let cl be a cofunctorial (eq. functorial)

Nakayama closure operation on pairs of finitely generated R-modules with residual version

clr. Then clr is Nakayama as well.

Proof. Since clr is residual, by Lemma 3.18, it is enough to show that if L ⊆M are

finitely generated modules with L ⊆ (mL)clrM , we have L ⊆ 0clrM . Let P be a finitely generated

free module, and let π ∶ P ↠M be a surjection. Let K = kerπ. We claim that π−1(mL) =
K+mπ−1(L). To see this, first note that π(K+mπ−1(L))⊆π(K)+mπ(π−1(L))⊆mL, whence

K+mπ−1(L) ⊆π−1(mL). For the reverse inclusion, let x ∈π−1(mL). That is, π(x) ∈mL. Then

there exist yj ∈m and zj ∈L such that π(x) =∑n
j=1yjzj . By the surjectivity of π, there exist

z′j ∈ π−1(L) with π(z′j) = zj . It follows that x−∑n
j=1yjz

′
j ∈ kerπ =K. Thus, x ∈K +mπ−1(L).

Now, let z ∈ π−1(L). Then since π(z) ∈ L ⊆ (mL)clrM , by Lemma 4.14, we have

z ∈ (π−1(mL))clP = (K +mπ−1(L))clP . Thus, we have K ⊆ π−1(L) ⊆ (K +mπ−1(L))clP , so by

the Nakayama property for cl π−1(L) ⊆ Kcl
P = (kerπ)clP . Then, by the definition of clr,

L = π(π−1(L)) ⊆ π((kerπ)clP ) = 0clrM .

Liftable integral closure and integral closure are Nakayama closures. Hence, both the

liftable integral-core and the (integral)-core of a finitely generated module exist (see, e.g.,

[3], [10], [12] for definitions of core and cl-core). We will illustrate below that these can

differ by continuing our analysis of Example 4.12.

Example 4.16. We continue with the notation of Example 4.12. Note that not only can

we see that L�
m2 =L for L = (x2,y2), but the same argument we used in Example 4.12 will

illustrate that L�
m2 =L for any minimal (integral reduction) L of m2. Hence, !-corem2 m2 =

m2, because the only!-reduction of m2 in m2 is m2. However, by [3, Exam. 3.2], coreR(m2) =
m3 = corem2(m2), since all the minimal reductions of m2 in R are minimal reductions of m2

in m2, illustrating that corem2(m2) is properly contained in !-corem2(m2).

Proposition 4.17. Let cl be a cofunctorial (eq. functorial) closure operation on a class

P of pairs of R-modules that is finitistic, and let clr be its residual version, defined on a

class P ′ of pairs of R-modules. If (0,N/L) ∈ P ′ if and only if (L,N) ∈ P ′, then clr is also

finitistic.

Proof. First, we prove that if (0,M) ∈ P ′, then

0clrM = ⋃
(0,N)∈P ′,N⊆M f.g.

0clrN .
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Let (0,M) ∈ P ′, and let π ∶ P →M be a surjection from a projective module such that

(ker(π),P ) ∈ P . Let x ∈ 0clrM = π((ker(π))clP ). Since cl is finitistic, there is some kerπ ⊆U ⊆ P
such that U/ker(π) is finitely generated, (ker(π),U) ∈ P , and x ∈ π((ker(π))clU). Since

U is a submodule of a projective module, x ∈ π((ker(π))clrU ). Since clr is functorial by

Proposition 4.3, and by our hypothesis (0,π(U)) ∈ P ′, we have π((ker(π))clrU ) ⊆ 0
clr
π(U)

. Since

π(U) ≅ U/ker(π), it is finitely generated and (0,π(U)) ∈ P ′, and so π(U) is a finitely

generated submodule N of M such that x ∈ 0clrN . This proves our first claim.

Next, we prove that this implies that clr is finitistic on P ′. Let (L,M) ∈ P ′ such that

(0,M/L) ∈ P ′. Since clr is residual, Lclr
M = π−1(0clr

M/L
), where π ∶M →M/L is the quotient

map. Let x ∈ Lclr
M . By our first claim, there is some finitely generated N/L ⊆M/L such

that (0,N/L) ∈ P ′ and x ∈ π−1(0clr
N/L
). Let q ∶ N → N/L be the quotient map. We claim

that x ∈ q−1(0clr
N/L
). We know that q agrees with the composition N ↪M ↠M/L. Since

x ∈ π−1(0clr
N/L
), x ∈ π−1(N/L) =N . So x ∈Lclr

N = q−1(0clr
N/L
), as desired.

§5. Hereditary versions of pair operations

As the duality for pair operations discussed in [10, 9] only holds for complete local rings,

we cannot make use of our duality to define hereditary and absolute pair operations in full

generality. Hence, the proofs in this section are necessary but precisely dual to those in §4.
We will explore this duality further in §6. We end the section by showing that the finitistic

version of a hereditary closure operation is also hereditary, which we will need in §9.

Notation 5.1. Throughout this section, we assume the following:

(1) M will denote an abelian category of R-modules that has enough injectives.

(2) P will denote a set of pairs of R-modules (C,E) with C ⊆E, C,E ∈M and E injective.

(3) P ′ will denote a set of pairs such that P ⊆ P ′ and for every (A,B) ∈ P ′ with A ⊆ B,

there is an injective module E and an injection i ∶B→E inM with (i(A),E) ∈ P .
(4) In addition, if (A,B),(C,B) ∈ P ′ with A ⊆C, there is some injective module E and an

injection i ∶B→E in M such that (i(A),E),(i(C),E) ∈ P .
(5) We further assume:

(∗∗) Given A,B,E,i as above, if we have a commutative diagram in M

E
ψ̃ �� F

B
��
i

��

� � ψ �� C
��

j

��

satisfying

(a) ψ ∶B→C is injective,

(b) j ∶C↪F where F is an injective module,

(c) (j(ψ(A)),F ) ∈ P ,
(d) ψ̃ ∶ E → F is any map such that ψ̃ ○ i = j ○ψ (such a ψ̃ always exists by the

injectiveness of F ),

then (ψ̃−1(j(ψ(A))),E) ∈ P .
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Remark 5.2. In making this definition, the examples we have in mind are:

(1) M=R-modules, P = all pairs where the second module is injective, and P ′ = all pairs

in M.

(2) R is local, M= Artinian R-modules, P = all pairs in M where the second module is

injective, and P ′ = all pairs inM.

(3) M= graded R-modules with graded R-module homomorphisms, P = all graded injective

modules, and P ′ = all pairs inM.

As with Remark 4.2, we can also apply our results in much more restrictive cases.

Proposition 5.3. Let M, P , and P ′ be as in Notation 5.1, and let p be a functorial

pair operation defined on P. Then we can define a hereditary, functorial pair operation ph
as follows: for a pair (A,B) ∈ P ′, let i ∶B →E be a monomorphism in M with E injective

and (i(A),E) ∈ P; we define

ph(A,B) ∶= i−1(p(i(A),E)).

Viewing i as the inclusion map, this is equal to p(A,E)∩B.

In particular, if p is a hereditary, functorial pair operation defined on P ′, then ph = p.

Proof. We first show that this is well defined, independent of i and E. Accordingly, let

(A,B) ∈ P ′ and i ∶B↪E and i′ ∶B↪E′ be inclusions in M, where E,E′ are injective and

(i(A),E),(i′(A),E′) ∈ P .
Since i′ is injective and E is injective, there is some R-linear map ϕ ∶ E′ → E in M

with i = ϕ ○ i′. Let z ∈ ph(A,B) with respect to i′, so there is some y ∈ p(i′(A),E′) with

i′(z) = y. Then i(z) = (ϕ ○ i′)(z) = ϕ(y). We have ϕ(y) ∈ ϕ(p(i′(A),E′)). By functoriality,

this is contained in p(ϕ(i′(A)),E) = p(i(A),E). But then, i(z) ∈ p(i(A),E), so z ∈ ph(A,B)
with respect to E, as desired. This gives us one inclusion, and the other follows by symmetry.

Next, we show that ph satisfies the isomorphism criterion. Suppose ϕ ∶ M → M ′ is

an isomorphism, (L,M),(ϕ(L),M ′) ∈ P ′, and i ∶M↪E with E injective and (i(L),E) =
((i○ϕ−1)(ϕ(L)),P ) ∈ P . Then

ϕ(ph(L,M)) =ϕ(i−1(p(i(L),E))) =ϕ(i−1(p(i(ϕ−1(ϕ(L))),E)))
= (i○ϕ−1)−1(p((i○ϕ−1)(ϕ(L)),E)) = ph(ϕ(L),M ′),

which shows that ph is invariant under isomorphisms.

Now, we show that ph is hereditary. Let A ⊆ C ⊆ B with (A,C),(A,B) ∈ P ′, and let

i ∶B↪E in M with E injective such that (i(A),E) ∈ P as in Notation 5.1. Let j ∶C↪B be

the canonical inclusion. Then

ph(A,C) = (i○j)−1(p((i○j)(A),E))
= j−1(i−1(p(i(j(A)),E)))
= j−1(ph(j(A),B))
= ph(j(A),B)∩C
= ph(A,B)∩C.

Note that j(A) = A and (i ○ j)(A) = i(A), making (j(A),B) ∈ P ′ and ((i ○ j)(A),E) ∈ P .
Hence, ph is hereditary.
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We now show that ph is functorial. Accordingly, let (A,B) ∈P ′ and let ϕ ∶B→D inM such

that (ϕ(A),D) ∈P ′. Choose maps i ∶B↪E and i′ ∶D↪E′ inM with E,E′ injective such that

(i(A),E),(i′(ϕ(A)),E′) ∈ P . Then, since E′ is injective and i is injective, there is some R-

linear map ϕ̃ ∶E→E′ inM with i′○ϕ= ϕ̃○i. Now, let z ∈ ph(A,B). Then y = i(z) ∈ p(i(A),E).
Hence, ϕ̃(y) ∈ ϕ̃(p(i(A),E)). By functoriality of p when the ambient modules are injective,

this is contained in p(ϕ̃(i(A)),E′) = p(i′(ϕ(A)),E′). Since ϕ̃(y) = ϕ̃(i(z)) = i′(ϕ(z)) and

i′ is injective, (i′)−1(ϕ̃(y)) = {ϕ(z)}. This element must be in (i′)−1(p(i′(ϕ(A)),E′)) =
ph(ϕ(A),D). Hence, ϕ(z) ∈ ph(ϕ(A),D), so ph is functorial.

For the final statement, assume that p is hereditary. For (A,B) ∈ P ′ and i ∶B→E inM
such that (i(A),E) ∈ P , we have ph(A,B) = p(A,E)∩B = p(A,B), as desired.

Proposition 5.4. Let M, P, and P ′ be as in Notation 5.1. Let p be a functorial pair

operation defined on P that is order-preserving on submodules. Then ph is a hereditary

functorial pair operation that is order-preserving on submodules.

Proof. Since ph is a functorial hereditary pair operation by Proposition 5.3, it suffices

to show that for A ⊆C ⊆B with (A,B),(C,B) ∈ P ′, ph(A,B) ⊆ ph(C,B). By Notation 5.1,

there is some injective module E containing B, with the inclusion morphism i in M, such

that (i(A),E),(i(C),E) ∈ P , and by definition ph(A,B) = p(i(A),E)∩B. Since p is order-

preserving on submodules, we have p(i(A),E) ⊆ p(i(C),E), and intersecting each of these

modules with B, we obtain ph(A,B) = p(i(A),E)∩B ⊆ p(i(C),E)∩B = ph(C,B), which is

what we needed to show.

Corollary 5.5. Let M, P, and P ′ be as in Notation 5.1. Further, assume that if

(A,B) ∈ P ′, then (A,A) ∈ P ′. Let p be a functorial pair operation defined on P that is

intensive. Then ph is an absolute, functorial pair operation on P ′. In particular, if p is an

absolute pair operation defined on P ′, then ph = p.

Proof. Suppose (A,B) ∈ P ′ and i ∶ B → E is an injective homomorphism in M with

(i(A),E) ∈ P . Since p is intensive,

ph(A,B) = p(i(A),E)∩B ⊆ i(A)∩B =A,

implying that ph is intensive. By Lemma 3.15, an intensive hereditary pair operation is

absolute. Thus, by Proposition 5.3, ph is absolute and functorial. If p is a functorial absolute

pair operation, then p is a functorial intensive hereditary pair operation by Lemma 3.15

and again Proposition 5.3 gives us that ph = p when p is residual.

Notation 5.6. As intensive hereditary pair operations are absolute by Lemma 3.15,

we will denote ph = pa when p is additionally intensive.

Proposition 5.7. Let M, P, and P ′ be as in Notation 5.1, and let i be a functorial

interior operation on P. Then the absolute version ia of i is an absolute interior operation

on P ′. If i is defined on P ′ and is absolute, then i = ia.

Proof. Since every absolute interior operation is an absolute pair operation, then

Corollary 5.5 gives us that ia is a functorial absolute pair operation on P ′ and if i is

an absolute interior on P ′, then i = ia. By Proposition 5.4, we see that ia is order-preserving

on submodules. When we have shown ia is idempotent, our proof will be complete.
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Let (A,B) ∈ P ′ and E be an injective R-module containing B such that the inclusion

i ∶B→E is inM and (A,E) ∈ P . Note that

AB
ia =A

E
i ∩B =AE

i ,

where the last equality holds because i is intensive. Now, applying ia to AB
ia

and using the

above equality and the idempotence of i, we obtain

(AB
ia)

B
ia = (A

E
i )Ei =AE

i =AB
ia ,

concluding our proof.

Proposition 5.8. Let M, P, and P ′ be as in Notation 5.1, and let cl be a functorial

closure operation on P. Then the hereditary version clh of cl is a hereditary closure operation

on P ′. If cl is defined on P ′ and is hereditary, then cl = clh on P ′.
Proof. Note that if A ⊆ B ⊆ E, with E injective, the inclusion morphism in M, and

(A,E) ∈ P , since cl is extensive, we have

Aclh
B =Acl

E ∩B ⊇A∩B =A,

implying that clh is extensive. Proposition 5.4 implies that clh is order-preserving on

submodules. To show that clh is a closure operation, we need only show that clh is

idempotent. After this, we will be done by Proposition 5.3, which tells us that clh is

hereditary and that if cl is hereditary, then cl = clh.
Let A ⊆B ⊆E, where E is injective with inclusion morphism in M, and (A,E) ∈ P . By

Proposition 5.4 and the fact that clh is extensive, we have

Aclh
B ⊆ (Aclh

B )
clh
B .

Since Aclh
B =Acl

E ∩B ⊆Acl
E and cl is order-preserving on submodules,

(Aclh
B )

cl
E = (Acl

E ∩B)clE ⊆ (Acl
E)clE =Acl

E ,

where the last equality holds by idempotence of cl. Intersecting with B, we obtain

(Aclh
B )

clh
B = (Aclh

B )
cl
E ∩B ⊆Acl

E ∩B =Aclh
B

and we conclude that clh is idempotent.

Proposition 5.9. Let p be a functorial pair operation defined on P ′. Then ph ≥ p.
Proof. Suppose A ⊆B with (A,B) ∈ P . Let E be a injective module and i ∶B → E an

injective R-module homomorphism inM such that (i(A),E) ∈ P . Since p is functorial,

i(p(A,B)) ⊆ p(i(A),E).

Identifying p(A,B) with its image in E since i is injective,

p(A,B) ⊆ p(i(A),E)∩B = ph(A,B).

Hence, ph ≥ p.
Corollary 5.10. Let i be a functorial interior operation defined on P ′. Then ia ≥ i.
Proof. This is a direct consequence of Proposition 5.9.

The above inequality may be strict; we illustrate this in Example 7.15.
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Lemma 5.11. Let M, P, and P ′ be as in Notation 5.1. If p ≤ q are pair operations

defined on P, then ph ≤ qh on P ′. In particular, if i ≤ j are interior operations on P, then
ia ≤ ja on P ′.

Proof. If p ≤ q, then for all (C,E) ∈ P , p(C,E) ⊆ q(C,E). If (A,B) ∈ P ′, then there

exists an injective module E containing B such that the inclusion morphism is in M and

(A,E) ∈P . Then ph(A,B) = p(A,E)∩B and qh(A,B) = q(A,E)∩B. Since p(A,E) ⊆ q(A,E),
then

ph(A,B) = p(A,E)∩B ⊆ q(A,E)∩B = qh(A,B),

as desired.

Proposition 5.12. Let (R,m) be a Noetherian local ring, and letM be the category of

Artinian R-modules with R-module maps. Let i be a functorial Nakayama interior operation

on pairs of Artinian R-modules with absolute version ia. Then ia is Nakayama as well.

Proof. Let A ⊆C ⊆B be Artinian R-modules and suppose that (A ∶C m)Bia ⊆A. We will

show that AB
ia
= CB

ia
. Let E =ER(R/m) and j ∶B↪Et for some t (this exists because B is

Artinian). Since i is intensive, (A ∶C m)Bia = (A ∶C m)Et

i , and so (A ∶C m)Et

i ⊆ A. Since i is

Nakayama, this implies that AEt

i =CEt

i . By the definition of ia, we have

AB
ia =A

Et

i =CEt

i and CB
ia =C

Et

i .

Consequently, CB
ia
=AB

ia
. Hence, ia is Nakayama.

We end the section with a result on finitistic hereditary closure operations, which is used

in §9.

Proposition 5.13. Let R be a Noetherian ring. Let cl be a hereditary closure operation

defined on finitely generated R-modules. Then clf is a hereditary closure operation on all

R-modules. Hence, clf = clfh.

Proof. Since cl is hereditary, it is restrictable. Hence, by Lemma 3.29 clf is a closure

operation. It remains to prove that clf is hereditary.

Let L ⊆N ⊆M be R-modules. Since for U ⊆N finitely generated, U ⊆M as well, L
clf
N ⊆

L
clf
M ∩N . For the reverse direction, let x ∈ Lclf

M ∩N . Then there is some V ⊆M finitely

generated such that x ∈ (L∩V )clV . Set U ∶= V ∩N , which is a finitely generated submodule

of N. Since L∩V ⊆L ⊆N , L∩V =L∩U . Since cl is hereditary,

(L∩U)clU = (L∩V )clU = (L∩V )clV ∩U = (L∩V )clV ∩N.

Since x ∈N by assumption, x ∈ (L∩U)clU , so x ∈Lclf
N . Hence, L

clf
M ∩N ⊆Lclf

N .

§6. Duality of hereditary and cohereditary versions of pair operations

Next, we compare the dual operations obtained by taking the cohereditary version of a

pair operation (resp. the residual version of a closure) and taking its dual by the method of

[8], versus using the non-residual dual from [9]. Note that if the closure is already residual,

the two computations agree by the last sentence of Proposition 4.7.
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Proposition 6.1. Let (R,m) be a complete local ring.

(1) IfM, P, and P ′ are as defined in Notation 4.1, with the additional assumptions that all

modules are Noetherian, then P∨ and (P ′)∨ are sets of pairs as defined in Notation 5.1.

(2) IfM, P, and P ′ are as defined in Notation 5.1, with the additional assumptions that all

modules are Artinian, then P∨ and (P ′)∨ are sets of pairs as defined in Notation 4.1.

Remark 6.2. The hypotheses involving Noetherian and Artinian conditions are both

so that if E is injective, then E∨ is projective, and in order to dualize the diagrams used to

prove that Condition (∗) from Notation 4.1 implies Condition (∗∗) from Notation 5.1 and

vice versa. Note that the hypotheses are consistent with where we will apply this result—to

sets of pairs P ′ consisting of Noetherian and/or Artinian modules.

Proof of Proposition 6.1. First, we note that given a pair (N,P ) ∈P as in Notation 4.1, P

is projective. This implies that P ∨ is injective by [6, Th. 3.2.9]. Hence, pairs ((P /N)∨,P ∨) ∈
P∨ are valid pairs in the sense of Notation 5.1. Conversely, if (C,E) ∈ P as in Notation 5.1,

since E is Artinian by hypothesis, E∨ is finitely generated and flat, and hence projective, by

[6, Th. 3.2.16]. Thus, pairs ((E/C)∨,E∨) ∈ P∨ are valid pairs in the sense of Notation 4.1.

Further, since we have assumed that all modules are Matlis dualizable, P∨∨ = P and

(P ′)∨∨ = P ′ for P and P ′ in the sense of either Notation 4.1 or Notation 5.1. It will suffice

to show that the conditions of Notation 4.1 hold for P and P ′ if and only if the conditions

of Notation 5.1 hold for P∨ and (P ′)∨.
Let (L,M) ∈ P ′ and π ∶ P ↠M in M be such that P is projective and (π−1(L),P ) ∈ P .

Set B =M∨, E = P ∨, i = π∨, and A = (M/L)∨. We claim that (i(A),E) ∈ P∨ if and only if

(π−1(L),P ) ∈ P . By Lemma 3.4, we have

i(A) = π∨((M/L)∨) = (P /π−1(L))∨.

Hence,

(i(A),E) = ((P /π−1(L))∨,P ∨) ∈ P∨.

This proves our claim.

Next, assume that (L,M),(N,M) ∈ P ′, with L ⊆M . Suppose that there is some π ∶
P →M with (π−1(L),P ),(π−1(N),P ) ∈ P . Set B =M∨, E = P ∨, i = π∨, A = (M/L)∨, and
C = (M/N)∨. Then

i(A) = (P /π−1(L))∨

and

i(C) = (P /π−1(N))∨

as above. So

(i(A),E) = ((P /π−1(L))∨,P ∨) ∈ P∨,

and the same for (i(C),E). The reverse implication follows similarly.

To finish the proof, we show that Condition (∗) of Notation 4.1 holds on P and P ′ if and
only if Condition (∗∗) of Notation 5.1 holds on P∨ and (P ′)∨. Assume that the following

diagrams are Matlis duals:
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P

π
����

ϕ̃ �� Q

q
����

M
ϕ �� �� N

F E
ψ̃

��

C
��

j

��

B��ψ
�� ��

i

��

where F = P ∨, E = Q∨, C = M∨, and N = B∨. Further, assume that P and Q are

projective (so F and E are injective). Set L ⊆M and assume (L,M),(ϕ(L),N) ∈ P ′ and
(π−1(L),P ),(q−1(ϕ(L)),Q) ∈P . Dually, if we set A = (N/ϕ(L))∨, we get (A,B),(ψ(A),C) ∈
(P ′)∨ and (i(A),E),(j(ψ(A)),F ) ∈ P∨ by repeated use of Lemma 3.4.

We claim that (ϕ̃(π−1(L)),Q) ∈ P if and only if (ψ̃−1(j(ψ(A))),E) ∈ P∨. This will show
that Condition (∗) holds on P and P ′ if and only if Condition (∗∗) holds on P∨ and (P ′)∨.
By Lemma 3.4, we have

j(ψ(A)) = π∨((M/L)∨) = (P /π−1(L))∨.

Further,

ψ̃−1((P /π−1(L))∨) = (ϕ̃∨)−1((P /π−1(L))∨).

We can see that the set of maps f ∶Q→ER(k) such that π−1(L) ⊆ ker(f ○ ϕ̃) are exactly

the maps with ϕ̃(π−1(L)) ⊆ ker(f). So

(ϕ̃∨)−1((P /π−1(L))∨) = (Q/ϕ̃(π−1(L)))∨.

Hence,

(ψ̃−1(j(ψ(A))),E) = ((Q/ϕ̃(π−1(L)))∨,Q∨),

which completes the proof.

Proposition 6.3. Let (R,m) be a complete local ring.

(1) LetM, P, and P ′ be defined as in Notation 4.1 with the additional assumption that all

modules are finitely generated. If p is a cofunctorial pair operation defined on P and

pc is the cohereditary version of p defined on P ′, then (pc)⌣ = (p⌣)h is the hereditary

version of p⌣ defined on (P ′)∨. In particular, if cl is a cofunctorial (hence, functorial)

closure operation defined on P and clr is the residual version of cl defined on P ′, then
(clr)⌣ = (cl⌣)a is the absolute version of the interior cl⌣.

(2) Let M, P, and P ′ be defined as in Notation 5.1 with the additional assumption that

all modules are Artinian. If p is a functorial pair operation defined on P and ph is the

hereditary version of p defined on P ′, then (ph)⌣ = (p⌣)c is the cohereditary version of

p⌣ defined on (P ′)∨.
In particular, if i is a functorial interior operation defined on P and ia is the absolute

version of i defined on P ′, then (ia)⌣ = (i⌣)r is the residual version of the closure i⌣.

Proof. (1): By Proposition 6.1, if P and P ′ are sets of finitely generated pairs as defined

in Notation 4.1, then P∨ and (P ′)∨ are sets of Artinian pairs as defined in Notation 5.1.

Let (A,B) ∈ (P ′)∨ and i ∶B↪E be an injective homomorphism inM so that (i(A),E) ∈ P∨.
Choose L ⊆M such that B =M∨ and A = (M/L)∨ so that (L,M) ∈ P ′. Set P = E∨ and

π = i∨. Since p is cofunctorial, p⌣ is functorial by Proposition 3.9. Thus, we know that

pc(L,M) = π(p(π−1(L),P )) and (p⌣)h(A,B) = i−1(p⌣(i(A),E)). By definition,
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(pc)⌣(A,B) = (
B∨

pc((B/A)∨,B∨)
)
∨

= ( M

pc(L,M)
)
∨

= ( M

π(p(π−1(L),P )))
∨

= i−1(( P

p(π−1(L),P ))
∨

) = i−1(p⌣((P /π−1(L))∨,P ∨))

= i−1(p⌣(i(A),E)) = (p⌣)h(A,B),

where the fourth to last equality follows from Lemma 3.4.

(2): By Proposition 6.1, if P and P ′ are sets of Artinian pairs as defined in Notation

5.1, then P∨ and (P ′)∨ are sets of finitely generated pairs as defined in Notation 4.1. Let

(L,M) ∈ (P ′)∨ and π ∶P↠M be a surjective homomorphism inM so that (π−1(L),P ) ∈P∨.
Choose A ⊆ B such that M = B∨ and A = (M/L)∨ so that (A,B) ∈ P ′. Set E = P ∨ and

i = π∨. Since p is functorial, p⌣ is cofunctorial by Proposition 3.9. Thus, we know that

ph(A,B) = i−1(p(i(A),E)) and (p⌣)c(L,M) = π(p⌣(π−1(L),P )). By definition,

(ph)⌣(L,M) = (
M∨

ph((M/L)∨,M∨))
∨

= ( B

ph(A,B)
)
∨

= ( B

i−1(p(i(A),E)))
∨

= π(( E

p(i(A),E))
∨

) = π(p⌣((P /π−1(L))∨,E∨))

= π(p⌣(π−1(L),P )) = (p⌣)h(L,M),

where the fourth to last equality follows from Lemma 3.4.

Remark 6.4. In the special case that p is defined on P ′, we can give a different proof

of Proposition 6.3, which uses the following lemma.

Lemma 6.5. Let (R,m) be a complete local ring.

(1) LetM, P, and P ′ be defined as in Notation 4.1 with the additional assumption that all

modules are finitely generated. If p is a cofunctorial pair operation defined on P ′ and
pc is the cohereditary version of p defined on P ′, then p⌣ ≤ (pc)⌣.

In particular, if cl is a cofunctorial (hence functorial) closure operation defined on

P ′ and clr is the residual version of cl defined on P ′, then cl⌣ ≤ (clr)⌣.
(2) Let M, P, and P ′ be defined as in Notation 5.1 with the additional assumption that

all modules are Artinian. If p is a functorial pair operation defined on P ′ and ph is the

hereditary version of p defined on P ′, then p⌣ ≥ (ph)⌣.
In particular, if i is a functorial interior operation defined on P ′ and ia is the absolute

version of i defined on P ′, then i⌣ ≥ (ia)⌣.

Proof. Both (1) and (2) are direct consequences of Propositions 3.25, 4.10, and 5.9.

Proposition 6.6. Let (R,m) be a complete local ring.

(1) Let M, P, and P ′ be defined as in Notation 4.1 with the additional assumption that

all modules are finitely generated. If p is a cofunctorial pair operation defined on P ′
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and pc is the cohereditary version of p defined on P ′, then (p⌣)h = (pc)⌣ for all pairs

in (P ′)∨.
In particular, if cl is a cofunctorial (hence, functorial) closure operation defined on

P ′ and clr is the residual version of cl defined on P ′, then (cl⌣)a = (clr)⌣ for all pairs

in (P ′)∨.
(2) Let M, P, and P ′ be defined as in Notation 5.1 with the additional assumption that

all modules are Artinian. If p is a functorial pair operation defined on P ′ and ph is the

hereditary version of p defined on P ′, then (p⌣)c = (ph)⌣ for all pairs in (P ′)∨.
In particular, if i is a functorial interior operation defined on P ′ and ia is the absolute

version of i defined on P ′, then (i⌣)r = (ia)⌣ for all pairs in (P ′)∨.

Proof. (1): By Proposition 4.3, pc is a cofunctorial, cohereditary pair operation on P ′.
Now, by Propositions 3.9 and 3.17, (pc)⌣ is a functorial and hereditary pair operation on

(P ′)∨. Hence, ((pc)⌣)h = (pc)⌣ according to Proposition 5.3. By Proposition 4.10, we have

pc ≤ p. Applying Lemma 6.5(1), (pc)⌣ ≥ p⌣, and by Lemma 5.11,

(pc)⌣ = ((pc)⌣)h ≥ (p⌣)h. (∗)

By Proposition 5.9, p⌣ ≤ (p⌣)h is a pair operation on (P ′)∨ and (P ′)∨ satisfies Notation 5.1

by Proposition 6.1. Since for all pairs (L,M) ∈P ′, M is finitely generated, their Matlis duals

are Artinian implying that (A,B) ∈ (P ′)∨. Applying Lemma 6.5(2), we obtain p = (p⌣)⌣ ≥
((p⌣)h)⌣ and ((p⌣)h)⌣ is cofunctorial and cohereditary on P ′ by Propositions 3.9 and 3.17.

It follows from Lemma 4.13 that pc ≥ (((p⌣)h)⌣)c = ((p⌣)h)⌣. Now, by Proposition 3.25,

(pc)⌣ ≤ (((p⌣)h)⌣)⌣ = (p⌣)h. (∗∗)

Combining (*) and (**), we obtain the result.

The proof of (2) follows the same reasoning.

§7. Hereditary and cohereditary versions of J -basically full closure and

J -basically empty interior

In this section, we will consider the closure operation Jbf and the interior operation Jbe

through the lenses of hereditary and cohereditary pair operations.

In [9], we dualized Jbf by developing a duality for closures that were not necessarily

residual. Here, we present an alternate method of dualizing Jbf, by taking its residual

version Jbfr and dualizing that instead. Note that since Jbfr is residual, its dual is the

same whether computed by the method of [8] or the method of [9] (see [9, Prop. 3.2]).

Definition 7.1 [9, Def. 4.2]. Let R be a commutative ring. Let J be an ideal of R.

Then, for any submodule inclusion L ⊆M , we define the J -basically full closure of L in M

as follows:

LJbf
M ∶= (JL ∶M J).

Definition 7.2 [9, Def. 4.9]. Let R be a commutative ring. Let J be an ideal of R.

Then, for any submodule inclusion L ⊆M , we define the J -basically-empty interior of L in

M as follows:

LM
Jbe ∶= J(L ∶M J).
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We proved in [9, Th. 4.12] that Jbf and Jbe are dual pair operations on pairs of finitely

generated modules or pairs of Artinian modules over a complete local ring.

We first consider Jbf. We showed that Jbf is functorial in [9, Prop. 4.7]. Although Jbf

is not residual, we can show that Jbf is hereditary.

Proposition 7.3. Let R be a commutative ring. For any ideal J of R, the operation

Jbf is a hereditary closure operation.

Proof. Let L ⊆ N ⊆M be R-modules. Clearly, LJbf
N ⊆ LJbf

M ∩N by functoriality. Now,

suppose that z ∈ LJbf
M ∩N . Since LJbf

M = (JL ∶M J), then Jz ⊆ JL and z ∈ N . Hence, z ∈
(JL ∶N J) =LJbf

N .

By Proposition 5.8, Jbfh = Jbf. Since Jbf is functorial, we define the residual version of

Jbf, which is a residual closure by Proposition 4.7.

Definition 7.4. Let R be a commutative ring. For any module M, let π ∶ P↠M be

a surjection with P projective. Then, for a submodule inclusion L ⊆M , we set LJbfr
M =

π(π−1(L)JbfP ).

By Corollary 4.11, we have the following comparison between Jbfr and Jbf.

Corollary 7.5. Let R be a commutative ring, and let J be an ideal of R. For any

R-submodule inclusion L ⊆M , LJbfr
M ⊆LJbf

M .

Similar to Example 4.12, the inequality Jbfr ≤ Jbf can be strict, as seen in the example

below.

Example 7.6. Let R = k[[x,y]], where k is any field, let the module M be the ideal

(x3,x2y2,y3), and let L be the subideal (x3,y3). Then we have a surjection π ∶ R→M/L
given by 1↦ x2y2+L. The kernel is

L ∶R (x2y2) = (x3,y3) ∶R (x2y2) = (x,y) =m,

so Lmbfr
M /L = π(mmbf

R ) = π(m) = 0, whence Lmbfr
M =L. However, Lmbf

M =M .

The next result tells us that we can compute Jbfr-cores.

Corollary 7.7. Let R be a commutative ring, and let J be an ideal of R. The closure

operation Jbfr is a Nakayama closure.

Proof. This follows from [9, Prop. 4.7] and Proposition 4.15.

The next example exhibits an instance where the residual basically full core of a

submodule is not the same as the basically full core of the submodule (see [9, §§4 and 8]

for relevant definitions).

Example 7.8. Let R = k[[t2, t3]], m = (t2, t3), and La = (t2 +at3) for any a ∈ k. First,
note that (mLa ∶m m) = (m2 ∶m m) = m for any a ∈ k making (La)mbf

m
= m. Hence, La is an

mbf-reduction of m for all a ∈ k. Note that (m(t3, t4) ∶m m) = ((t5, t6) ∶m m) = (t3, t4), so no

other ideal in the lattice of ideals in m is an mbf-reduction of m. Thus,

mbf -coremm = ⋂
a∈k

La =m2.
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To see that mbfr -coremm =m ≠m2, we will show that none of the La are mbfr-reductions

of m in m. Consider πa ∶ R↠m/La, given by πa(1) = t3. Since ker(πa) = m and mmbf
R = m,

0mbfr
m/La

= 0. Since mbfr ≤mbf , (t3, t4)mbfr
m ≠m.

Since mbfr is residual, (La)mbfr
m =La ≠m.

Next, we show that Jbfr is finitistic, provided that J is finitely generated.

Proposition 7.9. Let R be a commutative ring, and let J be a finitely generated ideal

of R. Let α be the preradical on R-modules given by α(M) = 0JbfrM . Then α = αf , that is, α

is finitistic. It follows that Jbfr is a finitistic closure operation.

Proof. Let y ∈α(M), so that y ∈ 0JbfrM . Then there exist a free module F and a submodule

L ⊆ F such that π ∶ F ↠M is a surjection with kernel L and there is some z ∈ LJbf
F with

π(z) = y. Write F =⊕α∈ΛReα, where the eαs form a free basis for F over R. Then, as z ∈F ,

z is a linear combination of only finitely many eαs. Let j1, . . . ,jm be a system of generators

for the ideal J. Thus, Jz involves only these eαs. Similarly, as each jiz ∈ JL, there is some

finitely generated submodule L′ of L such that each jiz ∈ JL′, so that Jz ⊆ JL′. As L′

is finitely generated, its generators use only finitely many eα’s. Thus, there is some finite

collection {α1, . . . ,αn} ⊆Λ such that, writing G ∶=⊕n
i=1Reαi , we have L

′ ⊆G and z ∈G. Thus,

Jz ⊆ JL′, and since also z ∈G, we have z ∈ JL′ ∶G J = Jbf
(L′)G. Thus, since L′ ⊆ L = kerπ, we

have y = π(z) ∈ 0Jbfr
π(G)

=α(π(G)), so that since π(G) is a finitely generated submodule of M,

α = αf .

For the final statement, let L ⊆M and let x ∈ LJbfr
M . Then x̄ ∈ 0Jbfr

M/L
= α(M/L) (by

residuality), so that since α is finitistic, there is some finitely generated T ⊆M/L with

x̄ ∈α(T ). But by the correspondence theorem, T =N/L, for some N with L ⊆N ⊆M . That

is, x̄ ∈ 0Jbfr
N/L

, so that since Jbfr is residual, x ∈ LJbfr
N . Then, by [10, Lem. 3.2] (see also

Lemma 3.27), we are done.

The assumption that J is finitely generated is necessary in Proposition 7.9, as shown in

the following example.

Example 7.10. Let (R,m) be a valuation ring whose value group is Q. Then m2 =m
by [15, Exer. 6.29], since m is not principal as whenever x is a nonunit with value α, there

is an element of value α/2 in m∖xR. Thus, mmbf
R = (m2 ∶R m) = (m ∶R m) =R. On the other

hand, let I be a nonzero finitely generated R-submodule of m—that is, a finitely generated

proper ideal of R. Then there is some x ∈m with I = xR. Then Imbf
R =mI ∶m =mx ∶m ⊆m,

since x ∉mx (since every element of mx has value strictly greater than the value of x ), but

x ∈m. Thus, m
mbff
R =m ≠R =mmbf

R . Thus, in the notation of the proposition, α(R/m) =R/m
while αf(R/m) = 0.

The following example illustrates that even when liftable integral closure (see Defini-

tion 2.9) and residual m-basically full closure agree, one can still have a proper containment

with respect to their non-residual versions.

Example 7.11. LetR=k[[x,y]] where k is any field, letM be the ideal (x3,x2y,xy2,y3),
and let L be the subideal (x3,y3). Then we have a surjection π ∶R2→M/L given by (1,0)↦
x2y+L and (0,1) ↦ xy2+L. The kernel is K = ⟨(x,0),(y,−x),(0,y)⟩. As

mK = ⟨(x2,0),(xy,−x2),(0,xy),(xy,0),(y2,−xy),(0,y2)⟩ =m2⊕m2,
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we see that Kmbf
R2 =mK ∶R2 m =m⊕m making

π(Kmbf
R2 ) =Lmbfr

M /L = (x
2y2)+L
L

.

Observe also that Lmbf
M = (x3,x2y2,y3) =Lmbfr

M , whereas, we can use the symmetric algebra

Sym(R2) of R2 to determine that K is a reduction of m⊕m which is integrally closed in

R2. Note that

Sym(K) ≅R[xt1,yt1−xt2,yt2] ⊆R[t1, t2] ≅ Sym(R2).

We need only show that yt1,xt2 ∈
√
(xt1,yt1−xt2,yt2)R[mt1,mt2] by [15, Th. 16.2.3]. By

the following computation, we see that

(yt1)2 = yt1(yt1−xt2)−xt1(yt2) and (xt2)2 = −xt2(yt1−xt2)−xt1(yt2),

implying that K−R2 = m⊕m. Since R2 is free, both the Rees integral closure and EHU

integral closure are equal. This is why we are labeling the integral closure of K in R2

without specification of Rees or EHU. Thus,

L�M/L = π(K−R2) = π(m⊕m) =
(x2y2)+L

L
.

Since M ⊆R, L−M = L−R =M . Comparing our computations above, we see that L�M = Lmbfr
M ,

but Lmbf
M ⊊L−M .

The following result holds by duality when the ring is complete and local, but we prove

it in more generality here.

Proposition 7.12. For any ideal J, the operation Jbe is a cohereditary interior

operation.

Proof. Let L ⊆N ⊆M be R-modules. Suppose π ∶M↠M/L is the natural epimorphism.

Since Jbe is functorial by [9, Prop. 4.10],

π(NM
Jbe) =

NM
Jbe+L
L

⊆ (N/L)M/LJbe .

As (N/L)M/LJbe = J(N/L ∶M/L J), the elements of (N/L)M/LJbe are of the form
n

∑
i=1

ji(zi +L)
where ji ∈ J and zi +L ∈ (N/L ∶M/L J); thus, J(zi +L) ⊆ N/L, which implies that Jzi ⊆

N . Hence, zi ∈ (N ∶M J) and
n

∑
i=1

ji(zi +L) ⊆
NM

Jbe+L
L

, giving us the equality
NM

Jbe+L
L

=

(N/L)M/LJbe , which implies that Jbe is cohereditary.

Now, by Proposition 4.9, Jbec = Jbe. Though Jbe is not absolute, since Jbe is functorial,

we can define the absolute version via Proposition 5.7.

Definition 7.13. Let L ⊆ M be R-modules, and let E be any injective module

containing M. The absolute Jbe interior is defined by

LM
Jbea ∶=L

E
Jbe∩M.

By Corollary 5.10, we obtain the following.

Corollary 7.14. For any R-module inclusion L ⊆M , LM
Jbe ⊆LM

Jbea
.

https://doi.org/10.1017/nmj.2023.36 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.36


550 N. EPSTEIN, REBECCA R. G., AND J. VASSILEV

To see that the inequality Jbe ≤ Jbea is strict, consider the following example.

Example 7.15. Let R = k[[t2, t5]]. The quotient field Q = k((t2, t5)) = k((t)) is an

injective module containing R by [20, Prop. 3.34(i)]. Consider J = (t5, t6). Note that

t3 ∈Q∖R. Hence, (J ∶Q m) = (t3, t4), but (J ∶R m) = (t4, t5). Thus, JQ
mbe =m(J ∶Q m) = (t5, t6)

making JR
mbea

= (t5, t6)∩R = (t5, t6) which properly contains (t6, t7) =m(J ∶R m) = JR
mbe.

The following result tells us that we can compute Jbea-hulls.

Corollary 7.16. The interior operation Jbea is a Nakayama interior.

Proof. This follows from Proposition [9, Prop. 4.10] and Proposition 5.12.

We will also demonstrate that the m-basically empty hull can differ from the absolute

version of m-basically empty hull. First, we include a result on numerical semigroup rings.

Before stating this result, we recall some nice numerical invariants of numerical semigroup

rings.

Recall that a ring R = k[[tS]], where S = ⟨s1,s2, . . . ,sn⟩ ⊆N satisfying s1 < s2 < . . . < sn and

gcd(s1,s2 . . . ,sn) = 1, is called a numerical semigroup ring. The multiplicity of the semigroup

S is e = s1 (this is also equal to the multiplicity of R). The conductor c of S is the smallest

positive integer c such that n ∈ S for all n ≥ c. The conductor ideal of R will in fact be

⟨tn ∣ n ≥ c⟩.
In the following result, we describe a situation where the m-basically empty interior

agrees with its absolute version.

Proposition 7.17. Let R = k[[tS]] where S = ⟨s1,s2, . . . ,sn⟩ ⊆N satisfying

s1 < s2 < . . . < sn and gcd(s1,s2 . . . ,sn) = 1.

Set Q = k((t)), the field of fractions of R. Let I = (f1, . . . ,fr) be an ideal of R, and suppose

that the least power of t appearing in the expression of fi as a power series is mi. Let

m =min{m1, . . . ,mr}. If m ≥ e+ c, then m(I ∶R m) =m(I ∶Q m) if m ≥ e+ c. In other words,

IRmbe = IRmbea
if m ≥ e+c.

Proof. Clearly, m(I ∶R m) ⊆m(I ∶Q m). Let f ∈ (I ∶Q m). Then tef ∈ I. So if f =
∞

∑
i=n

ait
i,

then tef =
∞

∑
i=n

ait
i+e. Since this is in I, n+e ≥m. So n ≥m−e ≥ e+ c−e = c. Hence, f ∈ c ⊆R

and m(I ∶Q m) ⊆m(I ∶R m) finishing the proof.

Since Jbfr is residual, we can dualize it by the method of [8], or equivalently by the

method of [9, Prop. 3.2]. Note that by Example 7.15, its dual will not always agree with

Jbe.

Corollary 7.18. Let R be a complete local ring. The pair operation Jbf⌣r is an absolute

interior operation and (Jbfr)⌣ = Jbea when Jbfr is considered as an operation on finitely

generated R-modules.

Proof. This follows from Proposition 6.6.

We use the following identities in the next example.

Lemma 7.19. Let R be an Artinian Gorenstein local ring. Then, for any ideals I and J

of R,

J(I ∶R J) = ann(J(annI) ∶R J) and (JI ∶R J) = ann(J((annI) ∶R J)).
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Proof. By [2, Exer. 3.2.15], for any ideal I, ann(annI)) = I.
Next, we show that for any two ideals I and J, we have (I ∶R J) = ann(J annI). To see

this, first let x ∈ (I ∶ J), j ∈ J , and b ∈ annI. Then xj ∈ I, so xjb = 0. Thus, x ∈ ann(J annI).
Conversely, let z ∈ ann(J annI) and j ∈ J . Then zj ∈ ann(annI) = I, so z ∈ (I ∶R J).

It then follows that ann(I ∶R J) = ann(ann(J annI)) = J annI.
Next, we show that for ideals I and J, ann(IJ) = (annI) ∶R J . Let x ∈ (annI) ∶R J and

y ∈ IJ , say y = ∑risi with the ri ∈ I and si ∈ J . Then xy = ∑rixsi. Since each xsi ∈ annI
and each ri ∈ I, xy = 0. For the other inclusion, let x ∈ annIJ and y ∈ J . for any z ∈ I,
xyz ∈ x(IJ) = 0.

To prove the first identity in the statement of the lemma, we have

ann(J(annI) ∶R J) = J ann(J(annI))
= J((annannI) ∶R J) = J(I ∶R J).

For the second identity, we have

ann(J((annI) ∶R J)) = (ann((annI) ∶R J)) ∶R J

= (J(annannI)) ∶R J = (JI) ∶R J.

Example 7.20. As a special case, suppose our local ring R is Artinian Gorenstein.

Then E =ER(k) =R. Hence, the duality given above between Jbfr and Jbea restricts to a

duality between a closure operation on ideals of R and an interior operation on ideals of R.

In particular, by passing through our usual smile duality, one obtains for any ideal I that

IRJbea = I
R
Jbe = J(I ∶R J) = ann(J(annI) ∶R J)

= ann((annI)JbfR ) = ann((annI)JbfrR )

and

IJbfrR = IJbfR = (JI ∶R J) = ann(J((annI) ∶R J))

= ann((annI)RJbe) = ann((annI)RJbea) .

§8. Pair operations derived from a pre-enveloping class

In this section, we develop the theory of pair operations derived from a pre-enveloping

class. This is a generalization of the way that EHU integral closure extends integral closure

to modules. While it is in some ways similar to the hereditary version of a closure developed

in §5, here we do not assume that the embeddings are into injective modules. As a result,

we need some additional hypotheses to prove comparable results.

Definition 8.1 [6, Def. 6.1.1]. Let M be a category of R-modules. Let C ⊆ D be two

classes of modules in M. We say that C is a pre-enveloping class for M in D if for any

M ∈M, there is some C ∈ C and some morphism α ∶M→C inM, such that for any morphism

g ∶M→D in M with D ∈ D, there is some morphism g̃ ∶C→D in M with g = g̃ ○α. In this

case, the map α (or by abuse of notation, C itself) is called a C-pre-envelope of M in D.
If C =D, we drop the “in D” portion of the terminology.
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Here are some examples.

Example 8.2. IfM is the class of R-modules, and C is the class of injective R-modules,

then any injective mapM→C with C ∈ C is a C-pre-envelope. This follows from the definition

of injective module.

Example 8.3. By [6, Prop. 6.5.1], a ring R is coherent if and only if the class of flat

modules is pre-enveloping.

Next, we recall the biduality natural transformation.

Definition 8.4. Let R be a commutative ring. Let 1 be the identity functor on

R-modules, and let β be the biduality functor, given on objects by β(M) = M∗∗ =
HomR(HomR(M,R),R), and on morphisms by the R-duality functor composed with

itself. That is, if α ∶M→N is a morphism, α∗ ∶N∗→M∗ is defined by α∗(g) ∶= g ○α, and
β(α) ∶= α∗∗ ∶= (α∗)∗.

Then define h ∶ 1→β by the rule that for any R-module M, hM ∶M→M∗∗ is given by

hM(x)(g) ∶= g(x).

The fact that the above is a natural transformation is well known, but we provide a

proof.

Lemma 8.5. The rule h as defined above is a natural transformation.

Proof. Let f ∶ M→N be a map of R-modules. Let x ∈ M and g ∈ N∗. Then

f∗∗(hM(x))(g) = hM(x)(g ○ f) = (g ○ f)(x) = g(f(x)) = hN(f(x))(g). Since both g and

x were arbitrarily chosen, it follows that hN ○f = f∗∗ ○hM . Since f was arbitrary, it follows

that h is a natural transformation.

The following lemma is also well known, but for lack of a reference, we provide a statement

and a proof.

Lemma 8.6. Let P be a finitely generated, projective R-module. Then hP is an

isomorphism.

Proof. First, we consider the case where P is free. Say P = Rn. Choose a free basis

e1, . . . ,en for Rn. Then P ∗∗ is a free module on the basis hP (e1), . . . ,hP (en). One can

therefore make an inverse map i ∶ P ∗∗→P by sending each hP (ej) to ej .

Now, we consider the general case. Then there is a free R-module F = Rn and there

are maps π ∶ F→P and j ∶ P→F with π ○ j = 1P . Accordingly, j is injective. Moreover, by

functoriality of the biduality functor β, we have 1P ∗∗ = β(1P ) = β(π ○ j) = β(π) ○ β(j) =
π∗∗ ○j∗∗. The following diagram is then commutative by Lemma 8.5.

P
j

��

hP

��

1P

		
F π

��

≅ hF

��

P

hP

��
P ∗∗

j∗∗ ��

1P∗∗



F ∗∗
π∗∗ �� P ∗∗

Let x ∈P with hP (x) = 0. Then 0 = (j∗∗ ○hP )(x) = (hF ○j)(x) = hF (j(x)). But since both
hF and j are injective, it follows that x = 0. Hence, hP is injective.
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Finally, let c ∈P ∗∗. Since hF is surjective, there is some d ∈F with hF (d) = j∗∗(c). Then
hP (π(d)) = π∗∗(hF (d)) = π∗∗(j∗∗(c)) = c. Thus, hP is surjective.

Proposition 8.7. If M is the class of finitely generated R-modules, then the class

of finitely generated projective R-modules is pre-enveloping. In fact, the class of finitely

generated free modules is pre-enveloping in the class of finitely generated projectives.

Proof. Let M be a finitely generated R-module, and choose an R-module surjection

π ∶F↠M∗, where F is finitely generated and free. Then we claim that α ∶= π∗ ○hM ∶M→F ∗
is both a finitely generated free preenvelope and a finitely generated projective preenvelope.

To see this, let P be a finitely generated projective module and β ∶M→P an R-linear map.

Then since P ∗ is projective and π is surjective, there is some map γ ∶ P ∗→F such that

π ○γ = β∗. Then, by Lemma 8.5, we have

hP ○β = β∗∗ ○hM = (π ○γ)∗ ○hM = γ∗ ○π∗ ○hM = γ∗ ○α.

By Lemma 8.6, hP is an isomorphism. Compose both sides of the above display on the left

with h−1P . Then β = (h−1P ○γ∗)○α.

Proposition 8.8. Let M be the class of finitely generated R-modules. The class of

finitely generated free modules is pre-enveloping for M in the class of flat modules.

Proof. Indeed, let M be a finitely generated module, let α ∶M→F ∗ be as above, let G

be a flat R-module, and let β ∶M→G be an R-linear map. By Lazard’s theorem [16], there

is some directed system {Gi}i∈I of finitely generated free R-modules such that G = lim→Gi.

Accordingly, let gij ∶Gi→Gj be the maps in the directed system and let gi ∶Gi→G be the

induced maps to the direct limit. Let {x1, . . . ,xn} be a generating set for the R-module M.

For each k, there is some ik ∈ I and yk ∈Gik such that β(xk) = gik(yk). Choose j ∈ I such

that j ≥ ik for k = 1, . . . ,n. Set zk ∶= gik,j(yk) ∈Gj . Now, let q ∶Rn↠M , where Rn has basis

{e1, . . . ,en} be the surjective map that sends ek ↦ xk. Define β′ ∶Rn→Gj to be the unique

map such that β′(ek) = zk for all k = 1, . . . ,n. Then gj(β′(ek)) = gj(zk) = gik(yk) = β(xk) =
β(q(ek)). Since this holds for all k, we have gj ○β′ = β ○q. Let K = kerq; choose a generating

set {u1, . . . ,ut} for K. Then, for each 1 ≤ 	 ≤ t, we have gj(β′(u�)) = β(q(u�)) = β(0) = 0.
Again, using direct limit properties, there is then some h ≥ j such that β′(u�) ∈ kergjh for

all 1 ≤ 	 ≤ t. That is, gjh ○β′ vanishes on kerq, so there is an induced map γ ∶M→Gh such

that γ ○q = gjh ○β′. But then, gh ○γ ○q = gh ○gjh ○β′ = gj ○β′ = β ○q. Then since q is surjective,

and hence right-cancellable, we have β = gh ○γ.
But since Gh is a finitely generated free module, we already know by Proposition 8.7 that

there is some γ̃ ∶ F ∗→Gh such that γ = γ̃ ○α. Hence, β = gh ○γ = gh ○ γ̃ ○α, so that β factors

through α as required.

Proposition 8.9. Let M be a category of modules, and let C be a pre-enveloping

subclass. Let P ′ be a class of pairs (L,M) such that L,M ∈M and the inclusion map L↪M

is in M as well. Assume that whenever ϕ ∶M→N is a morphism in M and (L,M) ∈ P ′,
then (ϕ(L),N) ∈ P ′. Let p be a functorial pair operation defined on P =P ′∣C ∶= {(L,C) ∈ P ′ ∣
C ∈ C}. Define the pair operation ph(C) on P ′ so that when α ∶M→C is a C-preenvelope,
ph(C)(L,M) = α−1(p(α(L),C)). Then ph(C) is well defined and functorial. Moreover:

(1) If p is order-preserving on submodules, then so is ph(C).

(2) If p is extensive, then so is ph(C).
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(3) If p is a closure operation, then ph(C) is also idempotent.

(4) Let (L,M) ∈ P ′ and x ∈M . Then x ∈ ph(C)(L,M) if and only if for every map g ∶M→C
in M with C ∈ C, we have g(x) ∈ p(g(L),C).

Hence, if p is a closure operation, then so is ph(C).

Remark 8.10. This result resembles the results in §5. The key difference is that when

we use injective modules as our pre-enveloping class, we do not need to assume that p is

extensive in order to prove that if p is idempotent, then so is ph(C). So this result and the

results of §5 overlap, but each includes cases not covered by the other results. Note that ph
as defined in previous sections is ph(C), where C is the class of injective modules.

Proof. For well-definedness, let α ∶M→C and β ∶M→C ′ be C-pre-enveloping maps. Then,

by definition, there exist maps α̃ ∶ C ′→C and β̃ ∶ C→C ′ such that α = α̃ ○β and β = β̃ ○α.
Let x ∈ α−1(p(α(L),C)). That is, α(x) ∈ p(α(L),C). Then, by functoriality of p, we have

β(x) = β̃(α(x)) ∈ p(β̃(α(L)),C ′) = p(β(L),C ′). That is, x ∈ β−1(p(β(L),C ′)). By symmetry,

we get the reverse inclusion, and so ph(C) is well defined.

For functoriality, let (L,M) ∈ P ′, and let ϕ ∶M→N in M. Let x ∈ ph(C)(L,M). Choose
C-pre-enveloping maps α ∶M→C and β ∶ N→D. Then since α is a C-preenvelope, there

is some ϕ̃ ∶ C→D such that β ○ϕ = ϕ̃ ○α. We have α(x) ∈ p(α(L),C), so functoriality of

p gives β(ϕ(x)) = ϕ̃(α(x)) ∈ p(ϕ̃(α(L)),D) = p(β(ϕ(L)),D). Hence, by definition, ϕ(x) ∈
ph(C)(ϕ(L),N).

Now, suppose p is order-preserving on submodules. Let L ⊆ N ⊆ M be submodule

inclusions in M with (L,M),(N,M) ∈ P ′. Let α ∶M→C be a C-pre-envelope. Let x ∈
ph(C)(L,M). Then α(x) ∈ p(α(L),C) ⊆ p(α(N),C) (since α(L) ⊆ α(N) and p is order-

preserving on submodules). Hence, x ∈ α−1(p(α(N),C)) = ph(C)(N,M), whence ph(C) is

order-preserving on submodules.

Next, suppose p is extensive. Let (L,M) ∈ P ′, and let α ∶M→C be a C-pre-envelope. Let
x ∈ L. Then α(x) ∈ α(L) ⊆ p(α(L),C) (since p is extensive). Thus, x ∈ α−1(p(α(L),C)) =
ph(C)(L,M), whence ph(C) is extensive.

Next, suppose p is extensive order-preserving on submodules, and idempotent. Let

(L,M) ∈ P ′ such that (ph(C)(L,M),M) ∈ P ′ as well. Let α ∶M→C be a C-preenvelope,
and let x ∈ ph(C)(ph(C)(L,M),M). Then

α(x) ∈ p(α(ph(C)(L,M)),C) = p(α(α−1(p(α(L),C))),C)
⊆ p(p(α(L),C),C) = p(α(L),C),

where the containment follows since p is extensive and the last equality follows by the

idempotence of p. Hence, x ∈ ph(C)(ph(C)(L,M),M).
Finally, we prove (4). Let x ∈M , and suppose x ∈ ph(C)(L,M). Let g ∶M→C be as in

(4). Let h ∶M→B be a C-preenvelope. Then, by definition, h(x) ∈ p(h(L),B). But by the

pre-enveloping property, there is some g̃ ∶B→C inM with g̃ ○h = g. Hence, by functoriality

of p, we have g(x) = g̃(h(x)) ∈ p(g̃(h(L)),C) = p(g(L),C). The converse is trivial.

§9. Applications to integral closure, tight closure, and other closures defined

using pre-envelopes

In this section, we apply our results on residual and hereditary versions to integral closure

and tight closure. We discover that EHU integral closure is not the hereditary version of
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liftable integral closure and show that we can define a version of tight closure using a

pre-enveloping class.

This version of integral closure arose in the context of Rees algebras of modules :

Definition 9.1 [4, pp. 702–703]. Let M be an R-module. Then the Rees algebra of M

is defined to be R(M) ∶= Sym(M)/⋂g∶M→F {kerSym(g)}, where the intersection is taken

over all maps g ∶M→F where F is free.

If g ∶M→F is a map with F free, then we set R(g) ∶= imSym(g).
A map g ∶M→F , with F free andM,F finitely generated, is versal if for any map h ∶M→G

to a free module G, there is some R-linear map ϕ ∶ F→G such that ϕ○h = g.

Lemma 9.2 [22, Lem. 1.5]. If g ∶M→F is versal, then R(M) ≅R(g).

Theorem 9.3 [4, from Th. 2.2]. Let R be a Noetherian ring, let U ⊆ L ⊆M be finite

R-modules, and let f ∶M→F be a versal map with F free. The following are equivalent:

(1) L is integral over U in M (i.e., L ⊆U−EHU
M ).

(2) For every minimal prime p of R, L′ is integral over U ′ in M ′ over the ring R/p, where
′ denotes images in F /pF .

(3) For every homomorphism M→G to a free module and every ring map R→S with S a

domain, the S-module L′ is integral over U ′ in M ′, where ′ denotes tensoring with S

and taking images in S⊗RG.

Remark 9.4 [4, top of p. 702]. Let M be a finitely generated R-module, let F be a

finitely generated free module, and let α ∶M→F be an R-linear map. Consider F to be the

degree 1 component of the graded R-algebra A = Sym(F ) in the usual way. Then R(α) is
the (graded) R-subalgebra of A generated by α(M) ⊆F =A1. One can also think of this as

the image of the induced map Sym(α) ∶ Sym(M)→Sym(F ).

Lemma 9.5. Let M be a finite R-module, let F,G be finite free R-modules, and let

α ∶M→F and μ ∶ F→G be R-linear. Then μ∗(R(α)) =R(μ○α), where μ∗ ∶= Sym(μ).

Proof. Every positive-degree element of R(α) is a finite R-linear combination of terms

of the form γ =∏t
j=1α(mj), t ∈N, mj ∈M . For any such γ, we have μ∗(γ) =∏t

j=1μ(α(mj)) =
∏t

j=1(μ○α)(mj) ∈ R(μ○α).
Conversely, every positive-degree element of R(μ○α) is an R-linear combination of terms

of the form β =∏t
j=1(μ○α)(mj). But then, β = μ∗(∏t

j=1α(mj)) ∈ μ∗(R(α)).

Proposition 9.6. The EHU version of integral closure is both functorial and hereditary

as a map on finitely generated modules. That is, let R be a Noetherian ring, and let L ⊆N ⊆
M be finitely generated R-modules. Then N is integral over L (as given in Definition 2.8)

if and only if it is integral over L in M.

Proof. To see functoriality, let L ⊆M and M ′ be finitely generated modules and g ∶
M→M ′ an R-linear map. Let F be a finitely generated free module, and let ϕ ∶M ′→F be

an R-linear map. Suppose x ∈ L−EHU
M . Then since ϕ○g is a map from M to a free module,

we have ϕ(g(x)) ∈ϕ(g(L))−F . Since ϕ was arbitrary, it follows that g(x) ∈ g(L)−EHU
M ′.

In particular, if L ⊆N ⊆M and N is integral over L in the EHU sense (i.e., N =L−EHU
N ),

then N ⊆L−EHU
M as well by functoriality applied to the inclusion map N ↪M .

For the reverse direction, note first that by applying Theorem 9.3(2), we may assume R

is an integral domain. Next, let α ∶M→G and β ∶N→F be versal maps to finitely generated
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free modules. Such maps exist by [4, Prop. 1.3]. Then there is an induced map μ ∶F→G with

μ○β =α∣N . Let i ∶L↪N and j ∶N↪M be the inclusion maps. We are given that N is integral

over L in M in the EHU sense. By definition, we then have that the ring R[N ′G] =R(α○j)
is integral over the subring R[L′G] =R(α○j ○ i), where for a submodule K of M, K ′G is the

image of K in Sym(G).
Next, we claim that μ○β = α○ j ∶N→G induces an injection on the torsionless quotient

N/ker(hN) of N. To see this, let x ∈ ker(α ○ j). Then j(x) ∈ kerα = T (M), the torsion

submodule of M. Since R is a domain, torsionless and torsion-free coincide, and we have

T (M)∩N = T (N). Hence, x ∈ T (N).
Thus, by [4, Prop. 1.8], the kernel of the natural map ϕ ∶ R(N) = R(β) → R(μ ○β) =

R(α○j) =R[N ′G] is nilpotent.
Let a ∈N . Since a ∈L−EHU

M , we have α(j(a)) ∈ (α(j(L)))−G. That is, μ(β(a)) ∈ (μ(β(L)))−G.
Thus, as an element of Sym(G), μ(β(a)) is integral over the subalgebra R[L′G] =R(α○j○i) =
R(μ○β ○ i). That is, there exist n ∈N and ht ∈ R(μ○β ○ i) with

μ(β(a))n+
n

∑
t=1

htμ(β(a))n−t = 0.

But μ∗ = Sym(μ) restricts to a surjective map R(β ○ i)↠R(μ○β ○ i) by Lemma 9.5. Hence,

there exist gt ∈ R(β ○ i) with ht = μ∗(gt). Thus, we have

μ∗(β(a)n+
n

∑
t=1

gtβ(a)n−t) = μ(β(a))n+
n

∑
t=1

μ∗(gt)μ(β(a))n−t = 0.

Since β(a) ∈ β(N) ⊆ R(β) and each gt ∈ R(β ○ i) ⊆ R(β), we can replace “μ∗” in the above

display with “ϕ.” But since the kernel of ϕ is nilpotent, there is some positive integer m

with (β(a)n+∑n
t=1 gtβ(a)n−t)m = 0. The latter is then an equation of integrality of β(a) over

R(β ○ i) =R[L′F ]. Thus, β(a) ∈ β(L)−F . Then, by the implication “2⇒ 1” of Theorem 9.3,

since β is versal, we have a ∈L−EHU
N . Thus, N =L−EHU

N .

The next result shows that EHU integral closure must agree with its hereditary version,

even though they appear to be defined differently.

Corollary 9.7. Let R be Noetherian. Extend EHU integral closure to submodules of

all R-modules by taking its finitistic version as in Definition 3.26. The hereditary version

of this closure is equal to EHU integral closure on finitely generated R-modules.

In fact, this holds for any hereditary closure operation defined on finitely generated

R-modules.

Proof. First, note that EHU integral closure is hereditary on pairs of finitely generated

R-modules by Proposition 9.6. By Proposition 5.13, the finitistic extension of EHU integral

closure is a hereditary closure operation on pairs of R-modules, hence equal to its hereditary

version on all R-modules. Since Lemma 3.28 implies that the finitistic extension of EHU

integral closure agrees with EHU ntegral closure on finitely generated R-modules, the result

is proved.

The proof for arbitrary hereditary closure operations follows in the same way.

In contrast, when R is not a domain, Rees integral closure is not always hereditary, even

on finitely generated modules. When R is a domain, Rees integral closure agrees with EHU

integral closure, so we do not study Rees integral closure separately in this paper, beyond

the example below.

https://doi.org/10.1017/nmj.2023.36 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.36


HOW TO EXTEND CLOSURE AND INTERIOR OPERATIONS TO MORE MODULES 557

Example 9.8. We give an example to show that if R is not a domain, Rees integral

closure may not be hereditary. Let R = k[x]/(x2) and set M = Rx. By [11, Exam. 1.6],

0−Rs
M = 0. Since R is Artinian Gorenstein, it is injective as a module over itself. If Rees

integral closure were hereditary, we should get 0−Rs
R ∩M = 0, but 0−Rs

R = (x) =M . So Rees

integral closure is not hereditary in this case.

The next example demonstrates that the hereditary version of liftable integral closure

can differ from EHU integral closure. However, we will see below that these two closures

agree on sufficiently nice modules.

Example 9.9. Let R = k[[x]], where k is any field. Let M = k be the residue field of R,

and set L = 0 ⊆M . Then, since depth R > 0, we have HomR(k,R) = 0, so that for any finitely

generated projective (hence free) R-module P ≅Rt, we have HomR(M,P )≅HomR(k,R)t =0.
That is, the only map M→P is the zero map, so it factors through the map M→0. Hence,

the map M→0 is versal, so 0−EHU
M =M .

However, the hereditary version of the liftable integral closure of 0 in M is equal to 0. To

see this, let E be an injective module containing M and let N be a finitely generated module

with M ⊆N ⊆E. Let G be a finite free module, and let π ∶G↠N be a surjection. Then kerπ

is an integrally closed R-submodule of G, since any submodule of a finitely generated free

module over a discrete valuation ring must be integrally closed [15, Cor. 16.3.3]. Hence,

0�N = π((kerπ)−G) = π(kerπ) = 0. Since ! is finitistic [11, Lem. 2.3], it follows that 0�E = 0, so
that 0�h

M = 0�E ∩M = 0.
Proposition 9.10. Let M be a torsionless finitely generated R-module. Then the

hereditary version of liftable integral closure agrees with EHU integral closure on submodules

of M.

Proof. Since liftable integral closure is generally smaller than EHU integral closure [11,

Prop. 2.4(6) and Cor. 1.5], we only need to prove one containment. Let u ∈L−EHU
M . Since M

is contained in a finitely generated free module F, u ∈ L−EHU
F = L�F . Let E be an injective

module containing F. Since liftable integral closure is functorial, u ∈L�E . Since E is injective,

this is equal to L�h

E . So u ∈L�h

E ∩M =L�h

M , as desired.

In the next result, we give a condition on a closure operation cl that is sufficient to

guarantee that the closure operation clh(Q) as in Proposition 8.9, is hereditary when the

pre-enveloping class Q consists of finitely generated projective modules.

Proposition 9.11. Let R be a Noetherian integral domain. Let cl be a functorial

closure operation on the set of pairs P ∶= {(M,P ) ∣ P is a finitely generated projective R-

module and M is a submodule of P}. Suppose that whenever α ∶M ↪ P and β ∶M ↪Q are

injective maps where P,Q are finitely generated projectives, that for any submodule L of M,

we have α−1(α(L)clP ) = β−1(β(L)clQ). Then the closure operation clh(Q) on P ′ ∶= {(L,M) ∣
M is finitely generated}, as in Proposition 8.9, is hereditary. Consequently, it is equal to

its hereditary version as in Proposition 5.3.

Proof. Let L ⊆ N ⊆M be finitely generated R-modules. First, by functoriality (as in

Proposition 8.9) applied to the inclusion map i ∶N ↪M , we have L
clh(Q)
N ⊆ Lclh(Q)

M ∩N , so

we need only prove the reverse containment.

For this, assume first that M is torsionless. Then M embeds in a finite free module,

whence N does as well, so that N is also torsionless [2, Exer. 1.4.20(b)]. Let α ∶N ↪F and

β ∶M ↪G be pre-envelopes by the class of finitely generated projectives. Then we have
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L
clh(Q)
M ∩N = i−1(i(L)clh(Q)M ) = i−1(β−1(β(i(L))clG)) = (β ○ i)−1((β ○ i)(L)clG)

= α−1(α(L)clF ) =L
clh(Q)
N ,

where the first equality on the second line is by assumption (since both β ○ i and α are

injective maps to finitely generated projective modules) and the final equality is because α

is a pre-envelope.

Now, we drop the assumption that M is torsionless. For this, recall [1, second paragraph

of the Introduction] that since R is an integral domain, for any finite R-module C the

kernel of the natural biduality map hC ∶C→HomR(HomR(C,R),R) is precisely the torsion

submodule τ(C) of C. Note also that τ(N) = i−1(τ(M)). Hence, there is an induced injection

i0 ∶ N/τ(N)→M/τ(M), so that i0 ○π = q ○ i, where π ∶ N↠N/τ(N) and q ∶M↠M/τ(M)
are the canonical projections. Now, let μ ∶N→F be a finitely generated free pre-envelope.

Then since μ factors through hN , it also factors through π, which is to say there is some

map μ̃ ∶ N/τ(N)→F such that μ̃ ○π = μ. Moreover, the versality of μ implies that μ̃ is

injective. To see this, let q ∶ P↠HomR(N,R) be a surjection from a finite free module.

Then q∗ ∶=HomR(q,R) is injective by left exactness of Hom, and q∗ ○hN factors through μ,

since μ is versal. Thus, for any x ∈ kerμ, we have x ∈ ker(q∗ ○hN) = kerhN = τ(N).
Similarly, let γ ∶M→G be a finitely generated free pre-envelope. Then there is an injective

map γ̃ ∶M/τ(M)→G such that γ̃ ○q = γ. We now have the following commutative diagram:

N � � i ��

π
����

μ

��

M

q
����

γ

��

N/τ(N) � � i0 ��
� �

μ̃

��

M/τ(M)
��

γ̃

��
F G

Now, let x ∈Lclh(Q)
M ∩N . That is, x ∈N and i(x) ∈ i(L)clh(Q)M . Then, by construction of γ and

by the definition of clh(Q), we have

(γ̃ ○ i0)(π(x)) = γ̃(q(i(x))) = γ(i(x)) ∈ (γ(i(L)))clG = ((γ̃ ○ i0 ○π)(L))clG.

Since γ̃ ○ i0 and μ̃ are both injective, we have by the first part of the proof (where we were

assuming M to be torsionless) that

π(x) ∈ π(L)clG∩(N/τ(N)) = π(L)clF ∩(N/τ(N)) = μ̃−1(μ̃(π(L))clF ),

so that

x ∈ π−1(μ̃−1(μ̃(π(L))clF )) = μ−1(μ(L)clF ) =L
clh(Q)
N .

Now, we show that this condition holds for tight closure.

Lemma 9.12. Let R be a prime characteristic reduced Noetherian ring. Let L ⊆M be

finitely generated R-modules, and let α ∶M ↪ F , β ∶M ↪G be two different injective maps

into finitely generated projective modules. Then L∗F ∩M =L∗G∩M .

Proof. Consider the pushout H ∶= F ⊕M G of the maps α and β. Label the induced

maps α′ ∶ F→H and β′ ∶ G→H. Note that both α′ and β′ are injective. Hence, we have
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inclusions L ⊆F ⊆H and L ⊆G ⊆H. Then, by [14, Prop. 8.18(b)], we have L∗F =L∗H ∩F and

L∗G =L∗H ∩G. Thus,

L∗F ∩M =L∗H ∩F ∩M =L∗H ∩M =L∗H ∩G∩M =L∗G∩M.

Corollary 9.13. Let R be a prime characteristic Noetherian domain. Let ∗ denote

the tight closure operation, restricted to submodules of finitely generated projective modules.

Then the operation ∗h(Q), as in Proposition 9.11, is a hereditary closure operation on finitely

generated modules that agrees with ∗ when the ambient module is projective (e.g., free). In

particular, this means that it agrees with its hereditary version as in Proposition 5.3.

This gives us one way to get a hereditary version of tight closure. Absolute tight closure

(see Definition 2.13) is another one.

Lemma 9.14. Absolute tight closure equals ∗h on finitely generated modules over any

Noetherian ring R of prime characteristic p > 0. In particular, absolute tight closure is

hereditary in this context.

Proof. Let N ⊆M be finitely generated R-modules. By [14, Disc. 8.21], N∗absM =N∗fgE ∩M
when E is any injective module containing M. By Proposition 5.4, (∗fg)h is hereditary.

But N
(∗fg)h
M =N∗fgE ∩M .

As we had for integral closure, we now have two methods for creating a hereditary

version of tight closure: one involving the pre-enveloping class of injective modules, and one

involving the pre-enveloping class Q of finitely generated projective modules. As in that

case, the two methods differ on some examples, but agree for sufficiently nice modules.

Example 9.15. We repeat Example 9.9. The argument that 0
∗h(Q)
M =M is the same.

However, since R is regular, for any module U ⊇M , 0∗fgU = 0. So 0∗absM = 0.
Proposition 9.16. Let R be a prime characteristic Noetherian domain. If M is a

torsionless finitely generated R-module and L ⊆M , then L
∗h(Q)
M = L∗absM , where Q is the

pre-enveloping class of finitely generated projective modules.

Proof. The proof is identical to the proof of Proposition 9.10.
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